
Stacking Sigmas:
A Framework to Compose Σ-Protocols for Disjunctions

Aarushi Goel1, Matthew Green1, Mathias Hall-Andersen2, and Gabriel
Kaptchuk3

1 Johns Hopkins University, Baltimore, USA, {aarushig,mgreen}@cs.jhu.edu,
2 Aarhus University, Aarhus, Denmark, ma@cs.au.dk
3 Boston University, Boston, USA, kaptchuk@bu.edu

Abstract. Zero-Knowledge (ZK) Proofs for disjunctive statements have
been a focus of a long line of research. Classical results such as Cramer et
al. [CRYPTO’94] and Abe et al. [AC’02] design generic compilers that
transform certain classes of ZK proofs into ZK proofs for disjunctive
statements. However, communication complexity of the resulting pro-
tocols in these results ends up being proportional to the complexity of
proving all clauses in the disjunction. More recently, Heath et al. [EC’20]
exploited special properties of garbled circuits to construct efficient ZK
proofs for disjunctions, where the proof size is only proportional to the
length of the largest clause in the disjunction. However, these techniques
do not appear to generalize beyond garbled circuits.
In this work, we focus on achieving the best of both worlds. We design a
general framework that compiles a large class of unmodified Σ-protocols,
each for an individual statement, into a new Σ-protocol that proves a
disjunction of these statements. Our framework can be used both when
each clause is proved with the same Σ-protocol and when different Σ-
protocols are used for different clauses. The resulting Σ-protocol is con-
cretely efficient and has communication complexity proportional to the
communication required by the largest clause, with additive terms that
are only logarithmic in the number of clauses.
We show that our compiler can be applied to many well-known Σ-
protocols, including classical protocols (e.g. Schnorr [JC’91] and Guillou-
Quisquater [CRYPTO’88]) and modern MPC-in-the-head protocols such
as the recent work of Katz, Kolesnikov and Wang [CCS’18] and the Ligero
protocol of Ames et al. [CCS’17]. Finally, since all of the protocols in our
class can be made non-interactive in the random oracle model using the
Fiat-Shamir transform, our result yields the first generic non-interactive
zero-knowledge protocol for disjunctions where the communication only
depends on the size of the largest clause.

1 Introduction

Zero-knowledge proofs and arguments [26] are cryptographic protocols that en-
able a prover to convince the verifier of the validity of an NP statement with-
out revealing the corresponding witness. These protocols, along with proof of



knowledge variants, have now become critical in the construction of larger cryp-
tographic protocols and systems. Since classical results established feasibility of
such proofs for all NP languages [24], significant effort has gone into making
zero-knowledge proofs more practically efficient e.g. [9, 10, 13, 28, 31, 34, 35], re-
sulting in concretely efficient zero-knowledge protocols that are now being used
in practice [7, 41,42].

Zero-knowledge for Disjunctive Statements. There is a long history of
developing zero-knowledge techniques for disjunctive statements [1, 17, 21]. Dis-
junctive statements comprise of several clauses that are composed together with
a logical “OR.” These statements also include conditional clauses, i.e. clauses
that would only be relevant if some condition on the statement is met. The wit-
ness for such statements consists of a witness for one of the clauses (also called
the active clause), along with the index identifying the active clause. Disjunctive
statements occur commonly in practice, making them an important target for
proof optimizations. For example, disjunctive proofs are often also used to give
the prover some degree of privacy, as a verifier cannot determine which clause is
being satisfied. Use cases include membership proofs (e.g. ring signatures [37]),
proving the existence of bugs in a large codebase (as explored in [31]), and prov-
ing the correct execution of a processor, which is typically composed of many
possible instructions, only one of which is executed at a time [8].

An exciting line of recent work has emerged that reduces the communication
complexity for proving disjunctive statements to the size of the largest clause
in the disjunction [31, 36]. While succinct proof techniques exist [10, 22, 27, 28],
known constructions are plagued by very slow proving times and often require
strong assumptions, sometimes including trusted setup. These recent works ac-
cept larger proofs in order to get significantly faster proving times and more
reasonable assumptions — while still reducing the size of proofs significantly.
Intuitively, the authors leverage the observation that a prover only needs to
honestly execute the parts of a disjunctive statement that pertain to their wit-
ness. Using this observation, these protocols modify existing proof techniques,
embedding communication-efficient ways to “cheat” for the inactive clauses of
the disjunctive statement. We refer to these techniques as stacking techniques,
borrowing the term from the work of Heath and Kolesnikov [31].

Although these protocols achieve impressive results, designing stacking tech-
niques requires significant manual effort. Each existing protocol requires the de-
velopment of a novel technique that reduces the communication complexity of a
specific base protocol. For instance, Heath and Kolesnikov [31] observe that gar-
bled circuit tables can be additively stacked (thus the name), allowing the prover
in [34] to un-stack efficiently, leveraging the topolgy hiding property of garbling.
Techniques like these are tailored to optimize the communication complexity of
a particular underlying protocol, and do not appear to generalize well to large
families of protocols. In contrast, classical results [1, 17] succeed in designing a
generic compiler that tranforms a large familily of zero-knowledge proof systems
into proofs for disjunction, but fall short of reducing the size of the resulting
proof.
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In this work, we take a more general approach towards reducing the com-
munication complexity of zero-knowledge protocols for disjunctive statements.
Rather than reduce the communication complexity of a specific zero-knowledge
protocol, we investigate generic stacking techniques for an important family of
zero-knowledge protocols — three round public coin proofs of knowledge, popu-
larly known as Σ-protocols. Specifically, we ask the following question:

Can we design a generic compiler that stacks any Σ-protocol without
modification?

We take significant steps towards answering this question in the affirmative.
While we do not demonstrate a technique for stacking all Σ-protocols, we present
a compiler that stacks many natural Σ-protocols, including many of practical
importance. We focus our attention on Σ-protocols because of their widespread
use and because they can be made non-interactive in the random oracle model
using the Fiat-Shamir transform [19]. However we expect that the techniques
can easily be generalized to public-coin protocols with more rounds.

Benefits of a Generic Stacking Compiler. There are several significant
benefits of developing generic stacking compilers, rather than developing be-
spoke protocols that support stacking. First, automatically compiling multiple
Σ-protocols into ones supporting stacking removes the significant manual effort
required to modify existing techniques. Moreover, newly developed Σ-protocols
can be used to produce stacked proofs immediately, significantly streamlining the
deployment process. A second, but perhaps even more practically consequential,
benefit of generic compilers is that protocol designers are empowered to tailor
their choice of Σ-protocol to their application — without considering if there
are known stacking techniques for that particular Σ-protocol. Specifically, the
protocol designer can select a proof technique that fits with the natural represen-
tation of the relevant statement (e.g. Boolean circuit, arithmetic circuit, linear
forms or any other algebraic structure). Without a generic stacking compiler, a
protocol designer interested in reducing the communication complexity of dis-
junctive proofs might be forced to apply some expensive NP reduction to encode
the statement in a stacking-friendly way. This is particularly relevant because
modern Σ-protocols often require that relations are phrased in a very specific
manner, e.g. Ligero [2] requires arithmetic circuits over a large, finite field, while
known stacking techniques [31] focus on Boolean circuits.

A common concern with applying protocol compilers is that they trade gen-
erality for efficiency (e.g. NP reductions). However, we note that the compiler
that we develop in this work is extremely concretely efficient, overcoming this
common limitation. For instance, näıvely applying our protocol to the classi-
cal Schnorr identification protocol and applying the Fiat-Shamir [19] heurestic
yields a ring signature construction with signatures of length 2λ · (2 + 2 log(`))
bits, where λ is the security parameter and ` is the ring size; this is actually
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smaller than modern ring signatures from similar assumptions [4, 12] without
requiring significant optimization. 4

1.1 Our Contributions.

In this work, we give a generic treatment for minimizing the communication
complexity of Σ-protocols for disjunctive statements. In particular, we identify
some “special properties” of Σ-protocol that make them amenable to “stacking.”
We refer to protocols that satisfy these properties as stackable protocols. Then
we present a framework for compiling any stackable Σ-protocols for independent
statements into a new, communication-efficient Σ-protocol for the disjunction
of those statements. Our framework only requires oracle access to the prover,
verifier and simulator algorithms of the underlying Σ-protocols. We present our
results in two-steps:

Self-Stacking Compiler. First, we present our basic compiler, which we call a
“self-stacking” compiler. This compiler composes several instances of the same
Σ-protocol, corresponding to a particular language into a disjunctive proof. The
resulting protocol has communication complexity proportional to the commu-
nication complexity of a single instance of the underlying protocol. Specifically,
we prove the following theorem:

Informal Theorem 1 (Self-Stacking) Let Π be a stackable Σ-protocol for an
NP language L that has communication complexity CC(Π). There exists is a Σ-
protocol for the language (x1 ∈ L)∨. . .∨(x` ∈ L), with communication complexity
O(CC(Π) + λ log(`)), where λ is the computational security parameter.

