
Watermarking PRFs
against Quantum Adversaries

Fuyuki Kitagawa1 and Ryo Nishimaki1

NTT Corporation, Tokyo, Japan
{fuyuki.kitagawa.yh,ryo.nishimaki.zk}@hco.ntt.co.jp

Abstract. We initiate the study of software watermarking against quan-
tum adversaries. A quantum adversary generates a quantum state as a
pirate software that potentially removes an embedded message from a
classical marked software. Extracting an embedded message from quan-
tum pirate software is difficult since measurement could irreversibly alter
the quantum state. In software watermarking against classical adver-
saries, a message extraction algorithm crucially uses the (input-output)
behavior of a classical pirate software to extract an embedded message.
Even if we instantiate existing watermarking PRFs with quantum-safe
building blocks, it is not clear whether they are secure against quan-
tum adversaries due to the quantum-specific property above. Thus, we
need entirely new techniques to achieve software watermarking against
quantum adversaries.
In this work, we define secure watermarking PRFs for quantum adver-
saries (unremovability against quantum adversaries). We also present two
watermarking PRFs as follows.

– We construct a privately extractable watermarking PRF against
quantum adversaries from the quantum hardness of the learning with
errors (LWE) problem. The marking and extraction algorithms use
a public parameter and a private extraction key, respectively. The
watermarking PRF is unremovable even if adversaries have (the pub-
lic parameter and) access to the extraction oracle, which returns a
result of extraction for a queried quantum circuit.

– We construct a publicly extractable watermarking PRF against quan-
tum adversaries from indistinguishability obfuscation (IO) and the
quantum hardness of the LWE problem. The marking and extrac-
tion algorithms use a public parameter and a public extraction key,
respectively. The watermarking PRF is unremovable even if adver-
saries have the extraction key (and the public parameter).

We develop a quantum extraction technique to extract information (a
classical string) from a quantum state without destroying the state too
much. We also introduce the notion of extraction-less watermarking
PRFs as a crucial building block to achieve the results above by combin-
ing the tool with our quantum extraction technique.

1 Introduction

1.1 Background

Software watermarking is a cryptographic primitive that achieves a digital ana-
log of watermarking. A marking algorithm of software watermarking can embed
an arbitrary message (bit string) into a computer software modeled as a circuit.
A marked software almost preserves the functionality of the original software.
An extraction algorithm of software watermarking can extract the embedded
message from a marked software. Secure software watermarking should guaran-
tee that no adversary can remove the embedded message without significantly
destroying the functionality of the original software (called unremovability).

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12]
initiate the study of software watermarking and present the first definition of
cryptographically secure software watermarking. Hopper, Molnar, and Wag-
ner [HMW07] also study the definition of cryptographically secure watermarking
for perceptual objects. However, both works do not present a secure concrete
scheme. A few works study secure constructions of watermarking for crypto-
graphic primitives [NSS99,YF11,Nis13,Nis19], but they consider only restricted
removal strategies. Cohen, Holmgren, Nishimaki, Wichs, and Vaikuntanathan [CHN+18]
present stronger definitions for software watermarking and the first secure water-
marking schemes for cryptographic primitives against arbitrary removal strate-
gies. After the celebrated work, watermarking for cryptographic primitives have
been extensively studied [BLW17,KW21,QWZ18,KW19,YAL+19,GKM+19,YAYX20,Nis20].

Primary applications of watermarking are identifying ownership of objects
and tracing users that distribute illegal copies. Watermarking for cryptographic
primitives also has another exciting application. Aaronson, Liu, Liu, Zhandry,
and Zhang [ALL+21] and Kitagawa, Nishimaki, and Yamakawa [KNY21] con-
currently and independently find that we can construct secure software leasing
schemes by combining watermarking with quantum cryptography.1 Secure soft-
ware leasing [AL21] is a quantum cryptographic primitive that prevents users
from generating authenticated pirated copies of leased software.2 Since water-
marking has such an exciting application in quantum cryptography and quantum
computers might be an imminent threat to cryptography due to rapid progress
in research on quantum computing, it is natural and fascinating to study secure
software watermarking in the quantum setting.

In quantum cryptography, building blocks must be quantum-safe such as
lattice-based cryptography [Reg09]. However, even if we replace building blocks
of existing cryptographic primitives/protocols with quantum-safe ones, we do not
necessarily obtain quantum-safe cryptographic primitives/protocols [BDF+11,ARU14].
We sometimes need new proof techniques which are different from classical ones

1 Precisely speaking, Aaronson et al. achieve copy-detection schemes [ALL+21], which
are essentially the same as secure software leasing schemes.

2 Leased software must be a quantum state since classical bit strings can be easily
copied.

2

due to quantum specific properties such as no-cloning and superposition ac-
cess [Wat09,Zha12b,Zha12a,Unr12,Zha19,CMSZ21]. Even worse, we must con-
sider entirely different security models in some settings. Zhandry [Zha20] studies
traitor tracing [CFN94] in the quantum setting as such an example. In quantum
traitor tracing, an adversary can output a quantum state as a pirate decoder.
Zhandry shows that we need new techniques for achieving quantum traitor trac-
ing because running a quantum pirate decoder to extract information may irre-
versibly alter the state due to measurement.

Zhandry [Zha20] refers to software watermarking as a cryptographic primitive
that has a similar issue to quantum traitor tracing. However, his work focuses
only on traitor tracing and does not study software watermarking against quan-
tum adversaries. If we use software watermarking in the quantum setting, an
adversary can output a quantum state as a pirate circuit where an embedded
message might be removed. However, previous works consider a setting where an
adversary outputs a classical pirate circuit. It is not clear whether watermark-
ing schemes based on quantum-safe cryptography are secure against quantum
adversaries because we need an entirely new extraction algorithm to extract an
embedded message from a quantum pirate circuit. Thus, the main question in
this study is:

Can we achieve secure watermarking for cryptographic primitives against
quantum adversaries?

We affirmatively answer this question in this work.

1.2 Our Result

Our main contributions are two-fold. One is the definitional work. We define
watermarking for pseudorandom functions (PRFs) against quantum adversaries,
where adversaries output a quantum state as a pirate circuit that distinguishes
a PRF from a random function.3 The other one is constructing the first secure
watermarking PRFs against quantum adversaries. We present two watermarking
PRFs as follows.

– We construct a privately extractable watermarking PRF against quantum
adversaries from the quantum hardness of the learning with errors (LWE)
problem. This watermarking PRF is secure in the presence of the extraction
oracle and supports public marking. That is, the marking and extraction
algorithms use a public parameter and secret extraction key, respectively.
The watermarking PRF is unremovable even if adversaries have access to the
extraction oracle, which returns a result of extraction for a queried quantum
circuit.

– We construct a publicly extractable watermarking PRF against quantum ad-
versaries from indistinguishability obfuscation (IO) and the quantum hard-
ness of the LWE problem. This watermarking PRF also supports public

3 This definitional choice comes from the definition of traceable PRFs [GKWW21].
See Section 1.3 and the full version for the detail.

3

marking. That is, the marking and extraction algorithms use a public pa-
rameter and a public extraction key, respectively. The watermarking PRF is
unremovable (we do not need to consider the mark and extraction oracles
since it supports public marking and public extraction).

The former and latter PRFs satisfy weak pseudorandomness and standard (strong)
pseudorandomness even against a watermarking authority, respectively.

We develop a quantum extraction algorithm to achieve the results above.
Zhandry [Zha20] presents a useful technique for extracting information from
quantum states without destroying them too much. However, we cannot sim-
ply apply his technique to the watermarking setting. Embedded information
(arbitrary string) is chosen from an exponentially large set in the watermark-
ing setting. On the other hand, in the traitor tracing setting, we embed a user
index, which could be chosen from a polynomially large set, in a decryption
key. Zhandry’s technique is tailored to traitor tracing based on private linear
broadcast encryption (PLBE) [BSW06] where user information is chosen from
a polynomially large set with linear structure. Thus, we extend Zhandry’s tech-
nique [Zha20] to extract information chosen from an exponentially large set.
We also introduce the notion of extraction-less watermarking as a crucial tool to
achieve watermarking against quantum adversaries. This tool is a suitable build-
ing block for our quantum extraction technique in our watermarking extraction
algorithm. These are our technical contributions. See Section 1.3 for the detail.

Although this paper focuses on watermarking PRFs against quantum adver-
saries, it is easy to extend our definitions to watermarking public-key encryption
(PKE) against quantum adversaries. In particular, our construction technique
easily yields watermarking PKE (where a decryption circuit is marked) schemes.
However, we do not provide the detail of watermarking PKE in this paper. We
will provide them in the full version.

1.3 Technical Overview

Syntax of watermarking PRF. We first review the syntax of watermarking PRF
used in this work. A watermarking PRF scheme consists of five algorithms
(Setup,Gen,Eval,Mark,Extract).4 Setup outputs a public parameter pp and an
extraction key xk. Gen is given pp and outputs a PRF key prfk and a public tag
τ . Eval is the PRF evaluation algorithm that takes as an input prfk and x in
the domain and outputs y. By using Mark, we can generate a marked evaluation
circuit that has embedded message m ∈ {0, 1}ℓm and can be used to evalu-
ate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation
circuit generated from the marked evaluation circuit. By default, in this work,
we consider the public marking setting, where anyone can execute Mark. Thus,
Mark takes pp as an input. On the other hand, we consider both the private
extraction and the public extraction settings. Thus, the extraction key xk used
4 In this paper, standard math font stands for classical algorithms, and calligraphic

font stands for quantum algorithms.

4

by Extract is kept secret by an authority in the private extraction setting and
made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the
original PRF key corresponding to the pirate circuit. In reality, we execute Extract

for a software when a user claims that the software is illegally generated by
using her/his PRF key. Thus, it is natural to expect we can use a user’s public
tag for extraction. Moreover, pirate circuits are distinguishers, not predictors
in this work. As discussed by Goyal et al. [GKWW21], security against pirate
distinguishers is much preferable compared to security against pirate predictors
considered in many previous works on watermarking. In this case, it seems that
such additional information fed to Extract is unavoidable. For a more detailed
discussion on the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandom-
ness of PRFs when we consider pirate distinguishers instead of pirate predictors.
Goyal et al. [GKWW21] already discussed this point. Thus, we focus on water-
marking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a wa-
termarking PRF scheme satisfies unremovability if given a marked evaluation
circuit C̃ that has an embedded message m, any adversary cannot generate a
circuit such that it is a “good enough circuit”, but the extraction algorithm fails
to output m. In this work, we basically follow the notion of “good enough cir-
cuit” defined by Goyal et al. [GKWW21] as stated above. Let D be the following
distribution for a PRF Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x).

Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given
(x, yb) output by D, it can correctly guess b with probability significantly greater
than 1/2. In other words, a circuit is defined as good enough if the circuit breaks
weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), letMD′ =
(MD′,0,MD′,1) be binary positive operator valued measures (POVMs) that rep-
resents generating random (b, x, y) from D′ and testing if a quantum circuit can
guess b from (x, y). Then, for a quantum state |ψ⟩, the overall distinguishing
advantage of it for the above distribution D is ⟨ψ|MD,0 |ψ⟩. Thus, a natural
adaptation of the above notion of goodness for quantum circuits might be to
define a quantum state |ψ⟩ as good if ⟨ψ|MD,0 |ψ⟩ is significantly greater than
1/2. However, this notion of goodness for quantum circuits is not really meaning-
ful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of
traitor tracing against quantum adversaries. In the context of classical traitor
tracing or watermarking, we can assume that a pirate circuit is stateless, or can
be rewound to its original state. This assumption is reasonable. If we have the
software description of the pirate circuit, such a rewinding is trivial. Even if

5

we have a hardware box in which a pirate circuit is built, it seems that such a
rewinding is possible by hard reboot or cutting power. On the other hand, in
the context of quantum watermarking, we have to consider that a pirate circuit
is inherently stateful since it is described as a quantum state. Operations to a
quantum state can alter the state, and in general, it is impossible to rewind the
state into its original state. Regarding the definition of good quantum circuits
above, if we can somehow compute the average success probability ⟨ψ|MD,0 |ψ⟩
of the quantum state |ψ⟩, the process can change or destroy the quantum state
|ψ⟩. Namely, even if we once confirm that the quantum state |ψ⟩ is good by
computing ⟨ψ|MD,0 |ψ⟩, we cannot know the success probability of the quantum
state even right after the computation. Clearly, the above notion of goodness
is not the right notion, and we need one that captures the stateful nature of
quantum programs.

In the work on traitor tracing against quantum adversaries, Zhandry [Zha20]
proposed a notion of goodness for quantum programs that solves the above issue.
We adopt it. For the above POVMsMD, letM′

D be the projective measurement
{Pp}p∈[0,1] that projects a state onto the eigenspaces of MD,0, where each p is
an eigenvalue of MD,0. M′

D is called projective implementation of MD and
denoted as ProjImp(MD). Zhandry showed that the following process has the
same output distribution as MD:

1. Apply the projective measurement M′
D = ProjImp(MD) and obtain p.

2. Output 0 with probability p and output 1 with probability 1− p.

Intuitively, M′
D project a state to an eigenvector of MD,0 with eigenvalue p,

which can be seen as a quantum state with success probability p. Using M′
D,

Zhandry defined that a quantum circuit is Live if the outcome of the measurement
M′

D is significantly greater than 1/2. The notion of Live is a natural extension
of the classical goodness since it collapses to the classical goodness for a classical
decoder. Moreover, we can ensure that a quantum state that is tested as Live still
has a high success probability. On the other hand, the above notion of goodness
cannot say anything about the post-tested quantum state’s success probability
even if the test is passed. In this work, we use the notion of Live quantum circuits
as the notion of good quantum circuits.

Difficulty of quantum watermarking PRF. From the above discussion, our goal is
to construct a watermarking PRF scheme that guarantees that we can extract the
embedded message correctly if a pirated quantum circuit is Live. In watermarking
PRF schemes, we usually extract an embedded message by applying several tests
on success probability to a pirate circuit. When a pirate circuit is a quantum
state, the set of tests that we can apply is highly limited compared to a classical
circuit due to the stateful nature of quantum states.

One set of tests we can apply without destroying the quantum state is
ProjImp(MD′) for distributions D′ that are indistinguishable from D from the

6

view of the pirate circuit.5 We denote this set as {ProjImp(MD′) | D′ c≈ D}.
Zhandry showed that if distributions D1 and D2 are indistinguishable, the out-
come of ProjImp(MD1) is close to that of ProjImp(MD2). By combining this prop-
erty with the projective property of projective implementations, as long as the
initial quantum state is Live and we apply only tests contained in {ProjImp(MD′) |
D′ c≈ D}, the quantum state remains Live. On the other hand, if we apply a test
outside of {ProjImp(MD′) | D′ c≈ D}, the quantum state might be irreversibly
altered. This fact is a problem since the set {ProjImp(MD′) | D′ c≈ D} only
is not sufficient to implement the existing widely used construction method for
watermarking PRF schemes.

To see this, we briefly review the method. In watermarking PRF schemes,
the number of possible embedded messages is super-polynomial, and thus we
basically need to extract an embedded message in a bit-by-bit manner. In the
method, such a bit-by-bit extraction is done as follows. For every i ∈ [ℓm],
we define two distributions Si,0 and Si,1 whose output is of the form (b, x, y)
as D above. Then, we design a marked circuit with embedded message m ∈
{0, 1}ℓm so that it can be used to guess b from (x, y) with probability significantly
greater than 1/2 only for Si,0 (resp. Si,1) if m[i] = 0 (resp. m[i] = 1). The
extraction algorithm can extract i-th bit of the message m[i] by checking for
which distributions of Si,0 and Si,1 a pirate circuit has a high distinguishing
advantage.

As stated above, we cannot use this standard method to extract a mes-
sage from quantum pirate circuits. The reason is that Si,0 and Si,1 are typi-
cally distinguishable. This implies that at least either one of ProjImp(MSi,0) or
ProjImp(MSi,1) is not contained in {ProjImp(MD′) | D′ c≈ D}. Since the test
outside of {ProjImp(MD′) | D′ c≈ D} might destroy the quantum state, we might
not be able to perform the process for all i, and fail to extract the entire bits of
the embedded message.

It seems that to perform the bit-by-bit extraction for a quantum state, we
need to extend the set of applicable tests and come up with a new extraction
method.

Our solution: Use of reverse projective property. We find that as another appli-
cable set of tests, we have ProjImp(MD′) for distributions D′ that are indistin-
guishable from Drev, where Drev is the following distribution.
Drev: Generate b← {0, 1}, x← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x).

Output (1⊕ b, x, yb).

We denote the set as {ProjImp(MD′) | D′ c≈ Drev}. Drev is the distribution
the first bit of whose output is flipped from that of D. Then, MDrev can be
seen as POVMs that represents generating random (b, x, yb) from D and testing

5 In the actual extraction process, we use an approximation of projective implemen-
tation introduced by Zhandry [Zha20] since applying a projective implementation is
inefficient. In this overview, we ignore this issue for simplicity.

7

if a quantum circuit cannot guess b from (x, yb). Thus, we see that MDrev =
(MD,1,MD,0). Recall that MD = (MD,0,MD,1).

Let D1 ∈ {ProjImp(MD′) | D′ c≈ D} and Drev
1 be the distribution that

generates (b, x, y)← D1 and outputs (1⊕b, x, y). Drev
1 is a distribution contained

in {ProjImp(MD′) | D′ c≈ Drev}. Similarly to the relation between D and Drev, if
MD1 = (MD1,0,MD1,1), we have MDrev

1
= (MDrev

1 ,1,MDrev
1 ,0). Since MD1,0 +

MD1,1 = I, MD1,0 and MD1,1 share the same set of eigenvectors, and if a vector
is an eigenvector of MD1,0 with eigenvalue p, then it is also an eigenvector of
MD1,1 with eigenvalue 1−p. Thus, if apply ProjImp(MD1) and ProjImp(MDrev

1
)

successively to a quantum state and obtain the outcomes p̃1 and p̃′
1, it holds

that p̃′
1 = 1 − p̃1. We call this property the reverse projective property of the

projective implementation.
Combining projective and reverse projective properties and the outcome

closeness for indistinguishable distributions of the projective implementation,
we see that the following key fact holds.

Key fact: As long as the initial quantum state is Live and we apply tests con-
tained in {ProjImp(MD′) | D′ c≈ D} or {ProjImp(MD′)|D′ c≈ Drev}, the
quantum state remains Live. Moreover, if the outcome of applying ProjImp(MD)
to the initial state is p, we get the outcome close to p every time we apply
a test in {ProjImp(MD′) | D′ c≈ D}, and we get the outcome close to 1 − p
every time we apply a test in {ProjImp(MD′) | D′ c≈ Drev}.

In this work, we perform bit-by-bit extraction of embedded messages by using
the above key fact of the projective implementation. To this end, we introduce the
new notion of extraction-less watermarking PRF as an intermediate primitive.

Via extraction-less watermarking PRF. An extraction-less watermarking PRF
scheme has almost the same syntax as a watermarking PRF scheme, except that
it does not have an extraction algorithm Extract and instead has a simulation
algorithm Sim. Sim is given the extraction key xk, the public tag τ , and an
index i ∈ [ℓm], and outputs a tuple of the form (γ, x, y). Sim simulates outputs
of D or Drev for a pirate circuit depending on the message embedded to the
marked circuit corresponding to the pirate circuit. More concretely, we require
that from the view of the pirate circuit generated from a marked circuit with
embedded message m ∈ {0, 1}ℓm , outputs of Sim are indistinguishable from those
of D if m[i] = 0 and are indistinguishable from those of Drev if m[i] = 1 for
every i ∈ [ℓm]. We call this security notion simulatability for mark-dependent
distributions (SIM-MDD security).

By using an extraction-less watermarking PRF scheme ELWMPRF, we con-
struct a watermarking PRF scheme WMPRF against quantum adversaries as
follows. We use Setup,Gen,Eval,Mark of ELWMPRF as Setup,Gen,Eval,Mark of
WMPRF, respectively. We explain how to construct the extraction algorithm
Extract of WMPRF using Sim of ELWMPRF. For every i ∈ [ℓm], we define Dτ,i as
the distribution that outputs randomly generated (γ, x, y)← Sim(xk, τ, i). Given

8

xk, τ , and a quantum state |ψ⟩, Extract extracts the embedded message in the
bit-by-bit manner by repeating the following process for every i ∈ [ℓm].

– Apply ProjImp(MDτ,i
) to |ψi−1⟩ and obtain the outcome p̃i, where |ψ0⟩ = |ψ⟩

and |ψi−1⟩ is the state after the (i− 1)-th loop for every i ∈ [ℓm].
– Set m′

i = 0 if p̃i > 1/2 and otherwise m′
i = 1.

The extracted message is set to m′
1∥ · · · ∥m′

ℓm
.

