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Abstract. Cleve’s celebrated lower bound (STOC’86) showed that a de
facto strong fairness notion is impossible in 2-party coin toss, i.e., the
corrupt party always has a strategy of biasing the honest party’s out-
come by a noticeable amount. Nonetheless, Blum’s famous coin-tossing
protocol (CRYPTO’81) achieves a strictly weaker “game-theoretic” no-
tion of fairness — specifically, it is a 2-party coin toss protocol in which
neither party can bias the outcome towards its own preference; and thus
the honest protocol forms a Nash equilibrium in which neither party
would want to deviate. Surprisingly, an n-party analog of Blum’s famous
coin toss protocol was not studied till recently. The work by Chung et
al. (TCC’18) was the first to explore the feasibility of game-theoretically
fair n-party coin toss in the presence of corrupt majority. We may as-
sume that each party has a publicly stated preference for either the bit
0 or 1, and if the outcome agrees with the party’s preference, it obtains
utility 1; else it obtains nothing.
A natural game-theoretic formulation is to require that the honest proto-
col form a coalition-resistant Nash equilibrium, i.e., no coalition should
have incentive to deviate from the honest behavior. Chung et al. phrased
this game-theoretic notion as “cooperative-strategy-proofness” or “CSP-
fairness” for short. Unfortunately, Chung et al. showed that under (n−1)-
sized coalitions, it is impossible to design such a CSP-fair coin toss pro-
tocol, unless all parties except one prefer the same bit.
In this paper, we show that the impossibility of Chung et al. is in fact
not as broad as it may seem. When coalitions are majority but not n−1
in size, we can indeed get feasibility results in some meaningful parame-
ter regimes. We give a complete characterization of the regime in which
CSP-fair coin toss is possible, by providing a matching upper- and lower-
bound. Our complete characterization theorem also shows that the math-
ematical structure of game-theoretic fairness is starkly different from the
de facto strong fairness notion in the multi-party computation literature.
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1 Introduction

Coin toss protocols, first proposed by Blum [9], are at the heart of cryptography
and distributed computing. Imagine that Murphy and Mopey simultaneously
solve the same long-standing open problem in cryptography, and they both sub-
mit a paper with identical results to EUROCRYPT’22. The program committee
of EUROCRYPT’22 decide to recommend Murphy and Mopey to merge their
papers. Now, Murphy and Mopey want to toss a coin to elect one of them to
present the result at EUROCRYPT’22. How can Murphy and Mopey accom-
plish this task remotely? Clearly, we can use Blum’s coin toss protocol. Murphy
and Mopey each commit to a random bit, and post the commitment to a public
bulletin board (e.g., a blockchain). They then each open their commitments. If
the XOR of the two opened bits is 1, Murphy wins; else, Mopey wins. If either
player aborts any time during the protocol or does not provide a valid opening
for its commitment, it automatically forfeits and the other player wins. Although
not explicitly stated in his ground-breaking paper [9], Blum’s protocol actually
achieves a natural, game-theoretic notion of fairness. Since both players want
to get elected, we may assume that the winner obtains utility 1, and the loser
obtains utility 0. Observe that a rational player who aims to maximize its utility
has no incentive to deviate from the honest protocol. Any deviation (including
aborting or opening the commitment wrongly) would cause it to lose.

Although this game-theoretic notion of fairness is very natural, it seems to
have been overlooked in the subsequent long line of work on multi-party compu-
tation (MPC) [21,39,40]. Specifically, the MPC line of work instead switched to
considering a strictly stronger notion of fairness henceforth called unbiasability.
Unbiasability requires that an adversary controlling a corrupt coalition cannot
bias the outcome of the coin toss whatsoever. Blum’s protocol actually does not
satisfy this strong, unbiasability notion: a player can indeed bias the outcome
in Blum’s protocol, although the bias would never be in its own favor. This un-
biasability notion has been thoroughly explored in the cryptography literature.
It is well-known that in general, if the majority of the players are honest, then
unbiasability is indeed attainable [7, 12, 21, 37]. On the other hand, the cele-
brated lower bound of Cleve [15] shows that if half or more of the players are
corrupt, unbiasability is impossible — in particular, this lower bound applies to
the two-party case where one party can be corrupt.

Despite Cleve’s lower bound, the fact that Blum’s protocol can achieve mean-
ingful fairness in the two-party case is thought provoking. A natural question
arises:

can we achieve game-theoretically fair coin toss in the multi-party setting
in the presence of a majority coalition?

Somewhat surprisingly, this question was not explored till the very recent work
of Chung et al. [14].

Imagine that each player has a publicly stated preference for either the bit 0
or 1. If the coin toss outcome agrees with the player’s preference, it obtains utility
1; else it obtains nothing. This formulation can have interesting applications. For
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example, imagine that n parties in a blockchain protocol want to jointly elect a
random block proposer among two possible candidates, and users have different
preferences among the two depending on which one they are geographically closer
to. Another example is where n investors who have invested money into a crowd-
funding smart contract want to randomly choose a kick-starter to fund among
two candidates, and each player may have a different preference in mind.

In many applications, the preference profiles are public. For example, suppose
some blockchain community wants to randomly choose among two governance
proposals. Here, the voters are public figures/community leaders whose affilia-
tions, opinions, and past forum posts are publicly known. In general, when the
voters’ identities/reputations are known to the public and identities do not come
for free, voters’ preferences are usually public. Another example is games where
players must put in stake to play. For example, suppose n players play binary
roulette on a blockchain. Here, their preferences are made explicit by their public
bets which they cannot lie about.

Chung et al. suggested the following natural formulations of game theoretic
fairness for multi-party coin toss, both of which would equate to Blum’s notion
in the 2-party special case:

– CSP-fairness: Cooperative-strategy-proofness (or “CSP-fairness” for short)
requires that no coalition can increase its own expected utility, no matter
how it deviates from the prescribed protocol. In this way, the honest protocol
forms a coalition-resistant Nash equilibrium, and no profit-seeking coalition
of players would be incentivized to deviate from this equilibrium.

– Maximin fairness: Another natural notion is called maximin fairness,
which requires that no coalition can harm any honest party (no matter
how the coalition deviates from the prescribed protocol). More precisely,
for any (computational) strategy adopted by a coalition of players, the ex-
pected utility of any honest party is at most negligibly apart from its utility
in an all-honest execution. As motivated by Chung et al. [14], maximin fair-
ness guarantees that no coalition aiming to monopolize the eco-system by
harming and driving away small individual players has incentives to deviate;
moreover, no defensive individual aiming to protect itself in the worst-case
scenario has incentives to deviate.

Unfortunately, Chung et al. [14] showed very broad lower bounds which
seem to crush our original hope of using game-theoretic fairness to circumvent
Cleve’s impossibility [15] in the corrupt majority setting. Specifically, Chung et
al. proved that unless all parties except one have the same preference, it would
be impossible to realize either CSP-fair coin toss or maximin-fair coin toss.

1.1 Our Results and Contributions

It may seem that Chung et al.’s results have put a pessimistic closure to this
direction. However, upon more careful examination, their lower bound proofs
implicitly assume that all but one parties can be corrupt and form a coalition.
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It is not immediately clear whether the impossibility would still hold if majority
but not n − 1 parties are corrupt. We therefore revisit the question originally
posed by Chung et al., i.e., whether one can rely on game-theoretic fairness to
overcome Cleve’s impossibility for coin toss protocols in the corrupt majority
setting. Specifically, we focus on the following refinement of the question:

Can we achieve game-theoretically fair coin toss under for majority but not
necessarily (n− 1)-sized coalitions?

In this paper, we give a complete characterization of the landscape of game-
theoretically fair coin toss, including for the CSP-fair and the maximin-fair no-
tions. At a very high level, we show the following results:

– For CSP-fairness, the pessimistic view of Chung et al. [14] poorly reflects
the actual state of affairs. In contrast, we show that under a broad range
of parameter regimes, CSP-fairness is possible in the presence of a majority
coalition; moreover, we give a complete characterization of the parameter
regimes under which CSP-fairness is possible.

– For maximin-fairness, we show that the pessimistic view of Chung et al. in-
deed applies quite broadly. Roughly speaking, we show that except for the
cases when all parties but one prefer the same outcome, or when exactly half
of the players are corrupt, maximin-fairness is impossible to attain. We fully
characterize maximin fairness as well.

Note that in cases when there is an honest individual with an opposite prefer-
ence as the coalition, maximin-fairness would directly imply CSP-fairness. This
partly explains why maximin-fairness is harder to attain than CSP-fairness.

Our work sheds new light on the intriguing mathematical structure of game-
theoretic fairness, which differs fundamentally from the mathematical structure
of the de facto unbiasability notion that is widely adopted in the cryptography
literature. Since coin toss protocols [9] have been the cornerstone of the long line
of work on multi-party computation protocols, we hope that our work can inspire
future work in the exciting space of “game theory meets multi-party protocols”
in general. We now give more formal statements of our results.