Cross-stacking. We then extend the self-stacking compiler to support stacking
different Σ-protocols for different languages. The communication complexity of
the resulting protocol is a function of the largest clause in the disjunction and
the similarity between the Σ-protocols being stacked. Let fCC be a function that
determines this dependence. For instance, if we compose the same Σ-protocol
but corresponding to different languages, then the output of fCC will likely be
the same as that of a single instance of that protocol for the language with
the largest relation function. However, if we compose Σ-protocols that are very
different from each other, then the output of fCC will likely be larger. We prove
the following theorem:

Informal Theorem 2 (Cross-Stacking) For each i ∈ [`], let Πi be a stack-
able Σ-protocol for an NP language Li There exists is a Σ-protocol for
the language (x1 ∈ L1) ∨ . . . ∨ (x` ∈ L`), with communication complexity
O(fCC({Πi}i∈[`]) + λ log(`)).

4 Although concrete efficiency is a central element of our work, applying our compiler
to applications is not our focus. The details of this ring signature construction can
be found in the full version of the paper.
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Examples of Stackable Σ-protocols. We show many concrete examples of
Σ-protocols that are stackable. Specifically, we look at classical protocols like
Schnorr [39], Guillio-Quisquater [29] and Blum [11], and modern MPC-in-the-
head protocols like KKW [35] and Ligero [2]. Previously it was not known how
to prove disjunction over these Σ-protocols with sublinear communication in
the number of clauses. When applied to these Σ-protocols, our compiler yields
a Σ-protocol which can can made non-interactive in the random oracle model
using the Fiat-Shamir heurestic. For example, when instantiated with Ligero our
compiler yields a concretely efficient Σ-protocol for disjunction over ` different
circuits of size |C| each, with communication O(

√
|C| + λ log `). Additionally,

we explore how to apply our cross-stacking compiler to stack different stackable
Σ-protocols with one another (e.g. stacking a KKW proof for one relation with
a Ligero proof for another relation).

Partially-binding non-interactive vector commitments. Central to our
compiler is a new variation of commitments called partially-binding non-
interactive vector commitment schemes. These schemes allow a committer to
commit to a vector of values and equivocate on a subset of the elements in that
vector, the positions of which are determined during commitment and are kept
hidden. We show how such commitments can be constructed from the discrete
log assumption.

Extensions and Implementation Considerations. We finish by discussing
extensions of our work and concrete optimizations that improve the efficiency of
our compiler when implemented in practice. Specifically, we consider generaliz-
ing our work to k-out-of-` proofs of partial knowledge, i.e. the threshold analog
of disjunctions. We give a version of our compiler that works for these threshold
statements. Additionally, we demonstrate the efficiency of our compiler by pre-
senting concrete proof sizes when our compiler is applied to both a disjunction
of KKW and Schnorr signatures.

1.2 Related Work

A more in depth overview of these techniques can be found in ??

Disjunctive Compilers for Zero-Knowledge. The classic work of Cramer
et al. [17] showed how to compile Σ-protocols into k-of-` disjunctions, but does
not provide any communications savings. Abe et al. [1] presented an alternative
compiler specifically designed for signatures in the random oracle model. More
recently, Ciampi et al. [15] show how to augment this construction to allow the
prover to select instances in the disjunction during the third round. We note that
although Ciampi et al. make use of a similar commitment scheme, the focus of
their work is very different and they do not consider minimizing communication.

Communication Reduction for Disjunctive Zero-Knowledge. In [36],
Kolesnikov observed that the topology of a garbled circuit could be decou-
pled from its tables, resulting in S-universal two party SFE (Secret Function
Evaluation). Building on this idea, Heath and Kolesnikov [31] brought the
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topology-decoupled paradigm to interactive zero-knowledge, based on the works
of Jawurek et. al. [34] and Frederiksen et. al. [20]. This resulted in zero-knowledge
with communication complexity proportional to the size of the largest clause in
the disjunction, but is inherently interactive. In concurrent work, Baum et. al [5]
present Mac’n’Cheese, a constant round zero-knowledge proof system that ob-
tains “free nested disjunctions;” It is not clear how to make these protocols public
coin. Heath and Kolesnikov also explored similar ideas to reduce the communi-
cation complexity of MPC protocols executed over disjunctions [30,32].

2 Technical Overview

In this section, we give a detailed overview of the techniques that we use to
design a generic framework to achieve communication-efficient disjunctions of Σ-
protocols without requiring non-trivial5 changes to the underlying Σ-protocols.
Throughout this work, we consider a disjunction of ` clauses, one (or more) of
which are active, meaning that the prover holds a witness satisfying the relation
encoded into those clauses. For the majority of this technical overview, we focus
on the simpler case where the same Σ-protocol is used for each clause. We will
then extend our ideas to cover heterogeneous Σ-protocols.

Recall that Σ-protocols are three-round, public-coin zero-knowledge proto-
cols, where the prover sends the first message. In the second round, the verifier
sends a random “challenge” message to the prover, that only depends on the
random coins of the the verifier. Finally, in the third round, the prover responds
with a message based on this challenge. Based on this transcript the verifier then
decides whether to accept or reject the proof.

We start by considering the approaches taken by recent works focusing on
privacy-preserving protocols for disjunctive statements, e.g. [31]. We observe
that the “stacking” techniques used in all these works can be broadly classified
as taking a cheat and re-use approach. In particular, all of these works show
how some existing protocols can be modified to allow the parties to “cheat” on
the inactive clauses — i.e. only executing the active clause honestly — and “re-
using” the single honestly-computed transcript to mimic a fake computation of
the inactive clauses. Critically, this is done while ensuring that the verifier cannot
distinguish the honest execution of the active clause from the fake executions of
the inactive clauses.

Our Approach. In this work we extend the cheat and re-use approach to de-
sign a framework for compiling Σ-protocols into a communication-efficient Σ-

5 We assume that basic, practice-oriented optimizations have already been applied to
the Σ-protocols in question. For instance, we assume that only the minimum amount
of information is sent during the third round of protocol. Hereafter, we will ignore
these trivial modifications and simply say “without requiring modification.” Note
that these modifications truly are trivial: the parties only need to repeat existing
parts of the transcript in other rounds. We discuss this in the context of MPC-in-
the-head protocols in Section 5.
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protocol for disjunctive statements without requiring modification of the under-
lying protocols. Specifically, we are interested in reducing the number of third
round messages that a prover must send to the verifier, since the third round
message is typically the longest message in the protocol. Intuition extracted from
prior work leads us to a natural high-level template for achieving this goal: Run
individual instances of Σ-protocols (one-for each clause in the disjunction) in
parallel, such that only one of these instances (the one corresponding to the ac-
tive clause) is honestly executed, and the remaining instances re-use parts of this
honest instance.

There are two primary challenges we must overcome to turn this rough outline
into a concrete protocol: (1) how can the prover cheat on the inactive clauses?
and (2) what parts of an honest Σ-protocol transcript can be safely re-used
(without revealing the active clause)? We now discuss these challenges, and the
techniques we use to overcome them, in more detail.

Challenge 1: How will the prover cheat on inactive clauses? Since the
prover does not have a witness for the inactive clauses, the prover can cheat
by creating accepting transcripts for the inactive clauses using the simulator(s)
of the underlying Σ-protocols. The traditional method (e.g. [17] for disjunctive
Schnorr proofs) requires the prover to start the protocol by randomly selecting a
challenge for each inactive clause and simulating a transcript with respect to that
challenge. In the third round, the prover completes the transcript for each clause
and demonstrates that it could only have selected the challenges for all-but-one
of the clauses. This approach, however, inherently requires sending many third
round messages, which will make it difficult to re-use material across clauses
(discussed in more detail below). Similarly, alternative classical approaches for
composing Σ-protocols for disjunctives, like that of Abe et al. [1], also require
sending a distinct third round message for each clause. As such, we require a
new approach for cheating on the inactive clauses.