We show that the above construction satisfies unremovability. Suppose an
adversary is given marked circuit C̃ ← Mark(pp, prfk,m) and generates a quan-
tum state |ψ⟩, where (pp, xk) ← Setup(1λ) and (prfk, τ) ← Gen(pp). Suppose
also that |ψ⟩ is Live. This assumption means that the outcome p of applying
ProjImp(MD) to |ψ⟩ is 1/2 + ϵ, where ϵ is an inverse polynomial. For every
i ∈ [ℓm], from the SIM-MDD security of ELWMPRF, Dτ,i is indistinguishable
from D if m[i] = 0 and is indistinguishable from Drev if m[i] = 1. This means
that Dτ,i ∈ {ProjImp(MD′) | D′ c≈ D} if m[i] = 0 and Dτ,i ∈ {ProjImp(MD′) |
D′ c≈ Drev} if m[i] = 1. Then, from the above key fact of the projective imple-
mentation, it holds that p̃i is close to 1/2 + ϵ > 1/2 if m[i] = 0 and is close to
1/2− ϵ < 1/2 if m[i] = 1. Therefore, we see that Extract correctly extract m from
|ψ⟩. This means that WMPRF satisfies unremovability.

The above definition, construction, and security analysis are simplified and
ignore many subtleties. The most significant point is that we use approximated
projective implementations introduced by Zhandry [Zha20] instead of projective
implementations in the actual construction since applying a projective implemen-
tation is an inefficient process. Moreover, though the outcomes of (approximate)
projective implementations for indistinguishable distributions are close, in the
actual analysis, we have to take into account that the outcomes gradually change
every time we apply an (approximate) projective implementation. These issues
can be solved by doing careful parameter settings.

Comparison with the work by Zhandry [Zha20]. Some readers familiar with
Zhandry’s work [Zha20] might think that our technique contradicts the lesson
from Zhandry’s work since it essentially says that once we find a large gap in
success probabilities, the tested quantum pirate circuit might self-destruct. How-
ever, this is not the case. What Zhandry’s work really showed is the following.
Once a quantum pirate circuit itself detects that there is a large gap in success
probabilities, it might self-destruct. Even if an extractor finds a large gap in
success probabilities, if the tested quantum pirate circuit itself cannot detect the
large gap, the pirate circuit cannot self-destruct. In Zhandry’s work, whenever
an extractor finds a large gap, the tested pirate circuit also detects the large
gap. In our work, the tested pirate circuit cannot detect a large gap throughout
the extraction process while an extractor can find it.

The reason why a pirate circuit cannot detect a large gap in our scheme even
if an extractor can find it is as follows. Recall that in the above extraction process
of our scheme based on an extraction-less watermarking PRF scheme, we apply
ProjImp(MDτ,i

) to the tested pirate circuit for every i ∈ [ℓm]. Each Dτ,i outputs
a tuple of the form (b, x, y) and is indistinguishable from D or Drev depending

9

on the embedded message. In the process, we apply ProjImp(MDτ,i) for every
i ∈ [ℓm], and we get the success probability p if Dτ,i is indistinguishable from D
and we get 1− p if Dτ,i is indistinguishable from Drev. The tested pirate circuit
needs to know which of D or Drev is indistinguishable from the distribution Dτ,i

behind the projective implementation to know which of p or 1−p is the result of
an application of a projective implementation. However, this is impossible. The
tested pirate circuit receives only (x, y) part of Dτ,i’s output and not b part.
(Recall that the task of the pirate circuit is to guess b from (x, y).) The only
difference between D and Drev is that the first-bit b is flipped. Thus, if the b
part is dropped, Dτ,i is, in fact, indistinguishable from both D and Drev. As
a result, the pirate program cannot know which of p or 1 − p is the result of
an application of a projective implementation. In other words, the pirate circuit
cannot detect a large gap in our extraction process.

Instantiating extraction-less watermarking PRF. In the rest of this overview, we
will explain how to realize extraction-less watermarking PRF.

We consider the following two settings similar to the ordinary watermarking
PRF. Recall that we consider the public marking setting by default.

Private-simulatable: In this setting, the extraction key xk fed into Sim is kept
secret. We require that SIM-MDD security hold under the existence of the
simulation oracle that is given a public tag τ ′ and an index i′ ∈ [ℓm] and
returns Sim(xk, τ ′, i′). An extraction-less watermarking PRF scheme in this
setting yields a watermarking PRF scheme against quantum adversaries in
private-extractable setting where unremovability holds for adversaries who
can access the extraction oracle.

Public-simulatable: In this setting, the extraction key xk is publicly available.
An extraction-less watermarking PRF scheme in this setting yields a water-
marking PRF scheme against quantum adversaries in the public-extractable
setting.

We provide a construction in the first setting using private constrained PRF
based on the hardness of the LWE assumption. Also, we provide a construction
in the second setting based on IO and the hardness of the LWE assumption.

To give a high-level idea behind the above constructions, in this overview, we
show how to construct a public-simulatable extraction-less watermarking PRF
in the token-based setting [CHN+18]. In the token-based setting, we treat a
marked circuit C̃ ← Mark(pp, prfk,m) as a tamper-proof hardware token that an
adversary can only access in a black-box way.

Before showing the actual construction, we explain the high-level idea. Re-
call that SIM-MDD security requires that an adversary A who is given C̃ ←
Mark(pp, prfk,m) cannot distinguish (γ∗, x∗, y∗)← Sim(xk, τ, i∗) from an output
of D if m[i∗] = 0 and from that of Drev if m[i∗] = 1. This is the same as requiring
that A cannot distinguish (γ∗, x∗, y∗)← Sim(xk, τ, i∗) from that of the following
distribution Dreal,i∗ . We can check that Dreal,i∗ is identical with D if m[i∗] = 0
and with Drev if m[i∗] = 1.

10

Dreal,i∗ : Generate γ ← {0, 1} and x ← Dom. Then, if γ = m[i∗], generate
y ← Ran, and otherwise, compute y ← Eval(prfk, x). Output (γ, x, y).

Essentially, the only attack that A can perform is to feed x∗ contained in the
given tuple (γ∗, x∗, y∗) to C̃ and compares the result C̃(x∗) with y∗, if we ensure
that γ∗, x∗ are pseudorandom. In order to make the construction immune to
this attack, letting C̃ ← Mark(pp, prfk,m) and (γ∗, x∗, y∗) ← Sim(xk, τ, i∗), we
have to design Sim and C̃ so that

– If γ = m[i∗], C̃(x∗) outputs a value different from y∗.
– If γ ̸= m[i∗], C̃(x∗) outputs y∗.

We achieve these conditions as follows. First, we set (γ∗, x∗, y∗) output by
Sim(xk, τ, i∗) so that γ∗ and y∗ is random values and x∗ is an encryption of
y∗∥i∗∥γ∗ by a public-key encryption scheme with pseudorandom ciphertext prop-
erty, where the encryption key pk is included in τ . Then, we set C̃ as a token
such that it has the message m and the decryption key sk corresponding to pk
hardwired, and it outputs y∗ if the input is decryptable and γ∗ ̸= m[i∗] holds
for the decrypted y∗∥i∗∥γ∗, and otherwise behaves as Eval(prfk, ·). The actual
construction is as follows.

Let PRF be a PRF family consisting of functions {Fprfk(·) : {0, 1}n → {0, 1}λ|prfk},
where λ is the security parameter and n is sufficiently large. Let PKE = (KG,E,D)
be a CCA secure public-key encryption scheme satisfying pseudorandom cipher-
text property. Using these ingredients, We construct an extraction-less water-
marking PRF scheme ELWMPRF = (Setup,Gen,Eval,Mark, Sim) as follows.
Setup(1λ): In this construction, pp := ⊥ and xk := ⊥.
Gen(pp): It generates a fresh PRF key prfk of PRF and a key pair (pk, sk) ←

KG(1λ). The PRF key is (prfk, sk) and the corresponding public tag is pk.
Eval((prfk, sk), x): It simply outputs Fprfk(x).
Mark(pp, (prfk, sk),m): It generates the following taken C̃[prfk, sk,m].

Hard-Coded Constants: prfk, sk, m.
Input: x ∈ {0, 1}n.
1. Try to decrypt y∥i∥γ ← D(sk, x) with y ∈ {0, 1}λ, i ∈ [ℓm], and γ ∈ {0, 1}.
2. If decryption succeeds, output y if γ ̸= m[i] and Fprfk(x) otherwise.
3. Otherwise, output Fprfk(x).

Sim(xk, τ, i): It first generates γ ← {0, 1} and y ← {0, 1}λ. Then, it parses
τ := pk and generates x← E(pk, y∥i∥γ). Finally, it outputs (γ, x, y).
We check that ELWMPRF satisfies SIM-MDD security. For simplicity, we fix

the message m ∈ [ℓm] embedded into the challenge PRF key. Then, for any ad-
versary A and i∗ ∈ [ℓm], SIM-MDD security requires that given C̃[prfk, sk,m]←
Mark(mk, prfk,m) and τ = pk, A cannot distinguish (γ∗, x∗ = E(pk, y∗∥i∗∥γ∗), y∗)←
Sim(xk, τ, i∗) from an output of D if m[i∗] = 0 and is indistinguishable from Drev

if m[i∗] = 1.

11

We consider the case of m[i∗] = 0. We can finish the security analysis by
considering the following sequence of mutually indistinguishable hybrid games,
where A is given (γ∗, x∗ = E(pk, y∗∥i∗∥γ∗), y∗)← Sim(xk, τ, i∗) in the first game,
and on the other hand, is given (γ∗, x∗, y∗) ← D in the last game. We first
change the game so that x∗ is generated as a uniformly random value instead
of x∗ ← E(pk, y∗∥i∗∥γ∗) by using the pseudorandom ciphertext property under
CCA of PKE. This is possible since the CCA oracle can simulate access to the
marked token C̃[prfk, sk,m] by A. Then, we further change the security game so
that if γ∗ = 1, y∗ is generated as Fprfk(x∗) instead of a uniformly random value by
using the pseudorandomness of PRF. Note that if γ∗ = 0, y∗ remains uniformly
at random. We see that if γ∗ = 1, the token C̃[prfk, sk,m] never evaluate Fprfk(x∗)
since m[i∗] ̸= γ∗. Thus, this change is possible. We see that now the distribution
of (γ∗, x∗, y∗) is exactly the same as that output by D. Similarly, in the case of
m[i∗] = 1, we can show that an output of Sim(xk, τ, i∗) is indistinguishable from
that output by Drev. The only difference is that in the final step, we change the
security game so that y∗ is generated as Fprfk(x∗) if γ∗ = 0.

