
Cryptanalysis of Candidate Obfuscators
for Affine Determinant Programs

Li Yao1, Yilei Chen2,3, and Yu Yu1,3

1 Shanghai Jiao Tong University, Shanghai, China 200240
2 Tsinghua University, Beijing, China 100084

3 Shanghai Qi Zhi Institute, Shanghai, China 200232
{pegasustianma,chenyilei.ra,yuyuathk}@gmail.com

Abstract. At ITCS 2020, Bartusek et al. proposed a candidate indis-
tinguishability obfuscator (iO) for affine determinant programs (ADPs).
The candidate is special since it directly applies specific randomization
techniques to the underlying ADP, without relying on the hardness of
traditional cryptographic assumptions like discrete-log or learning with
errors. It is relatively efficient compared to the rest of the iO candidates.
However, the obfuscation scheme requires further cryptanalysis since it
was not known to be based on any well-formed mathematical assump-
tions.
In this paper, we show cryptanalytic attacks on the iO candidate pro-
vided by Bartusek et al. Our attack exploits the weakness of one of
the randomization steps in the candidate. The attack applies to a fairly
general class of programs. At the end of the paper we discuss plausible
countermeasures to defend against our attacks.

Keywords: indistinguishability obfuscation · cryptanalysis · affine de-
terminant program.

1 Introduction

Indistinguishability Obfuscation (iO) [7] is a probabilistic polynomial-time al-
gorithm that transforms a circuit C into an obfuscated circuit C ′ = iO(C)
while preserving the functionality. In addition, for any functionally equivalent
circuits C1 and C2 of the same size, iO(C1) and iO(C2) are computationally in-
distinguishable. iO is a powerful cryptographic primitive with a wide variety of
applications in cryptography and complexity theory. Indeed indistinguishability
obfuscation, when combined with a minimal cryptographic primitive (one-way
functions), is generally regarded as “crypto complete”, implying almost all cryp-
tographic applications currently known (e.g., [38, 32, 10, 17]).

Despite the remarkable success in basing cryptographic applications on iO,
constructing efficient and provably secure iO remains a long-standing open prob-
lem in cryptography. While still far from the ultimate goal, many iO candidates
have been provided in the past eight years. They can be generally classified as
follows:

2 Li Yao, Yilei Chen, and Yu Yu

Candidates from multilinear maps. The initial iO candidates are built
based on multilinear maps (a.k.a. graded encodings) [20, 18, 24]. Starting from
the first iO candidate of Garg et al. [21], these candidates have gone through
several rounds of break-and-repair. (see, e.g. [6, 14, 16, 26, 37, 15]). To date,
some variants of the original candidate of Garg et al. [21] remain secure, but
no security proofs were known for any of those variants without using strong
idealized models.

Candidates from succinct functional encryption. A remarkable line
of works has been dedicated to building iO from succinct functional encryption
schemes, which can then be based on well-founded assumptions, including LPN,
DLIN in pairing and PRG in NC0 [4, 11, 33, 36, 34, 35, 3, 29, 22, 30, 31]. They
build iO via a series of reductions and take advantage of many cryptographic
primitives, including attribute-based encryption, fully homomorphic encryption,
FE for quadratic functions, homomorphic secret-sharing, universal circuits, etc.
The downside of those candidates is that the overall constructions are compli-
cated and far from efficient.

Candidates based on non-standard lattice assumptions. We also have
lattice-based candidates without using pairing or multilinear maps. [12, 23, 13]
construct candidates based on a strong circular-security assumption. [39] shows
that oblivious LWE sampling implies iO and gives a candidate based on a
circularity-like conjecture. Unfortunately, [25] provides counterexamples to both
assumptions. Apart from the circularity-based candidates, some works try to
base iO on Noisy Linear FE [1, 2]. Recent work [19] improves on [39] by basing
iO on succinct LWE sampling, a weaker notion. It presents a candidate whose
security is related to the hardness of solving systems of polynomial equations.
The security of all these candidates relies on non-standard assumptions.

Candidate for affine determinant program. Finally, a special can-
didate obfuscator, which is the focus of this work, is provided by Bartusek
et al. [8] for obfuscating affine determinant programs. An affine determinant
program (ADP): {0, 1}n → {0, 1} is specified by a tuple of square matrices
(A,B1,B2, . . . ,Bn) over Fq and a function Eval : Fq → {0, 1}. It evaluates on
input x ∈ {0, 1}n and produces an output Eval(det(A +

∑
i∈[n] xiBi)). Non-

uniform log-space computations (denoted by L/poly) can be transformed into
polynomial-size ADPs. Since NC1 ⊆ L/poly, an obfuscator for such ADPs can
serve as an obfuscator for NC1 circuits, which implies general purpose iO addi-
tionally assuming the existence of fully homomorphic encryption [21].

The obfuscation candidate based on ADP is unique since it is the only un-
broken candidate to date that does not rely on any traditional cryptographic
assumptions like discrete-log or LWE. The candidate is also relatively simple
to describe. In addition, the current quantum techniques do not seem to show
special advantage in breaking the ADP-based candidate. So if LWE is broken by
a quantum algorithm in future, the obfuscation candidate for ADP might be the
only living iO candidate against quantum computers.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 3

The idea of using the ADP program model for obfuscation was also used in
the earlier paper of Bartusek et al. [9] for obfuscating conjunctions, where they
can achieve provable security based on standard cryptographic assumptions.
However, obfuscating a general program requires significantly different ideas.
Indeed, the lack of security reduction from any well-formed assumption also
means that the security of the candidate in [8] requires more investigation.

1.1 Main Result

In this work, we show cryptanalytic attacks against the iO candidate of Bartusek
et al. [8]. Our attack can be seen as a variant of the “mod 4 attack” mentioned
in [8, Section 9.3]. The “mod 4 attack” was originally discussed in [8, Section 9.3]
as an attack for breaking a simpler version of the obfuscation scheme. It was
also the motivation of adding a layer of randomization called Random Local
Substitutions (RLS). However, we show that even with the RLS they provide,
we can still manipulate the “mod 4 attack” in some other way to break the iO
candidate.

To explain what kind of programs our attack applies to, let us describe the
necessary and sufficient conditions separately. The necessary condition of the
programs where our attack applies is that we can efficiently find four inputs of
the form x1 = a0b0c,x2 = a1b0c,x3 = a0b1c,x4 = a1b1c s.t. the program
outputs the same value on these inputs, where a,b, c are some fixed strings of
arbitrary length. Our attack will exactly run on those four inputs. The sufficient
conditions are more complex to describe in their general forms. They deal with
the minors of the matrices used in the ADPs to be obfuscated. Here let us mention
a simple sufficient condition, that is, if two of the matrices among the n are all
zero. Namely, for 1 ≤ i < j ≤ n, Bi = Bj = 0. If so then we can distinguish the
obfuscated version of such programs with those of functionally equivalent ADPs
with Bi 6= 0 or Bj 6= 0. The general sufficient conditions relax the constraint
such that we do not require the underlying branching program to contain all-
zero matrices. This makes our attack work for a fairly general class of programs.
However, as mentioned, the precise conditions on which our attack applies is a
bit complicated. We refer readers to Section 5.3 for details.

At the end of the paper we provide some revisions of the RLS randomiza-
tion which plausibly defends the obfuscation scheme against our attack. Let us
also remark that the witness encryption candidate in [8] is constructed via a
somewhat different methodology, to which our attack does not apply.

1.2 Our Ideas in a Nutshell

To obfuscate an ADP, Bartusek et al. [8] sample independent even noises and add
them to each entry of {A,Bi∈[n]}. However, they also notice that the adversary
can extract the parities of the noises by computing the determinant first and
then computing the result mod 4 after adding noises. The coefficients of the
parities are minors of A +

∑
i∈[n] xiB, which are known to the adversary.

4 Li Yao, Yilei Chen, and Yu Yu

To defend against the attack, they introduce Random Local Substitutions,
aiming to substitute the ADP P chosen by the adversary with another ADP
P ′ = RLS(P), while preserving the functionality.

