
Post-Quantum Security of the
Even-Mansour Cipher

Gorjan Alagic1, Chen Bai2, Jonathan Katz3[0000−0001−6084−9303], and Christian
Majenz4[0000−0002−1877−8385]

1 QuICS, University of Maryland, and NIST
2 Dept. of Electrical and Computer Engineering, University of Maryland

3 Dept. of Computer Science, University of Maryland
4 Dept. of Applied Mathematics and Computer Science, Technical University of

Denmark

Abstract. The Even-Mansour cipher is a simple method for construct-
ing a (keyed) pseudorandom permutation E from a public random per-
mutation P : {0, 1}n → {0, 1}n. It is secure against classical attacks,
with optimal attacks requiring qE queries to E and qP queries to P such
that qE · qP ≈ 2n. If the attacker is given quantum access to both E
and P , however, the cipher is completely insecure, with attacks using
qE , qP = O(n) queries known.

In any plausible real-world setting, however, a quantum attacker would
have only classical access to the keyed permutation E implemented by
honest parties, while retaining quantum access to P . Attacks in this
setting with qE · q2P ≈ 2n are known, showing that security degrades as
compared to the purely classical case, but leaving open the question as
to whether the Even-Mansour cipher can still be proven secure in that
natural, “post-quantum” setting.

We resolve this question, showing that any attack in that setting requires
qE ·q2P +qP ·q2E ≈ 2n. Our results apply to both the two-key and single-key
variants of Even-Mansour. Along the way, we establish several general-
izations of results from prior work on quantum-query lower bounds that
may be of independent interest.

1 Introduction

The Even-Mansour cipher [11] is a well-known approach for constructing a block
cipher E from a public random permutation P : {0, 1}n → {0, 1}n. The cipher
E : {0, 1}2n × {0, 1}n → {0, 1}n is defined as

Ek1,k2(x) = P (x⊕ k1)⊕ k2

where, at least in the original construction, k1, k2 are uniform and independent.
Security in the standard (classical) setting is well understood [11,9]: roughly, an
unbounded attacker with access to P and P−1 cannot distinguish whether it
is interacting with Ek1,k2 and E−1k1,k2 (for uniform k1, k2) or R and R−1 (for

an independent, random permutation R) unless it makes ≈ 2n/2 queries to
its oracles. The variant where k1 is uniform and k2 = k1 has the same secu-
rity [9]. These bounds are tight, and key-recovery attacks using O(2n/2) queries
are known [11,9].

Unfortunately, the Even-Mansour construction is insecure against a fully
quantum attack in which the attacker is given quantum access to all its ora-
cles [20,17]. In such a setting, the adversary can evaluate the unitary operators

UP : |x〉|y〉 7→ |x〉|y ⊕ P (x)〉
UEk1,k2

: |x〉|y〉 7→ |x〉|y ⊕ Ek1,k2(x)〉

(and the analogous unitaries for P−1 and E−1k1,k2) on any quantum state it pre-
pares, and Simon’s algorithm [22] can be applied to Ek1,k2 ⊕ P to give a key-
recovery attack using only O(n) queries.

To place this seemingly devastating attack in context, it is worth recalling the
original motivation for considering unitary oracles of the form above in quantum-
query complexity: one can always transform a classical circuit for a function f
into a reversible (and hence unitary) quantum circuit for Uf . In a cryptographic
context, it is thus reasonable (indeed, necessary) to consider adversaries that use
Uf whenever f is a function whose circuit they know. On the other hand, if the
circuit for f is not known to the adversary, then there is no mechanism by which
it can implement Uf on its own. In particular, if f involves a private key, then
the only way an adversary could possibly obtain quantum access to f would
be if there were an explicit interface granting such access. In most (if not all)
real-world applications, however, the honest parties using the keyed function f
would implement f using a classical computer. In fact, even if they were to
implement f on a quantum computer, there is no reason for them to support
anything but a classical interface to f . In such cases, an adversary would have
no way to evaluate the unitary operator corresponding to f .

In most real-world applications of Even-Mansour, therefore, an attacker would
have only classical access to the keyed permutation Ek1,k2 and its inverse, while
retaining quantum access to P and P−1. In particular, this seems to be the
“right” attack model for most applications of the resulting block cipher, e.g.,
for constructing a secure encryption scheme from the cipher using some mode of
operation. The setting in which the attacker is given quantum access to public
primitives but only classical access to keyed primitives is sometimes called the
“Q1 setting” [5]; we will refer to it simply as the post-quantum setting.

Security of the Even-Mansour cipher in this setting is currently unclear.
Kuwakado and Morii [20] show a key-recovery attack using the BHT collision-
finding algorithm [7] that requires only ≈ 2n/3 oracle queries. Their attack uses
exponential memory but this was improved in subsequent work [14,5], culminat-
ing in an attack using the same number of queries but with polynomial memory
complexity. While these results demonstrate that the Even-Mansour construc-
tion is quantitatively less secure in the post-quantum setting than in the classical
setting, they do not answer the qualitative question of whether the Even-Mansour

2

construction remains secure as a block cipher in the post-quantum setting, or
whether attacks using polynomially many queries might be possible.

In work concurrent with ours, Jaeger et al. [16] prove security of a forward-
only variant of the Even-Mansour construction, as well as for the full Even-
Mansour cipher against non-adaptive adversaries who make all their classical
queries before any quantum queries. They explicitly leave open the question of
proving adaptive security in the latter case.

1.1 Our Results

As our main result, we prove a lower bound showing that ≈ 2n/3 queries are
necessary for attacking the Even-Mansour cipher in the post-quantum setting.
In more detail, if qP denotes the number of (quantum) queries to P, P−1 and
qE denotes the number of (classical) queries to Ek1,k2 , E

−1
k1,k2

, we show that any

attack succeeding with constant probability requires either q2P · qE = Ω(2n) or
qP · q2E = Ω(2n). (Equating qP and qE gives the claimed result.) Formally:

Theorem 1. Let A be a quantum algorithm making qE classical queries to its
first oracle (including forward and inverse queries) and qP quantum queries to
its second oracle (including forward and inverse queries.) Then∣∣∣∣ Pr

k1,k2,P

[
AEk1,k2

,P (1n) = 1
]
− Pr
R,P

[
AR,P (1n) = 1

]∣∣∣∣
≤ 10 · 2−n/2 · (qE

√
qP + qP

√
qE) ,

where P,R are uniform n-bit permutations, and the marginal distributions of
k1, k2 ∈ {0, 1}n are uniform.

The above applies, in particular, to the two-key and one-key variants of the
cipher. A simplified version of the proof works also for the case where P is a
random function, we consider the cipher Ek(x) = P (x⊕ k) with k uniform, and
A is given forward-only access to both P and E.

Real-world attackers are usually assumed to make far fewer queries to keyed,
“online” primitives than to public, “offline” primitives. (Indeed, while an offline
query is just a local computation, an online query requires, e.g., causing an
honest user to encrypt a certain message.) In such a regime, where qE � qP , the
bound on the adversary’s advantage in Theorem 1 simplifies to O(qP

√
qE
/

2n/2).
In that case q2P qE = Ω(2n) is necessary for constant success probability, which
matches the BHT and offline Simon algorithms [20,5].1

Techniques and new technical results. Proving Theorem 1 required us to
develop new techniques that we believe are interesting beyond our immediate
application. We describe the main challenge and its resolution in what follows.

1 While our bound is tight with respect to the number of queries, it is loose with
regard to the attacker’s advantage, as both the BHT and offline Simon algorithms
achieve advantage Θ(q2P qE

/
2n). Reducing this gap is an interesting open question.

3

As we have already discussed, in the setting of post-quantum security adver-
saries may have a combination of classical and quantum oracles. This is the case,
in particular, when a post-quantum security notion that involves keyed oracles is
analyzed in the quantum random oracle model (QROM), such as when analyz-
ing the Fujisaki-Okamoto transform [23,13,4,26,19,8] or the Fiat-Shamir trans-
form [24,18,12]. In general, dealing with a mix of quantum and classical oracles
presents a problem: quantum-query lower bounds typically begin by “purifying”
the adversary and postponing all measurements to the end of its execution, but
this does not work if the adversary may decide what query to make to a classical
oracle (or even whether to query that oracle at all) based on the outcome of
an intermediate measurement. The works cited above address this problem in
various ways, often by relaxing the problem and allowing quantum access to all
oracles. This is not an option for us if we wish to prove security, because the
Even-Mansour cipher is insecure when the adversary is given quantum access to
all its oracles! In the concurrent work of Jaeger et al. [16], the authors overcome
the above barrier for the forward-only Even-Mansour case using Zhandry’s com-
pressed oracle technique [26], which is not currently known to be applicable to
inverse-accessible permutations.

Instead, we deal with the problem by dividing the execution of an algorithm
that has classical access to some oracle Oc and quantum access to another ora-
cle Oq into stages, where a stage corresponds to a period between classical queries
to Oc. We then analyze the algorithm stage-by-stage. In doing so, however, we
introduce another problem: the adversary may adaptively choose the number of
queries to Oq in each stage based on outcomes of intermediate measurements.
While it is possible to upper bound the number of queries to Oq in each stage
by the number of queries made to Oq overall, this will (in general) result in a
loose security bound. To avoid such a loss, we extend the “blinding lemma” of
Alagic et al. [1] so that (in addition to some other generalizations) we obtain a
bound in terms of the expected number of queries made by a distinguisher:

Lemma 1 (Arbitrary reprogramming, informal). Consider the following
experiment involving a distinguisher D making at most q queries in expectation.

Phase 1: D outputs a function F and a randomized algorithm B that specifies
how to reprogram F .

Phase 2: Randomness r is sampled and B(r) is run to reprogram F , giving F ′.
A uniform b ∈ {0, 1} is chosen, and D receives quantum oracle access to
either F (if b = 0) or F ′ (if b = 1).