Our first idea is to defer the selection of first round messages for the inactive
clauses until after the verifier sends the challenge (i.e in the third round of the
compiled protocol), while requiring that the prover select a first round message
honestly for the active clause (i.e in the first round of the compiled protocol).
To do this, we introduce a new notion called non-interactive, partially-binding
vector commitments.6 These commitments allow the committer to commit to a
vector of values and equivocate on a hidden subset of the entries in the vector
later on. For instance, a 1-out-of-` binding commitment allows the committer to
commit a vector of ` values such that that one of the vector positions (chosen
when the commitment is computed) is binding, while allowing the committer
to modify/equivocate the remaining positions at the time of opening. For a
disjunction with ` clauses, we can now use this primitive to ensure that the
prover computes an honest transcript for at least one of the Σ-protocol instances
as follows:

6 A similar notion for interactive commitments was introduced in [15]. Note that
this notion of commitments is very different from the similarly named notion of
somewhere statistically binding commitments [18].
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– Round 1: The prover computes an honest first round message for the Σ-
protocol corresponding to the active clause. It commits to this message in
the binding location of a 1-out-of-` binding commitment, along with ` − 1
garbage values, and sends the commitment to the verifier.

– Round 2: The verifier sends a challenge message for the ` instances.

– Round 3: The prover honestly computes a third round message for the
active clause and then simulates first and third round messages for the re-
maining ` − 1 clauses. It equivocates the commitment with these updated
first round messages, and sends an opening of this commitment along with
all the ` third round messages to the verifier.

While this is sufficient for soundness, we need an additional property from
these partially-binding vector commitments to ensure zero-knowledge. In partic-
ular, in order to prevent the verifier from learning the index of the active clause,
we require these partially-binding commitments to not leak information about
the binding vector position. We formalize these properties in terms of a more
general t-out-of-` binding vector commitment scheme, which may be of indepen-
dent interest, and we provide a practical construction based on the discrete log
assumption.7

Challenge 2: How will the prover re-use the active transcript? The
above approach overcomes the first challenge, but doesn’t achieve our goal of
reducing the communication complexity of the compiled Σ-protocol. Next, we
need to find a way to somehow re-use the honest transcript of the active clause.
Our key insight is that for many natural Σ-protocols, it is possible to simu-
late with respect to a specific third round message. That is, it is often easy to
simulate an accepting transcript for a given challenge and third round message.
This allows the prover to create a transcript for the inactive clauses that share
the third round message of the active clause. In order for this compilation ap-
proach to work, Σ-protocols must satisfy the following properties (stated here
informally):

– Simulation With Respect To A Specific Third Round Message: To re-use the
active transcript, the prover simulates with respect to the third round message
of the active transcript. This allows the prover to send a single third round
message that can be re-used across all the clauses. More formally, we require
that the Σ-protocol have a simulator that can reverse-compute an appropriate
first round message to complete the accepting transcript for any given third
round message and challenge. While not possible for all Σ-protocols, simulat-
ing in this way—i.e., by first selecting a third round message and then “reverse
engineering” the appropriate first round message—is actually a common simu-
lation strategy, and therefore possible with most natural Σ-protocols. In order
to get communication complexity that only has a logarithmic dependence on

7 We also explore a construction that is half the size and leverages random oracles in
the full-version of this paper [23].
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the number of clauses, we additionally require this simulator to be determin-
istic.8 We formalize this property in Section 5.

– Recyclable Third Round Messages: To re-use third round messages in this way,
the distribution of these third round messages must be the same. Otherwise,
simulating the inactive clauses would fail and the verifier could detect the
active clause used to produce the third round message. Thus, we require that
the distribution of third round messages in the Σ-protocol be the same across
all statements of interest. We formalize this property in Section 5.

An mentioned before, most natural Σ-protocols satisfy both these properties
and we refer to such protocols as stackable Σ-protocols. We can compile such
Σ-protocols into a communication-efficient Σ-protocol for disjunctions, where
the communication only depends on the size of one of the clauses, as follows:
Rounds 1 and 2 remain the same as in the protocol sketch above. In the third
round, the prover first computes a third round message for the active clause.
It then simulates first round messages for the remaining clauses based on the
active clause’s third round message and the challenge messages. As before, it
equivocates the commitment with these updated first round messages.9 While
this allows us to compress the third round messages, we still need to send a
vector commitment of the first round messages. In order to get communication
complexity that does not depend on the size of all first round messages, the
size of this vector commitment should be independent of the size of the values
committed. Note that this is easy to achieve using a hash function.

Summary of our Stacking Compiler. Having outlined our main techniques,
we now present a detailed description of our compiler for 2 clauses, as depicted
in Figure 1 (similar ideas extend for more than 2 clauses). The right (unshaded)
box represents the active clause and the left (shaded) box represents the inactive
clause. Each of the following numbered steps refer to a correspondingly numbered
arrow in the figure: (1) The prover runs the first round message algorithm of
the active clause to produce a first round message a2. (2) The prover uses the
1-of-2 binding commitment scheme to commit to the vector v = (0, a2). (3) The
resulting commitment constitutes the compiled first round message a′. (4) The
challenge c′ is created by the verifier. (5) The prover generates the third round
message z for the active clause using the first round message a2, the challenge c′,
and the witness w. (6) The prover then uses the simulator for the inactive clause
on the challenge c′ and the honestly generated third round message z to generate
a valid first round message for the inactive clause a1. (7) The prover equivocates
on the contents of the commitment a′ – replacing 0 with the simulated first round
message a1. The result is randomness r′ that can be used to open commitment

8 We elaborate on the importance of this additional property in the technical sections.
9 If the simulator computes the first round messages deterministically, then the prover

only needs to reveal the randomness used in the commitment in the third round,
along with the common third round message to the verifier. Given the third round
message, the verifier can compute the first round messages on its own and check if
the commitment was valid and that the transcripts verify.
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Compiled Prover Compiled Verifier

A(x2, w; rp)

a2

Com(v = (0, a2), r) a′

c′
$←− {0, 1}κc′

Z(x2, a2, c
′, w)

z

Sim(x1, c
′, z)

a1

Equiv(a′,v′ = (a1, a2), r) r′ z′ = (z, a1, a2, r
′) z′

Σx2 (active)Σx1 (inactive)

Σx1∨x2

1

2 3

4

5

6

7

8

9

φ′(x1 ∨ x2, a′, c′, z′) =

(a′ = Com(v′ = (a1, a2), r′)) ∧
φ(x1, a1, c

′, z) ∧ φ(x2, a2, c
′, z)

Fig. 1: High level overview of our compiler applied to a Σ-protocol Σ = (A,C,Z, φ)
over statements x1 and x2. Several details have been omitted or changed to illustrate

the core ideas more simply. The red circle contains a value used in the first round,
while purple circles contain values used in the third round. We include a1 and a2 in
the third round message for clarity; in the real protocol, the verifier will be able to

deterministically recompute these values on their own.

a′ to the vector v′ = (a1, a2). (8) The compiled third round message consists of
honestly generated third round message z, the randomness r′ of the equivocated
commitment, and the two first round messages a1, a2.10 (9) The verifier then
verifies the proof by ensuring that each transcript is accepting and that the first
round messages constitute a valid opening to the commitment a′.

Complexity Analysis: Communication in the first round only consists of the
commitment, which we show can be realized in O(`λ) bits, where λ is the security
parameter. In the last round, the prover sends one third round message of the
underlying Σ-protocol that depends on the size of one of the clauses11 and `
first round messages of the underlying Σ-protocol. Thus, näıvely applying our
compiler results in a protocol with communication complexity O(CC(Σ) + ` · λ),
where CC(Σ) is the communication complexity of the underlying stackable Σ-
protocol, when executed for the largest clause. In the technical sections, we show
that the resulting protocol is itself “stackable”, it can be recursively compiled.
This reduces the communication complexity to O(CC(Σ) + log(`) · λ).

Stackable Σ-Protocols. While not all Σ-protocols are able to satisfy the first
two properties that we require, we show that many natural Σ-protocols like

10 In the compiler presented in the main body, a1 and a2 are omitted from the third
round message and the verifier recomputes them from z and c′ directly. We make
this simplification in the exposition to avoid introducing more notation.