The intuition that how the RLS comes to rescue is that by applying RLS to
P the adversary cannot learn minors of A′+

∑
i∈[n] xiB

′
i, where {A′,B′i∈[n]} are

matrices of RLS(P). However, as we will show in this paper, it is not necessary
to learn the coefficients of the parities to carry out the attack. We sketch the
idea of our attack below.

Our attack starts from a well-crafted kind of ADP. Consider the simplest
case where n = 2. We observe that if for i ∈ {1, 2}, Bi of P is a zero matrix,
then B′i of P ′ = RLS(P) will also be a zero matrix. Therefore, if for all i,Bi is
a zero matrix, then for all x, the minors of A′ +

∑
i∈[n] xiB

′
i remain the same.

Therefore, we can add four parity equations together to cancel out the unknown
coefficients (the equal minors), i.e., ∀x : 4x ≡ 0 mod 4. We refer to Section 5.1
for how we cancel out the coefficients and other details about the attack.

We further generalize the above attack by relaxing the limitation that Bi

of P are all zero matrices. By comparing the minors before and after the RLS,
we notice that the RLS may not bring much uncertainty to the minors of A′ +∑
i∈[n] xiB

′
i, especially when Bi∈[n] are sparse matrices. In Section 5.2, we figure

out the exact condition on which the minors of A′ +
∑
i∈[n] xiB

′
i remain the

same for different x, regardless of the randomness injected by the RLS. Thus,
our attack is similarly applicable to all ADPs satisfying the condition.

2 Preliminaries

Let Z,N+ be the set of integers and positive integers respectively. For n ∈ N+,
we let [n] denote the set {1, . . . , n}. For p ∈ N+, We denote Z/pZ by Zp and
denote the finite field of prime order p by Fp. A vector v ∈ Fnp (represented in
column form by default) is written as a bold lower-case letter and we denote
its i-th element by vi ∈ Fp. A matrix A ∈ Fn×mp is written as a bold capital
letter and we denote the entry at position (i, j) by (A)i,j . For any set of matrices
A1, . . . ,An of potentially varying dimensions, let diag(A1, . . . ,An) be the block
diagonal matrix with the Ai on the diagonal, and zeros elsewhere.

We use the usual Landau notations. A function f(·) is said to be negligible
if f(n) = n−ω(1) and we denote it by f(n) = negl(n). We write D1 ≈C D2 if no
computationally-bounded adversary can distinguish between D1 and D2 except
with advantage negligible in the security parameter.

2.1 Indistinguishability Obfuscation

Definition 1 (Indistinguishability Obfuscator [7]). A uniform PPT ma-
chine iO is an indistinguishability obfuscator for a circuit class {Cλ} if the fol-
lowing conditions are satisfied:

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 5

• (Strong Functionality Preservation) For all security parameters λ ∈ N+, for
all C ∈ Cλ,

Pr
C′←iO(λ,C)

[∀x,C ′(x) = C(x)] ≥ 1− negl(λ).

• For any non-uniform PPT distinguisher D, there exists a negligible function
α such that the following holds: for all λ ∈ N+, for all pairs of circuits
C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all input x and |C0| = |C1|
(where |C| denotes the size of a circuit), then

|Pr [D (iO (λ,C0)) = 1]− Pr [D (iO (λ,C1)) = 1]| ≤ α(λ).

3 Affine Determinant Programs

In this section we describe a way of representing L/poly computations as polynomial-
size ADPs [28, 5]. We start with the definitions of L/poly computations, Branch-
ing Programs (BPs) and ADPs, followed by the connections among them.

Definition 2 (Non-uniform Logarithmic-space Turing Machines). A logarithmic-
space Turing machine with polynomial-sized advice is a logarithmic-space Turing
machine M∗ (i.e. a machine using a logarithmic amount of writable memory
space) as well as an infinite collection of advice strings {an}n∈N of polynomial
size (i.e. |an| = O(nc) for some c). (M∗, an) decides a language L∗ ⊂ {0, 1}∗ if

∀x ∈ {0, 1}∗,M∗(x, a|x|) = χL∗(x)

(where χL∗(x) is the indicator function for L∗, i.e. χL∗(x) = 1 if and only if
x ∈ L∗). The set of languages decided by of logarithmic-space Turing machines
with polynomial-sized advice is denoted by L/poly; we refer to (M∗, an) as an
L/poly machine.

Definition 3 (Branching Programs). A branching program is defined by a
directed acyclic graph G(V,E), two special vertices s, t ∈ V , and a labeling func-
tion φ assigning to each edge in E a literal (i.e., xi or xi) or the constant 1.
Its size is defined as |V | − 1. Each input assignment x = (x1, . . . , xn) naturally
induces an unlabeled subgraph Gx, whose edges include every e ∈ E such that
φ(e) is satisfied by x. An accepting path on input x is a directed s− t path in the
graph Gx. BP is said to be deterministic if for every x, the out-degree of every
vertex in Gx is at most 1. Thus, an deterministic branching program computes
the function f : {0, 1}n → {0, 1}, such that f(x) = 1 if and only if the number
of accepting paths on x is 1.

Definition 4 (Affine Determinant Programs). An affine determinant pro-
gram is parameterized by an input length n, a width `, and a finite field Fp. It
is comprised of an affine function L : {0, 1}n → F`×`p along with an evaluation
function Eval : Fp → {0, 1}. The affine function L is specified by an (n+1)−tuple
of `× ` matrices L = (A,B1, . . . ,Bn) over Fp so that L(x) := A +

∑
i∈[n] xiBi.

6 Li Yao, Yilei Chen, and Yu Yu

On input x ∈ {0, 1}n, ADPL,Eval(x) is computed as Eval(det(L(x))). Typically,
we use one of the following Eval functions.

• Eval=0(y)
def
=

{
1, y = 0

0, y 6= 0
.

• Eval6=0(y)
def
=

{
1, y 6= 0

0, y = 0
.

• Evalparity(y)
def
= y mod 2.

Transformation between L/poly Computations and Deterministic BPs. Suppose
we have an s(n)-space bounded non-uniform deterministic Turing machine, its
configuration graph on an input of length n is bounded by 2O(s∗(n)), where
s∗(n) = max{s(n), dlog(n)e, dlog (a (n))e} and a(n) is the length of the advice.
Then we can construct a deterministic branching program Gn to simulate the
Turing machine. Gn has a vertex for each of the configurations that is reachable
from the start configuration. The edge ej,k is labeled by xi if configuration j can
reach configuration k in one step when xi = 1. The label xi is defined analogously.
The label 1 means that configuration j can always reach configuration k in one
step. Gn is acyclic as we can require the Turing machine to count the steps taken
and record it on the work tape. It is easy to see that Gnx has a s − t path if
and only if the Turing machine accepts on input x. On the other hand, after
putting description of a deterministic branching program on the advice tape,
finding a s− t path in the BP can be computed in log-space since the out degree
of every vertex is at most 1 for any x. Due to these facts, we can conclude that
polynomial-size deterministic BPs equal to L/poly computations.

Encoding BPs as ADPs. Suppose there is a branching program of size ` com-
puting a Boolean function f , where each input induces at most one accepting
path4. We can represent the branching program as an adjacency matrix of size
(`+1)×(`+1). Each element in the matrix is 0, 1 or some variable (xi or xi). We
denote the adjacency matrix by M(x). M(x) is 0 below the main diagonal (in-
cluding main diagonal) since a branching program can be view as a DAG. Then
we modify the main diagonal elements of M(x) to −1 and delete the leftmost
column and lowermost row. We denote the resulting `×` matrix by L(x). For all
x ∈ {0, 1}n, We have det (L(x)) = f(x). Then we set A = L(0), Bi = L(1i)−A,
where 0 is the input whose bits are all 0 and 1i is the input whose i’s bit is 1
and 0 everywhere else. For all x ∈ {0, 1}n, We have L(x) = A +

∑
i∈[n] xiBi.

This immediately gives us an ADP for the branching program. The evaluation
function is Eval 6=0. We use the following theorem to show the correctness of the
encoding. For more details we refer readers to [27].