In the actual public-simulatable construction, we implement this idea using
iO and puncturable encryption [CHN+18] instead of token and CCA secure
public-key encryption. Also, in the actual secret-simulatable construction, we
basically follow the same idea using private constrained PRF and secret-key
encryption.

1.4 Organization

Due to the space limitation, we omit preliminaries including notations, basics
on quantum informations, and definitions of standard cryptographic tools. We
also omit most security proofs. See the full version of this paper for omitted
contents. In Section 2, we introduce some notions of quantum measurements. In
Section 3, we define watermarking PRF against quantum adversaries. In Sec-
tion 4, we define extraction-less watermarking PRF. In Section 5, we show we
can realize watermarking PRF against quantum adversaries from extraction-less
watermarking PRF. In Section 6, we provide an instantiation of extraction-less
watermarking PRF with private simulation based on the LWE assumption. In
Section 7, we provide an instantiation of extraction-less watermarking PRF with
public simulation based on IO and the LWE assumption.

2 Measurement Implementation

Definition 2.1 (Projective Implementation). Let:
– P = (P , I − P) be a binary outcome POVM
– D be a finite set of distributions over outcomes {0, 1}
– E = {ED}D∈D be a projective measurement with index set D.

We define the following measurement.
1. Measure under the projective measurement E and obtain a distribution D

over {0, 1}.

12

2. Output a bit sampled from the distribution D.
We say this measurement is a projective implementation of P, denoted by ProjImp(P)
if it is equivalent to P.

Theorem 2.1 ([Zha20, Lemma 1]). Any binary outcome POVM P = (P , I−
P) has a projective implementation ProjImp(P).

Definition 2.2 (Shift Distance). For two distributions D0, D1, the shift dis-
tance with parameter ϵ, denoted by ∆ϵ

Shift(D0, D1), is the smallest quantity δ such
that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x+ ϵ] + δ, Pr[D0 ≥ x] ≤ Pr[D1 ≥ x− ϵ] + δ,

Pr[D1 ≤ x] ≤ Pr[D0 ≤ x+ ϵ] + δ, Pr[D1 ≥ x] ≤ Pr[D0 ≥ x− ϵ] + δ.

For two real-valued measurementsM and N over the same quantum system, the
shift distance between M and N with parameter ϵ is

∆ϵ
Shift(M,N) := sup

|ψ⟩
∆ϵ

Shift(M(|ψ⟩),N (|ψ⟩)).

Definition 2.3 ((ϵ, δ)-Almost Projective [Zha20]). A real-valued quantum
measurementM = {M i}i∈I is (ϵ, δ)-almost projective if the following holds. For
any quantum state |ψ⟩, we applyM twice in a row to |ψ⟩ and obtain measurement
outcomes x and y, respectively. Then, Pr[|x− y| ≤ ϵ] ≥ 1− δ.

Theorem 2.2 ([Zha20, Theorem 2]). Let D be any probability distribution
and P be a collection of projective measurements. For any 0 < ϵ, δ < 1, there
exists an algorithm of measurement API

ϵ,δ
P,D that satisfies the following.

– ∆ϵ
Shift(API

ϵ,δ
P,D,ProjImp(PD)) ≤ δ.

– API
ϵ,δ
P,D is (ϵ, δ)-almost projective.

– The expected running time of API
ϵ,δ
P,D is TP,D ·poly(1/ϵ, log(1/δ)) where TP,D

is the combined running time of D, the procedure mapping i→ (P i, I−P i),
and the running time of measurement (P i, I − P i).

Theorem 2.3 ([Zha20, Corollary 1]). Let q be an efficiently constructible,
potentially mixed state, and D0, D1 efficiently sampleable distributions. If D0
and D1 are computationally indistinguishable, for any inverse polynomial ϵ and
any function δ, we have ∆3ϵ

Shift(API
ϵ,δ
P,D0

,API
ϵ,δ
P,D1

) ≤ 2δ + negl(λ).

Note that the indistinguishability of D0 and D1 needs to hold against dis-
tinguishers who can construct q in the theorem above. However, this fact is not
explicitly stated in [Zha20]. We need to care about this condition if we need
secret information to construct q , and the secret information is also needed to
sample an output from D0 or D1. We handle such a situation when analyzing
the unremovability of our privately extractable watermarking PRF. In that situ-
ation, we need a secret extraction key to construct q and sample an output from
D0 and D1.

We also define the notion of the reverse almost projective property of API.

13

Definition 2.4 ((ϵ, δ)-Reverse Almost Projective). Let P = {(Πi, I −
Πi)}i be a collection of binary outcome projective measurements. Let D be a
distribution. We also let Prev = {(I − Πi,Πi)}i. We say API is (ϵ, δ)-reverse
almost projective if the following holds. For any quantum state |ψ⟩, we apply
API

ϵ,δ
P,D and API

ϵ,δ
Prev,D in a row to |ψ⟩ and obtain measurement outcomes x and

y, respectively. Then, Pr[|(1− x)− y| ≤ ϵ] ≥ 1− δ.

We show that the measurement algorithmAPI
ϵ,δ
P,D in Theorem 2.2 also satis-

fies Definition 2.4. See the full version for the proof.

3 Definition of Quantum Watermarking

We introduce definitions for watermarking PRFs against quantum adversaries
in this section.

3.1 Syntax and Pseudorandomness

Definition 3.1 (Watermarking PRF). A watermarking PRF WMPRF for
the message space M := {0, 1}ℓm with domain Dom and range Ran is a tuple of
five algorithms (Setup,Gen,Eval,Mark,Extract).
Setup(1λ)→ (pp, xk): The setup algorithm takes as input the security parameter

and outputs a public parameter pp and an extraction key xk.
Gen(pp)→ (prfk, τ): The key generation algorithm takes as input the public pa-

rameter pp and outputs a PRF key prfk and a public tag τ .
Eval(prfk, x)→ y: The evaluation algorithm takes as input a PRF key prfk and

an input x ∈ Dom and outputs y ∈ Ran.
Mark(pp, prfk,m)→ C̃: The mark algorithm takes as input the public parameter

pp, a PRF key prfk, and a message m ∈ {0, 1}ℓm , and outputs a marked
evaluation circuit C̃.

Extract(xk, τ, C ′, ϵ)→ m′: The extraction algorithm takes as input an extraction
key xk, a tag τ , a quantum circuit with classical inputs and outputs C ′ =
(q ,U), and a parameter ϵ, and outputs m′ where m′ ∈ {0, 1}ℓm ∪{unmarked}.

Evaluation Correctness: For any message m ∈ {0, 1}ℓm , it holds that

Pr

C̃(x) = Eval(prfk, x)

∣∣∣∣∣∣∣∣
(pp, xk)← Setup(1λ)
(prfk, τ)← Gen(pp)
C̃ ← Mark(pp, prfk,m)

x← Dom

 ≥ 1− negl(λ).

Remark 3.1 (On extraction correctness). Usually, a watermarking PRF scheme
is required to satisfy extraction correctness that ensures that we can correctly
extract the embedded mark from an honestly marked circuit. However, as ob-
served by Quach et al. [QWZ18], if we require the extraction correctness to hold
for a randomly chosen PRF key, it is implied by unremovability defined below.
Note that the unremovability defined below considers a distinguisher as a pirate

14

circuit. However, it implies the extraction correctness since we can easily trans-
form an honestly marked circuit into a successful distinguisher. Thus, we do not
explicitly require a watermarking PRF scheme to satisfy extraction correctness
in this work.

Remark 3.2 (On public marking). We consider only watermarking PRFs with
public marking as in Definition 3.1 since we can achieve public marking by
default. The reason is as follows. Suppose that we generate pp, xk, and a mark-
ing key mk at the setup. When we generate a PRF key and a public tag at
Gen, we can first generate (pp′, xk′,mk′) ← Setup(1λ) from scratch (ignoring
the original (pp, xk,mk)) and set a PRF key p̂rfk := (prfk′,mk′) and a public
tag τ̂ := (pp′, xk′, τ ′) where (prfk′, τ ′)← Gen(pp′). That is, anyone can generate
a marked circuit from p̂rfk = (prfk′,mk′) by Mark(mk′, prfk′,m). Therefore, we
consider public marking by default in our model.

Discussion on syntax. Definition 3.1 is a natural quantum variant of classical
watermarking PRFs except that the key generation algorithm outputs a public
tag τ , and the extraction algorithm uses it. Such a public tag is not used in pre-
vious works on watermarking PRFs [CHN+18,KW21,QWZ18,KW19,YAL+19].
A public tag should not harm watermarking PRF security. We justify using τ
as follows.

First, we need to obtain many pairs of input and output to extract an embed-
ded message from a marked PRF in almost all known (classical) watermarking
constructions [CHN+18,BLW17,KW21,QWZ18,KW19,YAL+19,GKM+19,Nis20].
This is because we must check whether a tested PRF circuit outputs particular
values for particular inputs which depends on the target PRF (such particular
inputs are known as marked points). Suppose marked points are fixed and do
not depend on a PRF that will be marked. In that case, an adversary can easily
remove an embedded message by destroying functionalities at the fixed marked
points that could be revealed via a (non-target) marked PRF that an adversary
generated. Recall that we consider the public marking setting. The attack was
already observed by Cohen et al. [CHN+18].

Second, we consider a stronger adversary model than that in most previous
works as the definition of traceable PRFs by Goyal et al. [GKWW21]. An adver-
sary outputs a distinguisher-based pirate circuit in our security definition rather
than a pirate circuit that computes an entire output of a PRF. This is a refined
and realistic model, as Goyal et al. [GKWW21] argued. In this model, we can-
not obtain a valid input-output pair from a pirate circuit anymore. Such a pair
is typical information related to a target PRF. Goyal et al. resolve this issue
by introducing a tracing key that is generated from a target PRF. Note that
parameters of watermarking (pp and xk) should not be generated from a PRF
since we consider many different PRF keys in the watermarking PRF setting.

Thus, if we would like to achieve an extraction algorithm and the stronger
security notion simultaneously, an extraction algorithm should somehow take
information related to a target PRF as input to correctly extract an embedded
message. In the weaker adversary model, an extraction algorithm can easily

15

obtain many valid input and output pairs by running a tested circuit many
times. However, in the stronger distinguisher-based pirate circuit model, a pirate
circuit outputs a single decision bit.