Phase 3: D loses access to its oracle, is given r, and outputs a bit b′.

Then |Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 2q ·
√
ε, where ε is an

upper bound on the probability that any given input is reprogrammed.

The name “arbitrary reprogramming” is motivated by the facts that F is arbi-
trary (and known), and the adversary can reprogram F arbitrarily—so long as
some bound on the probability of reprogramming each individual input exists.

We also extend the “adaptive reprogramming lemma” of Grilo et al. [12] to
the case of two-way-accessible, random permutations:

4

Lemma 2 (Resampling lemma for permutations, informal). Consider
the following experiment involving a distinguisher D.

Phase 1: D makes at most q (forward or inverse) quantum queries to a uniform
permutation P : {0, 1}n → {0, 1}n.

Phase 2: A uniform b ∈ {0, 1} is chosen, and D is allowed to make arbitrarily
many queries to an oracle that is either equal to P (if b = 0) or P ′ (if b = 1),
where P ′ is obtained from P by swapping the output values at two uniform
points (which are given to D). Finally, D outputs a bit b′.

Then |Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 4
√
q · 2−n/2.

This is tight up to a constant factor (cf. [12, Theorem 7]). The name “re-
sampling lemma” is motivated by the fact that here reprogramming is restricted
to resampling output values from the same distribution used to initially sample
outputs of P . While Lemma 1 allows for more general resampling, Lemma 2
gives a bound that is independent of the number of queries D makes after the
reprogramming occurs.

Implications for a variant of the Hidden Shift problem. In the well-
studied Hidden Shift problem [25], one is asked to find an unknown shift s by
querying an oracle for a (typically injective) function f on a group G along with
an oracle for the shifted function fs(x) = f(x · s). If both oracles are classical,
this problem has query complexity superpolynomial in log |G|. If both oracles
are quantum, then the query complexity is polynomial [10] but the algorithmic
difficulty appears to depend critically on the structure of G (e.g., while G = Zn2
is easy [22], G = Sn appears to be intractable [2]).

The obvious connection between the Hidden Shift problem and security of
Even-Mansour in general groups has been considered before [2,15,6]. In our case,
it leads us to define two natural variants of the Hidden Shift problem:

1. “post-quantum” Hidden Shift: the oracle for f is quantum while the oracle
for fs is classical;

2. “two-sided” Hidden Shift: in place of fs, use fs1,s2(x) = f(x · s1) · s2; if f is
a permutation, grant access to f−1 and f−1s1,s2 as well.

These two variants can be considered jointly or separately and, for either variant,
one can consider worst-case or average-case settings [2]. Our main result implies:

Theorem 2 (informal). Solving the post-quantum Hidden Shift problem on
any group G requires a number of queries that is superpolynomial in log |G|.
This holds for both the one-sided and two-sided versions of the problem, and for
both the worst-case and the average-case settings.

Theorem 2 follows from the proof of Theorem 1 via a few straightforward
observations. First, an inspection of the proof shows that the particular structure
of the underlying group (i.e., the XOR operation on {0, 1}n) is not relevant; the
proof works identically for any group, simply replacing 2n with |G| in the bounds.
The two-sided case of Theorem 2 then follows almost immediately: worst-case

5

search is at least as hard as average-case search, and average-case search is at
least as hard as average-case decision, which is precisely Theorem 1 (with the
appropriate underlying group). Finally, as noted earlier, an appropriate analogue
of Theorem 1 also holds in the “forward-only” case where Ek(x) = P (x⊕k) and
P is a random function. This yields the one-sided case of Theorem 2.

1.2 Paper Organization

In Section 2 we state the technical lemmas needed for our main result. In Sec-
tion 3 we prove Theorem 1, showing post-quantum security of the Even-Mansour
cipher (both the two-key and one-key variants), based on the technical lemmas.
In Section 4 we prove the technical lemmas themselves. Finally, in Appendix A,
we give a proof of post-quantum security for the one-key, “forward-only” variant
of Even-Mansour (also considered by Jaeger et al. [16]). While this is a relatively
straightforward adaptation of the proof of our main result, it does not follow di-
rectly from it; moreover, it is substantially simpler and so may serve as a good
warm-up for the reader before tackling our main result.

2 Reprogramming Lemmas

In this section we collect some technical lemmas that we will need for the proof
of Theorem 1. We first discuss a particular extension of the “blinding lemma” of
Alagic et al. [1, Theorem 11], which formalizes Lemma 1. We then state a gen-
eralization of the “reprogramming lemma” of Grilo et al. [12], which formalizes
Lemma 2. The complete proofs of these technical results are given in Section 4.

We frequently consider adversaries with quantum access to some function
f : {0, 1}n → {0, 1}m. This means the adversary is given access to a black-box
gate implementing the (n+m)-qubit unitary operator |x〉|y〉 7→ |x〉|y ⊕ f(x)〉.

2.1 Arbitrary Reprogramming

Consider a reprogramming experiment that proceeds as follows. First, a dis-
tinguisher D specifies an arbitrary function F along with a probabilistic algo-
rithm B which describes how to reprogram F . Specifically, the output of B is a
set of points B1 at which F may be reprogrammed, along with the values the
function should take at those potentially reprogrammed points. Then D is given
quantum access to either F or the reprogrammed version of F , and its goal is to
determine which is the case. When D is done making its oracle queries, it is also
given the randomness that was used to run B. Intuitively, the only way D can tell
if its oracle has been reprogrammed is by querying with significant amplitude
on some point in B1. We bound D’s advantage in terms of the probability that
any particular value lies in the set B1 defined by B’s output.

By suitably modifying the proof of Alagic et al. [1, Theorem 11], one can
show that the distinguishing probability of D in the scenario described above is
at most 2q ·

√
ε, where q is an upper bound on the number of oracle queries and

6

ε is an upper bound on the probability that any given input x is reprogrammed
(i.e., that x ∈ B1). However, that result is only proved for distinguishers with
a fixed upper bound on the number of queries they make. To obtain a tighter
bound for our application, we need a version of the result for distinguishers
that may adaptively choose how many queries they make based on outcomes of
intermediate measurements. We recover the aforementioned bound in the case
where we now let q denote the number of queries made by D in expectation.

For a function F : {0, 1}m → {0, 1}n and a set B ⊂ {0, 1}m × {0, 1}n such
that each x ∈ {0, 1}m is the first element of at most one tuple in B, define

F (B)(x) :=

{
y if (x, y) ∈ B
F (x) otherwise.

We prove the following in Section 4.1:

Lemma 3 (Formal version of Lemma 1). Let D be a distinguisher in the
following experiment:

Phase 1: D outputs descriptions of a function F0 = F : {0, 1}m → {0, 1}n
and a randomized algorithm B whose output is a set B ⊂ {0, 1}m × {0, 1}n
where each x ∈ {0, 1}m is the first element of at most one tuple in B. Let
B1 = {x | ∃y : (x, y) ∈ B} and ε = maxx∈{0,1}m {PrB←B[x ∈ B1]} .

Phase 2: B is run to obtain B. Let F1 = F (B). A uniform bit b is chosen, and
D is given quantum access to Fb.

Phase 3: D loses access to Fb, and receives the randomness r used to invoke B
in phase 2. Then D outputs a guess b′.

For any D making q queries in expectation when its oracle is F0, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2q ·
√
ε .

2.2 Resampling

Here, we consider the following experiment: first, a distinguisher D is given
quantum access to an oracle for a random function F ; then, in the second stage,
F may be “reprogrammed” so its value on a single, uniform point s is changed to
an independent, uniform value. Because the distribution of F (s) is the same both
before and after any reprogramming, we refer to this as “resampling.” The goal
for D is to determine whether or not its oracle was resampled. Intuitively, the
only way D can tell if this is the case—even if it is given s and unbounded access
to the oracle in the second stage—is if D happened to put a large amplitude on
s in some query to the oracle in the first stage. We now formalize this intuition.

We begin by establishing notation and recalling a result of Grilo et al. [12].
Given a function F : {0, 1}m → {0, 1}n and s ∈ {0, 1}m, y ∈ {0, 1}n, define the
“reprogrammed” function Fs7→y : {0, 1}m → {0, 1}n as

Fs 7→y(w) =

{
y if w = s

F (w) otherwise.

7

The following is a special case of [12, Prop. 1]:

Lemma 4 (Resampling for random functions). Let D be a distinguisher
in the following experiment:

Phase 1: A uniform F : {0, 1}m → {0, 1}n is chosen, and D is given quantum
access to F0 = F .

Phase 2: Uniform s ∈ {0, 1}m, y ∈ {0, 1}n are chosen, and we let F1 = Fs7→y.
A uniform bit b is chosen, and D is given s and quantum access to Fb. Then
D outputs a guess b′.

For any D making at most q queries to F0 in phase 1, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 1.5
√
q/2m .

We extend the above to the case of two-way accessible, random permutations.
Now, a random permutation P : {0, 1}n → {0, 1}n is chosen in the first phase; in
the second phase, P may be reprogrammed by swapping the outputs correspond-
ing to two uniform inputs. For a, b ∈ {0, 1}n, let swapa,b : {0, 1}n → {0, 1}n be
the permutation that maps a 7→ b and b 7→ a but is otherwise the identity. We
prove the following in Section 4.2:

Lemma 5 (Formal version of Lemma 2). Let D be a distinguisher in the
following experiment:

Phase 1: A uniform permutation P : {0, 1}n → {0, 1}n is chosen, and D is
given quantum access to P0 = P and P−10 = P−1.

Phase 2: Uniform s0, s1 ∈ {0, 1}n are chosen, and we let P1 = P ◦ swaps0,s1 .
Uniform b ∈ {0, 1} is chosen, and D is given s0, s1, and quantum access
to Pb, P

−1
b . Then D outputs a guess b′.