11 We can assume w.l.o.g. that all clauses have the same size. This can be done by
appropriately padding the smaller clauses.
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Schnorr [38], and Guillio-Quisquater [29] satisfy these properties. We also show
that more recent state-of-the-art protocols in MPC-in-the-head paradigm [33]
like KKW [35] and Ligero [2] have these properties. We formalize the no-
tion of “F-universally simulatable MPC protocols”, which produce stackable
Σ-protocols when compiled using MPC-in-the-head [33]. This formalization is
highly non-trivial and requires paying careful attention to the distribution of
MPC-in-the-head transcripts. Our key observation is that transcripts generated
when executing one circuit can often be seamlessly reinterpreted as though they
were generated for another circuit (usually of similar size). We refer the reader
to Section 5 for more details on stackable Σ-protocols.

Stacking Different Σ-Protocols. The compiler presented above allows stack-
ing transcripts for a single Σ-protocol, with a single associated NP language,
evaluated over different statements e.g., (x1 ∈ L) ∨ . . . ∨ (x` ∈ L). This is quite
limiting and does not allow a protocol designer to select the optimal Σ-protocol
for each clause in a disjunction. As such, we explore extending our compiler to
support stacking different Σ-protocols with different associated NP languages,
i.e. (x1 ∈ L1) ∨ (x2 ∈ L2) ∨ . . . ∨ (x` ∈ L`).

A simple approach would be to rely on NP reductions to define a “meta-
language” covering all of L1, . . .L`. Unfortunately, this approach will often result
in high concrete overheads. It would be preferable to allow “cross-stacking,” or
using different Σ-protocols for each clause in the disjunction.12 The key imped-
iment to applying our self-stacking compiler to different Σ-protocols is that the
distribution of third round messages between two different Σ-protocols may be
very different. For example, a statement with three clauses may be composed
of one Σ-protocol defined over a large, finite field, another operating over a
boolean circuit, and a third that is consisting of elements of a discrete logarithm
group. Thus, attempting to use the simulator for one Σ-protocol with respect to
the third round message of another might result in a domain error; there may
be no set of accepting transcripts for the Σ-protocols that share a third round
message. As re-using third round messages is the way we reduce communication
complexity, this dissimilarity might appear to be insurmountable.

To accommodate these differences, we observe that the extent to which a
set of Σ-protocols can be stacked is a function of the similarity of their third
round messages. In the self-stacking compiler, these distributions were exactly
the same, resulting in a “perfect stacking.” With differentΣ-protocols, the prover
may only be able to re-use a part of the third round message when simulating
for another Σ-protocol, leading to a “partial stacking.” We note, however, that
the distributions of common Σ-protocols tend to be quite similar—particularly
when seen as an unstructured string of bits. Due to space constraints we include
our cross stacking compiler, including case studies on its use, in the full-version
of this paper [23].

12 While it might be possible to define a Σ-protocol that uses different techniques for
different parts of the relation, this would require the creation of a new, purpose built
protocol — something we hope to avoid in this work. Thus, the difference between
self-stacking in this work is primarily conceptual, rather than technical.
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Paper Organization. The paper is organized as follows: we present required
preliminaries Section 3 and the interface for partially-binding commitment
schemes in Section 4. In Section 5 we cover the properties of Σ-protocols that
our compiler requires and give examples of conforming Σ-protocols. We present
our self-stacking compiler in Section 6.

3 Preliminaries

3.1 Notation

Throughout this paper we use λ to denote the computational security parame-

ter and κ to denote the statistical security parameter. We denote by x
$←− D the

sampling of ‘x’ from the distribution ‘D’. We use [n] as a short hand for a list
containing the first n natrual numbers in order: i.e. [n] = 1, 2 . . . , n. We denote

by x
$←−s D the process of sampling ‘x’ from the distribution ‘D’ using pseudo-

random coins derived from a PRG applied to the seed ‘s’, when the expression
occurs multiple times we mean that the element is sampled using random coins
from disjoint parts of the PRG output. We denote by H a collision-resistant hash
function (CRH). We write group operations using multiplicative notation.

3.2 Σ-Protocols

In this section, we recall the definition of a Σ-protocol.

Definition 1 (Σ-Protocol). Let R be an NP relation. A Σ-Protocol Π for R
is a 3 move protocol between a prover P and a verifier V consisting of a tuple of
PPT algorithms Π = (A,Z, φ) with the following interfaces:

– a ← A(x,w; rp): On input the statement x, corresponding witness w, such
that R(x,w) = 1, and prover randomness rp, output the first message a that
P sends to V in the first round.

– c
$←− {0, 1}κ: Sample a random challenge c that V sends to P in the second

round.
– z ← Z(x,w, c; rp): On input the statement x, the witness w, the challenge
c, and prover randomness rp, output the message z that P sends to V in the
third round.

– b ← φ(x, a, c, z): On input the statement x, prover’s messages a, z and the
challenge c, this algorithm run by V, outputs a bit b ∈ {0, 1}.

A Σ-protocol has the following properties:

– Completeness: A Σ-Protocol Π = (A,Z, φ) is said to be complete if for

any x,w such that R(x,w) = 1, and any prover randomness rp
$←− {0, 1}λ,

it holds that,

Pr
[
φ(x, a, c, z) = 1

∣∣∣ a← A(x,w; rp); c
$←− {0, 1}κ; z ← Z(x,w, c; rp)

]
= 1

12



– Special Soundness. A Σ-Protocol Π = (A,Z, φ) is said to have spe-
cial soundness if there exists a PPT extractor E, such that given any two
transcripts (x, a, c, z) and (x, a, c′, z′), where c 6= c′ and φ(x, a, c, z) =
φ(x, a, c′, z′) = 1, it holds that

Pr
[
R(x,w) = 1| w ← E(1λ, x, a, c, z, c′, z′)

]
= 1

– Special Honest Verifier Zero-Knowledge. A Σ-Protocol Π = (A,Z, φ)
is said to be special honest verifier zero-knowledge, if there exists a PPT
simulator S, such that for any x,w such that R(x,w) = 1, it holds that

{(a, z) | c $←− {0, 1}κ; (a, z)← S(1λ, x, c)} ≈c

{(a, z) | rp $←− {0, 1}λ; a← A(x,w; rp); c
$←− {0, 1}κ; z ← Z(x,w, c; rp)}

4 Partially-Binding Vector Commitments

In this section, we introduce non-interactive partially-binding vector commit-
ments. These commitments allow a committer to commit to a vector of ` elements
such that exactly t positions are binding (i.e. cannot be opened to another value)
and the remaining `−t positions can be equivocated. The committer must decide
the binding positions of the vector before committing and the binding positions
are hidden.

Definition 2 (t-out-of-` Binding Vector Commitment). A t-out-of-`
binding non-interactive vector commitment scheme with message space M, is
defined by a tuple of the PPT algorithms (Setup,Gen,EquivCom,Equiv,BindCom)
defined as follows:

– pp ← Setup(1λ) On input the security parameter λ, the setup algorithm
outputs public parameters pp.

– (ck, ek)← Gen(pp, B): Takes public parameters pp and a t-subset of indices

B ∈
(
[`]
t

)
. Returns a commitment key ck and equivocation key ek.

– (com, aux)← EquivCom(pp, ek,v; r): Takes public parameter pp, equivocation
key ek, `-tuple v and randomness r. Returns a partially-binding commitment
com as well as some auxiliary equivocation information aux.

– r ← Equiv(pp, ek,v,v′, aux): Takes public parameters pp, equivocation key
ek, original commitment value v and updated commitment values v′ with
∀i ∈ B : vi = v′i, and auxiliary equivocation information aux. Returns equiv-
ocation randomness r.

– com ← BindCom(pp, ck,v; r): Takes public parameters pp, commitment key
ck, `-tuple v and randomness r and outputs a commitment com. Note that
this algorithm does not use the equivocation key ek. This algorithm plays a
similar role to that of Open in a typical commitment scheme.

