
Indistinguishability Obfuscation
from LPN over Fp, DLIN, and PRGs in NC0

Aayush Jain1, Huijia Lin2, and Amit Sahai3

1 NTT Research and Carnegie Mellon University
aayushja@andrew.cmu.edu

2 University of Washington, Seattle
rachel@cs.washington.edu

3 UCLA
sahai@cs.ucla.edu

Abstract. In this work, we study what minimal sets of assumptions
suffice for constructing indistinguishability obfuscation (iO). We prove:
Theorem(Informal): Assume sub-exponential security of the following
assumptions:
– the Learning Parity with Noise (LPN) assumption over general prime

fields Fp with polynomially many LPN samples and error rate 1/kδ,
where k is the dimension of the LPN secret, and δ > 0 is any con-
stant;

– the existence of a Boolean Pseudo-Random Generator (PRG) in NC0

with stretch n1+τ , where n is the length of the PRG seed, and τ > 0
is any constant;

– the Decision Linear (DLIN) assumption on symmetric bilinear groups
of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all
polynomial-size circuits exists. Further, assuming only polynomial secu-
rity of the aforementioned assumptions, there exists collusion resistant
public-key functional encryption for all polynomial-size circuits.
This removes the reliance on the Learning With Errors (LWE) assump-
tion from the recent work of [Jain, Lin, Sahai STOC’21]. As a conse-
quence, we obtain the first fully homomorphic encryption scheme that
does not rely on any lattice-based hardness assumption.
Our techniques feature a new notion of randomized encoding called Pre-
processing Randomized Encoding (PRE), that essentially can be com-
puted in the exponent of pairing groups. When combined with other new
techniques, PRE gives a much more streamlined construction of iO while
still maintaining reliance only on well-studied assumptions.

1 Introduction

Indistinguishability obfuscation (iO) for general programs computable in poly-
nomial time [12] enables us to hide all implementation-specific details about
any program while preserving its functionality. iO is a fundamental and power-
ful primitive, with a plenthra of applications in cryptography and beyond. It is

mailto:aayushja@andrew.cmu.edu
mailto:rachel@cs.washington.edu
mailto:sahai@cs.ucla.edu

2 Aayush Jain, Huijia Lin, and Amit Sahai

hence extremely important to investigate how to build iO, based on as minimal
assumptions as possible, and via as simple constructions as possible. Advances
on understanding what assumptions imply iO and simplification of iO construc-
tions have immediate implications on the rest of cryptography through the many
applications of iO. So far, through the accumulation of extensive research by a
large community since the first mathematical candidate iO proposal by [19] (see
the survey in [20] and references therein), we recently saw the first construc-
tion of iO [30] based on four well-studied assumptions: Learning With Errors
(LWE) [38], Decisional Linear assumption (DLIN) [11] over bilinear groups, Learn-
ing Parity with Noise (LPN) over Fp [25], and the existence of a Pseudo-Random
Generator (PRG) in NC0 [21].

While the work of Jain, Lin and Sahai [30] settles the feasibility of iO on
solid assumptions, much still awaits be answered, even on the front of feasibility.
A fundamental question to study next is:

“What minimal sets of well-studied assumptions suffice to construct iO?"

From a complexity theoretic perspective, studying the minimal sets of sufficient
assumptions helps deepen our understanding of the nature and structure of iO,
as well as understanding the power of these sufficient assumptions (via the many
applications of iO). It also serves as a test-bed for new ideas and techniques,
and may lead to new ways of constructing iO and other primitives.

As we embark upon this question, it is important to keep an open mind. The
answers may not be unique – there may be different minimal combinations of
assumptions that are sufficient for iO, and we do not know what the future may
bring. Perhaps LWE alone is enough, or perhaps not. The answers may not be
what we expect. Unexpected answers may teach us just as much as (if not more
than) the answers that confirm our expectations. Our work here presents one
such answer that challenges expectations, and at the same time, simplifies the
overall architecture needed to construct iO from well-studied assumptions.

Our Result. We improve upon the iO construction of [30] by removing their
reliance on LWE. We thus obtain iO based on the following three assumptions,
which generates interesting consequences that we discuss below.