For any D making at most q queries (combined) to P0, P
−1
0 in the first phase,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 4
√
q/2n.

3 Post-Quantum Security of Even-Mansour

We now establish the post-quantum security of the Even-Mansour cipher based
on the lemmas from the previous section. Recall that the Even-Mansour cipher
is defined as Ek(x) := P (x ⊕ k1) ⊕ k2, where P : {0, 1}n → {0, 1}n is a public
random permutation and k = (k1, k2) ∈ {0, 1}2n is a key. Our proof assumes
only that the marginal distributions of k1 and k2 are each uniform. This covers
the original Even-Mansour cipher [11] where k is uniform over {0, 1}2n, as well
as the one-key variant [9] where k1 is uniform and then k2 is set equal to k1.

For Ek to be efficiently invertible, the permutation P must itself support
efficient inversion; that is, the oracle for P must be accessible in both the forward
and inverse directions. We thus consider adversaries A who can access both the
cipher Ek and the permutation P in both the forward and inverse directions. The
goal of A is to distinguish this world from the ideal world in which it interacts

8

with independent random permutations R,P . In this section, it will be implicit
in our notation that all oracles are two-way accessible.

In the following, we let Pn be the set of all permutations of {0, 1}n. We write
Ek[P] to denote the Even-Mansour cipher using permutation P and key k; we
do this both to emphasize the dependence on P , and to enable references to
Even-Mansour with a permutation other than P . Our main result is as follows:

Theorem 3 (Theorem 1, restated). Let D be a distribution over k = (k1, k2)
such that the marginal distributions of k1 and k2 are each uniform, and let A
be an adversary making qE classical queries to its first oracle and qP quantum
queries to its second oracle. Then∣∣∣∣∣∣ Pr

k←D
P←Pn

[
AEk[P],P (1n) = 1

]
− Pr
R,P←Pn

[
AR,P (1n) = 1

]∣∣∣∣∣∣
≤ 10 · 2−n/2 (qE

√
qP + qP

√
qE) .

Proof. Without loss of generality, we assumeA never makes a redundant classical
query; that is, once it learns an input/output pair (x, y) by making a query to
its classical oracle, it never again submits the query x (respectively, y) to the
forward (respectively, inverse) direction of that oracle.

We divide an execution of A into qE + 1 stages 0, . . . , qE , where the jth
stage corresponds to the time between the jth and (j + 1)st classical queries
of A. In particular, the 0th stage corresponds to the period of time before A
makes its first classical query, and the qEth stage corresponds to the period of
time after A makes its last classical query. We allow A to adaptively distribute
its qP quantum queries between these stages arbitrarily. We let qP,j denote the
expected number of queries A makes in the jth stage in the ideal world AR,P ;
note that

∑qE
j=0 qP,j = qP .

We denote the ith classical query of A by (xi, yi, bi), where bi = 0 means that
A queried xi in the forward direction and received response yi, and bi = 1 means
that A queried yi in the inverse direction and received response xi. Let Tj =(
(x1, y1, b1), . . . , (xj , yj , bj)

)
be the ordered list describing the first j classical

queries made by A. We use “
∏

” to denote sequential composition of operations,
i.e.,

∏n
i=1 fi = f1◦· · ·◦fn. (Note that order matters, since in general composition

of operators is not commutative.) Recall that swapa,b swaps a and b. Define:

−→
S Tj ,P,k

def
=

j∏
i=1

swap1−biP (xi⊕k1),yi⊕k2

−→
QTj ,P,k

def
=

j∏
i=1

swap1−bixi⊕k1,P−1(yi⊕k2)

←−
S Tj ,P,k

def
=

1∏
i=j

swapbiP (xi⊕k1),yi⊕k2

9

←−
QTj ,P,k

def
=

1∏
i=j

swapbixi⊕k1,P−1(yi⊕k2)

where, as usual, f0 is the identity and f1 = f . Finally, define

PTj ,k
def
=
←−
S Tj ,P,k ◦ P ◦

−→
QTj ,P,k . (1)

Since, for any P, x1, y1, x2, y2, it holds that

swapP (x1),P (y1) ◦ swapP (x2),P (y2) ◦ P = swapP (x1),P (y1) ◦ P ◦ swapx2,y2

= P ◦ swapx1,y1 ◦ swapx2,y2 ,

we also have

PTj ,k =
←−
S Tj ,P,k ◦

−→
S Tj ,P,k ◦ P = P ◦

←−
QTj ,P,k ◦

−→
QTj ,P,k . (2)

Intuitively, when the {xi} are distinct and the {yi} are distinct, PTj ,k is a “small”
modification of P for which Ek[PTj ,k](xi) = yi for all i. (Note, however, that this
may fail to hold if there is an “internal collision,” i.e., P (xi ⊕ k1) = yj ⊕ k2 for
some i 6= j. But such collisions occur with low probability over choice of k1, k2.)

We now define a sequence of experiments Hj , for j = 0, . . . , qE .

Experiment Hj . Sample R,P ← Pn and k ← D. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing P , stopping immediately before its (j + 1)st classical query. Let Tj =(
(x1, y1, b1), . . . , (xj , yj , bj)

)
be the ordered list of classical queries/answers.

2. For the remainder of the execution of A, answer its classical queries using
Ek[P] and its quantum queries using PTj ,k.

We can compactly represent Hj as the experiment in which A’s queries are
answered using the oracle sequence

P,R, P, · · · , R, P,︸ ︷︷ ︸
j classical queries

Ek[P], PTj ,k, · · · , Ek[P], PTj ,k︸ ︷︷ ︸
qE − j classical queries

.

Each appearance of R or Ek[P] indicates a single classical query. Each appear-
ance of P or PTj ,k indicates a stage during which A makes multiple (quantum)
queries to that oracle but no queries to its classical oracle. Observe that H0

corresponds to the execution of A in the real world, i.e., AEk[P],P , and that HqE

is the execution of A in the ideal world, i.e., AR,P .
For j = 0, . . . , qE − 1, we introduce additional experiments H′j :

Experiment H′j . Sample R,P ← Pn and k ← D. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing P , stopping immediately after its (j + 1)st classical query. Let Tj+1 =(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
be the ordered list indicating A’s classi-

cal queries/answers.

10

2. For the remainder of the execution of A, answer its classical queries using
Ek[P] and its quantum queries using PTj+1,k.

Thus, H′j corresponds to running A using the oracle sequence

P,R, P, · · · , R, P,︸ ︷︷ ︸
j classical queries

R,PTj+1,k, Ek[P], PTj+1,k · · · , Ek[P], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

In Lemmas 6 and 7, we establish bounds on the distinguishability of H′j and Hj+1,

as well as Hj and H′j . For 0 ≤ j < qE these give:

∣∣Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]
∣∣ ≤ 2 · qP,j+1 ·

√
2 · (j + 1)

2n
.∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]

∣∣ ≤ 8 ·
√
qP
2n

+ 2qE · 2−n

Using the above, we have

|Pr[A(H0) = 1]− Pr[A(HqE) = 1]|

≤
qE−1∑
j=0

(
8 ·
√
qP
2n

+ 2qE · 2−n + 2 · qP,j+1

√
2 · (j + 1)

2n

)

≤ 2q2E · 2−n +

qE−1∑
j=0

(
8 ·
√
qP
2n

+ 2 · qP,j+1

√
2qE
2n

)

≤ 2q2E · 2−n + 2−n/2 ·
(

8qE
√
qP + 2 · qP

√
2qE

)
.

We now simplify the bound further. If qP = 0, then Ek and R are perfectly
indistinguishable and the theorem holds; thus, we may assume qP ≥ 1. We can
also assume qE < 2n/2 since otherwise the bound is larger than 1. Under these
assumptions, we have q2E · 2−n ≤ qE · 2−n/2 ≤ qE

√
qP · 2−n/2 and so

2q2E · 2−n + 2−n/2
(

8qE
√
qP + 2qP

√
2qE

)
≤ 2 · qE

√
qP · 2−n/2 + 2−n/2

(
8qE
√
qP + 2qP

√
2qE

)
≤ 10 · 2−n/2 (qE

√
qP + qP

√
qE) ,

as claimed. ut

To complete the proof of Theorem 3, we now show that H′j is indistinguish-

able from to Hj+1 and Hj is indistinguishable from H′j .

Lemma 6. For j = 0, . . . , qE − 1,

Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qP,j+1

√
2 · (j + 1)/2n ,

where qP,j+1 is the expected number of queries A makes to P in the (j + 1)st
stage in the ideal world (i.e., in HqE .)

11

Proof. Recall we can write the oracle sequences defined by H′j and Hj+1 as

H′j : P,R, P, · · · , R, P, R, PTj+1,k, Ek[P], PTj+1,k, · · · , Ek[P], PTj+1,k

Hj+1 : P,R, P, · · · , R, P︸ ︷︷ ︸
j classical queries

, R, P, Ek[P], PTj+1,k, · · · , Ek[P], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

Let A be a distinguisher between H′j and Hj+1. We construct from A a distin-
guisher D for the blinding experiment from Lemma 3:

Phase 1: D samples P,R← Pn. It then runs A, answering its quantum queries
using P and its classical queries usingR, until after it responds toA’s (j+1)st
classical query. Let Tj+1 =

(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
be the list

of classical queries/answers. D defines F (t, x) := P t(x) for t ∈ {1,−1}.
It also defines the following randomized algorithm B: sample k ← D and
then compute the set B of input/output pairs to be reprogrammed so that
F (B)(t, x) = P tTj+1,k

(x) for all t, x.
Phase 2: B is run to generate B, and D is given quantum access to an oracle Fb.
D resumes running A, answering its quantum queries using P t = Fb(t, ·).
Phase 2 ends when A makes its next (i.e., (j + 2)nd) classical query.

Phase 3: D is given the randomness used by B to generate k. It resumes run-
ning A, answering its classical queries using Ek[P] and its quantum queries
using PTj+1,k. Finally, it outputs whatever A outputs.