CSP fairness. For CSP fairness, we design a new protocol and explore for which
range of parameters the upper bound holds. In addition, we generalize the lower
bound proof of Chung et al. [14], and give the range of parameters in which
impossibility holds. Our upper- and lower-bounds tightly match in their stated
parameter regimes. Therefore, our two main results jointly provide a complete
characterization of CSP fairness. It is worth noting that our upper bound holds
in the presence of a malicious coalition that may deviate from the prescribed
protocol arbitrarily to increase its own gain; whereas our lower bound holds for
a fail-stop coalition whose only possible deviation is to have some of its players
abort from the protocol. This makes both the upper- and lower-bound stronger.

Our results can be summarized with the following theorem statements —
below, let n0 be the number of players that prefer 0 (also called 0-supporters),
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and let n1 be the number of players that prefer 1 (also called 1-supporters).
Throughout the paper, without loss of generality, we may assume that n1 ≥ n0 ≥
1 since the other direction is symmetric. Additionally, we assume n0 + n1 > 2,
since for 2-parties, we can just run Blum’s coin toss.

Theorem 1.1 (Upper bound). Assume the existence of Oblivious Transfer
(OT), and without loss of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2.
There exists a CSP-fair coin toss protocol which tolerates up to t-sized non-
uniform p.p.t. coalitions where

t :=


n1 − b 12n0c, if n1 ≥ 5

2n0;

b 23n1 −
1
6n0c+ d 12n0e+ 1 = n1 + 1, if n1 = n0 = odd;

b 23n1 −
1
6n0c+ d 12n0e, otherwise.

(1)

Our upper bound holds even when the coalition may deviate arbitrarily from the
prescribed protocol to increase its gain.

Theorem 1.2 (Lower bound). Without loss of generality, assume that n1 ≥
n0 ≥ 1 and n0 +n1 > 2. There does not exist a CSP-fair n-party coin toss which
tolerates coalitions of size t+ 1 or greater where t is same as Eq. (1).

Further, this lower bound holds even for fail-stop coalitions whose only pos-
sible deviations are aborting from the honest protocol, and it holds even allowing
computational hardness assumptions and restricting the coalition to be computa-
tionally bounded.

Previously, the work of [14] shows possibility only for the case where where
n0 = 1 or n1 = 1 and t = n0 + n1 − 1. Moreover, it showed that it is impossible
to tolerate n0 + n1 − 1 corruptions only for the case where both n0, n1 ≥ 2 (i.e.,
there are at least two parties among the set of 0-supporters and at least two
parties among the set of 1-supporters).

Observe that the optimal resilience parameter t (specified in Eq. (1)) is a
function of n0 and n1. Intriguingly, its dependence as a function of n0 and
n1 changes when n1 = 5

2n0. This intriguing phase transition partly suggests
that the mathematical structure of game theoretic fairness is starkly different the
classical notion of unbiasability. The reason for this phase transition is related
to the concrete techniques we adopt to prove our theorems. We will explain why
this phase transition occurs as we describe our protocol to help the reader gain
intuition (see Remark 2.4 of Section 2.1 for more explanations). Note also that
the transition has a continuous boundary, i.e., at exactly n1 = 5

2n0, the two
expressions n1 − b 12n0c and b 23n1 −

1
6n0c+ d 12n0e are equal (to 2n0).

Maximin fairness. The work of [14] shows that maximin fairness is possible
against t ≤ n− 1 corruptions only when all but one of the parties are interested
in the same outcome. We next show that this is essentially the only interesting
setting which does not behave as in the crypto settings. We show that even when
allowing a more liberate security threshold, we cannot push the barriers much
further than relying on an honest majority. We show the following possibility
and its complementary impossibility result:



6 Ke Wu, Gilad Asharov, and Elaine Shi

Theorem 1.3. Without loss of generality, assume that the number of 1-supporters
n1 is at least the number of 0-supporters, n0, and assume that n0+n1 > 2. Then:

– For n0 ≥ 2, there does not exist a maximin-fair n-party coin toss protocol
which tolerates more than d 12 (n0 + n1)e number of fail-stop adversaries.
Moreover, there exists a (statistically-secure) maximin-fair n-party coin toss
protocol which tolerates up to d 12 (n0 + n1)e − 1 malicious corruptions.

– For the special case where n0 = 1, we show that there does not exist a
maximin-fair n party coin toss protocol which tolerates more than d 12n1e +
1 number of (semi-malicious) players. Assuming Oblivious Transfer, there
exists a maximin fair-coin tossing protocol tolerating up to d 12n1e malicious
corruptions.

Public verifiability. Our positive results are achieved in a model that allowed pub-
lic verifiability. In particular, the output of the protocol can be computed from
messages that were sent over the broadcast medium (e.g., a public blockchain),
and therefore also external observers, i.e., parties that do not take part of the
computation, can also learn the output. Such public verifiability is often needed
in blockchain and decentralized smart contract applications.

1.2 Related Work

Game theory meets cryptography. Although game theory [27, 33] and multi-
party computation [21,39] originated from different academic communities, some
recent efforts have investigated the connections of the two areas (e.g., see the
excellent surveys by Katz [28] and by Dodis and Rabin [17]). At a high level,
this line of work focuses on two broad classes of questions.

First, a line of works [1,3,5,24,29,34] explored how to define game-theoretic
notions of security (as opposed to cryptography-style security notions) for dis-
tributed computing tasks such as secret sharing and secure function evaluation.
Earlier works in this space considered a different notion of utility than our work.
Utility functions are often defined with the following assumptions regarding play-
ers’ perference: players prefer to compute the function correctly; they prefer to
learn others’ secret data, and prefer that other players do not learn their own
secrets. In light of such utility functions, earlier works in this space explored
whether we can design protocols such that rational players will be incentivized
to follow the honest protocol. Inspired by this line of work, Garay et al. propose
a new paradigm called Rational Protocol Design (RPD) [19], and this paradigm
was developed further in several subsequent works [18,20] (we will comment on
the relationship of our notion and RPD shortly).

Second, another central question is how cryptography can help traditional
game theory. Classical works in game theory [27,33] assumed the existence of a
trusted mediator. Therefore, recent works considered how to realize this trusted
mediator using cryptography [6, 16,23,26].

It is well-understood that the notion of Nash equilibrium may predict unsta-
ble outcomes since it may rely on empty threats. Our CSP notion adopts the
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(coalition-resistant) Nash equilibrium paradigm and therefore it does not elimi-
nate the issue of empty threats. In other words, for a CSP-fair protocol, it could
be that a player threatens to deviate from the honest protocol (possibly at a
harm to itself), making other players reconsider their strategies too. A couple
works proposed new notions in the context of computationally bounded agents,
aiming to eliminate empty threats. Gradwohl, Livne and Rosen [22] suggested a
notion called computational threat-free Nash equilibrium, which can be viewed
as a relaxation of the classical notion of subgame perfect equilibrium for com-
putationally bounded agents. This work does not consider coalition resistance.
Pass and shelat [35] suggest a new notion called renegotiation-safe equilibrium,
which they show to be incomparable to Nash equilibrium. Their work captures
some notion of coalition resistance in the sense that coalitions do not want to
renegotiate to strategies that are themselves resilient to future renegotiations.
Our protocol is not a threat-free Nash/renegotiation safe under the same re-
silience parameter — it is interesting to study what resilience parameters our
protocol can tolerate under these notions. In fact, Threat-Free Nash and Rene-
gotiation Safety have not been explored in a coalition setting before. It would
also be an interesting future direction to explore the (in)feasiblity of threat-free
or renegotiation-safe notions in the context of multi-party coin toss.

Recent efforts. More recently, there has been renewed interest in the connec-
tion of game theory and cryptography, partly due to the success of decentralized
blockchains. Besides the work of Chung et al. [14] which provided direct inspira-
tion of our work, the recent work of Chung, Chan, Wen, and Shi [13] suggested an
alternative formulation of game-theoretically fair multi-party coin toss. Specifi-
cally, they consider the task of electing a leader among n players, where everyone
is competing to get elected. Therefore, if a user gets elected, its utility is 1, else
its utility is 0. Their formulation can be viewed as tossing an n-way dice whereas
our formulation and that of Chung et al. consider a binary coin. Intriguingly,
for the leader election formulation, it is indeed possible to achieve CSP-fairness
under any number of corruptions, and thus Chung et al. [13] focus on under-
standing the round complexity of such protocols. Chung et al. also explore how
to define approximate notions of game-theoretic fairness in a distributed pro-
tocol context, and they point out that further subtleties exist in defining an
approximate notion, and thus they suggest new notions called sequential CSP
fairness and sequential maximin fairness. These technicalities only pertain to
approximate notions with non-negligible slack, and are not relevant for us since
we consider (1-negligible)-fairness.

Other recent works, also inspired by blockchain applications, consider a fi-
nancial fairness notion through the use of collateral and penalities [2, 8, 30–32].
In comparison, the protocols in this paper can ensure game theoretic fairness
even without the use of collateral or penalties if applied in blockchain contexts.