Theorem 1 (Imported Theorem [27]). Let AG be the a×a adjacency matrix
of a DAG G (over GF (p)). For any two vertices s, t in G, let nps,t denote the

4 Here, we actually define a new class of branching programs that can be seen as
a generalization of the deterministic BPs whose out degree of every vertex is not
limited by 1 for all x. This new notion can be helpful when obfuscating ADPs.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 7

number of distinct s-t paths in G modulo p, and for any a × a matrix A, let
A(i,j) denote the (a− 1)× (a− 1) matrix obtained by removing the ith row and

the jth column from A. Then for any two vertices s, t the following assertion
hold:

nps,t = detp(I−AG)−1 detp((I−AG)(t,s)).

The entries in the main diagonal of (I − AG) are all 1s. Therefore, detp(I −
AG)−1 = 1.

Example. We give a small example for a BP/ADP for a 3-bit function that com-
putes x1∨x3 = 1 (see Fig.1 (a)). First, we delete the rejection configuration and
related edges. Then we apply topological sorting on the remaining 4 configura-
tions. If there are two edges between any two configurations, we replace them by
an edge labeled by “1”. Now we can obtain a branching program corresponding
to the Turing machine (see Fig.1 (b)). The M(x), L(x) of the branching program
is

M(x) =


0 x1 1− x1 0
0 0 0 1
0 0 0 x3
0 0 0 0

 , L(x) =

x1 1− x1 0
−1 0 1
0 −1 x3

 .
and the resulting ADP is

A =

 0 1 0
−1 0 1
0 −1 0

 ,B1 =

1 −1 0
0 0 0
0 0 0

 ,B2 =

0 0 0
0 0 0
0 0 0

 ,B3 =

0 0 0
0 0 0
0 0 1

 .

S1

S0

S2

Acc

Rej

x1

x1

x2

x2

x3

x3

(a) configuration transition diagram of an
L/poly Turing machine (input length is 3)

2

1

3

4

x1

x1

1

x3

(b) a branching program

Fig. 1: A transformation between L/poly computations and BPs

Other examples can be found in, e.g., [8, Section 4].

8 Li Yao, Yilei Chen, and Yu Yu

4 The BIJMSZ iO Scheme

In this section we recall the iO scheme proposed by Bartusek, Ishai, Jain, Ma,
Sahai, and Zhandry [8]. The scheme works by additionally applying the fol-
lowing four transformations in sequence to an ADP. These transformations are
functionality-preserving. Readers who are familiar with the scheme can safely
skip this section. Looking ahead, our attack will exploit the weakness of Trans-
formation 1 and 2.

4.1 Transformation 1: Random Local Substitutions

The goal of Random Local Substitutions (RLS) is to inject entropy into the
branching program by adding some vertices and modifying edges in a somewhat
random way5. We denote the resulting BP by M ′(x). Specifically, we can add
a vertex vj,k for each pair (vj , vk). For convenience, we only consider the 2 × 2
submatrices of M ′(x) with row indexed by vj , vj,k and column indexed by vj,k,

vk. Denote this matrix by M
′(j,k)(x). If the edge between vj , vk is labeled by 1,

then M
′(j,k)(x) has following 4 choices (the last one is special as it is the only

one which can change the label between vj and vk, we will analyze it separately
in our attack): [

0 1
0 0

]
,

[
1 1
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
.

If there is no edge between vj , vk, then M
′(j,k)(x) has following 3 choices:[

0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
.

If the edge between vj , vk is labeled by xi, then M
′(j,k)(x) has following 12

choices: [
0 xi
0 0

]
,

[
0 xi
0 1

]
,

[
0 xi
0 xi

]
,

[
0 xi
0 xi

]
,

[
1 xi
0 0

]
,

[
1 0
0 xi

]
,[

xi xi
0 0

]
,

[
xi xi
0 xi

]
,

[
xi 0
0 xi

]
,

[
xi 0
0 1

]
,

[
xi xi
0 0

]
,

[
xi xi
0 xi

]
.

If the edge between vj , vk is labeled by xi, then M
′(j,k)(x) also has 12 choices,

which is analogous to labeled by xi. We can swap xi and xi in above matrices
to obtain the 12 choices.

One can easily check that the above transformation does not change the
amount of path from vj to vk. Namely, it is functionality-preserving6.

5 The transformation is actually applied to an ADP. We describe it by BP because BP
is a DAG and thus can be better understood. You can understand the RLS here in
this way: it decodes the input ADP back to a BP first, then it does the transformation
and encodes the resulting BP as the final ADP.

6 There are many potential ways of applying RLS. The RLS transformation here is the
candidate given in [8].

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 9

Example. We start from the example branching program in section 3 and add a
intermediate vertex for every two vertices (see Fig.2 (a)). Then we reassign the
labels of the edges as described above. We show a possible result of RLS in Fig.2
(b). The ADP corresponding to the figure is

A′ =



0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 0 1
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 1


,B′1 =



0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

B′2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,B′3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 −1


.

(vertices are sorted in lexicographical order, i.e. v1, v1,2, v1,3, v1,4, v2, v2,3, · · ·).

2

1

3

4

x1

x1

1

x3

(a)

2

1

3

4

x1

x3

x1

1
1

x1

1 1

x3

x3

1

(b)

Fig. 2: Random Local Substitutions

4.2 Transformation 2: Small Even-Valued Noise

This transformation takes advantage of the fact that for any polynomial g :
Zn → Z, and for any {ei ∈ Z}i∈[n], it holds that

g(x1, x2, . . . , xn) ≡ g(x1 + 2e1, x2 + 2e2, . . . , xn + 2en) mod 2

10 Li Yao, Yilei Chen, and Yu Yu

Therefore, when taking an ADP as input, we can add independent random even
numbers as the noise term to each entry of {A, {Bi}i∈[n]}. We denote the result-
ing matrices by {A + 2E0, {Bi + 2Ei}i∈[n]}. The evaluation function also needs
to change from Eval6=0 to Evalparity.

The bound for the error terms and the modulus p must be set carefully to
guarantee correctness and security. In particular, the noise term are relatively
small compared to the modulus p (although both are super-polynomial) so that
for any y1, ..., yn ∈ {0, 1}:(

det
(
(A + 2E0) +

∑
i∈[n]

yi(Bi + 2Ei)
)

mod p
)

mod 2 = det(A +
∑
i∈[n]

yiBi) mod 2

In other words, the noise term in an honest evaluation does not wrap around
mod p.

4.3 Transformation 3: Block-Diagonal Matrices

Ideally, when obfuscating an ADP, we need to force the adversary to evaluate
the program in the way we want. This goal is achieved by adding some random-
ness in the matrices. Only an honest evaluation can cancel out the randomness
and reveal the output. Other combination of the matrices will leave the ran-
domness intact, hiding all useful information of the origin ADP. This can be
accomplished by sampling 2n random matrices {Gi,Hi}i∈[n] of determinant 1.
We will append each Gi to A along the diagonal, and then append Hi − Gi

to Bi in the ith slot along the diagonal. We denote the resulting matrices by{
diag(A,G1,G2, . . . ,Gn), {diag(Bi,0,0, . . . ,0,Hi −Gi,0, . . . ,0,0)}i∈[n]

}
.

4.4 Transformation 4: AIK Re-randomization

The re-randomization step a la. [5] is applied twice in the obfuscation, once after
taking the second transformation and again after taking the third transforma-
tion. In both steps, we left- and right-multiply each matrices with uniformly
random matrices R, S respectively such that det(R) · det(S) = 1.

To summarize, the final obfuscation is

R′

(
AddDiag

(
R
(
AddNoise

(
RLS(ADP)

))
S

))
S′.

5 Our Attack

The BIJMSZ obfuscation scheme consists of three transformations along with
the re-randomization step. Among the three transformations, the purpose of
adding block-diagonal matrices is preventing adversary from evaluating program
dishonestly (e.g. Computing A + 3B1); adding even-valued noise is meant to

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 11

convert possibly low-rank matrices into full-rank ones. The re-randomization
step is meant to hide information other than the determinant and rank of the
matrices.