Observe that D is a valid distinguisher for the reprogramming experiment of
Lemma 3. It is immediate that if b = 0 (i.e., D’s oracle in phase 2 is F0 = F), then
A’s output is identically distributed to its output in Hj+1, whereas if b = 1 (i.e.,
D’s oracle in phase 2 is F1 = F (B)), then A’s output is identically distributed to
its output in H′j . It follows that |Pr[A(H′j) = 1]−Pr[A(Hj+1) = 1]| is equal to
the distinguishing advantage of D in the reprogramming experiment. To bound
this quantity using Lemma 3, we bound the reprogramming probability ε and
the expected number of queries made by D in phase 2 (when F = F0.)

The reprogramming probability ε can be bounded using the definition of
PTj+1,k and the fact that F (B)(t, x) = P tTj+1,k

. Fixing P and Tj+1, the probability

that any given (t, x) is reprogrammed is at most the probability (over k) that it
is in the set{

(1, xi ⊕ k1), (1, P−1(yi ⊕ k2)), (−1, P (xi ⊕ k1)), (−1, yi ⊕ k2)
}j+1

i=1
.

Taking a union bound and using the fact that the marginal distributions of k1
and k2 are each uniform, we get ε ≤ 2(j + 1)/2n.

The expected number of queries made by D in Phase 2 when F = F0 is equal
to the expected number of queries made by A in its (j + 1)st stage in Hj+1.
Since Hj+1 and HqE are identical until after the (j+ 1)st stage is complete, this
is precisely qP,j+1. ut

Lemma 7. For j = 0, . . . , qE,∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ 8 ·

√
qP
2n

+ 2qE · 2−n.

12

Proof. Recall that we can write the oracle sequences defined by Hj and H′j as

Hj : P,R, P, · · · , R, P, Ek[P], PTj ,k, Ek[P], PTj ,k , · · · , Ek[P], PTj ,k

H′j : P,R, P, · · · , R, P︸ ︷︷ ︸
j classical queries

, R, PTj+1,k, Ek[P], PTj+1,k, · · · , Ek[P], PTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

Let A be a distinguisher between Hj and H′j . We construct from A a distin-
guisher D for the reprogramming experiment of Lemma 5:

Phase 1: D is given quantum access to a permutation P . It samples R← Pn
and then runs A, answering its quantum queries with P and its classical
queries with R (in the appropriate directions), until A submits its (j + 1)st
classical query xj+1 in the forward direction2 (i.e., bj+1 = 0). Let Tj =(
(x1, y1, b1), · · · , (xj , yj , bj)

)
be the list of classical queries/answers thus far.

Phase 2: Now D receives s0, s1 ∈ {0, 1}n and quantum oracle access to a per-
mutation Pb. Then D sets k1 := s0 ⊕ xj+1, chooses k2 ← D|k1 (where this
represents the conditional distribution on k2 given k1), and sets k := (k1, k2).
D continues running A, answering its remaining classical queries (including
the (j + 1)st one) using Ek[Pb], and its remaining quantum queries using

(Pb)Tj ,k =
←−
S Tj ,Pb,k ◦

−→
S Tj ,Pb,k ◦ Pb .

Finally, D outputs whatever A outputs.

Note that although D makes additional queries to Pb in phase 2 (to determine
Pb(x1⊕k1), . . . , Pb(xj⊕k1)), the bound of Lemma 5 only depends on the number
of quantum queries D makes in phase 1, which is at most qP .

We now analyze the execution of D in the two cases of the game of Lemma 5:
b = 0 (no reprogramming) and b = 1 (reprogramming). In both cases, P and R
are independent, uniform permutations, and A is run with quantum oracle P
and classical oracle R until it makes its (j + 1)st classical query; thus, through
the end of phase 1, the above execution of A is consistent with both Hj and H′j .

At the start of phase 2, uniform s0, s1 ∈ {0, 1}n are chosen. Since D sets
k1 := s0 ⊕ xj+1, the distribution of k1 is uniform and hence k is distributed
according to D. The two cases (b = 0 and b = 1) now begin to diverge.

Case b = 0 (no reprogramming). In this case, A’s remaining classical queries
(including its (j + 1)st classical query) are answered using Ek[P0] = Ek[P], and
its remaining quantum queries are answered using (P0)Tj ,k = PTj ,k. The output
of A is thus distributed identically to its output in Hj in this case.

Case b = 1 (reprogramming). In this case, we have

Pb = P1 = P ◦ swaps0,s1 = swapP (s0),P (s1) ◦ P = swapP (xj+1⊕k1),P (s1) ◦ P . (3)

2 We assume for simplicity that this query is in the forward direction, but the case
where it is in the inverse direction can be handled entirely symmetrically (using the
fact that the marginal distribution of k2 is uniform). The strings s0 and s1 are in
that case replaced by Pb(s0) and Pb(s1). See Appendix B.2 for details.

13

The response to A’s (j + 1)st classical query is thus

yj+1
def
= Ek[P1](xj+1) = P1(xj+1 ⊕ k1)⊕ k2 = P1(s0)⊕ k2 = P (s1)⊕ k2 . (4)

The remaining classical queries of A are then answered using Ek[P1], while its
remaining quantum queries are answered using (P1)Tj ,k. If we let Exptj refer to
the experiment in which D executes A as a subroutine when b = 1, it follows
from Lemma 5 that∣∣Pr[A(Hj) = 1]− Pr[A(Exptj) = 1]

∣∣ ≤ 4
√
qP /2n. (5)

We now define three events:

1. bad1 is the event that yj+1 ∈ {y1, . . . , yj}.
2. bad2 is the event that s1 ⊕ k1 ∈ {x1, . . . , xj}.
3. bad3 is the event that, in phase 2, A queries its classical oracle in the forward

direction on s1⊕k1, or the inverse direction on P (s0)⊕k2 (with result s1⊕k1).

Since yj+1 = P (s1)⊕k2 is uniform (because k2 is uniform and independent of P
and s1), it is immediate that Pr[bad1] ≤ j/2n. Similarly, s1⊕k1 = s1⊕s0⊕xj+1

is uniform, and so Pr[bad2] ≤ j/2n. As for the last event, we have:

Claim. Pr[bad3] ≤ (qE − j)/2n + 4
√
qP /2n.

Proof. Consider the algorithm D′ that behaves identically to D in phases 1 and 2,
but then when A terminates outputs 1 iff event bad3 occurred. When b = 0 (no
reprogramming), the execution of A is independent of s1, and so the probability
that bad3 occurs is at most (qE − j)/2n. Now observe that D′ is a distinguisher
for the reprogramming game of Lemma 5. The claim follows. ut

In Figure 1, we show code for Exptj and a related experiment Expt′j . Note

that Exptj and Expt′j are identical until either bad1, bad2, or bad3 occur, and so
by the fundamental lemma of game playing3 [3] we have∣∣Pr[A(Expt′j) = 1]− Pr[A(Exptj) = 1]

∣∣ ≤ Pr[bad1 ∨ bad2 ∨ bad3]

≤ 2qE/2
n + 4

√
qP /2n . (6)

We complete the proof by arguing that Expt′j is identical to H′j :

1. In Expt′j , the oracle Q used in line 12 is always equal to PTj+1,k. When bad1
or bad2 occurs this is immediate (since then Q is set to PTj+1,k in line 11).
But if bad1 does not occur then Equation (4) holds, and if bad2 does not
occur then for i = 1, . . . , j we have xi ⊕ k1 6= s0 and xi ⊕ k1 6= s1 (where
the former is because xj+1 ⊕ k1 = s0 but xi 6= xj+1 by assumption, and the

3 This lemma is an information-theoretic result, and can be applied in our setting
since everything we say in what follows holds even if A is given the entire function
table for its quantum oracle Q in line 12.

14

1 P,R← Pn

2 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

3 s0, s1 ← {0, 1}n, P1 := P ◦ swaps0,s1
4 k1 := s0 ⊕ xj+1, k2 ← D|k1

, k := (k1, k2)
5 yj+1 := Ek[P1](xj+1)
6 Q := (P1)Tj ,k

7 if yj+1 ∈ {y1, . . . , yj} then bad1 := true, yj+1 ← {0, 1}n \ {y1, . . . , yj}
8 Give yj+1 to A as the answer to its (j + 1)st classical query
9 Tj+1 :=

(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
10 if s1 ⊕ k1 ∈ {x1, . . . , xj} then bad2 := true

11 if bad1 = true or bad2 = true then Q := PTj+1,k

12 Continue running A with quantum access to Q and classical access to O/O−1

13 O(x)

14 y := Ek[P1](x)
15 if x = s1 ⊕ k1 then

16 bad3 := true, y := Ek[P](x)

17 return y

18 O−1(y)

19 x := E−1
k [P1](y)

20 if x = s1 ⊕ k1 then

21 bad3 := true, x := E−1
k [P](y)

22 return x

Fig. 1. Expt′j includes the boxed statements, whereas Exptj does not.

latter is by definition of bad2). So P1(xi ⊕ k1) = P (xi ⊕ k1) for i = 1, . . . , j,
and thus

−→
S Tj ,P1,k =

j∏
i=1

swap1−biP1(xi⊕k1),yi⊕k2 =

j∏
i=1

swap1−biP (xi⊕k1),yi⊕k2 =
−→
S Tj ,P,k

and

←−
S Tj ,P1,k =

1∏
i=j

swapbiP1(xi⊕k1),yi⊕k2 =

1∏
i=j

swapbiP (xi⊕k1),yi⊕k2 =
←−
S Tj ,P,k.