Theorem 1 (Informal). Assume sub-exponential security of the following
assumptions:

– the Learning Parity with Noise (LPN) assumption over general prime fields
Fp with polynomially many LPN samples and error rate 1/kδ, where k is the
dimension of the LPN secret, and δ > 0 is any constant;

– the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with
stretch n1+τ , where n is the length of the PRG seed, and τ > 0 is any
constant;

– the Decision Linear (DLIN) assumption on symmetric bilinear groups of
prime order.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 3

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-
size circuits exists. Assuming only polynomial security of the assumptions above
yields polynomially secure functional encryption for all polynomial-size circuits.

It is interesting to note that of the three assumptions above, only one of them is
known to imply public-key encryption or key agreement on its own – the DLIN
assumption. Even assuming the other two assumptions simultaneously, it is not
known how to build key agreement or any other “public key” primitive. (Recall
that known constructions of public-key encryption from LPN require relatively
sparse errors, that is, δ ≥ 1

2 in our language above [2, 10].) Thus, this work
removes one, namely LWE, of the two public-key assumptions in [30], making a
first step towards understanding the minimal set of assumptions underlying iO.

Lattices vs. (pairing + LPN over Fp + PRG in NC0). An immediate conse-
quence of our theorem is that the combination of bilinear pairing, LPN over
Fp, and constant-locality PRG is sufficient for building all the primitives that
are implied by iO or Functional Encryption (FE) (and other assumptions that
are implied by one of the three assumptions). This, somewhat surprisingly, in-
cludes Fully Homomorphic Encryption (FHE) that support homomorphic evalu-
ation of (unbounded) polynomial-size circuits, through the construction by [17]
that shows FHE can be built from subexponentially secure iO and rerandom-
izable encryption, which is implied by the DLIN assumption. It also includes
Attribute Based Encryption (ABE) that support policies represented by (un-
bounded) polynomial-size circuits, which is a special case of functional encryp-
tion. To this day, the only known constructions of FHE and ABE for circuits are
based on the hardness of lattice-type problems – either directly from problems
like LWE or Ring LWE, or slightly indirectly via problems such as the approx-
imate GCD problem [18]. Our work hence yields the first alternative pathways
towards these remarkable primitives.

Corollary 2 (Informal). Assume the same assumptions as in the Theorem
1. Then, fully homomorphic encryption and attribute-based encryption for all
polynomial-sized circuits exist.

Beyond FHE and ABE, lattice problems and techniques have been at the heart of
nearly every work over the past decade attempting to achieve advanced crypto-
graphic feasibility goals. Our theorem shows that, through iO, the combination
of pairing groups, LPN over Fp, and constant-locality PRG is just as powerful as
(and potentially more powerful than) lattice techniques for achieving feasibility
goals.

We emphasize that our result complements instead of replaces lattice-based
constructions. It also gives rise to several exciting open directions for future
work, such as, can we obtain direct constructions of FHE or ABE (not via iO or
FE) from the trio of assumptions? And, is there any formal relationship between
these assumptions and lattice assumptions (e.g, BDD, SVP etc.)?

Streamlining iO Construction. In our minds, an equally important contribu-
tion of our work is streamlining of the construction of iO from well-studied

4 Aayush Jain, Huijia Lin, and Amit Sahai

assumptions. Current surviving iO proposals are all highly complex. They usu-
ally start with building a minimal tool and then transform it to iO through
a number of sophisticated transformations in the literature. Take the recent
construction of iO in [30] as an example. It starts with 1) building a 1-key
secret-key FE scheme for NC0 with sublinearly compact ciphertext, that is only
weakly (1 − 1/poly(λ))-secure, then 2) lift the function class to handle circuits
via transformations in [7, 32, 37], 3) amplify security via [20], 4) turn secret-ley
FE to public-key FE via [13], 5) transform FE with sublinear-size ciphertext
to FE with sublinear-time encryption [22, 35], and finally 6) construct iO from
public-key FE for circuits with sublinear-time encryption [6,14]. While there ex-
ist alternative transformations for each of the steps, and other constructions of
iO may omit some of the steps, it is a widely recognized problem that existing
iO constructions are complex.

Our new construction of iO, while removing the reliance of LWE, also removes
the reliance on most transformations used in previous constructions. Starting
from a known and simple partially hiding functional encryption scheme based
on DLIN by [40], we construct a public-key FE for NC1 with sublinear-time
encryption, and then lift the function class from NC1 to P using Yao’s garbled
circuits as done in [7, 32, 37], which can be transformed into a public key which
implies iO via [6, 14].