Therefore, after applying these two transformations and the re-randomization
step, we expect that the leakage only comes from the determinant of A +∑
i∈[n] xiBi. Indeed, our attack is based on the following observations about

the determinant.

Key Observations. The adversary can get extra information by computing
det(A +

∑
i∈[n] xiBi) mod 4, namely, first computing the determinant over Zp,

then computing the result mod 4. Note that we can ignore modulo p when an-
alyzing our attack since we always add matrices of the ADPs together honestly,
i.e. compute A +

∑
i∈[n] xiBi where xi ∈ {0, 1}. In this case, the determinant

will never wrap around mod p. See Section 4.2.
The idea of computing det(A +

∑
i∈[n] xiBi) mod 4 was also observed by

Bartusek et al. [8, Section 9.3], where they suggest that computing such a value
is useful for extracting the parities of the noise terms. The reason that Bartusek
et al. introduce the RLS transformation is precisely to prevent this attack.

However, if the RLS transformation does not inject randomness into some
matrices, then we can still extract information by computing the determinant
modulo 4. Indeed, we observe that the RLS candidate given in [8, Section 8.1.1]
is not guaranteed to inject randomness into every matrix. Specifically, if we have
a program {A,B1 = 0}, the program after RLS will be {A′,B′1 = 0}. Namely,
when applying RLS on a zero matrix B, it only increases the dimension of the
B matrix, and the resulting matrix remains a zero matrix.

5.1 Base case

Running example. Consider an ADP (A,B1,B2) computing f : {0, 1}2 → 1
that is in one of the following forms:

1. B1 = B2 = 0;
2. B1 6= 0 or B2 6= 0.

First, apply RLS to the ADP and denote the resulting ADP by (A′,B′1,B
′
2).

Let L′(x) = A′ +
∑
i xiB

′
i. In case 1, we have B′1 = B′2 = 0, whereas B′1 6= 0

or B′2 6= 0 in case 2. Then applying the AddNoise operation to (A′,B′1,B
′
2),

hoping that the choice of ADP is masked by the operation. We let (A′′ = A′ +
2E0,B

′′
1 = B′1 + 2E1,B

′′
2 = B′2 + 2E2) denote the resulting ADP and evaluate

the ADP by computing det(L′′(x)), where L′′(x) = A′′ +
∑
i xiB

′′
i . We omit

the AddDiag operation as well as the re-randomization step since they will not
change det(A′′ +

∑
i xiB

′′
i). We have

Theorem 2.

det(A′′ +
∑
i∈[n]

xiB
′′
i)

≡ det(L′(x)) +
∑

j∈[`′],k∈[`′]

(2e
(0)
j,k +

∑
i

xi2e
(i)
j,k) det(L′(x)(j,k)) mod 4

(1)

12 Li Yao, Yilei Chen, and Yu Yu

where L′(x)(j,k) is a matrix obtained by deleting the jth row and kth column of

L′(x), e
(i)
j,k is the (j, k) element of Ei and `′ is the dimension of L′(x).

To see the correctness of the equation, first we only need to consider constant
terms and linear terms of the noises. Quadratic terms or terms with higher degree
will be cancelled out by modulo 4 since noises are all even numbers. Then we
notice that when computing det(M + 2E) for a matrix M and a noise matrix
E, the constant terms of noises are equal to det(M); the linear terms of noises
can be divided into non-intersecting parts, each part only relevant to one entity
of E. For the (j, k) element of E which is denoted by ej,k, the linear term of ej,k
is ej,k · det(M(j,k)). We can obtain Eqn. (1) by replacing M with L′(x) and E
with 2E0 + 2

∑
i xiEi.

To formally prove Theorem 2, we prove the following lemma.

Lemma 1. For any ` ≥ 2, A ∈ Z`×`, and any E ∈ Z`×`, we have

det(A + 2E) = det(A) +
∑

j∈[`],k∈[`]

2ej,k det(A(j,k)) (mod 4) (2)

where ej,k is the (j, k)th entry of E, A(j,k) ∈ Z(`−1)×(`−1) is a matrix obtained

by deleting the jth row and the kth column of A.

Proof. Recall the Laplace expansion for determinant: for any matrix V ∈ R`×`,
for any k ∈ [`],

det(V) =
∑
j∈[`]

(−1)j+kvj,k det(V(j,k)) (3)

We prove Lemma 1 by induction. For the base case of ` = 2,

det(A + 2E)

= (a1,1 + 2e1,1) · (a2,2 + 2e2,2)− (a1,2 + 2e1,2) · (a2,1 + 2e2,1)

≡(1) (a1,1a2,2 − a1,2a2,1) + 2(e1,1a2,2 + e2,2a1,1 − e1,2a2,1 − e2,1a1,2) (mod 4)

≡ det(A) +
∑

j∈[`],k∈[`]

(−1)j+k2ej,k det(A(j,k)) (mod 4)

≡(2) det(A) +
∑

j∈[`],k∈[`]

2ej,k det(A(j,k)) (mod 4),

(4)

where (1) is obtained by dropping the multiples of 4, (2) is obtained by dropping
the −1 sign since −2e = 2e (mod 4) for every e ∈ Z 7.

7 For the same reason, we will ignore the sign of the minors in the rest of this paper.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 13

For ` ≥ 3,

det(A + 2E)

=
∑
j∈[`]

(−1)j+1(aj,1 + 2ej,1) · det((A + 2E)(j,1))

≡(1) det(A) +
∑
j∈[`]

(2ej,1) · det((A)(j,1))+

∑
j∈[`]

aj,1 ·

 ∑
i∈[`],i6=j,k∈[`],k 6=1

2ei,k det((A(i,k))(j,1))

 (mod 4)

≡(2) det(A) +
∑

j∈[`],k∈[`]

2ej,k det(A(j,k)) (mod 4)

(5)

where (1) uses the induction hypothesis, (2) is obtained by fixing each ej,k and
regrouping the terms of A(j,k).

Therefore Theorem 2 holds:

det(A′′ +
∑
i∈[n]

xiB
′′
i)

≡det(L′(x)) +
∑

j∈[`′],k∈[`′]

(2e
(0)
j,k +

∑
i

xi2e
(i)
j,k) det(L′(x)(j,k)) mod 4

(6)

Let us now show how to use Theorem 2 to distinguish two programs.

Case 1 We have L′(00) = L′(10) = L′(01) = L′(11) since B′1 = B′2 = 0. Thus,
we can write det(L′′(x)) mod 4 as:

det(L′′(00)) ≡ det(L′(00)) +
∑
j,k(2e

(0)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(10)) ≡ det(L′(00)) +
∑
j,k(2e

(0)
j,k + 2e

(1)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(01)) ≡ det(L′(00)) +
∑
j,k(2e

(0)
j,k + 2e

(2)
j,k) det(L′(00)(j,k)) mod 4

det(L′′(11)) ≡ det(L′(00)) +
∑
j,k(2e

(0)
j,k + 2e

(1)
j,k + 2e

(2)
j,k) det(L′(00)(j,k)) mod 4

Then we sum them all:
det(L′′(00)) + det(L′′(01)) + det(L′′(10)) + det(L′′(11))

≡ 4 det(L′(00)) +
∑
j,k(8e

(0)
j,k + 4e

(1)
j,k + 4e

(2)
j,k) det(L′(00)(j,k)) mod 4

≡ 0 mod 4

Case 2 We do computations analogous to case 1. However, in this case, we
do not have L′(00) = L′(10) = L′(01) = L′(11) any more. As the result,

we cannot combine the 2e
(i)
j,k det(L′(x)(j,k)) terms. Therefore, when computing∑

x∈{0,1}2 det(L′′(x)) mod 4, the result may be either 0 or 2, both with probabil-

ity 1/2. As we will show in section 5.2, we can achieve
∑

x∈{0,1}2 det(L′′(x)) ≡ 0
mod 4 by setting A,B1,B2 carefully even when B1 6= 0∧B2 6= 0. However, for
most of ADPs, the result of the equation will be either 0 or 2, both with proba-
bility 1/2. So it is easy to find such ADPs which can be distinguished from case 1.