Therefore

Q = (P1)Tj ,k =
←−
S Tj ,P1,k ◦

−→
S Tj ,P1,k ◦ P1

=
←−
S Tj ,P,k ◦

−→
S Tj ,P,k ◦ swapP (xj+1⊕k1),yj+1⊕k2 ◦ P

=
←−
S Tj+1,P,k ◦

−→
S Tj+1,P,k ◦ P

= PTj+1,k ,

using Equations (3) and (4) and the fact that bj+1 = 0.

15

2. In Expt′j , the value yj+1 is uniformly distributed in {0, 1}n \ {y1, . . . , yj}.
Indeed, we have already argued above that the value yj+1 computed in line 14
is uniform in {0, 1}n. But if that value lies in {y1, . . . , yj} (and so bad1 occurs)
then yj+1 is re-sampled uniformly from {0, 1}n \ {y1, . . . , yj} in line 7.

3. In Expt′j , the response from oracle O(x) is always equal to Ek[P](x). When
bad3 occurs this is immediate. But if bad3 does not occur then x 6= s1 ⊕ k1;
we also know that x 6= s0⊕k1 = xj+1 by assumption. But then P1(x⊕k1) =
P (x⊕ k1) and so Ek[P1](x) = Ek[P](x). A similar argument shows that the
response from O−1(y) is always E−1k [P](y).

Syntactically rewriting Expt′j using the above observations yields an experiment

that is identical to H′j . (See Appendix B.1 for further details.) Lemma 7 thus
follows from Equations (5) and (6). ut

4 Proofs of the Technical Lemmas

In this section, we give the proofs of our technical lemmas: the “arbitrary repro-
gramming lemma” (Lemma 3) and the “resampling lemma” (Lemma 5).

4.1 Proof of the Arbitrary Reprogramming Lemma

Lemma 3 allows for distinguishers that choose the number of queries they make
adaptively, e.g., depending on the oracle provided and the outcomes of any mea-
surements, and the bound is in terms of the number of queries D makes in expec-
tation. As discussed in Section 1.1, the ability to directly handle such adaptive
distinguishers is necessary for our proof, and to our knowledge has not been
addressed before. To formally reason about adaptive distinguishers, we model
the intermediate operations of the distinguisher and the measurements it makes
as quantum channels. With this as our goal, we first recall some necessary back-
ground and establish some notation.

Recall that a density matrix ρ is a positive semidefinite matrix with unit
trace. A quantum channel—the most general transformation between density
matrices allowed by quantum theory—is a completely positive, trace-preserving,
linear map. The quantum channel corresponding to the unitary operation U is
the map ρ 7→ UρU†. Another type of quantum channel is a pinching, which
corresponds to the operation of making a measurement. Specializing to the only
kind of pinching needed in our proof, consider the measurement of a single-qubit
register C given by the projectors {Π0, Π1} with Πb = |b〉〈b|C . This corresponds
to the pinching MC where

MC(ρ) = Π0ρΠ0 +Π1ρΠ1.

Observe that a pinching only produces the post-measurement state, and does
not separately give the outcome (i.e., the result 0 or 1).

Consider a quantum algorithm D with access to an oracle O operating on
registers X,Y (so O|x〉|y〉 = |x〉|y ⊕ O(x)〉). We define the unitary cO for the

16

controlled version of O, operating on registers C,X, and Y (with C a single-qubit
register), as

cO|c〉|x〉|y〉 = |c〉|x〉|y ⊕ c · O(x)〉.

With this in place, we may now view an execution of DO as follows. The algo-
rithm uses registers C,X, Y , and E. Let qmax be an upper bound on the number
of queries D ever makes. Then D applies the quantum channel

(Φ ◦ cO ◦MC)
qmax (7)

to some initial state ρ = ρ
(0)
0 . That is, for each of qmax iterations, D applies to

its current state the pinchingMC followed by the controlled oracle cO and then
an arbitrary quantum channel Φ (that we take to be the same in all iterations
without loss of generality4) operating on all its registers. Finally, D applies a

measurement to produce its final output. If we let ρ
(0)
i−1 denote the intermedi-

ate state immediately before the pinching is applied in the ith iteration, then

pi−1 = Tr
[
|1〉〈1|C ρ(0)i−1

]
represents the probability that the oracle is applied (or,

equivalently, that a query is made) in the ith iteration, and so q =
∑qmax

i=1 pi−1
is the expected number of queries made by D when interacting with oracle O.

Proof of Lemma 3. An execution of D takes the form of Equation (7) up to a
final measurement. For some fixed value of the randomness r used to run B, set
Υb = Φ ◦ cOFb

◦MC , and define

ρk
def
=
(
Υ qmax−k
1 ◦ Υ k0

)
(ρ),

so that ρk is the final state if the first k queries are answered using a (con-
trolled) F0 oracle and then the remaining qmax − k queries are answered using

a (controlled) F1 oracle. Furthermore, we define ρ
(0)
i = Υ i0(ρ). Note also that

ρqmax
(resp., ρ0) is the final state of the algorithm when the F0 oracle (resp.,

F1 oracle) is used the entire time. We bound Er
[
δ
(
|r〉〈r| ⊗ ρqmax , |r〉〈r| ⊗ ρ0

)]
,

where δ(·, ·) denotes the trace distance.
Define F̃ (B)(x) = F (x) ⊕ F (B)(x), and note that F̃ (B)(x) = 0n for x 6∈ B1.

Since trace distance is non-increasing under quantum channels, for any r we have

δ (|r〉〈r| ⊗ ρk, |r〉〈r| ⊗ ρk−1) ≤ δ
(
cOF0

◦MC

(
ρ
(0)
k−1

)
, cOF1

◦MC

(
ρ
(0)
k−1

))
= δ

(
MC

(
ρ
(0)
k−1

)
, cOF̃ (B) ◦MC

(
ρ
(0)
k−1

))
.

By definition of a controlled oracle,

cOF̃ (B) ◦MC

(
ρ
(0)
k−1

)
= cOF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

)
+ |0〉〈0|C ρ(0)k−1 |0〉〈0|C

= OF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

)
+ |0〉〈0|C ρ(0)k−1 |0〉〈0|C ,

4 This can be done by having a register serve as a counter that is incremented with
each application of Φ.

17

and thus

δ
(
MC

(
ρ
(0)
k−1

)
, cOF̃ (B) ◦MC

(
ρ
(0)
k−1

))
= δ

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C , OF̃ (B)

(
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

))
= pk−1 · δ (σk−1, OF̃ (B) (σk−1))

where, recall, pk−1 = Tr
[
|1〉〈1|C ρ(0)k−1

]
is the probability that a query is made in

the kth iteration, and we define the normalized state σk−1
def
=
|1〉〈1|C ρ(0)k−1 |1〉〈1|C

pk−1
.

Therefore,

Er [δ (|r〉〈r| ⊗ ρqmax
, |r〉〈r| ⊗ ρ0)]

≤
qmax∑
k=1

EB [δ((|r〉〈r| ⊗ ρk, |r〉〈r| ⊗ ρk−1)]

≤
qmax∑
k=1

pk−1 · EB [δ (σk−1, OF̃ (B) (σk−1))]

≤ q ·max
σ

EB [δ (σ, OF̃ (B) (σ))] , (8)

where we write EB for the expectation over the set B output by B in place of Er.
Since σ can be purified to some state |ψ〉, and δ(|ψ〉, |ψ′〉) ≤ ‖|ψ〉 − |ψ′〉‖2

for pure states |ψ〉, |ψ′〉, we have

max
σ

EB [δ (σ, OF̃ (B) (σ))] ≤ max
|ψ〉

EB [δ (|ψ〉, OF̃ (B) |ψ〉)]

≤ max
|ψ〉

EB [‖|ψ〉 − OF̃ (B) |ψ〉‖2].

Because OF̃ (B) acts as the identity on (I−ΠB1
)|ψ〉 for any |ψ〉, we have

EB [‖|ψ〉 − OF̃ (B) |ψ〉‖2]

= EB [‖ΠB1 |ψ〉 − OF̃ (B)ΠB1 |ψ〉+ (I−OF̃ (B))(I−ΠB1)|ψ〉‖2]

≤ EB [‖ΠB1 |ψ〉‖2] + EB [‖OF̃ (B)ΠB1 |ψ〉‖2]

= 2 · EB [‖ΠB1 |ψ〉‖2]

≤ 2
√

EB
[
‖ΠB1 |ψ〉‖22

]
, (9)

using Jensen’s inequality in the last step. Let |ψ〉 =
∑
x∈{0,1}m,y∈{0,1}n αx,y|x〉|y〉

where ‖|ψ〉‖22 =
∑
x,y α

2
x,y = 1. Then

EB
[
‖ΠB1

|ψ〉‖22
]

= EB
[∑

x,y: x∈B1
α2
x,y

]
=
∑
x,y

α2
x,y · Pr[x ∈ B1] ≤ ε.

Together with Equations (8) and (9), this gives the desired result. ut

18

4.2 Proof of the Resampling Lemma

We begin by introducing a superposition-oracle technique based on the one by
Zhandry [26], but different in that our oracle represents a two-way accessible,
uniform permutation (rather than a uniform function). We also do not need to
“compress” the oracle, as an inefficient representation suffices for our purposes.

For an arbitrary function f : {0, 1}n → {0, 1}n, define the state

|f 〉F =
⊗

x∈{0,1}n
|f(x)〉Fx

,

where F is the collection of registers {Fx}x∈{0,1}n . We represent an evaluation
of f via an operator O whose action on the computational basis is given by

OXY F |x〉X |y〉Y |f 〉F = CNOT⊗nFx:Y
|x〉X |y〉Y |f 〉F = |x〉X |y ⊕ f(x)〉Y |f 〉F ,

where X,Y are n-qubit registers. Handling inverse queries to f is more difficult.
We want to define an inverse operator Oinv such that, for any permutation π,

Oinv
XY F |π〉F =

 ∑
x,y∈{0,1}n

|y〉〈y|Y ⊗ XxX ⊗ |y〉〈y|Fx

 |π〉F (10)

(where X is the Pauli-X operator, and for x ∈ {0, 1}n we let Xx := Xx1 ⊗ Xx2 ⊗
. . .⊗ Xxn so that Xx|x̂〉 = |x̂⊕ x〉); then,

Oinv
XY F |x〉X |y〉Y |π〉F = |x⊕ π−1(y)〉X |y〉Y |π〉F .