To resolve this issue, we introduce public tags. We think it is natural to have
information related to the original PRF key in an extraction algorithm. In reality,
we check a circuit when a user claims that her/his PRF key (PRF evaluation cir-
cuit) is illegally used. Thus, it is natural to expect we can use a user’s public tag
for extraction. This setting resembles watermarking for public-key cryptographic
primitives, where a user public key is available in an extraction algorithm. In
addition, public tags do not harm PRF security in our constructions. It is un-
clear whether we can achieve unremovability in the stronger distinguisher-based
model without any syntax change (even in the classical setting). 6

Extended pseudorandomness. We consider extended weak pseudorandomness,
where weak pseudorandomness holds even if the adversary generates pp. This no-
tion is the counterpart of extended pseudorandomness by Quach et al. [QWZ18],
where pseudorandomness holds in the presence of the extraction oracle. How-
ever, our pseudorandomness holds even against an authority unlike extended
pseudorandomness by Quach et al. since we allow adversaries to generate a pub-
lic parameter.

Definition 3.2 (Extended Weak Pseudorandomness against Author-
ity). To define extended weak pseudorandomness for watermarking PRFs, we
define the game Expext-wprf

A,WMPRF(λ) as follows.
1. A first sends pp to the challenger.
2. The challenger generates (prfk, τ)← Gen(pp) and sends τ to A.
3. The challenger chooses coin← {0, 1}. A can access to the following oracles.

Owprf: When this is invoked (no input), it returns (a, b) where a← Dom and
b := Eval(prfk, a).

Ochall: When this is invoked (no input), it returns:
– (a, b) where a← Dom and b := Eval(prfk, a) if coin = 0,
– (a, b) where a← Dom and b← Ran if coin = 1.

This oracle is invoked only once.
4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′

and 0 otherwise.

6 Even if we consider the weaker adversary model, the same issue appears in the
quantum setting in the end. If we run a quantum circuit for an input and measure
the output, the measurement could irreversibly alter the quantum state and we lost
the functionality of the original quantum state. That is, there is no guarantee that
we can correctly check whether a tested quantum circuit is marked or not after
we obtain a single valid pair of input and output by running the circuit. However,
as we explained above, we want to obtain information related to a target PRF for
extraction. Thus, we need a public tag in the syntax in either case.

16

We say that WMPRF is extended weak pseudorandom if for every QPT A,
we have

Advext-wprf
A,WMPRF(λ) = 2

∣∣∣∣Pr
[
Expext-wprf

A,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

3.2 Unremovability against Quantum Adversaries

We define unremovability for watermarking PRFs against quantum adversaries.
We first define quantum program with classical inputs and outputs and then
define unremovability.

Definition 3.3 (Quantum Program with Classical Inputs and Outputs [ALL+21]).
A quantum program with classical inputs is a pair of quantum state q and uni-

taries {Ux}x∈[N] where [N] is the domain, such that the state of the program
evaluated on input x is equal to UxqU †

x. We measure the first register of UxqU †
x

to obtain an output. We say that {Ux}x∈[N] has a compact classical description
U when applying Ux can be efficiently computed given U and x.

Definition 3.4 (Unremovability for private extraction). We consider the
public marking and secret extraction setting here. Let ϵ ≥ 0. We define the game
Exptnrmv

A,WMPRF(λ, ϵ) as follows.
1. The challenger generates (pp, xk) ← Setup(1λ) and gives pp to the adver-

sary A. A send m ∈ {0, 1}ℓm to the challenger. The challenger generates
(prfk, τ)← Gen(pp), computes C̃ ← Mark(pp, prfk,m), and sends τ and C̃ to
A.

2. A can access to the following oracle.
Oext: On input τ ′ and a quantum circuit C , it returns Extract(xk, C , τ ′, ϵ).

3. Finally, the adversary outputs a “pirate” quantum circuit CA = (q ,U), where
CA is a quantum program with classical inputs and outputs whose first reg-
ister (i.e., output register) is C2 and U is a compact classical description of
{Ux,y}x∈Dom,y∈Ran.
Let D be the following distribution.

D: Generate b← {0, 1}, x← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x).
Output (b, x, yb).

We also let P = (P b,x,y,Qb,x,y)b,x,y be a collection of binary outcome projective
measurements, where

P b,x,y = U †
x,y |b⟩ ⟨b|Ux,y and Qb,x,y = I − P b,x,y.

Moreover, we let MD = (PD,QD) be binary outcome POVMs, where

PD =
∑
r∈R

1
|R|

PD(r) and QD = I − PD.

Live: When applying the measurement ProjImp(MD) to q, we obtain a value p
such that p ≥ 1

2 + ϵ.

17

GoodExt: When Computing m′ ← Extract(xk, CA, τ, ϵ), it holds that m′ ̸= unmarked.
BadExt: When Computing m′ ← Extract(xk, CA, τ, ϵ), it holds that m′ /∈ {m, unmarked}.

We say that WMPRF satisfies unremovability if for every ϵ > 0 and QPT A,
we have

Pr[BadExt] ≤ negl(λ) and Pr[GoodExt] ≥ Pr[Live]− negl(λ).

Intuitively, (P b,x,y,Qb,x,y) is a projective measurement that feeds (x, y) to
CA and checks whether the outcome is b or not (and then uncomputes). Then,
MD can be seen as POVMs that results in 0 with the probability that CA can
correctly guess b from (x, yb) for (b, x, yb) generated randomly from D.
Remark 3.3 (On attack model). We check whether CA correctly distinguishes
a real PRF value from a random value or not by applying ProjImp(MD) to q .
This attack model follows the refined and more realistic attack model by Goyal et
al. [GKWW21]. The adversary outputs a pirate circuit that computes an entire
PRF value in all previous works except their work.

The distinguisher-based pirate circuit model is compatible with the (quan-
tum) pirate decoder model of traitor tracing. Thus, our attack model also follows
the attack model of quantum traitor tracing (the black box projection model)
by Zhandry [Zha20, Section 4.2].7

As in the traitor tracing setting [Zha20], ProjImp(MD) is inefficient in gen-
eral. We can handle this issue as Zhandry did. We will use an approximate
version of ProjImp(MD) to achieve an efficient reduction. In addition, we cannot
apply both ProjImp(MD) and Extract to CA simultaneously. However, the condi-
tion Pr[GoodExt] ≥ Pr[Live]− negl(λ) claims that an embedded mark cannot be
removed as long as the pirate circuit is alive. This fits the spirit of watermarking.
See Zhandry’s paper [Zha20, Section 4] for more discussion on the models.
Remark 3.4 (On selective message). As we see in Definition 3.4, we consider
the selective setting for private extraction case, where A must send the target
message m to the challenger before A accesses to the oracle Oext and after pp
is given. This is the same setting as that by Quach et al. [QWZ18]. We can
consider the fully adaptive setting, where A can send the target message m after
it accesses to the oracle Oext, as Kim and Wu [KW19]. However, our privately
extractable watermarking PRF satisfies only selective security. Thus, we write
only the selective variant for the private extraction case.
Definition 3.5 (Unremovability for Public Extraction). This is the same
as Definition 3.4 except we use the game Exppub-ext-nrmv

A,WMPRF (λ, ϵ) defined in the same
way as Exptnrmv

A,WMPRF(λ, ϵ) except the following differences.
– In item 1, A is given xk together with pp.
– Item 2 is removed.

7 In the watermarking setting, an extraction algorithm can take the description of a
pirate circuit as input (corresponding to the software decoder model [Zha20, Section
4.2]), unlike the black-box tracing model of traitor tracing. However, we use a pirate
circuit in the black box way for our extraction algorithms. Thus, we follow the black
box projection model by Zhandry [Zha20].

18

4 Definition of Extraction-Less Watermarking

We introduce the notion of extraction-less watermarking PRF as an intermediate
primitive towards watermarking PRFs secure against quantum adversaries.

4.1 Syntax and Pseudorandomness

Definition 4.1 (Extraction-Less Watermarking PRF). An extraction-
less watermarking PRF WMPRF for the message space {0, 1}ℓm with domain
Dom and range Ran is a tuple of five algorithms (Setup,Gen,Eval,Mark, Sim),
where the first four algorithms have the same input/output behavior as those
defined in Definition 3.1 and Sim has the following input/output behavior.
Sim(xk, τ, i)→ (γ, x, y): The simulation algorithm Sim takes as input the extrac-

tion key xk, a tag τ , and an index i, and outputs a tuple (γ, x, y).
Evaluation Correctness: It is defined in exactly the same way as the evalua-

tion correctness for watermarking PRF defined in Definition 3.1.

Extended pseudorandomness. Extended pseudorandomness for extraction-less
watermarking PRF is defined in exactly the same way as that for watermarking
PRF, that is Definition 3.2.

4.2 Simulatability for Mark-Dependent Distributions (SIM-MDD
Security)

We introduce the security notion for extraction-less watermarking PRF that
we call simulatability for mark-dependent distributions. Let D and Drev be the
following distributions.
D: Generate b← {0, 1}, x← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x).

Output (b, x, yb).
Drev: Generate (b, x, y)← D. Output (1⊕ b, x, y).
Namely, D is the distribution that outputs a random value if the first bit b = 0
and a PRF evaluation if the first bit b = 1, and Drev is its opposite (i.e., a PRF
evaluation if b = 0 and a random value if b = 1). SIM-MDD security is a security
notion that guarantees that an adversary given C̃ ← Mark(mk, prfk,m) cannot
distinguish an output of Sim(xk, τ, i) from that of D if m[i] = 0 and from that
of Drev if m[i] = 1.

Definition 4.2 (SIM-MDD Security with Private Simulation). To de-
fine SIM-MDD security with private simulation, we define the game Exptsim-mdd

i∗,A,WMPRF(λ)
as follows, where i∗ ∈ [ℓm].
1. The challenger generates (pp, xk) ← Setup(1λ) and sends pp to A. A sends

m ∈ {0, 1}ℓm to the challenger. The challenger generates (prfk, τ)← Gen(pp)
and computes C̃ ← Mark(mk, prfk,m). The challenger sends τ and C̃ to A.

2. A can access to the following oracle.

19

Osim: On input τ ′ and i′ ∈ [ℓm], it returns Sim(xk, τ ′, i′).
3. Let Dreal,i∗ be the following distribution. Note that Dreal,i∗ is identical with

D if m[i∗] = 0 and with Drev if m[i∗] = 1.
Dreal,i∗ : Generate γ ← {0, 1} and x ← Dom. Then, if γ = m[i∗], generate

y ← Ran, and otherwise, compute y ← Eval(prfk, x). Output (γ, x, y).
The challenger generates coin ← {0, 1}. If coin = 0, the challenger sam-
ples (γ, x, y) ← Dreal,i∗ . If coin = 1, the challenger generates (γ, x, y) ←
Sim(xk, τ, i∗). The challenger sends (γ, x, y) to A.