14 Li Yao, Yilei Chen, and Yu Yu

In conclusion, we can guess the random choice of ADP with probability at least
3/4 by computing

∑
x∈{0,1}2 det(L′′(x)) mod 4. We guess case 1 when the result

is 0. Otherwise, we guess case 2.

5.2 Advanced case

In the base case we have shown that an ADP with two matrices being 0s can be
distinguished from a functionally equivalent ADP with non-zero matrices at the
same input bits. Such a condition is quite restricted, as it can be easily prevented
by, for example, adding a dummy non-zero entry at the diagonal of each matrix.
So it is natural to raise the following question:

Can we apply the attack without forcing B1 = B2 = 0?

The answer is yes. To see why, we observe that the attack in the base case

crucially uses the fact that we can combine the 2e
(i)
j,k det(L′(x)(j,k)) terms when

they are equal across different inputs. Namely, for any x1,x2 ∈ {0, 1}2, L̂′(x1) =

L̂′(x2), where M̂ is the minor matrix of M`×`, i.e.

M̂ =


det(M(1,1)) det(M(1,2)) · · · det(M(1,`))
det(M(2,1)) det(M(2,2)) · · · det(M(2,`))

...
...

. . .
...

det(M(`,1)) det(M(`,2)) · · · det(M(`,`))

 .
Let us remark that instead of defining M̂ as a matrix, we can define it as

any ordered set {det(M(i,j))}. However, writing it as a matrix is a convenient
notation.

In the base case, we assume the entire matrices of L′(xi), for i = 1, 2, 3, 4, are
equal to each other. However, for the attack to work we only require L̂′(xi),
for i = 1, 2, 3, 4, to be equal to each other. The rest of the section is devoted
to analyzing the relationship between L̂′(x) and L̂(x) and figure out that to
what extent the entries of L̂′(x) are unpredictable after applying RLS on L(x).

Let us first classify the vertices of the graphs we are dealing with.

Theorem 3. Vertices in L′(x) can be classified into two categories: original
vertices and intermediate vertices. The entries of L̂′(x) have the following cases:

1. ∀s, j ∈ [`+ 1] satisfying s ≤ ` and j > 1, L̂′(x)[vs, vj]=L̂(x)[vs, vj].
8

2. ∀s, i, j ∈ [` + 1] satisfying s ≤ ` and i < j, L̂′(x)[vs, vi,j]=L̂(x)[vs, vj] ·
L′(x)[vi,j , vj].

3. ∀s, t, j ∈ [` + 1] satisfying s < t and j > 1, L̂′(x)[vs,t, vj]=L̂(x)[vs, vj] ·
L′(x)[vs, vs,t].

8 Recall that when encoding a BP into an ADP, the lowermost row and the leftmost
column are deleted. Thus, if the dimension of L(x) is `, the number of nodes should
be ` + 1.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 15

4. ∀s, t, i, j ∈ [`+ 1] satisfying s < t and i < j,
L̂′(x)[vs,t, vi,j](vs,t 6=vi,j)=L̂(x)[vs, vj] · L′(x)[vi,j , vj] · L′(x)[vs, vs,t].

5. ∀i, j ∈ [`+ 1] satisfying i < j,

L̂′(x)[vi,j , vi,j]=

{
det(L(x)), L(x)[vi, vj] = 0 or L′(x)[vi, vj] = 1

det(L(x)(vi,vj)=0), L(x)[vi, vj] = 1 and L′(x)[vi, vj] = 0

where M[vi, vj] is the entry in the row corresponding to vi (row vi for short)
and the column corresponding to vj (column vj for short) of M, M(vi,vj)=0

is a matrix obtained by modifying the (vi, vj) entry of M to 0 and vi,j is the
intermediate vertex between vi and vj, as we defined in section 4.1.

Proof. We prove the theorem by showing following 4 lemmas.

Lemma 2. ∀s, j ∈ [`+ 1] satisfying s ≤ ` and j > 1, L̂′(x)[vs, vj]=L̂(x)[vs, vj].

Proof. Comparing L′(x)(vs,vj) with L(x)(vs,vj), there are mainly two kinds of
differences: 1) L′(x)(vs,vj) have rows and columns corresponding to intermediate
vertices. 2) L′(x)(vs,vj)[vi, vt] may not equal to L(x)(vs,vj)[vi, vt]. To be specific,
recall that if L(x)[vi, vt] = 1, the RLS will set L′(x)[vi, vt] = 0 with probability
1/4. Thus, if we delete the intermediate vertices as well as related edges one by
one and recover the values between original vertices at the same time, we can
convert L′(x)(vs,vj) to L(x)(vs,vj). To prove the lemma, we only need to prove
that the determinant remains unchanged during the conversion. We use vi,t to
denote the intermediate vertex to be deleted. There are broadly 2 cases in the
conversion:

Label between original vertices deleted or unchanged. In this case,
we do not need to recover the label between original vertices (namely, the label
between vi and vt). Also, we can find row vi,t or column vi,t with only nonzero
entry −1 at (vi,t, vi,t). Therefore, Computing the expansion of det(L′(x)(vs,vj))
by row vi,t or column vi,t is equal to computing the determinant after deleting
row vi,t and column vi,t. See Fig.3 (a)(b).

Label between original vertices changed. This case can be transformed
to the first one by adding row vi,k to row vi or adding column vi,k to column vk,
which keeps the determinant unchanged as well as recovers the label between vi
and vt. See Fig.3 (c).

Lemma 3. ∀i, j ∈ [`+1] satisfying i < j, L̂′(x)[v∗, vi,j]=L̂(x)[v∗, vj]·L′(x)[vi,j , vj],
where v∗ is either an original vertex or an intermediate vertex, v∗ 6= vi,j and
v∗ 6= v1.

Proof. We notice that row vi,j of L′(x)(v∗,vi,j) has the only possible nonzero
entry at (vi,j , vj). We can expand det(L′(x)(v∗,vi,j)) by row vi,j . The result is
L′(x)[vi,j , vj] ∗ det((L′(x)(v∗,vi,j))(vi,j ,vj)). We can rewrite (L′(x)(v∗,vi,j))(vi,j ,vj)
as (L′(x)(v∗,vj))(vi,j ,vi,j), namely, the matrix obtained by deleting row vi,j and
column vi,j of L′(x)(v∗,vj). As we showed in the proof of Lemma 2, det(L′(x)(v∗,vj))
equals to det((L′(x)(v∗,vj))(vi,j ,vi,j)). See Fig.4.

16 Li Yao, Yilei Chen, and Yu Yu

−1

vi,j vj

vi

vi,j

L′(x)

0

0

0

0

0

∗
0

0

0 0 0 0 0 ∗ 0 0

vs

(t = j)

(a)

−1

vi,t vt

vi

vi,t

L′(x)

0

0

0

0

0

1

0

0

0 0 0 0 0 0 0 0

vs

vj

(b)

−1

vi,t vt

vi

vi,t

L′(x)

0

0

0

0

0

1

0

0

0 0 0 0 0

0

1 0

vs

vj

0 −1

vi,t vt

vi

vi,t

L′(x)

0

0

0

0

0

0

0

0

0 0 0 0 0

1

1 0

vs

vj

0

Rvi
:= Rvi

+ Rvi,t

(c)

Fig. 3: Minors unrelated to any intermediate vertex

Lemma 4. ∀s, t ∈ [`+1] satisfying s < t, L̂′(x)[vs,t, v∗]=L̂(x)[vs, v∗]·L′(x)[vs, vs,t].
where v∗ is either an original vertex or an intermediate vertex, v∗ 6= vs,t and
v∗ 6= v`+1.

We omit the proof as it is analogous to Lemma 3.

Lemma 5. ∀i, j ∈ [`+1] satisfying i < j, L̂′(x)[vi,j , vi,j] = det(L(x)(vi,vj)=L′(x)[vi,vj]).