The properties satisfied by the above algorithms are as follows:

13



(Perfect) Hiding: The commitment key ck (perfectly) hides the binding posi-
tions B and commitments com (perfectly) hide the ` committed values in the

vector. Formally, for all v(1),v(2) ∈M`, B,B′ ∈
(
[`]
t

)
, and pp← Setup(1λ):[

(ck, com)

∣∣∣∣∣ (ck, ek)← Gen(pp, B); r
$←− {0, 1}λ;

(com, aux)← EquivCom(pp, ek,v; r)

]

p=

[
(ck′, com′)

∣∣∣∣∣ (ck′, ek′)← Gen(pp, B′); r′
$←− {0, 1}λ

(com′, aux′)← EquivCom(pp, ek′,v′; r′);

]

(Computational) Partial Binding: It is intractable for an adversary that
generates the commitment key ck to equivocate on more than ` − t posi-
tions. To formalize this property, we consider the class of adversaries Ak
that produces a single commitment key ck and k equivocations to a com-
mitment under that key. We denote the jth opening to the commitment as

the vector v(j) and the ith element of that vector as v
(j)
i . Formally, for all

k ∈ poly(λ), for all PPT algorithms Ak:

Pr

[
@S ⊂ [`], |S| ≥ t, s.t. i ∈ S, v(1)i = . . . = v

(k)
i ∧

BindCom(pp, ck,v(1); r1) = . . . = BindCom(pp, ck,v(k); rk)∣∣∣∣∣ pp← Setup(1λ);

(ck,v(1), . . . ,v(k), r1, . . . , rk)← Ak(1λ, pp)

]
≤ negl(λ)

Partial Equivocation: Given a commitment to v under a commitment key
ck← Gen(pp, B), it is possible to equivocate to any v′ as long as ∀i ∈ B : vi =

v′i. More formally, for all B ∈
(
[`]
t

)
, and all v,v′ ∈ M` st. ∀i ∈ B : vi = v′i

then:

Pr

BindCom(pp, ck,v′; r′) = com

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ); r

$←− {0, 1}λ;

(ck, ek)← Gen(pp, B);

(com, aux)← EquivCom(pp, ek,v; r);

r′ ← Equiv(ek,v,v′, aux)

 = 1

Throughout this work we will impose the efficiency requirement that the size
of the commitment is independent of the size of the elements. We note that
this is easy to achieve using a collision resistant hash function, when targeting
computational binding.

4.1 Partially-Binding Vector Commitments from Discrete Log

We now present a simple and concretely efficient construction of t-out-of-`
partially-binding vector commitments from the discrete log assumption. The
idea is to have the committer use a Pedersen commitment for each element
in the vector. Recall that a Pedersen commitment to the message m ∈ Z|G|

14



pp← Setup(1λ)

1 : G← GenGroup(1λ); g0, h
$←− G

2 : return (G, g0, h)

(com, aux)← EquivCom(pp, ek,v):

1 : r
$←− Z`|G|

2 : com← BindCom(pp, ck,v, r)

3 : return (com, r)

(ck, ek)← Gen(pp, B)

1 : Let E = [`] \B (set of equivocal indexes)

2 : for i ∈ E : yi
$←− Z|G|, gi ← hyi//Generate trapdoors

3 : for j ∈ [`− t] : gj ←
∏
i∈E∪{0} gi

L(E∪{0},i)(j)//Interpolate first `−t elements

4 : ck = (g1, . . . , g`−t)

5 : ek = (g1, . . . , g`−t, {yi}i∈E , E,B)

6 : return (ck, ek)

r ← Equiv(pp, ek,v,v′, aux):

1 : Let E = [`] \B (set of equivocal indexes)

2 : Parse aux = (r1, . . . , r`) ∈ Z`|G|

3 : for j ∈ [`− t, `] : gj ←
∏
i∈[`−t]∪{0} g

L([`−t]∪{0},i)(j)
i //Interpolate other elements

4 : for j ∈ B : r′j ← rj

5 : for j ∈ E : r′j ← rj − yj · (v′j − vj)

6 : return r′

com← BindCom(pp, ck,v, r):

1 : for j ∈ [`− t, `] : gj ←
∏
i∈[`−t]∪{0} g

L([`−t]∪{0},i)(j)
i //Interpolate other elements

2 : for j ∈ [`] : comj ← hrj · gvj

j //Commit individually

3 : return (com1, . . . , com`)

Fig. 2: t-of-` binding commitment from discrete log in the CRS model.

with public parameters g, h ∈ G is computed as gmhr for a random value r.
The binding property of Pedersen commitments relies on the committer not
knowing the discrete log of g with respect to h. For our partially-binding vec-
tor commitment scheme, the commitment key is a set of public parameters for
the Pedersen commitments, constructed such a way that the committer knows
discrete logs for exactly ` − t parameters. This is done by having the commit-
ter pick ` − t of the parameters and computing the remaining t parameters by
interpolating in the exponent. More formally, let use begin by fixing some nota-
tion. Let Z|G| be a prime field. In our construction, we implicitly treat indexes
i ∈ [0, |G| − 1] as field elements, i.e. there is an implicit bijective map between
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[0, |G| − 1] and Z|G| (e.g. i mod |G| ∈ Z/(|G|)). Let X ⊆ Z|G| and j ∈ X ,

define L(X ,j)(X) :=
∏
m∈X ,m 6=j

X−m
j−m ∈ Z|G|[X] i.e. the unique degree |X | − 1

polynomial for which ∀x ∈ X \ {j} : L(X ,j)(x) = 0 and L(X ,j)(j) = 1. The
formal description of the commitment scheme can be found in Figure 2. While
our construction does require a CRS, we note that the CRS is just two ran-
domly selected group elements13, which in practice can be generated by hashing
a ‘nothing-up-by-sleeve’ constant to the curve by using a cryptographic hash
function.

Theorem 1. Under the discrete log assumption, for any (t, `) with t < `: the
scheme shown in Figure 2 is a family of (perfectly hiding, computationally bind-
ing) t-of-` partially binding commitment schemes.

The security reduction is straightforward and tight: for each position i in
which the adversary A manages to equivocate we can extract the discrete log
of gi (as for regular Pedersen commitments), if we extract the discrete log in
` − t + 1 positions, we have sufficient points on the degree ` − t polynomial to
recover f[`]∪{0}(X) explicitly and simply evaluate it at 0 to recover the discrete
log of g0 from pp. The full proof can be found in the full-version of this paper [23].

Remark 1. To commit to longer strings a collision resistant hash H :
{0, 1}∗ → Z|G| is used to compress each coordinate before committing using
BindCom/EquivCom as a black-box: by committing to v′ = (H(v1), . . . ,H(v`))
instead. Note that the discrete log assumption, used above, also implies the
existance of collision resistant hash functions.

5 Stackable Σ-Protocols

In this section, we present the properties of Σ-protocols that our stacking frame-
work requires and show that many Σ-protocols satisfy these properties.

5.1 Well-Behaved Simulators

As outlined in Section 2, a critical step of our compilation framework is applying
the simulator of the underlying Σ-protocols to the inactive clauses. This raises
a technical (mostly definitional) concern: some of inactive clauses may not ac-
tually be true, possibly because they were adversarially chosen. At first glance,
this might seem like a strange concern. For most interesting NP languages of
interest, it should be hard to tell if an instance is in the language, and therefore
having false instances in the disjunction should not be a problem. However, the
behavior of a simulator is only defined with respect to statements that are in
the NP language—that is, true instances. As such, if the disjunction contains
false clauses, there is no guarantee that the simulator will produce an accepting
transcript. This could cause problems with verification—the verifier will know

13 Like regular Pedersen commitments
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that one of the transcripts is not accepting, but will not know if this is due to a
simulation failure or malicious prover. As such, we must carefully consider what
simulators will produce when executed on a false instance.

As noted in [25], simulators commonly constructed in proofs of the zero-
knowledge property will usually output accepting transcripts when executed
on these false instances. If the simulator were able to consistently output non-
accepting transcripts for false instances, it could be used to decide the NP lan-
guage in polynomial time. However, it is possible to define a valid simulator
that produces an output that is not an accepting transcript with non-negligible
probability e.g. (1) the input instance is trivially false (e.g. a fully connected
graph with 4 nodes is not 3-colorable), or (2) the simulator has a hard-coded set
of false instances on which it deviates from its normal behavior. Indeed, a prob-
abilistic simulator may also output a non-accepting transcript in each of these
cases only occasionally, possibly depending on the challenge. This behavior will
not compromise zero-knowledge, but could result in correctness or soundness
errors.

We emphasize that this is a corner case: commonly constructed simulators
will most likely produce accepting transcripts even on false instances, unless the
instance is trivially false or not in the domain of the simulator. Nevertheless,
we observe that any Σ-protocol can be generically transformed into one that
has a simulator that outputs accepting transcripts for all statements. We refer
to such simulators as well-behaved simulators. We give a formal definition for
well-behaved simulators and present the transformation in the full version [23].

5.2 Properties of Stackable Σ-Protocols.

We now formalize the definition of a “stackable” Σ-protocol. As discussed in
Section 2, a Σ-protocol is stackable (meaning, it can be used by our stacking
framework), if it satisfies two main properties: (1) simulation with respect to a
specific third round message, and (2) recyclable third round messages.