Relationship to RPD. Chung, Chan, Wen, and Shi [13] also show a connection
between their approximate game-theoretic notion and the elegant RPD notion by
Garay et al. [18–20]. The same connection also applies to our notion. More specif-
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ically, the RPD framework models a meta-game, i.e., a Stackelberg game between
the protocol designer and an attacker: the designer first picks a protocol Π, then
the attacker can decide which coalition to corrupt and its strategy after exam-
ining this protocol Π. They want a solution concept that achieves a subgame
perfect equilibrium in this Stackelberg meta-game, but consider classical-style
utility functions related to breaking privacy or correctness. Essentially, Chung et
al. [13] showed that the CSP-fairness notion can be an equivalent interpretation
in the RPD framework if we alter their utility notion accordingly to match our
notion. We refer the readers to Chung et al. [13] for a detailed statement and
proof of this equivalence.

Other related works. Finally, we can also circumvent Cleve’s impossibility of
strongly fair (i.e., unbiasable) coin toss under corrupt majority by introducing a
trusted setup, or introducing non-standard cryptographic assumptions such as
Verifiable Delay Functions [10, 11]. In this paper, we focus on the plain model
without trusted setup, without any common reference string (CRS), and standard
cryptographic hardness assumptions.

2 Technical Overview

2.1 Upper Bound

Glimpse of hope. In light of the pessimistic view of Chung et al. [14], we start
with a relatively simple protocol that gives us a glimpse of hope. As a special
case, consider the scenario when n0 = n1 = 2 — recall that for b ∈ {0, 1}, nb
denotes the number of players that prefer b (also called b-supporters). In this case,
there is a very simple protocol that achieves CSP-fairness against any coalition
of at most 2 players. Imagine that we elect one 0-supporter and one 1-supporter
arbitrarily as two representatives each preferring 0 and 1, respectively. We now
have the two representatives duel with each other using Blum’s coin toss, where
if the b-supports aborts then the protocol outputs 1− b for b ∈ {0, 1}. A simple
argument proves that this protocol satisfies CSP-fairness:

– If a coalition controls only 1 player, it makes no sense to deviate whether or
not the corrupt player is elected representative.

– If the coalition controls 2 players with opposing preferences, then the coali-
tion is indifferent to the outcome and has no incentive to deviate.

– Finally, if the coalition controls 2 players with the same preference, then one
of the two will be elected as representative, and the representative should
not have incentive to deviate (whereas the non-representative’s behavior has
no influence to the outcome).

This very simple teaser already shows that Chung et al. [14]’s impossibility
proof does not hold when there is no (n − 1)-sized coalition. Moreover, it also
shows that this notion is weaker than cryptographic fairness, as there is no honest
majority and still there is a possibility result.
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Warmup protocol for a semi-malicious coalition. Unfortunately, the approach
taken by the above teaser protocol for n0 = n1 = 2 does not easily generalize to
larger choices of n0 and n1. We next give a warmup protocol that is somewhat
more sophisticated, but it suggests a more general paradigm which inspires our
final upper bound result. Chung et al. [14] gave a protocol against a coalition of
size up to n1 players for n0 = 1, thus we only consider n0 ≥ 2 in our construction.
For simplicity, we start with the semi-malicious model [4], i.e., the coalition is
restricted to the following two types of deviations:

1. It can abort from the protocol in some round, after looking at the hon-
est messages of that round. Moreover, once a player has aborted, it stops
participating from that point on.

2. The coalition can choose its random coins to be used in each round after
inspecting the honest messages of that round.

Besides these two possible deviations, the coalition would otherwise follow the
protocol faithfully.

The HalfToss sub-protocol. Consider the following sub-protocol called
HalfTossb[k] where b ∈ {0, 1}, and k is a threshold parameter whose purpose
will become clear shortly. At a very high level, the sub-protocol chooses a ran-
dom coin for the group of players that invoke this sub-protocol. Later on, this
HalfTossb protocols will be executed twice: first among the 0-supporters and all
the 1-supporters act as silent observers; and then among the 1-supporters where
the 0-supporters act as silent observers. We use HalfToss0 and HalfToss1 to dis-
tinguish the two instances. Henceforth, let Pb ⊂ [n] denote the set of b supporters
for b ∈ {0, 1}. The final coin would be the XOR of the coins of the two groups.

Protocol 2.1: HalfTossb[k] sub-protocol (semi-malicious version)

Sharing phase.

1. Each b-supporter i ∈ Pb chooses a random bit coini
$←{0, 1}. It then uses

(k + 1)-out-of-n Shamir secret sharing3to split the coin coini into nb
shares, denoted {[coini]j}j∈Pb

, respectively. Player i then sends [coini]j
to each player j ∈ Pb over a private channel.

2. If a b-supporter has not aborted, post a heartbeat message to the broad-
cast channel. At this moment, the active set Ob is defined to be the set of
all b-supporters that indeed posted a heartbeat to the broadcast chan-
nel. Each player i ∈ [Pb] computes si := ⊕j∈Ob

[coinj ]i where [coinj ]i is
the share player i has received from player j.

Reconstruction phase.

1. Every b-supporter i ∈ Pb posts the reconstruction message (i, si) to the
broadcast channel.
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2. If at least k+1 number of b-supporters posted a reconstruction message,
then reconstruct the final secret s using Shamir secret sharing. Specifi-
cally, interpret each reconstruction message of the form (j, sj) as jointly
defining some polynomial f such that f(j) = sj and the reconstructed
secret s := f(0). Output s.

3. Else if fewer than k+ 1 number of b-supporters posted a reconstruction
message, output ⊥.

Properties of the HalfToss sub-protocol. The HalfTossb[k] sub-protocol satisfies
the following properties:

– Binding. The sharing phase uniquely defines a secret s, such that the re-
construction phase either succeeds and outputs s, or it fails and outputs
⊥.

– Knowledge threshold. If at least k + 1 number of b-supporters are corrupt,
then the coalition can control the outcome of the coin toss. Specifically,
during the sharing phase, the coalition will know the coini value for every
honest i, and thus it can choose the coalition’s coin values accordingly to
program the outcome to its own liking.
On the other hand, if at most k number of b-supporters are corrupt, then
the coin value s that the sharing phase binds to is uniform and independent
of the coalition’s view in the sharing phase (i.e., the coalition is completely
unaware of this random coin value).

– Liveness threshold. If the coalition controls at least nb − kb number of b-
supporters, it can cause the reconstruction to fail and output ⊥.
On the other hand, if the coalition controls fewer than nb − k number of
b-supporters, then the reconstruction phase must succeed.

Our warmup protocol. Our warmup protocol makes use of two instances of the
HalfTossb sub-protocol among the 0-supporters and 1-supporters, respectively.
The two instances are parametrized with the thresholds k0 and k1 — we shall
first describe the protocol leaving k0 and k1 unspecified, we then explain how to
choose k0 and k1 to get CSP fairness.

Protocol 2.2: Warmup protocol with semi-malicious security

Sharing phase.

1. (0-supporters participate, 1-supporters observe). Run the sharing phase
of HalfToss0[k0].

2. (1-supporters participate, 0-supporters observe). Run the sharing phase
of HalfToss1[k1].

Reconstruction phase.

3 For concreteness, in (k+1)-out-of-n secret sharing, a subset of k parties learn nothing
about the secret while each subset of k + 1 can reconstruct the secret.
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1. (0-supporters participate, 1-supporters observe). Run the reconstruc-
tion phase of HalfToss0[k0], and let its outcome be s0 if reconstruction
is successful. In case the reconstruction outputs ⊥, then let s0 := 0.

2. (1-supporters participate, 0-supporters observe). Run the reconstruc-
tion phase of HalfToss1[k1]. If the reconstruction phase outputs ⊥, then
output 0 as the final coin value. Else let s1 be the reconstructed value,
and output s0 + s1 as the final coin value.

Choosing the thresholds k0 and k1. Suppose we want to have a CSP-fair protocol
for coalitions of size at most t. Let t0 and t1 denote the number of corrupted
0-supporters and 1-supporters, respectively. Our idea is to choose the thresholds
k0 and k1 in light of n0, n1, and t, such that the following conditions are satisfied
(and recall that we assume without loss of generality that n1 ≥ n0):

(C1) The coalition cannot control both coin values s0 and s1. That is, for either
b ∈ {0, 1}, if the coalition controls at least kb + 1 number of b-supporters,
then because it is subject to the corruption budget t, the coalition must
control at most k1−b number of (1−b)-supporters, such that the coin value
s1−b is uniform and independent of the coalition’s view at the end of the
sharing phase.

(C2) If the coalition can control the s1 coin, i.e., it controls at least k1 + 1
number of 1-supporters, then it cannot hamper the reconstruction of the
coin s0 due to the corruption budget. That is, the coalition must control
at most n0 − k0 − 1 number of 0-supporters.