4. When A terminates with output coin′, the challenger outputs 1 if coin = coin′

and 0 otherwise.
Note that A is not allowed to access to Osim after A is given (γ, x, y).

We say that WMPRF is SIM-MDD secure if for every i∗ ∈ [ℓm] and QPT A,
we have

Advsim-mdd
i∗,A,WMPRF(λ) = 2

∣∣∣∣Pr
[
Exptsim-mdd

i∗,A,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

We consider the selective setting above as unremovability for private extrac-
tion in Definition 3.4 since we use SIM-MDD security with private simulation to
achieve unremovability for private simulation.

Remark 4.1 (On multi challenge security). We can prove that the above defi-
nition implies the multi-challenge variant where polynomially many outputs of
Sim(xk, τ, i∗) are required to be indistinguishable from those of Dreal,i∗ . This is
done by hybrid arguments where outputs of Sim(xk, τ, i∗) are simulated using
Osim and those of Dreal,i∗ are simulated using C̃. To apply Theorem 2.3, we
need the multi challenge variant. However, we consider the single challenge vari-
ant due to the implication above. A similar remark is applied to the variants of
SIM-MDD security introduced below.

SIM-MDD security with private simulation under the API oracle. Let the API

oracle be an oracle that is given (ϵ, δ, τ ′, i′) and a quantum state q , and returns
the result of API

ϵ,δ
P,Dτ′,i′ (q) and the post measurement state, where P is defined

in the same way as that in Definition 3.4 and Dτ ′,i′ be the distribution that
outputs randomly generated (γ, x, y)← Sim(xk, τ ′, i′). The API oracle cannot be
simulated using the simulation oracle Osim since we need superposition of out-
puts of Sim to compute API

ϵ,δ
P,Dτ′,i′ (q). When constructing watermarking PRFs

with private simulation from extraction-less watermarking PRFs, the underlying
extraction-less watermarking PRF scheme needs to satisfy SIM-MDD security
with private simulation under the API oracle that we call QSIM-MDD security
with private simulation. The reason is as follows. In the security analysis of the
construction, the indistinguishability guarantee provided by SIM-MDD security
needs to hold for an adversary against the resulting watermarking scheme who
can access the extraction oracle. This means that it also needs to hold for an
adversary who can access the API oracle since API is repeatedly invoked in the
extraction algorithm of the resulting scheme.

20

Fortunately, as we will see, we can generically convert an extraction-less wa-
termarking PRF scheme satisfying SIM-MDD security with private simulation
into one satisfying QSIM-MDD security with private simulation, using QPRFs.
Thus, when realizing an extraction-less watermarking PRF scheme as an inter-
mediate step towards privately extractable watermarking PRFs, we can concen-
trate on realizing one satisfying SIM-MDD security with private simulation.

Remark 4.2. There is a similar issue in the traitor tracing setting. If PLBE is a
secret-key based one, we need a counterpart of QSIM-MDD in secret-key based
PLBE to achieve traitor tracing with a secret tracing algorithm against quantum
adversaries by using Zhandry’s framework [Zha20]. Note that Zhandry focuses
on public-key based PLBE in his work [Zha20].

Definition 4.3 (QSIM-MDD Security with Private Simulation). Let
Dτ,i be a distribution defined as follows.
Dτ,i: Output (γ, x, y)← Sim(xk, τ, i).
Then, we define the game Expq-sim-mdd

i∗,A,WMPRF(λ) in the same way as Expsim-mdd
i∗,A,WMPRF(λ)

except that in addition to Osim, A can access to the following oracle in the step
2.
Oapi: On input (ϵ, δ, τ ′, i′) and a quantum state q, it returns the result of API

ϵ,δ
P,Dτ′,i′ (q)

and the post measurement state, where P is defined in the same way as that
in Definition 3.4.
We say that WMPRF is QSIM-MDD secure with private simulation if for

every i∗ ∈ [ℓm] and QPT A, we have

Advq-sim-mdd
i∗,A,WMPRF(λ) = 2

∣∣∣∣Pr
[
Expq-sim-mdd

i∗,A,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

We have the following theorem.

Theorem 4.1. Assume there exists an extraction-less watermarking PRF scheme
satisfying SIM-MDD security with private simulation and a QPRF. Then, there
exists an extraction-less watermarking PRF scheme satisfying QSIM-MDD se-
curity with private simulation.

We prove this theorem in the full version.

Definition 4.4 (SIM-MDD Security with Public Simulation). We de-
fine the game Expsim-mdd-pub

i∗,A,WMPRF(λ) in the same way as Exptsim-mdd
i∗,A,WMPRF(λ) except the

following differences, where i∗ ∈ [ℓm].
– In item 1, A is given xk together with pp.
– Item 2 is removed.

We say that WMPRF satisfies SIM-MDD security with public simulation if
for every i∗ ∈ [ℓm] and QPT A, we have

Advsim-mdd-pub
i∗,A,WMPRF(λ) = 2

∣∣∣∣Pr
[
Expsim-mdd-pub

i∗,A,WMPRF(λ) = 1
]
− 1

2

∣∣∣∣ = negl(λ).

21

5 Watermarking PRF from Extraction-Less
Watermarking PRF

We show how to construct watermarking PRF secure against quantum adver-
saries from extraction-less watermarking PRF.

Let ELWMPRF = (Setup,Gen,Eval,Mark, Sim) be an extraction-less water-
marking PRF scheme whose message space is {0, 1}ℓm+1. We construct a water-
marking PRF scheme WMPRF = (WM.Setup,WM.Gen,WM.Eval,WM.Mark,Extract)
whose message space is {0, 1}ℓm as follows. We use Setup, Gen, and Eval as
WM.Setup, WM.Gen, and WM.Eval, respectively. Thus, the domain and range
of WMPRF are the same as those of ELWMPRF. Also, we construct WM.Mark
and Extract as follows.
WM.Mark(pp, prfk,m):

– Output C̃ ← Mark(pp, prfk,m∥0).
Extract(xk, C , τ, ϵ):

– Let ϵ′ = ϵ/4(ℓm + 1) and δ′ = 2−λ.
– Parse (q ,U)← C .
– Let P be defined in the same way as that in Definition 3.4 and Dτ,i be

the following distribution for every i ∈ [ℓm + 1].
Dτ,i: Output (γ, x, y)← Sim(xk, τ, i).

– Compute p̃ℓm+1 ← API
ϵ′,δ′

P,Dτ,ℓm+1
(q). If p̃ℓm+1 <

1
2 +ϵ−4ϵ′, return unmarked.

Otherwise, letting q0 be the post-measurement state, go to the next step.
– For all i ∈ [ℓm], do the following.

1. Compute p̃i ← API
ϵ′,δ′

P,Dτ,i
(qi−1). Let qi be the post-measurement

state.
2. If p̃i > 1

2 + ϵ − 4(i + 1)ϵ′, set m′
i = 0. If p̃i < 1

2 − ϵ + 4(i + 1)ϵ′, set
m′
i = 1. Otherwise, exit the loop and output m′ = 0ℓm .

– Output m′ = m′
1∥ · · · ∥m′

ℓm
.

We have the following theorems.

Theorem 5.1. If ELWMPRF satisfies extended weak pseudorandomness against
authority, then so does WMPRF.

Theorem 5.2. If ELWMPRF is an extraction-less watermarking PRF that satis-
fies QSIM-MDD security, WMPRF is a privately extractable watermarking PRF.

Theorem 5.3. If ELWMPRF is an extraction-less watermarking PRF that satis-
fies SIM-MDD security with public simulation, WMPRF is a publicly extractable
watermarking PRF.

It is clear that Theorem 5.1 holds since the evaluation algorithm of WMPRF
is the same as that of ELWMPRF and extended weak pseudorandomness is in-
sensitive to how the marking and extraction algorithms are defined. Thus, we
omit a formal proof.

The proofs of Theorems 5.2 and 5.3 are almost the same. Thus, we only
provide the proof for the former, and omit the proof for the latter.

22

Proof of Theorem 5.2. Let ϵ > 0. Let A be a QPT adversary attacking the un-
removability of WMPRF. The description of Exptnrmv

A,WMPRF(λ, ϵ) is as follows.

1. The challenger generates (pp, xk) ← Setup(1λ) and gives pp to the adver-
sary A. A sends m ∈ {0, 1}ℓm to the challenger. The challenger generates
(prfk, τ)← Gen(pp), computes C̃ ← Mark(pp, prfk,m∥0), and sends C̃ to A.

2. A can access to the following oracle.
Oext: On input τ ′ and a quantum circuit C , it returns Extract(xk, C , τ ′, ϵ).

3. Finally, the adversary outputs a quantum circuit CA = (q ,U).
We define D, P,MD, and the three events Live, GoodExt, and BadExt in the

same way as Definition 3.4.

The proof of Pr[GoodExt] ≥ Pr[Live]− negl(λ). Extract outputs unmarked if and
only if p̃ℓ+1 <

1
2 + ϵ−4ϵ′, that is we have Pr[GoodExt] = Pr

[
p̃ℓ+1 ≥ 1

2 + ϵ− 4ϵ′
]
.

Let p the probability obtained by applying ProjImp(MD) to q . Then, we have
Pr[Live] = Pr

[
p ≥ 1

2 + ϵ
]
. Let p̃ be the outcome obtained if we apply API

ϵ′,δ′

P,D to
q . From the property of API , we have

Pr[Live] = Pr
[
p ≥ 1

2
+ ϵ

]
≤ Pr

[
p̃ ≥ 1

2
+ ϵ− ϵ′

]
+ negl(λ).

D and Dτ,ℓm+1 are computationally indistinguishable from the QSIM-MDD se-
curity of ELWMPRF since outputs of Sim(xk, τ, i) is indistinguishable from those
of D if m[i] = 0. This indistinguishability holds even under the existence of Oapi.
Then, from Theorem 2.3, we have

Pr
[
p̃ ≥ 1

2
+ ϵ− ϵ′

]
≤ Pr

[
p̃ℓ+1 ≥

1
2

+ ϵ− 4ϵ′
]

+ negl(λ) = Pr[GoodExt] + negl(λ).

By combining the above two equations, we obtain Pr[GoodExt] ≥ Pr[Live] −
negl(λ).