Cheat Property: “Extended” Honest Verifier Zero-Knowledge. We
view “simulation with respect to a specific third round message” as a natural
strengthening of the typical special honest verifier zero-knowledge property of
Σ-protocols. At a high level, this property requires that it is possible to design
a simulator for the Σ-protocol by first sampling a random third round mes-
sage from the space of admissible third round messages, and then constructing
the unique appropriate first round message. We refer to such a simulator as an
extended simulator. A similar notion is considered by Abe et. al [1] in their defi-
nition of type-T signature schemes: a type-T signature scheme is essentially the
Fiat-Shamir [19] heuristic applied to an EHVZK Σ-protocol.

Definition 3 (EHVZK Σ-Protocol). Let Π = (A,Z, φ) be a Σ-protocol for
the NP relation R, with a well-behaved simulator. We say that Π is “extended
honest-verifier zero-knowledge (EHVZK)” if there exists a polynomial time com-
putable deterministic “extended simulator” Sehvzk such that for any (x,w) ∈ R
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and c ∈ {0, 1}κ, there exists an efficiently samplable distribution D(z)
x,c such that:{

(a, c, z) | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)
}

≈
{

(a, c, z) | z $←− D(z)
x,c; a← Sehvzk(1λ, x, c, z)

}
The natural variants (perfect/statistical/computational) of EHVZK are defined
depending on which class of distinguishers for which ≈ is defined.

Observation 1 (All Σ-protocols can be made EHVZK.) In the full ver-
sion of this paper, we present a transformation that transforms any Σ-protocol
into a EHVZK Σ-protocol.

Re-use Property: Recyclable Third Round Messages. The next prop-
erty that our stacking compilers require is that the distribution of third round
messages does not significantly rely on the statement. In more detail, given a
fixed challenge, the distribution of possible third round messages for any pair of
statements in the language are indistinguishable from each other. We formalize

this property by using D(z)
c to denote a single distribution with respect to a fixed

challenge c. We say that a Σ-protocol has recyclable third round messages, if
for any statement x in the language the distribution of all possible third round

messages corresponding to challenge c is indistinguishable from D(z)
c . We now

formally define this property:

Definition 4 (Σ-Protocol with Recyclable Third Messages). Let R be
an NP relation and Π = (A,Z, φ) be a Σ-protocol for R, with a well-behaved
simulator. We say that Π has recyclable third messages if for each c ∈ {0, 1}κ,

there exists an efficiently sampleable distribution D(z)
c , such that for all instance-

witness pairs (x,w) st. R(x,w) = 1, it holds that

D(z)
c ≈

{
z | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)

}
.

This property is fundamental to stacking, as it means that the contents of
the third round message do not ‘leak information’ about the statement used to
generate the message. This means that the message can be safely re-used to
generate transcripts for the non-active clauses and an adversary cannot detect
which clause is active.14 Although this property might seem strange, we will
later show that many natural Σ-protocols have this property.

Stackability With our two-properties formally defined, we are now ready to
present the definition of stackable Σ-protocols:

Definition 5 (Stackable Σ-Protocol). We say that a Σ-protocol Σ =
(A,Z, φ) is stackable, if it is EHVZK (see Definition 3) and has recyclable third
messages (see Definition 4).

14 We further elaborate on this in Remark 2.
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We now note a useful property of stackable Σ-protocols that follow directly from
Definition 5:

Remark 2. Let Σ = (A,Z, φ) be a stackable Σ-protocol for the NP relation
R, with a well-behaved simulator. Then for each c ∈ {0, 1}λ and any instance-
witness pair (x,w) with R(x,w) = 1, an honestly computed transcript is compu-
tationally indistinguishable from a transcript generated by sampling a random

third round message from D(z)
c and then simulating the remaining transcript

using the extended simulator. More formally,{
(a, z) | rp $←− {0, 1}λ; a← A(x,w; rp); z ← Z(x,w, c; rp)

}
≈
{

(a, z) | z $←− D(z)
c ; a← Sehvzk(1λ, x, c, z)

}
Looking ahead, these observations will be critical in proving security of our
compilers.

5.3 Classical Examples of Stackable Σ-Protocols

In this section, we show some examples of classical Σ-protocols which are stack-
able. Rather than considering multiple classical Σ-protocols like Schnorr and
Guillou-Quisquater separately, we consider the generalization of these protocols
as explored in [16]. Once we show that this generalization is stackable, it is simple
to see that specific instantiations are also stackable.

Lemma 1 (Σ-protocol for ψ-preimages [16] is stackable). Let G∗1 and
G∗2 be groups with group operations ∗1, ∗2 respectively (multiplicative notation)
and let ψ : G∗1 → G∗2 be a one-way group-homomorphism. Recall the simple
Σ-protocol (Πψ) of Cramer and Damg̊ard [16] for the relation of preimages

Rψ(x,w) := x
?
= ψ(w), where x ∈ G∗2, w ∈ G∗1. The protocol is a generaliza-

tion of Schnorr [39] and works as follows:

– A(x,w; rp), the prover samples r
$←− G∗1 and sends the image a = ψ(r) ∈ G∗2

to the verifier.
– Z(x,w, c; rp), the prover intreprets c as an integer from a subset C ⊆ Z and

replies with z = wc ∗1 r
– φ(x, a, c, z), the verifier checks ψ(z) = xc ∗2 a.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(wc ∗1 r) = ψ(w)c ∗2
ψ(r) = xc∗2a. The knowledge soundness error is 1/|C| (see [16] for more details).
For any homomorphism ψ, Πψ is stackable:

Proof. To see that Πψ is stackable, define an extended simulator and check for
recyclable third messages:

1. Πψ is EHVZK: Let D(z)
x,c := {z | z $←− G∗1}, let Sehvzk(1λ, x, c, z) := ψ(z)∗2x−c
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2. Πψ has recyclable third messages: Observe that ∀x1, x2 : D(z)
x1,c = D(z)

x2,c =
U(G∗1)15.

Remark 3. The following variants of Πψ (with different choices of G∗1,G
∗
2, ψ) are

captured in this generalization (along with other similar Σ-protocols):

(1) Guillou-Quisquater [29] (e-roots in an RSA group) for which G∗1 = G∗2 = Z∗n
for a semi-prime n = pq, C = [0, e) and ψ(w) := we for some prime e ∈ N.

(2) Schnorr [39] (knowledge of discrete log): for which G∗1 = Z+
|G|,G

∗
2 = G where

G is a cyclic group of prime order |G|, C = [0, |G|) and ψ(w) := gw for some
g ∈ G.

(3) Chaum-Pedersen [14] (equality of discrete log): for which G∗1 = Z+
|G|,G

∗
2 =

G × G where G is a cyclic group of prime order |G|, C = [0, |G|) and ψ :
Z|G| → G×G, ψ(w) := (gw1 , g

w
2 ) for g1, g2 ∈ G.

(4) Attema-Cramer [3] (opening of linear forms): for which G∗1 = Z`|G| × Z|G|,
G∗2 = (Z|G|,G), C = [0, |G|) and ψ((x, γ)) := (L(x),gxhγ) for some linear

form L(x) = 〈x, s〉, s ∈ Z`|G|

In the full version of this paper, we also show that Blum’s classic 3 move proto-
col [11] for graph Hamiltonicity is stackable.

5.4 Examples of Stackable “MPC-in-the-Head” Σ-Protocols

We now proceed to show that many natural “MPC-in-the-head” style [33] Σ-
protocols (with minor modifications) are stackable. MPC-in-the-head (hence-
forth refereed to as IKOS) is a technique used for designing three-round, public-
coin, zero-knowledge proofs using MPC protocols. At a high level, the prover
emulates execution of an n-party MPC protocol Π virtually, on the relation
function R(x, ·) using the witness w as input of the parties, and commits to the
views of each party. An honest verifier then selects a random subset of the views
to be opened and verifies that those views are consistent with each other and
with an honest execution, where the output of Π is 1.

Achieving EHVZK. Since the first round messages in such protocols only con-
sist of commitments to the views of all virtual partials, a subset of which are
opened in the third round, a natural simulation strategy when proving zero-
knowledge of such protocols is the following: (1) based on the challenge message,
determine the subset of parties whose views will need be opened later, (2) imag-
ining these as the “corrupt” parties, use the simulator of the MPC protocol to
simulate their views, and, finally, (3) compute commitments to these simulated
views for this subset of the parties and commitments to garbage values for the
remaining virtual parties. Clearly, since the first round messages in this simula-
tion strategy are computed after the third round messages, these protocols are
naturally EHVZK.