(C3) If the coalition controls at least n1− k1 number of 1-supporters such that
it can cause the reconstruction of s1 to fail, then the coalition must prefer
1 or is indifferent to the outcome. In other words, denoting by tb the
number of corrupted b-supporters and letting t1 ≥ n1 − k1 then we have
two cases: (a) if n1 − k1 ≥ n0, then this implies that the coalition prefers
1 (since t0 ≤ n0 ≤ n1−k1 ≤ t1) and there is no new constraint; otherwise
(b) if n1−k1 < n0, then we simply require that t ≤ 2t1. This implies that
t0 ≤ t1 (and the coalition prefers 1 or is indifferent) since t = t0 + t1.

If parameters k0, k1, t satisfy the following constraints, then they satisfy the
above conditions.

Parameter Constraints 2.3 (semi-malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1
(C1) t ≤ k0 + k1 + 1,

(C2) t ≤ k1 + 1 + n0 − k0 − 1 = n0 + k1 − k0,

(C3) if n1 − k1 < n0, then t ≤ 2(n1 − k1).

Given the above constraints and the parameters n0, n1, and t, if a feasible
solution for k0 and k1 exists, the above warmup protocol (parametrized with the
feasible solution k0 and k1) would be CSP-fair against t-sized coalitions. The
reasoning is as follows.
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– First, due to condition (C3), it never makes sense for the coalition to prevent
the reconstruction of the s1 coin (in which case 0 would be the declared
output). If the coalition controls enough 1-supporters such that it is capable
of failing the reconstruction of s1, then it either prefers 1 or is indifferent.

– Henceforth we may assume that s1 is successfully reconstructed. Now, due
to condition (C1), there are two cases: 1) either the value of s1 is uniform
and independent of the coalition’s view at the end of the sharing phase, or;
2) the coalition can control the value of s1.
In the former case, since the coin s1 is assumed to be successfully recon-
structed, the final outcome must be random. It is important that s1 is recon-
structed at the very end, after s0 is reconstructed. Otherwise, this argument
will not hold, since the coalition may examine the reconstructed s1 value,
and then decide whether to abort the reconstruction of s0. In the latter case,
due to conditions (C1) and (C2), it must be that s0 is uniform and indepen-
dent of the coalition’s view at the end of the sharing phase, and moreover,
the coalition cannot hamper the reconstruction of s0. In this case, the final
outcome s0 ⊕ s1 must be random, too.

Optimal resilience for the warmup protocol. Given n0 and n1, we may ask what
is the optimal resilience for this warmup protocol? Solving for the optimal re-
silience is equivalent to solving for the maximum t such that there exists a
feasible solution for k0 and k1 given the above constraints. It turns out that t
is maximized under the following choices of k0 and k1, depending on n0 and n1
where n1 ≥ n0 ≥ 1:

Case k0 k1 t

If n1 ≥ 5
2n0 b

n0

2 c n1 − n0 n1 − b 12n0c
Otherwise bn0

2 c b
2
3n1 −

1
6n0c b

2
3n1 −

1
6n0c+ dn0

2 e

Remark 2.4. The intuition for the phase transition at n1 = 5
2n0 follows from

the implications of the different constraints. In particular, when n1 ≥ 5
2n0, then

to corrupt a coalition that prefers 0, the adversary does not have to corrupt too
many parties, and the conditions are easily satisfied. If the coalition prefers 1,
then Condition (C3) does not add any constraint. In that case t is maximized
subject to only the constraints corresponding to Condition (C1) and (C2). When
n1 <

5
2n0, then it is possible that a coalition corrupting majority parties prefers

0. Therefore, we need to maximize t under the three constraints corresponding
to Condition (C1), (C2) and (C3).

In Appendix A, we visualize the choice of t as a function of n0 and n1, to help
understand the intriguing mathematical structure of game-theoretic fairness in
multi-party coin toss.

A corner case of n0 = n1 = odd. It turns out that the above solution for t
is optimal (even for semi-malicious coalitions) in light of our lower bound in
Section 5, except for the corner case n0 = n1 = odd. This is because the above
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conditions (C1), (C2) and (C3) are slightly too stringent — in cases when the
adversary corrupts exactly the same number of 0-supporters and 1-supporters,
the coalition is actually indifferent (i.e., have no preference). In such cases, the
coalition is allowed to bias the coin towards either direction, and therefore we
do not need the above conditions to hold. Taking this corner case into account,
we obtain that the number of corruptions that can be tolerated is:

Case k0 k1 t

If n1 ≥ 5
2n0 bn0

2 c n1 − n0 n1 − b 12n0c
If n1 = n0 = odd bn0

2 c b 12n1c n1 + 1
Otherwise bn0

2 c b
2
3n1 −

1
6n0c b

2
3n1 −

1
6n0c+ dn0

2 e

The final protocol against malicious coalition who may deviate arbitrarily
from the prescribed protocol is described in Section 4.

2.2 Lower Bound

Our lower bound techniques are inspired by that of Chung et al. [14], who proved
that there is no CSP-fair n-party coin toss protocol for n ≥ 3 even against fail-
stop coalitions, unless all parties except one prefer the same bit.

We may assume n1 ≥ n0 ≥ 2, since the corner cases where n0 = 1 has already
been treated by Chung et al. [14]. Our idea is to partition the players into three
partitions denoted S1, S2, and S3, respectively. We may assume that there is
an ordering for the identities of all parties and that the preferences are public.
Then:

– S1 runs the code of the first α0 number of 0-supporters, and the first α1

number of 1-supporters.

– S2 runs the code of the next (n0 − 2α0) number of 0-supports and the next
(n1 − 2α1) number of 1 supporters.

– S3 runs the code of the next (last) α0 number of 0-supporters and the last
α1 number of 1-supporters.

This means that each party Si internally emulates the execution of all parties it
runs; all messages that are sent between theses parties are dealt internally by Si
and all messages that are sent between parties that are controlled by different Si,
Sj are sent as a message from Si to Sj (with a clear labeling that states which
message is intended to which internal party). The idea of the lower bound is to
show that as long as α0, α1 and t satisfy a set of conditions defined with respect
to n0, n1, then for any n-party protocol Π achieving CSP-fairness against any
non-uniform fail-stop coalition of size t, its corresponding three-party coin-toss
protocol must satisfy the following properties:

(LBC1) Lone-wolf condition: a fail-stop coalition controlling S1 (or S3) alone
adopting any non-uniform p.p.t. strategy cannot bias the output to-
wards either direction by a non-negligible amount.
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(LBC2) Wolf-minion condition: a fail-stop coalition controlling S1 and S2 (or
S2 and S3), adopting any non-uniform p.p.t. strategy, cannot bias the
output towards 1 by a non-negligible amount.

(LBC3) T2-equity condition: Consider an honest execution of the protocol con-
ditioned on the fact that S2 has its randomness fixed to T2, and let
f(T2) denote the expected outcome (where the probability is taken
over S1 and S3’s randomness). T2-equity condition states that there
exists a negligible function negl(·) such that for all but negl(λ) fraction
of T2, |f(T2)− 1/2| is negligible.

We use Π to denote both the n-party CSP-fair protocol and the three-party
coin toss protocol when the context is clear. The following generalized theorem
is implicit in Chung et al. [14]’s lower bound proof — the full proof is available
in the full version.

Theorem 2.5 (Generalized Theorem 21 of Chung et. al. [14]). There is no
protocol Π among three super nodes S1, S2 and S3 such that Π satisfies the
above lone-wolf condition (LBC1), the wolf-minion condition (LBC2), and the
T2-equity condition (LBC3) simultaneously.

If we can figure out the constraints that the parameters α0, α1 and t should
satisfy, such that for any coin toss protocol among n0 number of 0-supporters
and n1 number of 1-supporters that achieves CSP fairness against a coalition of
size up to t, it’s corresponding three-party coin toss protocol (after partition with
respect to α0 and α1 as specified), must satisfy the lone-wolf condition (LBC1),
the wolf-minion condition (LBC2), as well as the T2 equity condition (LBC3)
simultaneously. Then by Theorem 2.5, we can show that there is no coin toss
protocol that can achieve CSP fairness against a coalition of size up to t. The
constraint system is shown in Section 5 with proofs that the constraint system
implies the three conditions.

3 Definitions

The model. In an n-party coin toss protocol, n players interact through pair-
wise private channels as well as a public broadcast channel. We assume that all
communication channels are authenticated, i.e., messages always carry the true
sender’s identity. Without loss of generality, we assume the players are num-
bered 1, 2, . . . , n, respectively. We assume that the network is synchronous and
the protocol proceeds in rounds. Each player has a publicly stated preference
for either the bit 0 or the bit 1. We call the vector of players’ preferences as
the preference profile, denoted as P. At the end of the protocol, the coin toss
outcome is defined as a deterministic, polynomial-time function over the set of
public messages posted to the broadcast channel. The utility function that we
consider is defined as follows:

The utility function: If the outcome agrees with a player’s preference,
the player obtains utility 1; else it obtains 0.
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The utility of a coalition A ⊂ [n] is the sum of the utilities of all coalition
members.