Proof. As we showed in the proof of Lemma 2, we have a conversion that deletes
all intermediate vertices and recovers labels between original vertices. However,
the label between vi and vj is an exception. To recover the label, we need to
add row vi,j to row vi or add column vi,j to column vj . Unfortunately, both row
vi,j and column vi,j are deleted in L′(x)(vi,j ,vi,j). As the result, there’s no way
that we can recover the label. Therefore, after the conversion, we will obtain a

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 17

−1

vi,j vj

vi

vi,j

L′(x)

0

0

0

0

0

∗
0

0

0 0 0 0 0 ∗ 0 0

vs

v∗ = vs

(a)

−1

vi,j vj

vi

vi,j

L′(x)

0

0

0

0

0

∗
0

0

0 0 0 0 0 ∗ 0 0

vs

v∗ = vs

(b)

Fig. 4: Minor related to some intermediate vertex

matrix whose (vi, vj) entry may be the only different entry compared with L(x).
To be specific, if L(x)[vi, vj] = 1 and L′(x)[vi, vj] = 0, the (vi, vj) entry of the
resulting matrix is 0.

This completes the proof of Theorem 3.

With Theorem 3 we can find the necessary and sufficient condition for L̂′(x1) =
L̂′(x2), where x1,x2 are two different inputs. In fact, we have

Theorem 4. For L(x1) and L(x2) satisfying following conditions, we can con-
clude that L̂′(x1) = L̂′(x2) regardless of the randomness injected by the RLS:

1. L̂(x1) = L̂(x2).
2. ∀i, j ∈ [`+ 1] satisfying i ≤ ` and j > 1 and L(x1)[vi, vj] 6= L(x2)[vi, vj], the

entries in the ith row and jth column of L̂(x1) are all 0s.
3. ∀i, j ∈ [`+ 1] satisfying i < j,

det(L(x1)(vi,vj)=0) = det(L(x1)) = det(L(x2)) = det(L(x2)(vi,vj)=0).

Proof. We will analyse these three conditions one by one.
First, we require that L̂(x1) = L̂(x2). The reason is that for any pair of

original vertices vi, vj , L̂′(x)[vi, vj] = L̂(x)[vi, vj]. (See Theorem 3, the first case.)
Then, we compute ∆L(x1,x2) = L(x1) − L(x2). The nonzero entries in

∆L(x1,x2) represent the differences between L(x1) and L(x2). If∆L(x1,x2)[vi, vj] 6=
0, the difference may be propagated into (vi, vi,j), (vi,j , vj) and (vi, vj) of∆L′(x1,x2)

after applying RLS (See Fig.5). We notice that row vi,j entries of L̂′(x) depend

on L′(x)[vi, vi,j] (marked in north east lines) and column vi,j entries of L̂′(x) de-
pend on L′(x)[vi,j , vj] (marked in north west lines). So the difference may cause
entries in row vi,j or column vi,j (except (vi,j , vi,j), which we will discuss later)

18 Li Yao, Yilei Chen, and Yu Yu

of ∆L̂′(x1,x2) to be nonzero. Fortunately, these entries of L̂′(x) also depend on
row vi entries and column vj entries of L̂(x). To be specific, if row vi entries and

column vj entries of L̂(x) are all zero, row vi,j entries and column vi,j entries

of L̂′(x) are all zero (except (vi,j , vi,j)), whatever the entries of L′(x) are. (See
Theorem 3, the second to the forth case.) Therefore, we further require that for
any nonzero entry of ∆L(x1,x2)[vi, vj], row vi entries and column vj entries of

L̂(x1) are all zero.

vj

vi−1

−1

L(x)

−1

vi,j vj

vi

vi,j

L′(x)

vi,j vj

vi

vi,j

L̂′(x) L̂(x)

vj

vi

Fig. 5: The relationship among (minor) matrices before and after the RLS

Finally, we analyze the condition for∆L̂′(x1,x2)[vi,j , vi,j] = 0. If L(x1)[vi, vj] =

L(x2)[vi, vj] = 0, we have L̂′(x1)[vi,j , vi,j] = det(L(x1)), L̂′(x2)[vi,j , vi,j] =
det(L(x2)). Therefore, we require det(L(x1)) = det(L(x2)). If L(x1)[vi, vj] =

L(x2)[vi, vj] = 1, with probability 1/4, we have L̂′(x1)[vi,j , vi,j] = det(L(x1)(vi,vj)=0),

L̂′(x2)[vi,j , vi,j] = det(L(x2)(vi,vj)=0). We further require det(L(x1)(vi,vj)=0) =
det(L(x2)(vi,vj)=0). (See Theorem 3, the fifth case.) If L(x1)[vi, vj] = 0, L(x2)[vi, vj] =
1, we require det(L(x1)) = det(L(x2)(vi,vj)=0). If L(x1)[vi, vj] = 1, L(x2)[vi, vj] =
0, we require det(L(x1)(vi,vj)=0) = det(L(x2)).

This completes the proof of Theorem 4.

Running Example. Let us start with defining a family of ADPs to which our
attack could apply.9 Since we only need 4 inputs to carry out our attack, we can
fix the other n− 2 input bits. w.l.o.g. we assume that x1 and x2 are unfixed. ∀
ADP P in the family, there exists an assignment a ∈ {0, 1}n−2 to the values of

9 The family of ADPs here is only a subset of all ADPs our attack could apply.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 19

x3x4 . . . xn respect to P , s.t. the program matches the following pattern:

L(x1x2a) =



0 0 · · · 0 1 0
−1 ∗ · · · ∗ ∗ 0
0 −1 · · · ∗ ∗ 0
...

...
. . .

...
...

...
0 0 · · · −1 ∗ 0
0 0 · · · 0 −1 0


.

where ∗ is a wildcard and represents one element in {0, 1, x1, x1, x2, x2}.
Next, we will show that∑

x∈{00a,10a,01a,11a}

det(L′′(x)) ≡ 0 mod 4.

First, we have

L̂(x1x2a) =


0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1

 .

Namely, det(L(x1x2a)(i,j)) =

{
1, (i = 1 ∨ i = `) ∧ j = `

0, otherwise
. To see why, notice

that the rightmost column of L̂(x1x2a) is an all-zero column, thus det(L(x1x2a)(i,j)) =

0 for j < `. Moreover, we can add the topmost and lowermost rows of L̂(x1x2a)
together to obtain an all-zero row, thus det(L(x1x2a)(i,j)) = 0 for 1 < i < `. It

is easy to check that det(L(x1x2a)(1,`)) = det(L(x1x2a)(`,`)) = 1.

Then, nonzero entries in ∆L(x1a,x2a) depend on x1, x1, x2 and x2 entries
in L(x1x2a), where x1,x2 ∈ {0, 1}2 ∧ x1 6= x2. These entries are marked by ∗
in the matrix above. Therefore, we hope that entries in 2nd-(`− 1)th rows, 2nd-
(` − 1)th columns of L̂(x ∈ {00a, 10a, 01a, 11a}) are all zero, which is exactly
the case.

Finally, only entries marked by ∗ may be modified from 1 to 0 after RLS.
Since entries in the rightmost column of L(x1x2a) are always all zero, we can
conclude that det(L(x1x2a)) = det(L(x1x2a)(i,j)=0) = 0, where i, j ∈ [`] and
L(x1x2a)[i, j] = ∗ according to the above matrix.

We also give a concrete example:

L(x) =


0 x3 0 x3 0
−1 0 x4 0 x4
0 −1 x1 0 0
0 0 −1 x2 0
0 0 0 −1 x3

 , L(x1x2a)
a=11

=


0 0 0 1 0
−1 0 1 0 0
0 −1 x1 0 0
0 0 −1 x2 0
0 0 0 −1 0

 .
L(x) computes x1 ∧ x2 ∧ x3, i.e. the output depends on x1 and x2. Therefore, in
advanced case attack, we don’t require the output bit to ignore some input bits,

20 Li Yao, Yilei Chen, and Yu Yu

unlike in the base case attack.