The reason D and Dτ,ℓ+1 need to be computationally indistinguishable un-
der the existence of Oapi to apply Theorem 2.3 is as follows. In this application
of Theorem 2.3, the quantum state appeared in the statement of it is set as q

contained in the quantum circuit C output by A. Then, Theorem 2.3 (implic-
itly) requires that D and Dτ,ℓ+1 be indistinguishable for distinguishers who can
construct q . To construct q , we need to execute A who can access to Oext in
which API is repeatedly executed. This is the reason D and Dτ,ℓ+1 need to be
indistinguishable under the existence of Oapi.

The proof of Pr[BadExt] ≤ negl(λ). We define the event BadExti as follows for
every i ∈ [ℓm].
BadExti: When Running Extract(xk, CA, τ

∗, ϵ), the following conditions hold.
– p̃ℓ+1 ≥ 1

2 + ϵ− 4ϵ′ holds.
– m′

j = mj holds for every j ∈ [i− 1].
– Extract exits the i-th loop or m′

i ̸= mi holds.

23

Then, we have Pr[BadExt] ≤
∑
i∈[ℓ] Pr[BadExti]. Below, we estimate Pr[BadExti].

We first consider the case of mi−1 = 0 and mi = 0. Assume m′
i−1 = mi−1 = 0

holds. Then, we have p̃i−1 >
1
2 + ϵ − 4iϵ′. Let p̃′

i−1 ← API
ϵ′,δ′

P,Dτ,i−1
(qi−1). From,

the almost-projective property of API , we have

Pr
[
p̃′
i−1 >

1
2

+ ϵ− 4iϵ′ − ϵ′
]
≥ 1− δ′.

When mi−1 = 0 and mi = 0, Dτ,i−1 and Dτ,i are computationally indistinguish-
able since both of them are computationally indistinguishable from D by the
QSIM-MDD security of ELWMPRF. This indistinguishability holds under the
existence of Oapi. Thus, from Theorem 2.3, we have

1− δ′ ≤ Pr
[
p̃′
i−1 >

1
2

+ ϵ− (4i+ 1)ϵ′
]
≤ Pr

[
p̃i >

1
2

+ ϵ− 4(i+ 1)ϵ′
]

+ negl(λ).

This means that Pr[BadExti] = negl(λ) in this case. Note that the reason the
indistinguishability of Dτ,i−1 and Dτ,i needs to hold under Oapi is that Theo-
rem 2.3 requires it hold for distinguishers who can construct qi−1.

Next, we consider the case of mi−1 = 0 and mi = 1. Assume m′
i−1 = mi−1 = 0

holds. Then, we have p̃i−1 >
1
2 +ϵ−4iϵ′. We then define an additional distribution

Drev
τ,i as follows.

Drev
τ,i : Generate (γ, x, y)← Sim(xk, τ, i). Output (1⊕ γ, x, y).

That is, the first bit of the output is flipped from Dτ,i. Then, for any random
coin r, we have (PDrev

τ,i
(r),QDrev

τ,i
(r)) = (QDτ,i(r),P Dτ,i(r)). This is because we have

Qb,x,y = I − P b,x,y = P 1⊕b,x,y for any tuple (b, x, y). Therefore, API
ϵ′,δ′

P,Drev
τ,i−1

is

exactly the same process as API
ϵ′,δ′

Prev,Dτ,i−1
. Let p̃′

i−1 ← API
ϵ′,δ′

P,Drev
τ,i−1

(qi−1). From,
the reverse-almost-projective property of API , we have

Pr
[
p̃′
i−1 <

1
2
− ϵ+ 4iϵ′ + ϵ′

]
≥ 1− δ′.

When mi−1 = 0 and mi = 1, Drev
τ,i−1 and Dτ,i are computationally indistinguish-

able since both of them are computationally indistinguishable from the following
distribution Drev by the QSIM-MDD security of ELWMPRF.
Drev: Generate (γ, x, y)← D. Output (1⊕ γ, x, y).
This indistinguishability holds under the existence of Oapi. Thus, from Theo-
rem 2.3, we have

1− δ′ ≤ Pr
[
p̃′
i−1 <

1
2
− ϵ+ (4i+ 1)ϵ′

]
≤ Pr

[
p̃i <

1
2
− ϵ+ 4(i+ 1)ϵ′

]
+ negl(λ).

This means that Pr[BadExti] = negl(λ) also in this case. Note that the reason
the indistinguishability of Drev

τ,i−1 and Dτ,i needs to hold under Oapi is that
Theorem 2.3 requires it hold for distinguishers who can construct qi−1.

Similarly, we can prove that Pr[BadExti] = negl(λ) holds in the case of
(mi−1,mi) = (1, 0) and (mi−1,mi) = (1, 1).

Overall, we see that Pr[BadExt] = negl(λ) holds in all cases.

24

6 Extraction-Less Watermarking PRF from LWE

We present an extraction-less watermarking PRF, denoted by PRFcprf , whose
message space is {0, 1}ℓm with domain {0, 1}n and range {0, 1}m. We use the
following tools, which can be instantiated with the QLWE assumption:

– Private CPRF CPRF = (CPRF.Setup,CPRF.Eval,CPRF.Constrain,CPRF.CEval).
For ease of notation, we denote CPRF evaluation circuit CPRF.Eval(msk, ·)
and constrained evaluation circuits CPRF.CEval(skf , ·) by G : {0, 1}n →
{0, 1}m and G/∈V : {0, 1}n → {0, 1}m, respectively, where x ∈ V iff f(x) = 1.

– SKE scheme SKE = (SKE.Gen, SKE.Enc, SKE.Dec). The plaintext space and
ciphertext space of SKE are {0, 1}ℓske and {0, 1}n, respectively, where ℓske =
log ℓm + 1.

– PKE scheme PKE = (Gen,Enc,Dec). The plaintext space of PKE is {0, 1}2λ.

Construction overview. We already explained the high-level idea for how to real-
ize extraction-less watermarking PRFs in Section 1.3. However, the construction
of PRFcprf requires some additional efforts. Thus, before providing the actual
construction, we provide a high-level overview of PRFcprf .

Recall that letting C̃ ← Mark(pp, prfk,m) and (γ∗, x∗, y∗) ← Sim(xk, τ, i∗),
we have to design Sim and C̃ so that

– If γ = m[i∗], C̃(x∗) outputs a value different from y∗.
– If γ ̸= m[i∗], C̃(x∗) outputs y∗.

In the token-based construction idea, we achieve these conditions by setting x∗

as an encryption of y∗∥i∗∥γ∗ and designing C̃ as a token such that it outputs y∗

if the input is decryptable and γ∗ ̸= m[i∗] holds for the decrypted value y∗∥i∗∥γ∗,
and otherwise behaves as the original evaluation circuit. However, in PRFcprf , we
use a constrained evaluation circuit of CPRF as C̃, and thus we cannot program
output values for specific inputs. Intuitively, it seems that Sim needs to use the
original PRF key prfk to achieve the above two conditions.

To solve the issue, we adopt the idea used by Quach et al. [QWZ18]. In
PRFcprf , the setup algorithm Setup generates (pk, sk) ← Gen(1λ) of PKE, and
sets pp = pk and xk = sk. Then, the PRF key generation algorithm is given
pk, generates G ← CPRF.Setup(1λ, 1κ) along with ske.k ← SKE.Gen(1λ), and
sets the public tag τ as an encryption of (G, ske.k) under pk. The evaluation
algorithm of PRFcprf is simply that of CPRF.

Now, we explain how to design Sim and C̃ ← Mark(pp, prfk,m) to satisfy
the above two conditions. Given xk = sk, τ = Enc(pk, prfk) and i, Sim is able
to extract prfk = (G, ske.k). Then, Sim generates γ ← {0, 1} and sets x ←
SKE.Enc(ske.k, i∥γ) and y ← G(x). We set C̃ as a constrained version of G for a
circuit D that outputs 1 if the input x is decryptable by ske.k and γ = m[i] holds
for decrypted value i∥γ, and otherwise outputs 0. For an input x, the constrained
version of G outputs the correct output G(x) if and only if D(x) = 0. We can
check that PRFcprf satisfies the above two conditions.

The above construction does not satisfy extended weak pseudorandomness
against authority since the authority can extract the original CPRF key G by

25

xk = sk. However, this problem can be fixed by constraining G. We see that
Sim needs to evaluate G for valid ciphertexts of SKE. Thus, to implement the
above mechanism, it is sufficient to set the public tag τ as an encryption of ske.k
and a constrained version of G for a circuit Dauth that output 0 if and only if
the input is decryptable by ske.k. Then, the authority can only extract such a
constrained key. By requiring sparseness for SKE, the constrained key cannot be
used to break the pseudorandomness of PRFcprf for random inputs. This means
that PRFcprf satisfies extended weak pseudorandomness against an authority.
Note that we only need a single-key CPRF for PRFcprf since either a user or the
authority (not both) is a malicious entity in security games.

The description of PRFcprf is as follows.
Setup(1λ):

– Generate (pk, sk)← Gen(1λ).
– Output (pp, xk) := (pk, sk).

Gen(pp):
– Parse pp = pk.
– Generate G ← CPRF.Setup(1λ, 1κ). In our construction, κ is the size of

circuit D[ske.k,m] described in Figure 2, which depends on ℓm (and λ).
– Generate ske.k← SKE.Gen(1λ).
– Construct a circuit Dauth[ske.k] described in Figure 1.
– Compute G/∈Vauth

:= CPRF.Constrain(G, Dauth[ske.k]), where Vauth ⊂ {0, 1}n
is a set such that x ∈ Vauth iff Dauth[ske.k](x) = 1.

– Output prfk := (G, ske.k) and τ ← Enc(pk, (G/∈Vauth , ske.k)).
Eval(prfk, x ∈ {0, 1}n): Recall that G is a keyed CPRF evaluation circuit.

– Parse prfk = (G, ske.k).
– Output y := G(x).

Mark(pp, prfk,m):
– Parse pp = pk and prfk = (G, ske.k).
– Construct a circuit D[ske.k,m] described in Figure 2.
– Compute G/∈V ← CPRF.Constrain(G, D[ske.k,m]), where V ⊂ {0, 1}n is a

set such that x ∈ V iff D[ske.k,m](x) = 1.
– Output C̃ = G/∈V .

Sim(xk, τ, i):
– Parse xk = sk.
– Compute (G/∈Vauth , ske.k)← Dec(sk, τ).
– Choose γ ← {0, 1}.
– Compute x← SKE.Enc(ske.k, i∥γ) and y ← G/∈Vauth(x).
– Output (γ, x, y).

The evaluation correctness of PRFcprf follows from the sparseness of SKE
and the correctness of CPRF. For the security of PRFcprf , we have the following
theorems.