In order for Oinv to be a well-defined unitary operator, however, we must extend
its definition to the entire space of functions. A convenient extension is given by
the following action on arbitrary computational basis states:

Oinv
XY F =

∏
x′∈{0,1}n

(
Xx
′

X ⊗ |y〉〈y|Fx′ + (1− |y〉〈y|)Fx′

)
,

so that
Oinv
XY F |x〉X |y〉Y |f 〉F = |x⊕

(
⊕x′:f(x′)=y x′

)
〉X |y〉Y |f 〉F .

In other words, the inverse operator XORs all preimages (under f) of the value
in register Y into the contents of register X.

We may view a uniform permutation as a uniform superposition over all
permutations in Pn; i.e., we model a uniform permutation as the state

|φ0〉F = (2n!)
− 1

2

∑
π∈Pn

|π〉F .

The final state of any oracle algorithm D is identically distributed whether we
(1) sample uniform π ∈ Pn and then run D with access to π and π−1, or (2) run
D with access to O and Oinv after initializing the F -registers to |φ0〉F (and, if

19

desired, at the end of its execution, measure the F -registers to obtain π and the
residual state of D).

Our proof relies on the following lemma, which is a special case of the con-
clusion of implication (�′) in [21]. (Here and in the following, we denote the

complementary projector of a projector P by P̄
def
= 1− P .)

Lemma 8 (Gentle measurement lemma). Let |ψ〉 be a quantum state and

let {Pi}qi=1 be a collection of projectors with
∥∥P̄i|ψ〉∥∥22 ≤ εi for all i. Then

1− |〈ψ| (Pq · · ·P1) |ψ〉|2 ≤
q∑
i=1

εi.

Proof of Lemma 5. We split the distinguisher D into two stages D = (D0,D1)
corresponding to the first and second phases of the experiment in Lemma 5. As
discussed above, we run the experiment using the superposition oracle |φ0〉F and
then measure the F -registers at the end. Informally, our goal is to show that on
average over the choice of reprogrammed positions s0, s1, the adversary-oracle
state after D0 finishes is almost invariant under the reprogramming operation
(i.e., the swap of registers Fs0 and Fs1) unless D0 makes a large number of oracle
queries. This will follow from Lemma 8 because, on average over the choice of
s0, s1, any particular query of D0 (whether using O or Oinv) only involves Fs0
or Fs1 with negligible amplitude.

We begin by defining the projectors

(Ps0s1)X =

{
1 s0 = s1

1− |s0〉〈s0| − |s1〉〈s1| s0 6= s1(
P inv
s0s1

)
FY

=

{
1 s0 = s1∑
y∈{0,1}n |y〉〈y|Y ⊗ (1− |y〉〈y|)⊗2Fs0

Fs1
s0 6= s1.

It is straightforward to verify that for any s0, s1:[
SwapFs0Fs1

, OXY F (Ps0s1)X

]
= 0 (11)[

SwapFs0Fs1
, Oinv

XY F

(
P inv
s0s1

)
FY

]
= 0, (12)

where [·, ·] denotes the commutator operation, and SwapAB is the swap operator
(i.e., SwapA,B |x〉A|x′〉B = |x′〉A|x〉B if the target registers A,B are distinct, and
the identity if A and B refer to the same register). In words, this means that
if we project a forward query to inputs other than s0, s1, then swapping the
outputs of a function at s0 and s1 before evaluating that function has no effect;
the sane holds if we project an inverse query (for some associated function f) to
the set of output values that are not equal to f(s0) or f(s1).

20

Since P̄s0s1
def
= 1−Ps0s1 ≤ |s0〉〈s0|+|s1〉〈s1| it follows that for any normalized

state |ψ〉XE (where E is an arbitrary other register),

E
s0,s1

[∥∥(P̄s0s1)X |ψ〉XE∥∥22] ≤ E
s0,s1

[〈ψ| (|s0〉〈s0|+ |s1〉〈s1|) |ψ〉]

= 2 · 2−n. (13)

We show a similar statement about P inv
s0s1 . We can express a valid adversary/oracle

state |ψ〉Y XEF (that is thus only supported on the span of Pn) as

|ψ〉Y XEF =
∑

x,y∈{0,1}n
cxy|y〉Y |y〉Fx |ψxy〉XEFxc , (14)

for some normalized quantum states {|ψxy〉}x,y∈{0,1}n , with
∑
x,y∈{0,1}n |cxy|2 =

1 and 〈y|Fx′ |ψxy〉XEFxc = 0 for all x′ 6= x. If s0 = s1, then
∥∥(P̄ inv

s0s1

)
Y F
|ψ〉Y XEF

∥∥2
2

=

0 ≤ 2 · 2−n. It is thus immediate from eq. (14) that

E
s0,s1

[∥∥(P̄ inv
s0s1

)
Y F
|ψ〉Y XEF

∥∥2
2

]
≤ 2 · 2−n (15)

Without loss of generality, we assume D0 starts with initial state |ψ0〉 =
|ψ′0〉|φ0〉 (which we take to include the superposition oracle’s initial state |φ0〉),
computes the state

|ψ〉 = UD0
|ψ0〉 = UqOqUq−1Oq−1 · · ·U1O1|ψ0〉,

and outputs all its registers as a state register E. Here, each Oi ∈ {O,Oinv} acts
on registers XY F , and each Uj acts on registers XY E. To each choice of s0, s1
we assign a decomposition |ψ〉 = |ψgood(s0, s1)〉+ |ψbad(s0, s1)〉 by defining

|ψgood(s0, s1)〉 = z · UqOqP qs0s1Uq−1Oq−1P
q−1
s0s1 · · ·U1O1P

1
s0s1 |ψ0〉,

where P is0s1 = Ps0s1 if Oi = O, P is0s1 = P inv
s0s1 if Oi = Oinv, and z ∈ C is such

that |z| = 1 and 〈ψ | ψgood(s0, s1)〉 ∈ R≥0.

|ψgood(s0, s1)〉 = z · UD0Q
q
s0s1 · · ·Q

1
s0s1 |ψ0〉,

with Qis0s1 = Ũ†i P
i
s0s1Ũi for Ũi = Ui−1Oi−1 . . . U1O1. Let

εi(s0, s1) =
∥∥Q̄is0s1 |ψ0〉

∥∥2
2

=
∥∥∥P̄ is0s1Ũi|ψ0〉

∥∥∥2
2
.

Applying Lemma 8 yields

1− |〈ψ | ψgood(s0, s1)〉|2 ≤
q∑
i=1

εi(s0, s1). (16)

21

We will now analyze the impact of reprogramming the superposition oracle
after D0 has finished. Recall that reprogramming swaps the values of the per-
mutation at points s0 and s1, which is implemented in the superposition-oracle
framework by applying SwapFs0Fs1

. Note that SwapFs0Fs1
|φ0〉 = |φ0〉. As the

adversary’s internal unitaries Ui do not act on F , Equations (11) and (12) then
imply that

SwapFs0
Fs1
|ψgood(s0, s1)〉 = |ψgood(s0, s1)〉 .

The standard formula for the trace distance of pure states thus yields

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1

=

√
1−

∣∣∣〈ψ|SwapFs0
Fs1
|ψ〉
∣∣∣2. (17)

We further have∣∣∣〈ψ|SwapFs0Fs1
|ψ〉
∣∣∣ =

∣∣∣〈ψ | ψ〉+ 〈ψbad(s0, s1)|
(
SwapFs0Fs1

− 1
)
|ψbad(s0, s1)〉

∣∣∣
≥ 1− 2‖|ψbad(s0, s1)〉‖22 (18)

using the triangle and Cauchy-Schwarz inequalities. Combining Equations (17)
and (18) we obtain

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1
≤ 2 · ‖|ψbad(s0, s1)〉‖2.

But as |ψbad(s0, s1)〉 = |ψ〉 − |ψgood(s0, s1)〉, we have

‖|ψbad(s0, s1)〉‖22 = 2− 2 · Re 〈ψ | ψgood(s0, s1)〉
= 2− 2 · |〈ψ | ψgood(s0, s1)〉|

≤ 2

q∑
i=1

εi(s0, s1).

Combining the last two equations we obtain

1

2

∥∥∥|ψ〉〈ψ| − SwapFs0
Fs1
|ψ〉〈ψ|SwapFs0

Fs1

∥∥∥
1
≤ 2
√

2

√√√√ q∑
i=1

εi(s0, s1) . (19)

The remainder of the proof is the same as the analogous part of the proof
of [12, Theorem 6]. D1’s task boils down to distinguishing the states |ψ〉 and
SwapFs0Fs1

|ψ〉, for uniform s0, s1 that D1 receives as input, using the limited set
of instructions allowed by the superposition oracle. We can therefore bound D’s
advantage by the maximum distinguishing advantage for these two states when
using arbitrary quantum computation, averaged over the choice of s0, s1. Using

22

the standard formula for this maximum distinguishing advantage we obtain

Pr [D outputs b]− 1

2
≤ 1

4
E

s0,s1

[∥∥∥|ψ〉〈ψ| − SwapFs0Fs1
|ψ〉〈ψ|SwapFs0Fs1

∥∥∥
1

]
≤
√

2 E
s0,s1

√√√√ q∑
i=1

εi(s0, s1)


≤
√

2

√√√√ E
s0,s1

[
q∑
i=1

εi(s0, s1)

]
≤ 2

√
q

2n
,

where the second inequality is Equation (19), the third is Jensen’s inequality,
and the last is from Equations (13)–(16). This implies the lemma. ut

Acknowledgments

The authors thank Andrew Childs, Bibhusa Rawal, and Patrick Struck for useful
discussions. Work of Jonathan Katz was supported in part by financial assistance
award 70NANB19H126 from the U.S. Department of Commerce, National Insti-
tute of Standards and Technology. Work of Christian Majenz was funded by a
NWO VENI grant (Project No. VI.Veni.192.159). Gorjan Alagic acknowledges
support from the U.S. Army Research Office under Grant Number W911NF-20-
1-0015, the U.S. Department of Energy under Award Number DE-SC0020312,
and the AFOSR under Award Number FA9550-20-1-0108.