Let us remark that the successful condition of our attack can be further
relaxed. For example, if det(L(01)(v2,v3)=0) ((v2, v3) corresponding to the (2, 2)
entry of L(x)) did not equal to det(L(00)) while det(L(01)) = det(L(00)), then
L̂′(01)[v2,3, v2,3] = L̂′(00)[v2,3, v2,3] still holds with probability 3/4. As a result,
the advantage that we can distinguish the ADP in the example from another
functionally equivalent ADP after obfuscation will decrease by a factor of 3/4,
which is still noticeable.

5.3 The scope of the attack

In the end let us discuss

What kind of programs does the attack apply to?

We are afraid that we cannot give an exact and succinct answer to this question.
The reason is when analysing ADPs, we focus on constraints on determinants and
minors. However, the connection between these constraints and functionality is
unclear. Moreover, with constraints on 4 inputs (we only need 4 inputs to apply
the attack), it is difficult to figure out what the whole function looks like.

Therefore, we choose to describe the necessary condition and the sufficient
condition separately. The necessary condition of the attack is to find 4 inputs
x1 = a0b0c,x2 = a1b0c,x3 = a0b1c,x4 = a1b1c s.t. the program outputs
the same value on these inputs where a,b, c are some fixed strings of arbitrary
length. The sufficient condition of the attack is that for the 4 inputs mentioned
above, we always have L̂′(x1) = L̂′(x2) = L̂′(x3) = L̂′(x4) regardless of the
randomness injected by the RLS. This condition is satisfiable when the plaintext
ADP satisfies the conditions in Theorem 4.

We also notice that the attack can be further generalized. Recall that in the
above attack, we require L̂′(00) = L̂′(10) = L̂′(01) = L̂′(11). But why we need
the equality of these four minor matrices? When looking back to section 5.1, on
the high level, we can write the idea of our attack as

[
e
(0)
j,k e

(1)
j,k e

(2)
j,k

]1 1 1 1
0 1 0 1
0 0 1 1




det(L′(00)(j,k))
det(L′(10)(j,k))
det(L′(01)(j,k))
det(L′(11)(j,k))

 = 0 mod 2.

To make the equation hold regardless of the choice of e
(0)
j,k, e

(1)
j,k and e

(2)
j,k, the

equality of these four minor matrices is necessary. However, if we have 2b(b > 2)
inputs, we will not require the equality of minor matrices. Take b = 3 as an

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 21

example, the idea of our attack can be written as:

[
e
(0)
j,k e

(1)
j,k e

(2)
j,k e

(3)
j,k

]
1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1





det(L′(000)(j,k))
det(L′(100)(j,k))
det(L′(010)(j,k))
det(L′(001)(j,k))
det(L′(110)(j,k))
det(L′(101)(j,k))
det(L′(011)(j,k))
det(L′(111)(j,k))


= 0 mod 2.

Therefore, for L̂′(x ∈ {0, 1}3) satisfying following four conditions:

1. L̂′(000)+L̂′(100)+L̂′(010)+L̂′(001)+L̂′(110)+L̂′(101)+L̂′(011)+L̂′(111) =
0 mod 2

2. L̂′(100) + L̂′(110) + L̂′(101) + L̂′(111) = 0 mod 2
3. L̂′(010) + L̂′(110) + L̂′(011) + L̂′(111) = 0 mod 2
4. L̂′(001) + L̂′(101) + L̂′(011) + L̂′(111) = 0 mod 2

we have ∑
x∈{0,1}3

det(L′′(x)) ≡ 0 mod 4.

To conclude, if we cannot find four inputs satisfying the conditions in Theorem 4,
it is still possible to find eight or more inputs that are capable of applying the
”mod 4” attack.

6 A Plausible Fix and Further Discussions

In this section, we describe a possible approach of preventing our attack. Intu-
itively, the reason for the attack to work is that the RLS transformation does
not inject enough randomness into the original ADP. To be specific, if the edge
between vj and vk is labeled 0 or 1 before RLS, the edges among vj , vk and vj,k
are never labelled xi or xi after RLS.

Therefore, a natural way of fixing the attack is to get around this limitation.
If the edge between vj , vk is labeled by 1, then M

′(j,k)(x) has the following extra
choices: [

xi 1
0 xi

]
,

[
xi 1
0 xi

]
,

[
xi 1
0 0

]
,

[
0 1
0 xi

]
,

[
xi 1
0 0

]
,

[
0 1
0 xi

]
.

If there is no edge between vj , vk, then M
′(j,k)(x) has following extra choices:[

xi 0
0 xi

]
,

[
xi 0
0 xi

]
,

[
xi 0
0 0

]
,

[
0 0
0 xi

]
,

[
xi 0
0 0

]
,

[
0 0
0 xi

]
.

We use the example in section 4.1 to show the revision of the RLS (see Fig.6,
changes compared with Fig.2 (b) are marked in red color).

22 Li Yao, Yilei Chen, and Yu Yu

2

1

3

4

x1

x3

x1

1
1

x1

x2 x2

1

x3

x3

x3

Fig. 6: The revision of the RLS

With the revision we can defend against the base case attack since it ef-
fectively makes the B matrices non-zero. But how about the advanced case?
Suppose that the label between vj,` and v` is xi or xi after the RLS (this
is always possible in the revision of the RLS). As the result, ∀x,y satisfying
xi 6= yi, L

′(x)[vj,`, v`] 6= L′(y)[vj,`, v`]. Recall that L̂′(x)[v1, vj,`]=L̂(x)[v1, v`] ·
L′(x)[vj,`, v`]. In addition, we always have L̂(x)[v1, v`] = 1. We can conclude that

L̂′(x)[v1, vj,`] 6= L̂′(y)[v1, vj,`]. Namely, the revision can prevent the equality of
the minors and thus defend against the advanced case attack.

We also notice the necessity of setting up connection between security pa-
rameter λ and the RLS transformation. The amount of randomness of the RLS
introduced in [8] only depends on the matrix size of ADP. Even for the revision of
the RLS we mentioned above (as it is), the amount of randomness only depends
on the input length and the matrix dimension.

Therefore, for programs with very small input lengths and matrix dimen-
sions, the adversary can guess the output of RLS correctly with some probability
that is independent of λ, in which situation the adversary could break the iO
scheme with non-negligible probability. A simple way of preventing this attack
is applying RLS iteratively for λ times. Adding more intermediate vertices is
another possible solution.

Let us remark that the revision of RLS we provide merely prevents the attack
we describe in this paper, it should not be viewed as a candidate with enough
confidence.

We cannot even ensure that with the above revision the iO scheme can be
secure against all “modulo 4 attacks”. We leave it as future work to give an RLS
candidate with concrete parameters in some restricted adversarial model that
is provably secure against known attacks. For example, it will be interesting to
provide a candidate with provable security against all “modulo 4 attacks”.

Acknowledgments

We thank anonymous reviewers for their helpful comments. Y.C. is supported by
Tsinghua University start-up funding and Shanghai Qi Zhi Institute. Yu Yu was
supported by the National Key Research and Development Program of China

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 23

(Grant Nos. 2020YFA0309705 and 2018YFA0704701) and the National Natural
Science Foundation of China (Grant Nos. 62125204 and 61872236). Yu Yu also
acknowledges the support from the XPLORER PRIZE.

References

1. Agrawal S.: Indistinguishability Obfuscation Without Multilinear Maps: New
Methods for Bootstrapping and Instantiation. In: Ishai Y., Rijmen V. (eds.)
EUROCRYPT 2019, LNCS, vol. 11476, pp. 191–225. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 7

2. Agrawal S., Pellet-Mary A.: Indistinguishability Obfuscation Without Maps: At-
tacks and Fixes for Noisy Linear FE. In: Canteaut A., Ishai Y. (eds.) EU-
ROCRYPT 2020, LNCS, vol. 12105, pp. 110–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 5

3. Ananth P., Jain A., Lin H., Matt C., Sahai A.: Indistinguishability Obfusca-
tion Without Multilinear Maps: New Paradigms via Low Degree Weak Pseu-
dorandomness and Security Amplification. In: Boldyreva A., Micciancio D.
(eds.) CRYPTO 2019, LNCS, vol. 11694, pp. 284–332. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 10

4. Ananth P., Jain A.: Indistinguishability Obfuscation from Compact Functional En-
cryption. In: Gennaro R., Robshaw M. (eds.) CRYPTO 2015, LNCS, vol. 9215,
pp. 308–326. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

5. Applebaum B., Ishai. Y, Kushilevitz E.: Cryptography in NCˆ0. In: 45th FOCS,
pp. 166–175. IEEE (2004).

6. Barak B., Garg S., Kalai Y.T., Paneth O., Sahai A.: Protecting Obfusca-
tion against Algebraic Attacks. In: Nguyen P.Q., Oswald E. (eds.) EURO-
CRYPT 2014, LNCS, vol. 8441, pp. 221–238. Springer, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 13

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (Im)possibility of Obfuscating Programs. In: Kilian J. (eds.)
CRYPTO 2001, LNCS, vol. 2139, pp. 1–18. Springer, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 1

8. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine determinant
programs: A framework for obfuscation and witness encryption. In: 11th ITCS, pp.
82:1–82:39. LIPIcs (2020).