15 Uniform distribution over G∗1.
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Achieving recyclable third messages. To show that these Σ-protocols have
recyclable third messages, we observe that in many MPC protocols, an adver-
sary’s view can often be condensed and decoupled from the structure of the func-
tionality/circuit being evaluated. We elaborate this point with the help of an
example protocol — semi-honest BGW [6].

Recall that in the BGW protocol, parties evaluate the circuit in a gate-
by-gate fashion on secret shared inputs16 as follows: (1) for addition gates, the
parties locally add their own shares for the incoming wire values to obtain shares
of the outgoing wire values. (2) For multiplication gates, the parties first locally
multiply their own shares for the incoming wire values and then secret share these
multiplied share amongst the other parties. Each party then locally reconstructs
these “shares of shares” to obtain shares of the outgoing wire values. (3) Finally,
the parties reveal their shares for all the output wires in the circuit to all other
parties and reconstruct the output.

By definition, the view of an adversary in any semi-honest MPC protocol
is indistinguishable from a view simulated by the simulator with access to the
corrupt party’s inputs and the protocol output. Therefore, to understand the
view of an adversary in this protocol, we recall the simulation strategy used in
this protocol:

1. For each multiplication gate in the circuit, the simulator sends random values
on behalf of the honest parties to each of the corrupt parties.

2. For the output wires, based on the messages sent to the adversary in the
previous step and the circuit that the parties are evaluating, the simulator
first computes the messages that the corrupt parties are expected to send to
the honest parties. It then uses these messages and the output of protocol
to simulate the messages sent by the honest parties to the adversary. Recall
that this can be done because these messages correspond to the shares of
these parties for the output wire values, and in a threshold secret sharing
scheme, the shares of an adversary and the secret, uniquely define the shares
of the remaining parties.

Observe that the computation done by the simulator in the first part is indepen-
dent of the actual circuit or function being computed (it only depends on the
number of multiplication gates in the circuit). We refer to the messages com-
puted in (1) and the inputs of the corrupt parties as the condensed view of the
adversary. Additionally, given these simulated views, the output of the protocol,
and the circuit/functionality, the simulated messages of the honest parties in (2)
can be computed deterministically. Looking ahead, because the output of rela-
tion circuits — the circuits we are interested in simulating — should always be 1
to convince the verifier, this deterministic computation will be straight forward.
Since the condensed view is not dependent on the function being computed, it
can be used with “any” functionality in the second step to compute the remain-
ing view of the adversary. In other words, given two arithmetic circuits with the

16 These shares are computed using some threshold secret sharing scheme, e.g., Shamir’s
polynomial based secret sharing [40].
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same number of multiplication gates, the condensed views of the adversary in an
execution of the BGW protocol for one of the circuits can be re-interpreted as
their views in an execution for the other one. We note that circuits can always
be “padded” to be the same size, so this property holds more generally.

As a result, for IKOS-style protocols based on such MPC protocols, while
some strict structure must be imposed upon third round messages (which are
views of a subset of virtual parties) when verifying that they have been generated
correctly, the third round messages themselves can simply consist of these con-
densed views (and not correspond to any particular functionality) and hence can
be re-used. To make this work, we must make a slight modification to the IKOS
compiler. As before, in the first round, the prover will commit to the views
(where they are associated with a given function f) of all parties in the first
round. However, in the third round, the prover can simply send the condensed
views of the opened parties to the verifier. The verifier can deterministically com-
pute the remaining view of these parties w.r.t. the appropriate relation function
f and check if they are consistent amongst each other and with the commit-
ments sent in the first round. Since the third round messages in this protocol
are not associated with any function, it is now easy to see that they can be the
distribution of these messages is independent of the instance.

Building on this intuition, we show that many natural MPC protocols pro-
duce stackable Σ-protocols for circuits of the same size when used with the IKOS
compiler. Before giving a formal description of the required MPC property, we
recall the IKOS compiler in more detail, assuming that the underlying MPC pro-
tocol has the following three-functions associated with it: ExecuteMPC emulates
execution of the protocol on a given function with virtual parties and outputs
the actual views of the parties, CondenseViews takes the views of a subset of the
parties as input and outputs their condensed views, and ExpandViews takes the
condensed views of a subset of the parties and returns their actual view w.r.t. a
particular function.

IKOS Compiler. Let f = R(x, ·). In the first round, the prover runs
ExecuteMPC on f and the witness w to obtain views of the parties and commits
to each of these views. In the second round, the verifier samples a random subset
of parties as its challenge message. Size of this subset is equal to the maximal
corruption threshold of the MPC protocol. In the third round, the prover uses
CondenseViews to obtain condensed views for this subset of parties and sends
them to the verifier along with the randomness used to commit to the original
views of these parties in the first round. The verifier runs ExpandViews on f and
the condensed views received in the third round to obtain the corresponding
original views. It checks if these are consistent with each other and are valid
openings to commitments sent in the first round. Depending on the corruption
threshold and the security achieved by the underlying MPC protocol, the above
steps might be repeated a number of times to reduce the soundness error. Below
we restate the main theorem from [33], which also trivially holds for our modified
variant.
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Theorem 2 (IKOS [33]). Let L be an NP language, R be its associated NP-
relation and F be the function set {R(x, ·) : ∀x ∈ L}. Assuming the existence of
non-interactive commitments, the above compiler transforms any MPC protocol
for functions in F into a Σ-protocol for the relation R.

Next, we formalize the main property of MPC protocols that facilitates in
achieving recyclable third messages when compiled with the above IKOS com-
piler. We characterize this property w.r.t. a function set F , and require the MPC
protocol to be such that the condensed views can be expanded for any f ∈ F .
For our purposes, it would suffice, even if the condensed view of the adversary is
dependent on the final output of the protocol, as long as it is independent of the
functionality. This is because, in our context, the circuit being evaluated will be
a relation circuit with the statement hard-coded and should always output 1 in
order to convince the verifier.

Definition 6 (F-universally simulatable MPC). Let Π be an n-party MPC
protocol that is capable of securely computing any function f ∈ F (where F :
Xn → O) against any semi-honest adversary A who corrupts a set I ⊂ [n] of
parties, such that I ∈ C, where C is the set of admissible corruption sets. We say
that Π is F-universally simulatable if there exists a 3-tuple of PPT functions
(ExecuteMPC,ExpandViews,CondenseViews) and a non-uniform PPT simulator
Sf-mpc : F × C ×O → V ∗, defined as follows

– ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]): This function takes inputs of
the parties {xi}i∈[n] ∈ Xn and a function f ∈ F as input and returns the
views {viewi}i∈[n] of all parties and their output o ∈ O in protocol Π.

– {con.viewi}i∈I ← CondenseViews(f, I, {viewi}i∈I , o): This function takes as
input the set of corrupt parties I ∈ C, views of the corrupt parties {viewi}i∈I
and the output of the protocol o ∈ O and returns their condensed views
{con.viewi}i∈I .

– {viewi}i∈I ← ExpandViews(f, I, {con.viewi}i∈I , o): This function takes as
input the functionality f ∈ F , set of corrupt parties I ∈ C, condensed views
{con.viewi}i∈I of the corrupt parties and the output of the protocol o ∈ O
and returns their views {viewi}i∈I .

– {con.viewi}i∈I ← Sf-mpc(f, I, {xi}i∈I , o): The simulator takes as input the
functionality f ∈ F , set of corrupt parties I ∈ C, inputs of the corrupt parties
{xi}i∈I ∈ X |I| and the output of the protocol o ∈ O and returns simulated
condensed views {con.viewi}i∈I of the corrupt parties.