References

1. Gorjan Alagic, Christian Majenz, Alexander Russell, and Fang Song. Quantum-
access-secure message authentication via blind-unforgeability. In Advances in
Cryptology—Eurocrypt 2020, Part III, volume 12107 of LNCS, pages 788–817.
Springer, 2020.

2. Gorjan Alagic and Alexander Russell. Quantum-secure symmetric-key cryptogra-
phy based on hidden shifts. In Advances in Cryptology—Eurocrypt 2017, Part III,
volume 10212 of LNCS, pages 65–93. Springer, 2017.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryptology—
Eurocrypt 2006, volume 4004 of LNCS, pages 409–426. Springer, 2006. Full version
available at https://eprint.iacr.org/2004/331.

4. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo
Persichetti. Tighter proofs of CCA security in the quantum random oracle model.
In 17th Theory of Cryptography Conference—TCC 2019, Part II, volume 11892 of
LNCS, pages 61–90. Springer, 2019.

5. Xavier Bonnetain, Akinori Hosoyamada, Maŕıa Naya-Plasencia, Yu Sasaki, and
André Schrottenloher. Quantum attacks without superposition queries: The offline
Simon’s algorithm. In Advances in Cryptology—Asiacrypt 2019, Part I, volume
11921 of LNCS, pages 552–583. Springer, 2019.

23

https://eprint.iacr.org/2004/331

6. Xavier Bonnetain and Maŕıa Naya-Plasencia. Hidden shift quantum cryptanalysis
and implications. In Advances in Cryptology—Asiacrypt 2018, Part I, volume
11272 of LNCS, pages 560–592. Springer, 2018.

7. Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision
problem, 1997. Avalable at https://arxiv.org/abs/quant-ph/9705002.

8. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-
extractability in the quantum random-oracle model. Cryptology ePrint Archive,
Report 2021/280, 2021. https://eprint.iacr.org/2021/280.

9. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The Even-Mansour scheme revisited. In Advances in Cryptology—Eurocrypt 2012,
volume 7237 of LNCS, pages 336–354. Springer, 2012.

10. Mark Ettinger, Peter Høyer, and Emanuel Knill. The quantum query complexity
of the hidden subgroup problem is polynomial. Information Processing Letters,
91(1):43–48, 2004.

11. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseu-
dorandom permutation. Journal of Cryptology, 10(3):151–161, 1997.

12. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz.
Tight adaptive reprogramming in the QROM. In Advances in Cryptology—
Asiacrypt 2021, Part I, volume 13090 of LNCS, pages 637–667. Springer, 2021.
Available at https://eprint.iacr.org/2020/1361.

13. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In 15th Theory of Cryptography Conference—
TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer, 2017.

14. Akinori Hosoyamada and Yu Sasaki. Cryptanalysis against symmetric-key schemes
with online classical queries and offline quantum computations. In Topics in
Cryptology—Cryptographers’ Track at the RSA Conference (CT-RSA) 2018, vol-
ume 10808 of LNCS, pages 198–218. Springer, 2018.

15. Hector Bjoljahn Hougaard. How to generate pseudorandom permutations over
other groups: Even-Mansour and Feistel revisited, 2017. Available at https://

arxiv.org/abs/1707.01699.
16. Joseph Jaeger, Fang Song, and Stefano Tessaro. Quantum key-length extension.

In 19th Theory of Cryptography Conference—TCC 2021, Part I, volume 13042 of
LNCS, pages 209–239. Springer, 2021.

17. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In Advances in
Cryptology—Crypto 2016, Part II, volume 9815 of LNCS, pages 207–237. Springer,
2016.

18. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model. In Advances in
Cryptology—Eurocrypt 2018, Part III, volume 10822 of LNCS, pages 552–586.
Springer, 2018.

19. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun.
Measure-rewind-measure: Tighter quantum random oracle model proofs for one-
way to hiding and CCA security. In Advances in Cryptology—Eurocrypt 2020,
Part III, volume 12107 of LNCS, pages 703–728. Springer, 2020.

20. Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type Even-
Mansour cipher. In Proc. International Symposium on Information Theory and its
Applications, pages 312–316. IEEE Computer Society, 2012.

21. Ryan O’Donnell and Ramgopal Venkateswaran. The quantum union bound made
easy, 2021. Available at https://arxiv.org/abs/2103.07827.

24

https://arxiv.org/abs/quant-ph/9705002
https://eprint.iacr.org/2021/280
https://eprint.iacr.org/2020/1361
https://arxiv.org/abs/1707.01699
https://arxiv.org/abs/1707.01699
https://arxiv.org/abs/2103.07827

22. Daniel R. Simon. On the power of quantum computation. SIAM J. Computing,
26(5):1474–1483, 1997.

23. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the
Fujisaki-Okamoto and OAEP transforms. In 14th Theory of Cryptography
Conference—TCC 2016-B, Part II, volume 9986 of LNCS, pages 192–216. Springer,
2016.

24. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Advances in
Cryptology—Asiacrypt 2017, Part I, volume 10624 of LNCS, pages 65–95. Springer,
2017.

25. Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some
hidden shift problems. SIAM J. Computing, 36(3):763–778, 2006.

26. Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. In Advances in Cryptology—Crypto 2019, Part II, volume 11693
of LNCS, pages 239–268. Springer, 2019.

A Security of Forward-Only Even-Mansour

In this section we consider a simpler case, where Ek[F](x) := F (x ⊕ k) for
F : {0, 1}n → {0, 1}n a uniform function and k a uniform n-bit string. Here we
restrict the adversary to forward queries only, i.e., the adversary has classical
access to Ek[F] and quantum access to F ; note that E−1k [F] and F−1 may not
even be well-defined. This setting was also analyzed by Jaeger et al. [16] using
different techniques.

We let Fn denote the set of all functions from {0, 1}n to {0, 1}n.

Theorem 4. Let A be a quantum algorithm making qE classical queries to its
first oracle and qF quantum queries to its second oracle. Then∣∣∣∣∣∣ Pr

k←{0,1}n
F←Fn

[
AEk[F],F (1n) = 1

]
− Pr
R,F←Fn

[
AR,F (1n) = 1

]∣∣∣∣∣∣
≤ 2−n/2 · (2qE

√
qF + 2qF

√
qE) .

Proof. We make the same assumptions about A as in the initial paragraphs of
the proof of Theorem 3. We also adopt analogous notation for the stages of A,
now using qE , qF , and qF,j as appropriate.

Given a function F : {0, 1}n → {0, 1}n, a set T of pairs where any x ∈ {0, 1}n
is the first element of at most one pair in T , and a key k ∈ {0, 1}n, we define
the function FT,k : {0, 1}n → {0, 1}n as

FT,k(x) :=

{
y if (x⊕ k, y) ∈ T
F (x) otherwise.

Note that, in contrast to the analogous definition in Theorem 3, here the order
of the tuples in T does not matter and so we may take it to be a set. Note also
that we are redefining the notation FT,k from how it was used in Theorem 3;
this notation applies to this appendix only.

25

We now define a sequence of experiments Hj , for j = 0, . . . , qE :

Experiment Hj . Sample R,F ← Fn and k ← {0, 1}n. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing F , stopping immediately before its (j + 1)st classical query. Let Tj =
{(x1, y1), . . . , (xj , yj)} be the set of all classical queries made by A thus far
and their corresponding responses.

2. For the remainder of the execution of A, answer its classical queries using
Ek[F] and its quantum queries using FTj ,k.

We can represent Hj as the experiment in which A’s queries are answered using
the oracle sequence

F,R, F, · · · , R, F︸ ︷︷ ︸
j classical queries

, Ek[F], FTj ,k, · · · , Ek[F], FTj ,k︸ ︷︷ ︸
qE − j classical queries

.

Note that H0 is exactly the real world (i.e., AEk[F],F) and HqE is exactly the
ideal world (i.e., AR,F .)

For j = 0, . . . , qE − 1, we define an additional experiment H′j :

Experiment H′j . Sample R,F ← Fn and k ← {0, 1}n. Then:

1. Run A, answering its classical queries using R and its quantum queries us-
ing F , stopping immediately after its (j + 1)st classical query. Let Tj+1 =(
(x1, y1), . . . , (xj+1, yj+1)

)
be the set of all classical queries made by A thus

far and their corresponding responses.
2. For the remainder of the execution of A, answer its classical queries using
Ek[F] and its quantum queries using FTj+1,k.

I.e., H′j corresponds to answering A’s queries using the oracle sequence

F,R, F, · · · , R, F︸ ︷︷ ︸
j classical queries

, R, FTj+1,k, Ek[F], FTj+1,k · · · , Ek[F], FTj+1,k︸ ︷︷ ︸
qE − j − 1 classical queries

.

We now show that H′j is close to Hj+1 and Hj is close to H′j for 0 ≤ j < qE .

Lemma 9. For j = 0, . . . , qE − 1,

|Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qF,j+1

√
(j + 1)/2n.