Theorem 6.1. SKE is a secure SKE scheme with pseudorandom ciphertext,
CPRF is a selectively single-key private CPRF, PKE is a CCA secure PKE
scheme, then PRFcprf is an extraction-less watermarking PRF satisfying SIM-
MDD security.

26

Circuit Dauth[ske.k]
Constants: An SKE key ske.k, and a message m.
Input: A string x ∈ {0, 1}n.
1. Compute d← SKE.Dec(ske.k, x).
2. Output 0 if d ̸= ⊥ and 1 otherwise.

Fig. 1: The description of Dauth

Circuit D[ske.k, m]
Constants: An SKE key ske.k, and a message m.
Input: A string x ∈ {0, 1}n.
1. Compute d← SKE.Dec(ske.k, x).
2. If d ̸= ⊥, do the following

(a) Parse d = i∥γ, where i ∈ [ℓm] and γ ∈ {0, 1}.
(b) If γ = m[i], output 1. Otherwise, output 0.

3. Otherwise output 0.

Fig. 2: The description of D

Theorem 6.2. If CPRF is a selective single-key private CPRF, PRFcprf satisfies
extended weak pseudorandomness.

We prove Theorems 6.1 and 6.2 in the full version.

7 Extraction-Less Watermarking PRF with Public
Simulation from IO

We construct an extraction-less watermarking PRF satisfying SIM-MDD secu-
rity with public simulation. In the construction, we use puncturable encryption
(PE) [CHN+18]. We provide the definition of PE in the full version.

We describe our extraction-less watermarking PRF PRFio for message space
{0, 1}ℓm with domain {0, 1}ℓin and range {0, 1}ℓout below. We use the following
tools:

– PPRF PRF = PRF.(Gen,Eval,Puncture). We denote a PRF evaluation circuit
PRF.Evalprfk(·) by F : {0, 1}ℓin → {0, 1}ℓout , a PRF evaluation circuit with
punctured key PRF.Evalprfk ̸=x

(·) by F̸=x (that is, we omit prfk and simply
write F(·) instead of Fprfk(·)) for ease of notations.

– PE scheme PE = PE.(Gen,Puncture,Enc,Dec). The plaintext and ciphertext
space of PE are {0, 1}ℓpt and {0, 1}ℓct , respectively, where ℓpt = ℓ+ log ℓm + 1
and ℓin := ℓct (ℓct = poly(ℓ, log ℓm)).

– Indistinguishability obfuscator iO.

27

Circuit D[F, pe.dk, m]
Constants: A PRF F, a PE decryption key pe.dk, and a message m.
Input: A string x ∈ {0, 1}ℓin .
1. Compute d← PE.Dec(pe.dk, x).
2. If d ̸= ⊥, do the following

(a) Parse d = s∥i∥γ, where s ∈ {0, 1}ℓ, i ∈ [ℓm], and γ ∈ {0, 1}.
(b) If m[i] ̸= γ, output PRG(s). Otherwise, output F(x).

3. Otherwise, output F(x).

Fig. 3: The description of D

– PRG PRG : {0, 1}ℓ → {0, 1}ℓout .
Setup(1λ):

– Output (pp, xk) := (⊥,⊥).
Gen(pp):

– Parse pp = ⊥.
– Compute F← PRF.Gen(1λ).
– Generate (pe.ek, pe.dk)← PE.Gen(1λ).
– Output prfk := (F, pe.dk) and τ := pe.ek.

Eval(prfk, x ∈ {0, 1}ℓin):
– Parse prfk = (F, pe.dk).
– Compute and output y ← F(x).

Mark(pp, prfk,m ∈ {0, 1}ℓm):
– Parse pp = ⊥ and prfk = (F, pe.dk).
– Construct a circuit D[F, pe.dk,m] described in Figure 3.
– Compute and output C̃ := iO(D[F, pe.dk,m]).

Sim(xk, τ, i):
– Parse xk = ⊥ and τ = pe.ek.
– Choose γ ← {0, 1} and s← {0, 1}ℓ.
– Compute y := PRG(s).
– Compute x← PE.Enc(pe.ek, s∥i∥γ).
– Output (γ, x, y)

The size of the circuit D is appropriately padded to be the maximum size of all
modified circuits, which will appear in the security proof.

The evaluation correctness of PRFio immediately follows from the sparseness
of PE and the functionality of iO.8 PRFio trivially satisfies pseudorandomness
(against an authority) since Setup outputs nothing, τ is a public key pe.ek, and
Eval is independent of (pe.ek, pe.dk) (pe.dk is not used in Eval). Moreover, we
have the following theorem.
8 In fact, PRFio satisfies a stronger evaluation correctness than one written in Defi-

nition 4.1. The evaluation correctness holds even for any PRF key prfk and input
x ∈ Dom like the statistical correctness by Cohen et al. [CHN+18].

28

Theorem 7.1. If PRF is a secure PPRF, PRG is a secure PRG, PE is a secure
PE with strong ciphertext pseudorandomness, and iO is a secure IO, then PRFio
is an extraction-less watermarking PRF satisfying SIM-MDD security with public
simulation.

We prove Theorem 7.1 in the full version.

References

AL21. P. Ananth and R. L. La Placa. Secure Software Leasing. In EURO-
CRYPT 2021, Part II, pages 501–530. 2021.

ALL+21. S. Aaronson, J. Liu, Q. Liu, M. Zhandry, and R. Zhang. New Approaches
for Quantum Copy-Protection. In CRYPTO 2021, Part I, pages 526–555,
Virtual Event, 2021.

ARU14. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum Attacks on Classical
Proof Systems: The Hardness of Quantum Rewinding. In 55th FOCS,
pages 474–483. 2014.

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random Oracles in a Quantum World. In ASIACRYPT 2011,
pages 41–69. 2011.

BGI+12. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. Journal of
the ACM, 59(2):6:1–6:48, 2012.

BLW17. D. Boneh, K. Lewi, and D. J. Wu. Constraining Pseudorandom Functions
Privately. In PKC 2017, Part II, pages 494–524. 2017.

BSW06. D. Boneh, A. Sahai, and B. Waters. Fully Collusion Resistant Traitor
Tracing with Short Ciphertexts and Private Keys. In EUROCRYPT 2006,
pages 573–592. 2006.

CFN94. B. Chor, A. Fiat, and M. Naor. Tracing Traitors. In CRYPTO’94, pages
257–270. 1994.

CHN+18. A. Cohen, J. Holmgren, R. Nishimaki, V. Vaikuntanathan, and D. Wichs.
Watermarking Cryptographic Capabilities. SIAM Journal on Computing,
47(6):2157–2202, 2018.

CMSZ21. A. Chiesa, F. Ma, N. Spooner, and M. Zhandry. Post-Quantum Succinct
Arguments: Breaking the Quantum Rewinding Barrier. In FOCS 2021.
2021.

GKM+19. R. Goyal, S. Kim, N. Manohar, B. Waters, and D. J. Wu. Watermarking
Public-Key Cryptographic Primitives. In CRYPTO 2019, Part III, pages
367–398. 2019.

GKWW21. R. Goyal, S. Kim, B. Waters, and D. J. Wu. Beyond Software Water-
marking: Traitor-Tracing for Pseudorandom Functions. In Asiacrypt 2021,
Lecture Notes in Computer Science. 2021.

HMW07. N. Hopper, D. Molnar, and D. Wagner. From Weak to Strong Watermark-
ing. In TCC 2007, pages 362–382. 2007.

KNY21. F. Kitagawa, R. Nishimaki, and T. Yamakawa. Secure Software Leasing
from Standard Assumptions. In TCC 2021, LNCS. 2021.

KW19. S. Kim and D. J. Wu. Watermarking PRFs from Lattices: Stronger Se-
curity via Extractable PRFs. In CRYPTO 2019, Part III, pages 335–366.
2019.

29

KW21. S. Kim and D. J. Wu. Watermarking Cryptographic Functionalities from
Standard Lattice Assumptions. J. Cryptol., 34(3):28, 2021.

Nis13. R. Nishimaki. How to Watermark Cryptographic Functions. In EURO-
CRYPT 2013, pages 111–125. 2013.

Nis19. R. Nishimaki. How to Watermark Cryptographic Functions by Bilinear
Maps. IEICE Transactions, 102-A(1):99–113, 2019.

Nis20. R. Nishimaki. Equipping Public-Key Cryptographic Primitives with Wa-
termarking (or: A Hole Is to Watermark). In TCC 2020, Part I, pages
179–209. 2020.

NSS99. D. Naccache, A. Shamir, and J. P. Stern. How to Copyright a Function?
In PKC’99, pages 188–196. 1999.

QWZ18. W. Quach, D. Wichs, and G. Zirdelis. Watermarking PRFs Under Stan-
dard Assumptions: Public Marking and Security with Extraction Queries.
In TCC 2018, Part II, pages 669–698. 2018.

Reg09. O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009.

Unr12. D. Unruh. Quantum Proofs of Knowledge. In EUROCRYPT 2012, pages
135–152. 2012.

Wat09. J. Watrous. Zero-Knowledge against Quantum Attacks. SIAM J. Comput.,
39(1):25–58, 2009.

YAL+19. R. Yang, M. H. Au, J. Lai, Q. Xu, and Z. Yu. Collusion Resis-
tant Watermarking Schemes for Cryptographic Functionalities. In ASI-
ACRYPT 2019, Part I, pages 371–398. 2019.

YAYX20. R. Yang, M. H. Au, Z. Yu, and Q. Xu. Collusion Resistant Watermarkable
PRFs from Standard Assumptions. In CRYPTO 2020, Part I, pages 590–
620. 2020.

YF11. M. Yoshida and T. Fujiwara. Toward Digital Watermarking for Crypto-
graphic Data. IEICE Transactions, 94-A(1):270–272, 2011.

Zha12a. M. Zhandry. How to Construct Quantum Random Functions. In 53rd
FOCS, pages 679–687. 2012.

Zha12b. M. Zhandry. Secure Identity-Based Encryption in the Quantum Random
Oracle Model. In CRYPTO 2012, pages 758–775. 2012.

Zha19. M. Zhandry. How to Record Quantum Queries, and Applications to Quan-
tum Indifferentiability. In CRYPTO 2019, Part II, pages 239–268. 2019.

Zha20. M. Zhandry. Schrödinger’s Pirate: How to Trace a Quantum Decoder. In
TCC 2020, Part III, pages 61–91. 2020.

30

	 Watermarking PRFs against Quantum Adversaries