The protocol execution is parametrized with a security parameter λ, and we may
assume that n is polynomially bounded in λ. We assume that the coalition A
(also called the adversary) may perform a rushing attack: in any round r, it can
wait for honest players (i.e., those not in A) to send messages, and then decide
what round-r messages the corrupt players in A want to send.

Correctness. We let σ∗ = (σ∗1 , . . . , σ
∗
n) denote the strategy (the code) of the all

honest execution. That is, σ∗i can be viewed as the code that party Pi is supposed
to run according to the protocol specifications. We say that the protocol is correct
if, unless all players have the same preference (in which case we can simply
output the preferred bit with probability 1), the coin toss outcome is some fixed
b ∈ {0, 1} with probability at most 1/2 ± negl(λ) for some negligible function
negl(·).

Notations. For a coalition A ⊂ [n], we let UA denote the utility of the coalition.
We let σ∗ = (σ∗1 , . . . , σ

∗
n) denote the strategy (the code) of the all honest exe-

cution. For a coalition A ⊂ [n], we denote by UA(σA, σ
∗
−A) the expected utility

of all members in A where the members of A follow some σA and the members
that are not in A follow the honest strategy σ∗−A. We denote by UA(σ∗A, σ

∗
−A) the

expected utility of all members in A where all parties follow the honest strategy.
All executions are considered with respect to some utility function and some
public preference profile P.

CSP fairness. Recall that in CSP fairness we require that no coalition can
increase its own expected utility no matter how it deviates from the prescribed
strategy. This is formalized as follows:

Definition 3.1 (CSP-fairness [14]). We say that a coin toss protocol σ∗ satisfies
cooperative-strategy-proofness (or CSP-fairness) against any for t-sized coalitions
with respect to a preference profile P, iff for all A ⊆ [n] of cardinality at most
t, any non-uniform probabilistic polynomial-time (p.p.t.) strategy σ′A adopted by
the coalition A, there is a negligible function negl(·), such that4

UA(σ′A, σ
∗
−A) ≤ UA(σ∗A, σ

∗
−A) + negl(λ) .

Note that in this definition, if the coalition controls the same number of 0-
supporters and 1-supporters, then we allow it to bias the output arbitrarily since
it has no preference.

4 Like earlier works [1, 3, 5, 14, 18–20, 24, 29, 34, 36], our CSP-fair notion considers the
deviation of a single coalition. Such a definitional approach is standard and dominant
in the game theory literature, and the philosophical motivation is that the honest
protocol would then become an equilibrium such that no coalition (of a certain size)
would be incentivized deviate. In fact, many earlier works (including the standard
Nash equilibrium notion) would even consider deviation of a single individual rather
than a coalition.
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Maximin fairness. Maximin fairness requires that no coalition can harm any
honest party. This is formalized as follows:

Definition 3.2. We say that a coin-toss protocol σ∗ satisfies maximin fairness for
t-sized coalitions with respect to a preference profile P, iff for any p.p.t. adversary
A controlling at most t parties, there exists a negligible function negl(·) such that,
in an execution of the protocol involving the adversary A, the expected utility of
any honest party i is at least Ui(σ

∗)−negl(λ), where Ui(σ
∗) is the expected utility

of party i in an honest execution of the protocol with respect to P.

4 Upper Bound

Our starting point is the warmup protocol for semi-malicious adversary, as pre-
sented in Section 2.1, which leads to the following optimal resilience:

Case k0 k1 t

If n1 ≥ 5
2n0 b

n0

2 c n1 − n0 n1 − b 12n0c
Otherwise bn0

2 c b
2
3n1 −

1
6n0c b

2
3n1 −

1
6n0c+ dn0

2 e

A corner case of n0 = n1 = odd. It turns out that the above solution for t
is optimal (even for semi-malicious coalitions) in light of our lower bound in
Section 5, except for the corner case n0 = n1 = odd. This is because the above
conditions (C1), (C2) and (C3) are slightly too stringent — in cases when the
adversary corrupts exactly the same number of 0-supporters and 1-supporters,
the coalition is actually indifferent (i.e., have no preference). In such cases, the
coalition is allowed to bias the coin towards either direction, and therefore we
do not need the above conditions to hold. Taking this corner case into account,
we obtain that the number of corruptions that can be tolerated is:

Case k0 k1 t

If n1 ≥ 5
2n0 bn0

2 c n1 − n0 n1 − b 12n0c
If n1 = n0 = odd bn0

2 c b 12n1c n1 + 1
Otherwise bn0

2 c b
2
3n1 −

1
6n0c b

2
3n1 −

1
6n0c+ dn0

2 e

Due to our lower bound in Section 5, the above resilience parameter is optimal
for CSP fairness, even for semi-malicious corruptions.

4.1 Our Final Protocol for Malicious Coalitions

We now present our final construction ensures CSP-fairness against malicious
coalitions that may deviate arbitrarily from the prescribed protocol.
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Maliciously Secure HalfTossb Sub-Protocol To lift the warmup protocol
to malicious security, the main challenge is how to realize a counterpart of the
HalfTossb protocol for the malicious corruption model. Recall that in the semi-
malicious model, we relied on the players themselves to send heartbeats to iden-
tify which players have aborted. In this malicious model, we can no longer rely
on such self-identification because players can lie. In a corrupt majority model,
we also cannot easily take majority vote to determine who remains online and
honest.

Our final solution relies on MPC with identifiable abort [21, 25] which can
be accomplished assuming the existence of Oblivious Transfer (OT). Recall that
in MPC with identifiable abort, either the players successfully evaluate some
ideal functionality, or if the protocol aborted, then all honest players receive
the identity of an offending player. The idea is that the honest players can now
kick out the offending player and retry, until the protocol succeeds in producing
output.

Specifically, we will replace our earlier HalfTossb[k] sub-protocol with the
following maliciously secure counterpart, in which the b-supporters participate
and the (1− b)-supporters observe.

Protocol 4.1: HalfTossb[k] sub-protocol with malicious security

Sharing phase.

1. Initially, define the active setO := Pb. Repeat the following until success:
(a) The active setO use MPC with identifiable abort to securely compute

the ideal functionality Fb,Osharegen[k] to be described below (Function-
ality 4.2).

(b) If the protocol aborts, then every honest player obtains the identity
of a corrupt player j∗ ∈ O. Remove j∗ from O.

2. At this moment, each player i ∈ O has obtained the tuple
(vk, [s]i, [r]i, [com]i, σi, σ

′
i) from Fb,Osharegen[k].

Vote phase.

1. Each player posts vk to the broadcast channel — henceforth this is also
called a vote for vk. Let vk′ be the verification key that has gained the
most number of votes, breaking ties arbitrarily.

2. If vk′ has not gained at least k + 1 votes, declare that the vote phase
failed and return. Else, if vk′ = vk, then player i posts [com]i and σi to
the broadcast channel.

3. Everyone gathers all ([com]j , σj) pairs posted to the broadcast channel
such that σj is a valid signature of [com]j under vk′. If there are at least
k+ 1 such tuples and all shares [com]j reconstruct uniquely to the value
com, then record the reconstructed commitment com. Else we say that
the vote phase failed.



18 Ke Wu, Gilad Asharov, and Elaine Shi

Reconstruction phase.

1. If the vote phase failed, output the reconstructed value ⊥. Else, continue
with the following.

2. For each player i ∈ O, if vk′ = vk, then post to the broadcast channel
the tuple ([s]i, [r]i, σ

′
i).

3. Every player does the following: gather all tuples ([s]j , [r]j , σ
′
j) posted

to the broadcast channel such that σ′j is a valid signature for ([s]j , [r]j)

under vk′. If all such ([s]j , [r]j) tuples reconstruct to a unique value
(s, r) and moreover, (s, r) is a valid opening of com, then output the
reconstructed value s. Else output ⊥ as the reconstructed value.

Functionality 4.2: The Fb,Osharegen[k] ideal functionality

1. Sample (sk, vk) ← Sig.KeyGen(1λ) where Sig := (KeyGen,Sign,Vf) de-
notes a signature scheme.

2. Sample s
$← {0, 1}, and randomness r ∈ {0, 1}λ, let com := Commit(s, r).

3. Use a (k+ 1)-out-of-|O| Shamir secret sharing scheme to split the terms
(s, r) and com into |O| shares, denoted {[s]i, [r]i, [com]i}i∈O, respectively.
Let σi := Sig.Sign(sk, [com]i) and σ′i := Sig.Sign(sk, ([s]i, [r]i)) for i ∈ O.

4. Each player in O receives the output (vk, [s]i, [r]i, [com]i, σi, σ
′
i).

The maliciously secure HalfTossb[k] protocol satisfies the following properties:

– Binding. If the vote phase does not fail, then the messages on the broadcast
channel in the sharing and vote phases uniquely define a coin s 6= ⊥ such
that reconstruction must either output s or ⊥.