9. Bartusek J., Lepoint T., Ma F., Zhandry M.: New Techniques for Obfuscating Con-
junctions. In: Ishai Y., Rijmen V. (eds.) EUROCRYPT 2019, LNCS, vol. 11478, pp.
636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 22

10. Bitansky N, Paneth O, Rosen A.: On the Cryptographic Hardness of Finding a
Nash Equilibrium. In: 56th FOCS, pp. 1480–1498. IEEE (2015).

11. Bitansky N., Vaikuntanathan V.: Indistinguishability obfuscation from functional
encryption. In: 56th FOCS, pp: 171–190. IEEE (2015).

12. Brakerski Z., Döttling N., Garg S., Malavolta G.: Candidate iO from Homomorphic
Encryption Schemes. In: Canteaut A., Ishai Y. (eds.) EUROCRYPT 2020, LNCS,
vol 12105, pp. 79–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45721-1 4

13. Brakerski Z., Döttling N., Garg S., Malavolta G.: Factoring and pairings are not
necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, Report
2020/1024 (2020), https://eprint.iacr.org/2020/1024

24 Li Yao, Yilei Chen, and Yu Yu

14. Brakerski Z., Rothblum G.N.: Virtual Black-Box Obfuscation for All Circuits via
Generic Graded Encoding. In: Lindell Y. (eds.) TCC 2014, LNCS, vol. 8349, pp.
1–25. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-
8 1

15. Chen Y., Gentry C., Halevi S.: Cryptanalyses of Candidate Branching Program
Obfuscators. In: Coron JS., Nielsen J. (eds.) EUROCRYPT 2017, LNCS, vol. 10212,
pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 10

16. Cheon J.H., Han K., Lee C., Ryu H., Stehlé D.: Cryptanalysis of the Mul-
tilinear Map over the Integers. In: Oswald E., Fischlin M. (eds.) EURO-
CRYPT 2015, LNCS, vol. 9056, pp. 3–12. Springer, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 1

17. Cohen A., Holmgren J., Nishimaki R., Vaikuntanathan V., Wichs D.: Watermark-
ing cryptographic capabilities. In: 48th STOC, pp. 1115–1127. ACM (2016).

18. Coron J.S., Lepoint T., Tibouchi M.: Practical Multilinear Maps over the Integers.
In: Canetti R., Garay J.A. (eds.) CRYPTO 2013, LNCS, vol. 8042, pp. 476-493.
Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 26

19. Devadas L., Quach W., Vaikuntanathan V., Wee H., Wichs D.: Succinct
LWE Sampling, Random Polynomials, and Obfuscation. In: Nissim K., Waters
B. (eds.) TCC 2021, LNCS, vol. 13043, pp. 256–287. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90453-1 9

20. Garg S., Gentry C., Halevi S.: Candidate Multilinear Maps from Ideal Lattices. In:
Johansson T., Nguyen P.Q. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 1–17.
Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

21. Garg S., Gentry C., Halevi S., Raykova M., Sahai A., Waters B.: Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS,
pp. 40–49. IEEE (2013).

22. Gay R., Jain A., Lin H., Sahai A.: Indistinguishability Obfuscation from Simple-
to-State Hard Problems: New Assumptions, New Techniques, and Simplification.
In: Canteaut A., Standaert FX. (eds.) EUROCRYPT 2021, LNCS, vol. 12698, pp.
97–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5 4

23. Gay R, Pass, R.: Indistinguishability obfuscation from circular security. In: 53rd
STOC, pp. 736–749. ACM (2021).

24. Gentry C., Gorbunov S., Halevi S.: Graph-Induced Multilinear Maps from Lattices.
In: Dodis Y., Nielsen J.B. (eds.) TCC 2015, LNCS, vol. 9015, pp. 498–527. Springer,
Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

25. Hopkins S., Jain A., Lin H.: Counterexamples to New Circular Security Assump-
tions Underlying iO. In: Malkin T., Peikert C. (eds.) CRYPTO 2021, LNCS, vol.
12826, pp. 673–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84245-1 23

26. Hu Y., Jia H.: Cryptanalysis of GGH Map. In: Fischlin M., Coron JS. (eds.) EU-
ROCRYPT 2016, LNCS, vol. 9665, pp. 537–565. Springer, Berlin, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

27. Ishai Y., Kushilevitz E.: Private simultaneous messages protocols with applications.
In: 5th ISTCS, pp. 174–183. IEEE (1997).

28. Ishai Y., Kushilevitz E.: Perfect Constant-Round Secure Computation via Perfect
Randomizing Polynomials. In: Widmayer P., Eidenbenz S., Triguero F., Morales R.,
Conejo R., Hennessy M. (eds.) ICALP 2002, LNCS, vol. 2380, pp. 244–256. Springer,
Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

29. Jain A., Lin H., Matt C., Sahai A.: How to Leverage Hardness of Constant-
Degree Expanding Polynomials over R to build iO. In: Ishai Y., Rijmen V.

Cryptanalysis of Candidate Obfuscators for Affine Determinant Programs 25

(eds.) EUROCRYPT 2019, LNCS, vol. 11476, pp. 251-281. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 9

30. Jain A., Lin H., Sahai A.: Indistinguishability obfuscation from well-founded as-
sumptions. In: 53rd STOC, pp. 60-73. ACM (2021).

31. Jain A., Lin H., Sahai A.: Indistinguishability Obfuscation from LPN over F p,
DLIN, and PRGs in NCˆ0. Cryptology ePrint Archive, Report 2021/1334 (2021).
https://eprint.iacr.org/2021/1334.

32. Koppula V., Lewko A.B., Waters B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: 47th STOC, pp. 419–428. ACM (2015).

33. Lin H.: Indistinguishability Obfuscation from Constant-Degree Graded Encoding
Schemes. In: Fischlin M., Coron JS. (eds.) EUROCRYPT 2016, LNCS, vol. 9665,
pp. 28–57. Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49890-3 2

34. Lin H.: Indistinguishability Obfuscation from SXDH on 5-Linear Maps and
Locality-5 PRGs. In: Katz J., Shacham H. (eds.) CRYPTO 2017, LNCS, vol. 10401,
pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

35. Lin H., Tessaro S.: Indistinguishability Obfuscation from Trilinear Maps and Block-
Wise Local PRGs. In: Katz J., Shacham H. (eds.) CRYPTO 2017, LNCS, vol. 10401,
pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 21

36. Lin H., Vaikuntanathan V.: Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In: 57th FOCS, pp. 11–20. IEEE
(2016).

37. Miles E., Sahai A., Zhandry M.: Annihilation Attacks for Multilinear Maps: Crypt-
analysis of Indistinguishability Obfuscation over GGH13. In: Robshaw M., Katz J.
(eds.) CRYPTO 2016, LNCS, vol. 9815, pp. 629–658. Springer, Berlin, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

38. Sahai A., Waters B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: 46th STOC, pp. 475–484. ACM (2014).

39. Wee H., Wichs D.: Candidate Obfuscation via Oblivious LWE Sampling. In: Can-
teaut A., Standaert FX. (eds.) EUROCRYPT 2021, LNCS, vol. 12698, pp. 127–156.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5 5