Proof. Given an adversary A, we construct a distinguisher D for the “blinding
game” of Lemma 3 that works as follows:

Phase 1: D samples F,R← Fn. It then runs A, answering its quantum queries
with F and its classical queries with R, until it replies to A’s (j + 1)st
classical query. Let Tj+1 = {(x1, y1), . . . , (xj+1, yj+1)} be the set of classi-
cal queries/answers thus far. D defines algorithm B as follows: on random-
ness k ∈ {0, 1}n, output B = {(xj ⊕ k, yj)}j+1

j=1. Finally, D outputs F and B.

26

Phase 2: D is given quantum access to a function Fb. It continues to run A,
answering its quantum queries with Fb until A makes its next classical query.

Phase 3: D is given the randomness k used to run B. It continues runningA, an-
swering its classical queries with Ek[F] and its quantum queries with FTj+1,k.
Finally, D outputs whatever A outputs.

When b = 0 (so Fb = F0 = F), thenA’s output is identically distributed to its
output in Hj+1. On the other hand, when b = 1 then Fb = F1 = F (B) = FTj+1,k

and so A’s output is identically distributed to its output in H′j . The expected
number of queries made by D in phase 2 when F = F0 is the expected number
of queries made by A in stage (j+1) in Hj+1. Since Hj+1 and HqE are identical
until after the (j + 1)st stage, this is precisely qF,j+1. Because k is uniform, we
can apply Lemma 3 with ε = (j + 1)/2n. The lemma follows. ut

Lemma 10. For j = 0, . . . , qE,

|Pr[A(Hj) = 1]− Pr[A(H′j) = 1]| ≤ 1.5 ·
√
qF /2n .

Proof. From any adversary A, we construct a distinguisher D for the game of
Lemma 4. D works as follows:

Phase 1: D is given quantum access to a (random) function F . It samples
R ← Fn and then runs A, answering its quantum queries using F and its
classical queries using R, until A submits its (j + 1)st classical query xj+1.
At that point, let Tj = {(x1, y1), . . . , (xj , yj)} be the set of input/output
pairs A has received from its classical oracle thus far.

Phase 2: D is given (uniform) s ∈ {0, 1}n and quantum oracle access to a
function Fb. Then D sets k := s ⊕ xj+1, and then continues running A,
answering its classical queries (including the (j + 1)st) using Ek[Fb] and its
quantum queries using the function (Fb)Tj ,k, i.e.,

x 7→

{
y if (x⊕ k, y) ∈ Tj
Fb(x) otherwise.

Finally, D outputs whatever A outputs.

We analyze the execution of D in the two cases of the game of Lemma 4.
In either case, the quantum queries of A in stages 0, . . . , j are answered using
a random function F , and A’s first j classical queries are answered using an
independent random function R. Note further that since s is uniform, so is k.

Case 1: b = 0. In this case, all the remaining classical queries of A (i.e., from
the (j + 1)st on) are answered using Ek[F], and the remaining quantum queries
of A are answered using FTj ,k. The output of A is thus distributed identically
to its output in Hj in this case.

Case 2: b = 1. Here, Fb = F1 = Fs→y for a uniform y. Now, the response to the
(j + 1)st classical query of A is

Ek[Fb](xj+1) = Ek[Fs→y](xj+1) = Fs 7→y(k ⊕ xj+1) = Fs→y(s) = y.

27

Since y is uniform and independent of anything else, and since A has never
previously queried xj+1 to its classical oracle, this is equivalent to answering
the first j + 1 classical queries of A using a random function R. The remain-
ing classical queries of A are also answered using Ek[Fs7→y]. However, since
Ek[Fs→y](x) = Ek[F](x) for all x 6= xj+1 and A never repeats the query xj+1,
this is equivalent to answering the remaining classical queries of A using Ek[F].

The remaining quantum queries of A are answered with the function

x 7→

{
y′ if (x⊕ k, y′) ∈ Tj
Fs→y(x) otherwise.

This, in turn, is precisely the function FTj+1,k, where Tj+1 is obtained by adding
(xj+1, y) to Tj (and thus consists of the first j+1 classical queries made by A and
their corresponding responses). Thus, the output of A in this case is distributed
identically to its output in H′j .

The number of quantum queries made by D in phase 1 is at most qF . The
claimed result thus follows from Lemma 4. ut

Using Lemmas 9 and 10, and the fact that
∑qE
j=1 qF,j = qF , we have

|Pr[A(H0) = 1]− Pr[A(HqE) = 1]| ≤ 1.5qE
√
qF /2n + 2

qE∑
j=1

qF,j
√
j/2n

≤ 1.5qE
√
qF /2n + 2

√
qE/2n

qE∑
j=1

qF,j

≤ 1.5qE
√
qF /2n + 2qF

√
qE/2n ,

as required. ut

B Further Details for the Proof of Lemma 7

B.1 Equivalence of Expt′j and H′
j

The code in the top portion of Figure 2 is a syntactic rewriting of Expt′j . (Flags
that have no effect on the output of A are omitted.) In line 27, the computation
of yj+1 has been expanded (note that Ek[P1](xj+1) = P1(s0)⊕k2 = P (s1)⊕k2).
In line 31, Q has been replaced with PTj+1,k and O has been replaced with Ek[P]
as justified in the proof of Lemma 7.

The code in the middle portion of Figure 2 results from the following changes:
first, rather than sampling uniform s0 and then setting k1 := s0⊕xj+1, the code
now samples a uniform k1. Similarly, rather than choosing uniform s1 and then
setting yj+1 := P (s1) ⊕ k2, the code now samples a uniform yj+1 (note that P
is a permutation, so P (s1) is uniform). Since neither s0 nor s1 is used anywhere
else, each can now be omitted.

The code in the bottom portion of Figure 2 simply chooses k = (k1, k2)
according to distribution D, and chooses uniform yj+1 ∈ {0, 1}n \ {y1, . . . , yj}.
It can be verified by inspection that this final experiment is equivalent to H′j .

28

23 P,R← Pn

24 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

25 s0, s1 ← {0, 1}n
26 k1 := s0 ⊕ xj+1, k2 ← D|k1

, k := (k1, k2)
27 yj+1 := P (s1)⊕ k2
28 if yj+1 ∈ {y1, . . . , yj} then yj+1 ← {0, 1}n \ {y1, . . . , yj}
29 Give yj+1 to A as the answer to its (j + 1)st classical query
30 Tj+1 :=

(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
31 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P]

32 P,R← Pn

33 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

34 k1 ← {0, 1}n, k2 ← D|k1
, k := (k1, k2), yj+1 ← {0, 1}n

35 if yj+1 ∈ {y1, . . . , yj} then yj+1 ← {0, 1}n \ {y1, . . . , yj}
36 Give yj+1 to A as the answer to its (j + 1)st classical query
37 Tj+1 :=

(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
38 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P]

39 P,R← Pn

40 Run A with quantum access to P and classical access to R, until A makes its
(j + 1)st classical query xj+1; let Tj be as in the text

41 k ← D, yj+1 ← {0, 1}n \ {y1, . . . , yj}
42 Give yj+1 to A as the answer to its (j + 1)st classical query
43 Tj+1 :=

(
(x1, y1, b1), . . . , (xj+1, yj+1, bj+1)

)
44 Continue running A with quantum access to PTj+1,k and classical access

to Ek[P]

Fig. 2. Syntactic rewritings of Expt′j .

B.2 Handling an Inverse Query

In this section we discuss the case where the (j + 1)st classical query of A is a
inverse query in the proof of Lemma 7. Phase 1 is exactly as described in the
proof of Lemma 7, though we now let yj+1 denote the (j + 1)st classical query
made by A, and now bj+1 = 1.

Phase 2: D receives s0, s1 ∈ {0, 1}n and quantum oracle access to a per-
mutation Pb. First, D sets t0 := Pb(s0) and t1 := Pb(s1). It then sets
k2 := t0 ⊕ yj+1, chooses k1 ← D|k2 (where this represents the conditional
distribution on k1 given k2), and sets k := (k1, k2). D continues running A,
answering its remaining classical queries (including the (j + 1)st one) using

29

Ek[Pb], and its remaining quantum queries using

(Pb)Tj ,k =
←−
S Tj ,Pb,k ◦

−→
S Tj ,Pb,k ◦ Pb = Pb ◦

←−
QTj ,Pb,k ◦

−→
QTj ,Pb,k .

Finally, D outputs whatever A outputs.

Note that t0, t1 are uniform, and so k is distributed according to D. Then:

Case b = 0 (no reprogramming). In this case, A’s remaining classical queries
(including its (j + 1)st classical query) are answered using Ek[P0] = Ek[P], and
its remaining quantum queries are answered using (P0)Tj ,k = PTj ,k. The output
of A is thus distributed identically to its output in Hj in this case.

Case b = 1 (reprogramming). In this case, k2 = P1(s0)⊕yj+1 = P (s1)⊕yj+1

and so

P−1b = P−11 = (P ◦ swaps0,s1)−1 = (swapP (s0),P (s1) ◦ P)−1

= P−1 ◦ swapP (s0),P (s1)

= P−1 ◦ swapP (s0),yj+1⊕k2 .

The response to A’s (j + 1)st classical query is thus

xj+1
def
= E−1k [P1](yj+1) = P−11 (yj+1 ⊕ k2)⊕ k1 = P−11 (P (s1))⊕ k1 = s0 ⊕ k1 .

The remaining classical queries of A are then answered using Ek[P1], while its
remaining quantum queries are answered using (P1)Tj ,k.

Now we define the following three events:

1. bad1 is the event that xj+1 ∈ {x1, . . . , xj}.
2. bad2 is the event that P (s0)⊕ k2 ∈ {y1, . . . , yj}.
3. bad3 is the event that, in phase 2, A queries its classical oracle in the forward

direction on s1 ⊕ k1, or the inverse direction on P (s0)⊕ k2.

Comparing the above to the proof of Lemma 7, we see (because P is a per-
mutation) that the situation is entirely symmetric, and the analysis is therefore
the same.

30

	Post-Quantum Security of the Even-Mansour Cipher