– Knowledge threshold. We now have a computationally secure version of the
knowledge threshold property.
• If at least k + 1 number of b-supporters are corrupt, then the coalition

can bias coin values s that the sharing and vote phases uniquely bind to
(assuming that the voting phase did not fail). Specifically, if the coalition
controls k + 1 number of b-supporters, it can decide whether to abort
Fb,Osharegen[k] after seeing the corrupt players’ shares {[s]j}j∈A where A ⊂
[n] denotes the coalition. If it controls max(k + 1, nb/2) number of b-
supporters, it can control the verification key vk′ and thus alter the coin
s the sharing and vote phases bind to as well.
• If fewer than k+1 number of b-supporters are corrupt, then the coalition’s

view at the end of the voting phase is computationally independent of the
coin value s that the sharing and vote phases bind to. More formally, either
the vote phase fails, or there exists a p.p.t. simulator Sim such that:

(s, viewA) ≈c (Uniform,Sim(1λ))

where s denotes the unique coin value that the sharing phase and vote
phases bind to, viewA denotes the coalition’s view at the end of the vote
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phase, Uniform denotes a random bit sampled from {0, 1}, and ≈c denotes
computational indistinguishability.

– Liveness threshold. If the coalition controls at least min(nb−k, nb/2) number
of b-supporters, it can cause the reconstruction to output ⊥. On the other
hand, if the coalition controls fewer than min(nb − k, nb/2) number of b-
supporters, then the reconstruction phase must succeed.

In comparison with the earlier semi-malicious version, the knowledge thresh-
old and liveness threshold property now become weaker. One relaxation is the
computational security relaxation in the knowledge threshold property whereas
previously in the semi-malicious version, the property was information theoretic.
Another relaxation is that the thresholds for the two properties have changed.
Now, the coalition may be able to control the coin value and hamper reconstruc-
tion with a smaller threshold.

Final Protocol Our final protocol is described as follows:

Protocol 4.3: Final protocol with malicious security

Sharing phase.

1. 0-supporters run the sharing phase of HalfToss0[k0].

2. 1-supporters run the sharing phase of HalfToss1[k1].

Vote phase. (The order of the two instances is important.)

1. 1-supporters run the vote phase of HalfToss1[k1].

2. 0-supporters run the vote phase of HalfToss0[k0].

Reconstruction phase. (The order of the two instances is important.)

1. 0-supporters run the reconstruction phase of HalfToss0[k0], and let its
outcome be s0 if reconstruction is successful. In case the reconstruction
outputs ⊥, then let s0 := 0.

2. 1-supporters run the reconstruction phase of HalfToss1[k1]. If the recon-
struction phase outputs ⊥, then output 0 as the final coin value. Else
let s1 be the reconstructed value, and output s0 + s1 as the final coin
value.

In the above, the order of the two instances in the vote and reconstruction phases
is important due to a similar reason as in the semi-malicious version.

Setting aside the computational security issue for the time being (which can
be formally dealt with using a standard computational reduction argument), in
light of the properties for our maliciously secure HalfTossb sub-protocol, we can
now rewrite the earlier (C1), (C2), (C3) conditions as follows (recall that t0 and
t1 are number of corrupted 0-supporters and 1-supporters, respectively):
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(C1∗) The coalition cannot control both s0 and s1, i.e., the coin values the shar-
ing and vote phases of HalfToss0[k0] and HalfToss1[k1] bind to (assuming
that it did not fail), respectively. This means that if the coalition con-
trols at least kb+1 number of b-supporters, then it does not have enough
corruption budget to control k1−b + 1 number of (1− b)-supporters.

(C2∗) If the coalition controls the s1 coin, i.e., it controls at least k1+1 number
of 1-supporters, then it cannot hamper the reconstruction of the coin s0
due to the corruption budget. That is, the coalition must control fewer
than min(n0 − k0, n0/2) number of 0-supporters.

(C3∗) If the coalition controls at least min(n1 − k1, n1/2) number of 1-
supporters such that it can cause the reconstruction of s1 to fail, then
the coalition must prefer 1 or is indifferent to the outcome — in other
words, either n0 ≤ t1 or t ≤ 2t1 (t0 ≤ t1 and so t = t0 + t1 ≤ 2t1).

These conditions can be rewritten as the following expressions:

Parameter Constraints 4.4 (malicious version).
Assume: 0 ≤ k0 ≤ n0, 0 ≤ k1 ≤ n1

(C1∗) t ≤ k0 + k1 + 1,

(C2∗) t < k1 + 1 + min(n0 − k0, n0/2),

(C3∗) if min(n1 − k1,
⌈
n1

2

⌉
) < n0, then t ≤ 2 ·min(n1 − k1,

⌈
n1

2

⌉
).

One can verify that any k0, k1, t that satisfy (C1∗), (C2∗), (C3∗) must also
satisfy the earlier conditions (C1), (C2) and (C3). This means that the new
malicious version of the protocol cannot tolerate more corruptions than the semi-
malicious version. Intriguingly, it turns out that there exists a choice of k0 and
k1 that maximizes t for conditions (C1), (C2) and (C3), such that the same
(k0, k1, t) also satisfy (C1∗), (C2∗), and (C3∗). This means that our maliciously
secure protocol can achieve the same resilience parameter as the semi-malicious
version.5 More specifically, there exists a choice satisfying k0 = d(n0 − 1)/2e
and k1 ≥ bn1/2c such that t is maximized for conditions (C1), (C2) and (C3).
One can then verify that that as long as k0 = d(n0 − 1)/2e and k1 ≥ bn1/2c, a
feasible solution (k0, k1, t) for conditions (C1), (C2) and (C3) would also be a
feasible solution for conditions (C1∗), (C2∗), and (C3∗).

Just like the earlier semi-malicious setting, the above constraints (C1∗),
(C2∗), and (C3∗) are in fact slightly too stringent; thus, for the special case
n0 = n1 = odd, the resulting solution of t would have a gap of 1 away from
optimal. This gap can be bridged by observing that if the same number of 0-
supporters and 1-supporters are corrupt, the coalition would then be indifferent,
and it would be fine if the coalition could bias the coin towards either direction.

The formal proof of the following theorem (Theorem 1.1 in the introduction) is
available in the full version.
5 Note that since our lower bound holds even for fail-stop adversaries, only when the

malicious version matches the resilience of the semi-malicious version can it be tight.
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Theorem 4.5 (Upper bound). Assume the existence of Oblivious Transfer
(OT), and without loss of generality, assume that n1 ≥ n0 ≥ 1, and n0 +n1 > 2.
Protocol 4.3 is CSP-fair coin toss protocol which tolerates up to t-sized non-
uniform p.p.t. malicious coalitions where

t :=


n1 − b 12n0c, if n1 ≥ 5

2n0;

b 23n1 −
1
6n0c+ d 12n0e+ 1 = n1 + 1, if n1 = n0 = odd;

b 23n1 −
1
6n0c+ d 12n0e, otherwise.

5 Lower Bound

5.1 Parameter Constraints

We now show that, if the parameters α0, α1 and t satisfy the following con-
straints, then for any coin toss protocol among n0 number of 0-supporters and
n1 number of 1-supporters that achieves CSP fairness against a coalition of size
up to t,6 it’s corresponding three-party coin toss protocol (after partition with
respect to α0 and α1 as specified), must satisfy the lone-wolf condition (LBC1),
the wolf-minion condition (LBC2), as well as the T2 equity condition (LBC3)
simultaneously.

Parameter Constraints 5.1 (Constraint system for lower bound proof).

Non-negative Lone-wolf Wolf-minion T2-equity

0 ≤ α0 ≤ 1
2n0 α1 + 1 ≤ n0 n0 − α0 < n1 − α1 1 ≤ α0

0 ≤ α1 ≤ 1
2n1 α0 + 1 ≤ n1 n0 + n1 − α0 − α1 ≤ t 1 ≤ α1

α0 + α1 ≤ t 3 ≤ t
2α0 + 1 ≤ t 1 ≤ n0 + n1 − 2α0 − 2α1 ≤ t
2α1 + 1 ≤ t

In the above set of conditions, the first set (i.e., non-negative) makes sure that
the number of 0-supporters and 1-supporters in each partition is non-negative.
The next three sets of conditions are required to prove the corresponding three
conditions, respectively. We show how the conditions lead to this set of parameter
constraints in Section 5.2. Then, given any fixed n0 and n1, it suffices to solve
for the best partition strategy (i.e., choice of α0 and α1) that minimizes t, and
this minimal choice of t gives rise to our lower bound in light of Theorem 2.5.
We explore that in Section 5.3. It turns out that the minimal t value satisfying
the above constraint system coincides with our upper bound stated in Eq. (1).