And these functions satisfy the following properties:

1. Condensing-Expanding Views is Deterministic: For all {xi}i∈[n] ∈
Xn and ∀f ∈ F , let ({viewi}i∈[n], o) ← ExecuteMPC(f, {xi}i∈[n]). For all
I ∈ C it holds that:

Pr [ExpandViews(f, I,CondenseViews(f, I, {viewi}i∈I , o), o) = {viewi}i∈I ] = 1
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2. Indistinguishability of Simulated Views from real execution: For all
{xi}i∈[n] ∈ Xn and ∀f ∈ F , let ({viewi}i∈[n], o)← ExecuteMPC(f, {xi}i∈[n]).
For all I ∈ C it holds that:

CondenseViews(f, I, {viewi}i∈I , o) ≈ Sf-mpc(f, I, {xi}i∈I , o)

3. Indistinguishability of Simulated Views for all functions: For any
I ∈ C, all inputs {xi}i∈I ∈ X |I| of the corrupt parties, and all outputs
o ∈ O, there exists a function-independent distribution D{xi}i∈I ,o, such that
∀f ∈ F , if ∃{xi}i∈[n]\I for which f({xi}i∈[n]\I , {xi}i∈I) = o, then it holds
that:

D{xi}i∈I ,o ≈ S
f-mpc(f, I, {xi}i∈I , o)

We note that a central notion used in the “stacked-garbling literature” (for
communication efficient disjunction for garbled circuit based zero-knowledge
proofs) is a special case of F-universally simulatable:

Remark 4 (Topology Decoupled Garbled Circuits and F-universally simulat-
able MPC.). The notion of topology decoupled garbled circuits introduced by
Kolesnikov [36] is a special case of F-universally simulatable MPC: a topology
decoupled garbled circuit (E, T ) separates the cryptographic material (E, e.g.
garbling tables) and topology (T , i.e. wiring) of a garbled circuit and (informally
stated) requires that generating E for different topologies introduces indistin-
guishable distributions. Letting X be the garbled input labels17 held by the
evaluator, in F-universally simulatable terminology (E,X) would constitute the
“condensed view”, while (E,X, T )18 would constitute the “expanded views” ,
indistinguishablilty of simulated views for functions with the same number of
gates and inputs follows easily from the “topology decoupling“ of the garbled
circuits and the uniform distribution of the input labels.

In the full version [23], we prove the following theorem, which states that
when instantiated with an F-universally simulatable MPC protocol, Theorem 2
yields a stackable Σ-protocol for languages with relation circuits in F .

Theorem 3 (F-universally simulatable implies stackable). The IKOS
compiler (see Theorem 2) yields an stackable Σ-protocol for languages with re-
lation circuit in F when instantiated with an F-universally simulatable MPC
protocol (see Definition 6) with privacy and robustness against a subset of the
parties.

In the full version, we use Theorem 3 to show that two popular IKOS-based
Σ-protocols are stackable, namely KKW [35] and Ligero [2].
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Self-Stacking Compiler

Statement: x = x1, . . . , xn
Witness: w = (α,wα)

– First Round: Prover computes A′(x,w; rp)→ a as follows:

• Parse rp = (rpα‖r).
• Compute aα ← A(xα, wα; rpα).
• Set v = (v1, . . . , v`), where vα = aα and ∀i ∈ [`] \ α, vi = 0.
• Compute (ck, ek)← Gen(pp, B = {α}).
• Compute (com, aux)← EquivCom(pp, ek,v; r).
• Send a = (ck, com) to the verifier.

– Second Round: Verifier samples c← {0, 1}λ and sends it to the prover.
– Third Round: Prover computes Z′(x,w, c; rp)→ z as follows:
• Parse rp = (rpα‖r).
• Compute z∗ ← Z(xα, wα, c; r

p
α).

• For i ∈ [`]/α, compute ai ← Sehvzk(xi, c, z
∗).

• Set v′ = (a1, . . . , a`)
• Compute r′ ← Equiv(pp, ek,v,v′, aux) (where aux can be regenerated with r).
• Send z = (ck, z∗, r′) to the verifier.

– Verification: Verifier computes φ′(x, a, c, z)→ b as follows:
• Parse a = (ck, com) and z = (ck′, z∗, r′)
• Set ai ← Sehvzk(xi, c, z

∗)
• Set v′ = (a1, . . . , a`)
• Compute and return:

b = (ck
?
= ck′) ∧

(
com

?
= BindCom(pp, ck,v′; r′)

)
∧

∧
i∈[`]

φ(xi, ai, c, z
∗)


Fig. 3: A compiler for stacking multiple instances of a Σ-protocol.

6 Self-Stacking: Disjunctions With The Same Protocol

We now present a self-stacking compiler for Σ-protocols, presented in Figure 3.
By self-stacking, we mean a compiler that takes a stackable Σ-protocol Π for a
language L and produces a Σ-protocol for language with disjunctive statements
of the form (x1 ∈ L)∨ (x2 ∈ L)∨ . . .∨ (x` ∈ L) with communication complexity
proportional to the size of a single run of the underlying Σ-protocol (along with
an additive factor that is linear in ` and λ). The key ingredient in our compiler
is the partially-binding vector commitments (See Definition 2), which will allow
the prover to efficiently compute verifying transcripts for the inactive clauses.

The compiler generates an accepting transcript (aα, c, z
∗) to the active clause

α ∈ [`] using the witness, and then simulates accepting transcripts for each non-

17 Obtained using an oblivious transfer.
18 Where T can be computed from f .
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active clause, using the extended simulator. Recall that this extended simulator
takes in a third round message z and a challenge c and produces a first round
message a such that φ(x, a, c, z) = 1. Thus, the prover can re-use the third round
message z∗, for each simulated transcript, thereby reducing communication to
the size of a single third round message. For a more detailed overview, we refer
the reader to Section 2.

We now present a formal description of the self-stacking compiler, which we
prove in the full version of the paper [23].

Theorem 4 (Self-Stacking). Let Π = (A,Z, φ) be a stackable (See Def-
inition 5) Σ-protocol for the NP relation R : X × W → {0, 1} and let
(Setup,Gen,EquivCom,Equiv,BindCom) be a 1-out-of-` binding vector commit-
ment scheme (See Definition 2). For any pp← Setup(1λ), the compiled protocol
Π ′ = (A′, Z ′, φ′) described in Figure 3 is a stackable Σ-protocol for the relation
R′ : X ` × ([`]×W)→ {0, 1}, where R′((x1, . . . , x`), (α,w)) := R(xα, w).

Communication Complexity. Let CC(Π) be the communication complexity
of Π. Then, the communication complexity of the Π ′ obtained from Theorem
4 is (CC(Π) + |ck| + |com| + |r′|), where the sizes of ck, com and r′ depends on
the choice of partially-binding vector commitment scheme and are independent
of CC(Π). With our instantiation of partially binding vector commitments, the
size of |ck|, |r′| will depend linearly on `. However since our resulting protocol
Π ′ is also stackable, the communication complexity can be reduced further to
CC(Π) + 2 log(`)(|ck| + |com| + |r′|) by recursive application of the compiler as
follows: let Π1 = Π and for n > 1 let Π2n be the outcome of applying the
compiler from Theorem 4 with ` = 2 to Πn. Note that Π` only applies the
stacking compiler dlog(`)e times and that CC(Π2n) = CC(Πn)+ |ck|+ |com|+ |r′|.
Therefore CC(Π`) = CC(Π) + 2 log(`)(|ck|+ |com|+ |r′|).

Computational Complexity. In general, the computation complexity of this
protocol is ` times that of Π. However, in many protocols, the simulator is much
faster than computing an honest transcript. We note that for such protocols, our
compiler is expected to also get savings in the computation complexity.

6.1 Extending to Multiple Languages

Many known constructions of Σ-protocols work for more than one language. For
instance, most MPC-in-the-head style Σ-protocols (e.g. KKW [35] , Ligero [2])
can support all languages with a polynomial sized relation circuit, as long as
the underlying MPC protocol works for any polynomial sized function. How-
ever, because Σ-protocols are defined w.r.t. a particular NP language/relation,
instantiating [35] for two different NP languages L1 and L2 will (by definition)
result in two distinct Σ-protocols. Therefore, applied näıvely, our compiler could
only be used to stack Σ-protocols from [35] for the exact same relation circuit.

We explore two alternatives for overcoming this limitation. First, we note
that in many situations it is trivial to generalize our technique to cover “Σ-
protocols based on a particular technique,” e.g. protocols based on [35]. This can
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be done using a “meta-language” like circuit satisfiability that generalizes across
multiple NP languages without introducing a high NP-reduction cost. In the full-
version of this paper [23], we explore a conceptually different approach, we call
cross-stacking. Our cross-stacking compiler applies the self-stacking techniques
to differentΣ-protocols (both based on a single technique and otherwise) without
modifying the Σ-protocols. The major barrier is that the third round message
distributions of the Σ-protocols are different, so third round messages may not
be recyclable. To overcome this, we define a distribution which captures the
“union” of the third round message distributions of each Σ-protocol, and map
messages into and out of this distribution. The communication complexity of the
resulting protocol is determined by the size of this distribution. We give concrete
case studies of cross-stacking various Σ-protocols.
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