6 Our main lower bound theorem, i.e., Theorem 1.2, states the impossibility for coali-
tions of size t+ 1 or greater. For convenience, in this section, we switch the notation
to t rather than t + 1.
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5.2 Constraint System Implies the Lone-Wolf, Wolf-Minion, and
T2-Equality Conditions

Below we focus on proving that the three lower bound conditions hold provided
the constraint system.

Lemma 5.2 (Generalized lone-wolf lemma). Let Π be a protocol that is CSP-
fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1 and t
satisfy the non-negative and lone-wolf constraints in Parameter Constraints 5.1,
then Π satisfies the lone-wolf condition (LBC1).

Proof. Suppose for the sake of contradiction that the long-wolf condition is vio-
lated, i.e., there exists a non-uniform p.p.t. fail-stop adversary A corrupting only
S1 (the same argument holds for S3) that can bias the output towards b ∈ {0, 1}
by a non-negligible amount. We show that then Π is not CSP fair against t
fail-stop adversaries. There are two cases:

– If αb > α1−b then S1 (resp. S3) prefers b. The number of parties in S1 is
α0 +α1. According to the lone-wolf constraints in Parameter Constraints 5.1
we have that α0+α+1 ≤ t and thus this coalition is supposed to be tolerated.

– If αb ≤ α1−b, consider the following coalition in the CSP-fair protocol. The
coalition corrupts S1 and in addition α1−b + 1− αb number of b-supporters
outside S1. From the lone-wolf constraint in Parameter Constraints 5.1, we
have that nb ≥ α1−b+1. This implies that the number of b-supporters outside
S1 is nb−αb ≥ α1−b+1−αb. Then, this coalition consists of α1−b number of
(1− b)-supporters and α1−b + 1 number of b-supporters. From the lone-wolf
constraint in Parameter Constraints 5.1 we have that 2α1−b + 1 ≤ t. Then,
this coalition contains less than t parties and it prefers b. If there exists a
fail-stop adversary in the three-party protocol that controls S1 and can bias
towards b, then this coalition in the CSP-protocol can also bias towards b.
Note that the additional parties in the coalition that are outside of S1 act
honestly and are used just to change the preference of the coalition, i.e., it is
enough to consider the existence of a fail-stop adversary that corrupts only
one party in the corresponding three-party protocol.

Lemma 5.3 (Generalized wolf-minion lemma). Let Π be a protocol that is
CSP-fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1

and t satisfy the non-negative and wolf-minion constraints in Parameter Con-
straints 5.1, then Π satisfies the wolf-minion condition (LBC2).

Proof. The non-negative constraints make sure that the number of parties in S1,
S2 and S3 are non-negative, as S2 contains (n0−2α0) number of 0-supporters and
(n1 − 2α1) number of 1-supporters. If the wolf-minion constrains hold, then the
coalition of S1 and S2 (or S3 and S2) prefers 1 since in total it contains n0 −α0

number of 0-supporters and n1−α1 number of 1-supporters and according to the
constraints, n1−α1 > n0−α0. Moreover, the number of parties in this coalition
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is n1 + n0 − α0 − α1, which is at most t according to the condition. Therefore,
any fail-stop adversary corrupting S1 and S2 (or S3 and S2) cannot bias the
output towards 1 by a non-negligible amount, according to the CSP fairness of
Π against t fail-stop adversaries. This means that the protocol Π satisfies the
wolf-minion condition.

Lemma 5.4 (Generalized T2-equity lemma). Let Π be a protocol that is CSP-
fair against any non-uniform p.p.t., fail-stop coalition of size t. If α0, α1 and
t satisfy the non-negative and the T2-equity constraints in Parameter Con-
straints 5.1, then protocol Π satisfies the T2-equity condition (LBC3). That is,
for all but a negligible fraction of S2’s randomness T2, |f(T2)− 1

2 | is negligible.

Proof. By correctness of the protocol, ET2
[f(T2)] = 1

2 . Note that T2 consists of
the randomness of all players in S2, we can view T2 as a vector {tQ}Q∈S2 where
tQ is player Q’s randomness. For any fixed party Q in S2, consider a protocol ΠQ

that is same with Π except that Q aborts at the very beginning of the protocol
and all other parties behave honestly. Let gQ(T2) be the expected output of ΠQ

conditioned on S2’s randomness T2.

Claim 5.5. For any Q ∈ S2, |ET2
[gQ(T2)]− 1

2 | is negligible.

Proof. Suppose for the sake of contradiction that the claim is not true. Then
this single aborting party Q can bias the outcome of Π towards b ∈ {0, 1} by a
non-negligible amount. This violates the CSP-fairness of the n-party protocol:
Consider a coalition that consists of the Q party and two b-supporters. This
coalition prefers the coin b, and can bias towards it by having Q abort at the
very beginning of the protocol Π. Note that according to T2-equity constraints
in Parameter Constraints 5.1, αb ≥ 1, which implies that there are at least two
b-supporters outside S2. Moreover, the size of the coalition is 3, and thus we
require that t ≥ 3.

Claim 5.6. For any Q in S2, for all but a negligible fraction of T2, |gQ(T2) −
f(T2)| is also negligible.

Proof. Note that for all but a negligible fraction of T2, |ET2
[gQ(T2)− f(T2)]| =

|ET2
[gQ(T2)]− ET2

[f(T2)]| = |ET2
[gQ(T2)]− 1

2 | is negligible. Suppose that there
exists a non-negligible fraction of T2 such that f(T2) − gQ(T2) is positive and
non-negligible, then there must also exists a non-negligible fraction of T2 such
that gQ(T2) − f(T2) is positive and non-negligible. This indicates that for a
non-negligible fraction of T2, Q can bias the output of Π towards 1 (or 0) by a
non-negligible amount by aborting at the beginning of the protocol.

Suppose that S2 prefers 1 (the same argument holds if S2 prefers 0). Con-
sider an adversary A∗ that receives a polynomial p(·) as an advice where p(·) is
chosen such that for a non-negligible fraction of T2, gQ(T2) − f(T2) ≥ 1/p(λ).
A∗ corrupts S2 and acts as follows:

– A∗ randomly samples a T2.



24 Ke Wu, Gilad Asharov, and Elaine Shi

– A∗ repeats the following for p2(λ) times: A∗ samples T1 and T3 for S1 and
S3 and simulates an honest execution with the randomness T1, T2, T3. A∗
also simulates an execution in which Q always aborts at the beginning of
the protocol. Then A∗ gets estimates of g̃Q(T2) and f̃(T2).

– If g̃Q(T2) > f̃(T2), A∗ instructs Q to abort at the very beginning of the
protocol. Otherwise it follows the honest execution.

Note that for any T2 such that gQ(T2)−f(T2) ≥ 1
p(λ) , by the Chernoff bound,

except with a negligible probability, it must be that g̃Q(T2) > f̃(T2). Therefore,
A∗ can bias the output of Π towards 1 by a non-negligible amount. This breaks
the CSP fairness of Π since, according to the T2-equity constraint in Parameter
Constraints 5.1, S2, which contains n0 + n1 − 2α0 − 2α1 contains parties which
is at most t, and it prefers 1. Therefore, for all but a negligible fraction of T2,
|gQ(T2)− f(T2)| is negligible.

For any fixed Q ∈ S2, for any pair of T2 and T ′2 that only differ in Q’s
randomness, it must be that gQ(T2) = gQ(T ′2). Let ` denote the length of T2, we
have:

Claim 5.7. For any fixed i ∈ [`], for all but a negligible fraction of T2, |f(T2)−
f(T̃ i2)| is negligible, where T̃ i2 is same as T2 except with the i-th bit flipped.

Proof of Claim 5.7. Suppose that the i-th bit is contributed by party Q ∈ S2.
For any polynomial p(·), define badp1 to be the event |f(T2) − gQ(T2)| ≥ 1

p(λ) ,

and badp2 to be the event |f(T̃ i2)− gQ(T̃ i2)| ≥ 1
p(λ) . Since for all but a negligible

fraction of T2, |f(T2)−gQ(T2)| is negligible, the probability that badp1 happens is
negligible. The probability that badp2 happens is also negligible. Thus by a union
bound, the probability that both badp1 and badp2 do not happen is 1 − negl(λ)
for some negligible function negl(·). This indicates that for any polynomial p(·),
|f(T2) − f(T̃i)| ≤ |f(T2) − gQ(T2)| + |f(T̃ i2) − gQ(T̃ i2)| ≤ 2

p(λ) with probability

1− negl(λ). The claim thus follows.

Claim 5.8. Pick a random T2 and a random T ′2. Then except with a negligible
probability over the random choice of T2 and T ′2, |f(T2)− f(T ′2)| is negligible.

Proof. Pick a random T2 and a random T ′2, we define hybrids T i, i = 0, . . . , `+1
as follows:

T i = {t1, . . . , ti, t′i+1, . . . , t
′
`},

where ti is the i-th bit of T2 and t′i is the i-th bit of T ′2. Then, T 0 = T ′2 and
T ` = T2. For any fixed polynomial p(·), define badpi to be the event that |f(T i)−
f(T i+1)| ≥ 1

p(λ) . Note that the marginal distribution of T i is uniform, for any

polynomial p(·), the probability that badpi happens is negligible over the choice of
T2 and T ′2, according to Claim 5.7. Therefore, for any p(·), by the union bound,
the probability that none of badpi happens is 1 − negl(λ) for some negligible
function negl(·). Observe that for any fixed polynomial p(·), if none of the events
badpi happen, then |f(T2) − f(T ′2)| ≤ `+1

p(λ) by triangle inequality. Hence, for
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any random T2 and any random T ′2, |f(T2) − f(T ′2)| is negligible except with a
negligible probability over the random choices over T2 and T ′2.

Together with the fact that ET2
[f(T2)] = 1

2 , we have that for all but a neg-
ligible fraction of T2, |f(T2)− 1

2 | is negligible. Otherwise if for some polynomial
p(·), q(·), there exists 1/p(λ) fraction of T2 such that f(T2) − 1

2 ≥ 1/q(λ), then
there must exist 1/p′(λ) fraction of T2 such that 1

2 − f(T2) ≥ 1/q′(λ) for some
polynomial p′(·), q′(·). Then for any random T2 and T ′2, with a non-negligible
probability, |f(T2)− f(T ′2)| ≥ 1/q(λ) + 1/q′(λ), which violates the above conclu-
sion. To conclude, for all but a negligible fraction of T2, |f(T2)− 1

2 | is negligible.

5.3 Minimizing t Subject to Constraints

The full proof of the following lemma is available in the full version.

Lemma 5.9 (Solving the constraint system and minimizing t). For Parameter
Constraint 5.1, the parameter t is minimized when α0 and α1 are chosen as
follows, and the corresponding t is:

Case α0 α1 t

n1 ≥ 5
2n0, n0 ≥ 2 b 12n0c n0 − 1 n1 − b 12n0c+ 1

2 ≤ n0 < n1 <
5
2n0 b

1
2n0c d

1
3n1 + 1

6n0e − 1 d 12n0e+ b 23n1 −
1
6n0c+ 1

2 ≤ n0 = n1 b 12n0c b 12n0c − 1 2d 12n0e+ 1

Note that for the case t = 2d 12n0e+ 1, this expression is equal to b 23n1 −
1
6n0c+

d 12n0e + 1 when n0 = n1 is even, and is equal to n0 + 2 when when n0 = n1 is
odd.

6 Complete Characterization of Maximin Fairness

In this section we give a complete characterization of the maximin fairness de-
fined by Chung et al. [14]. Intuitionally, maximin fairness requires that a cor-
rupted coalition cannot harm the expected reward of any honest party, compared
to an all-honest execution. This definition is formalized in Definition 3.2.

6.1 Lower Bound

Unlike CSP-fairness, maximin-fairness is impossible under a broad range of pa-
rameters. More specifically, we prove the following theorem, which says that
unless n0 = 1 and n1 = odd, for maximin fairness, we cannot tolerate fail-stop
coalitions of half of the parties or more. The special case n0 = 1 and n1 = odd is
slightly more subtle. Chung et al. [14] showed that for the special case n0 = 1, it
is indeed possible to achieve maximin fairness against all but one fail-stop cor-
ruptions. We prove that for n0 = 1, we cannot tolerate semi-malicious coalitions
that are majority in size.
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Theorem 6.1 (Lower bound for maximin fairness). Without loss of generality,
assume that n1 ≥ n0 ≥ 1 and n0+n1 > 2. Then there does not exist a maximmin-
fair n-party coin toss protocol that can:

tolerate fail-stop coalition of size t ≥ d 12 (n0 + n1)e for n0 ≥ 2
tolerate semi-malicious coalition of size t ≥ d 12n1e+ 1 for n0 = 1

Proof sketch. For the case where n0 ≥ 2, we show that if there exists a coin
toss protocol that achieves maximin-fairness against d 12 (n0 + n1)e fail-stop ad-
versaries, then we can construct a two-party protocol that violates Cleve’s
lower bound [15]. Consider any preference profile that contains at least two
0-supporters and in which n1 ≥ n0. Then, we partition the 0-supporters and 1-
supporters as evenly as possible into two partitions, and the two party protocol
is simply an emulation of the n-party protocol with respect to this preference
profile. Each party internally emulates the execution of all parties it runs in the
outer protocol, in a similar manner as in Section 5. Since n1 ≥ n0 ≥ 2, each
partition must contain at least one 0-supporter and at least one 1-supporter. By
maximin fairness, if either partition is controlled by a non uniform p.p.t. ad-
versary A, it should not be able to bias the outcome towards either 0 or 1 by
a non-negligible amount — otherwise if A was able to bias the coin towards
b ∈ {0, 1}, it would be able to harm an individual b-support in the other par-
tition. Now, if we view the coin toss protocol as a two-party coin toss protocol
between the two partitions, the above requirement would contradicts Cleve’s
impossibility result [15].

For the case where n0 = 1, the proof is similar to that of the CSP-fairness.
We partition the players into three partitions: S1 and S3 each contains half
of 1-supporters and S2 contains the single 0-supporter. We can show that if a
coin toss protocol is maximin-fair against d 12n1e + 1 fail-stop adversaries, then
it should satisfy the wolf-minion condition, the lone-wolf condition and the T2-
equity condition simultaneously. The full proof is available in the full version.

6.2 Upper Bound

As mentioned, except for the special case n0 = 1 and n1 = odd, for maximin
fairness, we cannot hope to tolerate half or more fail-stop corruptions. However,
if majority are honest, we can simply run honest-majority MPC with guaranteed
output delivery [21,37].

Therefore, the only non-trivial case is when n0 = 1 and n1 = odd. Chung et
al. [14] showed that for n0 = 1, there is a maximin-fair coin toss protocol against
up to (n − 1) fail-stop adversaries. Here, we construct a maximin-fair coin toss
protocol tolerates exactly half or fewer malicious corruptions.

In our protocol, first, the single 0-supporter commits to a random coin, and
moreover, the 1-supporters jointly toss a coin s1 such that the outcome is se-
cret shared among the 1-supporters. Only if dn1/2e number of 1-supporters get
together, can they learn s1, influence the value of s1, or hamper its reconstruc-
tion later. Next, the 1-supporters reconstruct the secret-shared coin s1. If the
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reconstruction fails, the reconstructed value is set to a canonical value s1 := 0.
Finally, the single 0-supporter opens its commitment and let the opening be s0.
If the single 0-supporter aborts any time during the protocol, the outcome is
declared to be 1. Else, the outcome is declared to be s0 + s1. More formally, the
protocol is as below.

Protocol 6.2: Protocol for maximin-fairness: special case when
n0 = 1 and n1 = odd

1. The single 0-supporter randomly choose s0
$←{0, 1} and compute the

commitment com = Commit(s0, r) with some randomness r ∈ {0, 1}λ.
It then sends the commitment com to the broadcast channel. If the
0-supporter fails to send the commitment, set s0 = ⊥.

2. The 1-supporters run an honest-majority MPC with guaranteed output
delivery to toss a coin s1. Each player i ∈ P1 (the set of 1-supporters)
receives s̃i as the output of the MPC.

3. Every 1-supporter i ∈ P1 posts the output s̃i it receives to the broadcast
channel. Let s1 be the majority vote. If no coin gains majority vote, set
s1 = 0.

4. The 0-supporter opens its coin s0. If it fails to open the coin correctly,
set s0 = ⊥.

5. If s0 = ⊥, output 1. Otherwise, output s0 ⊕ s1.

Observe that if the single 0-supporter is honest, then we need to make sure
that the coalition cannot bias the coin towards either direction; however, in this
case, since the 0-supporter is guaranteed to choose a random coin and open it
at the end, this can be ensured. If, on the other hand, the single 0-supporter
is corrupt, then we only need to ensure that the coalition cannot bias the coin
towards 0. We may therefore assume that the single 0-supporter does not abort
because otherwise the outcome is just declared to be 1. Further, in this case, the
coalition only has budget to corrupt bn1/2c number of 1-supporters, which means
that we have honest majority in 1-supporters. Therefore, if the 0-supporter does
not abort, then the outcome will be a uniformly random coin.

This gives rise to the following theorem. The full proof to the theorem is
available in the full version.

Theorem 6.3 (Upper bound for maximin fairness). Assume the existence of
Oblivious Transfer. Without loss of generality, assume that n1 ≥ n0 ≥ 1 and
n0 + n1 > 2. There exists a maximin-fair n-party coin toss protocol among
n0 players who prefer 0 and n1 players who prefer 1, which tolerates up to t
malicious adversaries where

t :=

{
d 12 (n0 + n1)e − 1, if n0 ≥ 2,

d 12n1e, if n0 = 1.
(2)
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A Visualization of the Resilience Parameter

We visualize the choice of t as a function of n0 and n1, to help understand the
mathematical structure of game-theoretic fairness in multi-party coin toss.
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