To enable our results, we propose and achieve the new notion of Preprocessed
Randomized Encodings (PRE). Roughly speaking, PRE allows for preprocessing
the input x and random coins r into preprocessed input (PI,SI) where PI is
public and SI is private, so that, later a randomized encoding of (f,x) can be
computed by polynomials with only degree 2 in SI, and constant degree in PI,
over general prime field Fp. PRE guarantees that the preprocessed input (PI,SI)
can be computed in time sublinear in the size of the circuit f and the randomized
encoding together with PI hides the actual input x.

We now proceed to an overview of our techniques.

2 Technical Overview

FE Bootstrapping. A common thread in many recent iO constructions [7, 8, 32,
33, 36] [4, 5, 20, 27, 28, 30, 34] is FE bootstrapping – transformations that lift FE
for computing simple functions in NC0 to full fledged functional encryption for
polynomial-sized circuits. Such an FE scheme in turn implies iO by the works
of [6, 14].

More specifically, functional encryption is an advanced form of public key
encryption, which allows generating functional secret keys associated with a
specific function f : {0, 1}n → {0, 1}m, denoted as SKf , such that, decrypting a
ciphertext CT(x) using this secret key reveals only the output f(x), and nothing
else about the encrypted input x. To imply iO, it suffices to have FE for NC1

with the following properties:

Indistinguishability Obfuscation from LPN, DLIN and PRGs 5

– It supports publishing a single functional decryption key SKC , for a circuit
C : {0, 1}n → {0, 1}m where every output bit is computable by a formula of
fixed size poly(λ) in the security parameter. The overall size of C is poly(λ)·m.

– It is crucial that FE has encryption that runs in time sublinear in the size of
the circuit C: TEnc = poly(λ) ·m1−ϵ – we refer to this property as sublinear
time-succinctness.

In contrast, FE with encryption that takes time polynomial in the circuit size is
just equivalent to vanilla public key encryption [23,39]. An intermediate level of
efficiency known as sublinear size-succinctness only requires the ciphertext
size to be sublinear |CT(x)| = poly(λ) ·m1−ϵ, without restricting the encryption
time. It has been shown that FE with sublinear size-succinctness in fact implies
FE with sublinear time-succinctness, but additionally assuming LWE [22, 35].
In this work, one of our technical contributions is presenting a direct way of
constructing FE with sublinear time-succinctness without LWE.

To reach the above powerful FE via bootstrapping, we start with FE schemes
supporting the most expressive class of functions that we know how to build
from standard assumptions. Partially-hiding functional encryption generalizes
the syntax of functional encryption to allow a public input PI that does not need
to be hidden in addition to the secret input SI. Furthermore, decryption reveals
only h(PI,SI), where h is the function for which the functional decryption key
is generated. So far, from standard assumptions over bilinear maps of order p
(e.g. DLIN), prior works [20,28,40] constructed PHFE for polynomials h over Zp

that have constant degree in the public input PI and only degree-2 in the private
input SI. We say such a polynomial h has degree-(O(1), 2).

h(PI,SI) =
∑
j,k

gj,k(PI) · xj · xk mod p, where gj,k has constant degree

Furthermore, known PHFE schemes enjoy strong simulation security and their
encryption runs in time linear in the length of the input: TEnc = (|PI|+|SI|)poly(λ).
Both these properties will be instrumental later.

Perhaps the most straightforward way of bootstrapping FE for simple func-
tions to FE for complex functions is using the former to compute a Randomized
Encoding (RE) π of the complex function C(x), from which the output can be
derived. It seems, then, that all we need is an RE that can be securely eval-
uated using degree-(O(1), 2) PHFE. Unfortunately, this idea immediately hits
a key barrier: Known RE encoding algorithms EncodeC(x; r) have at least lo-
cality 4 and hence degree 4 (over Zp) in x and r, both of which must be kept
private. Making the degree smaller has been a long-standing open question. To
circumvent this issue, we formalize a new notion of degree-(O(1), 2) randomized
encoding that crucially relies on input preprocessing.

Preprocessed Randomized Encoding. The key properties of a preprocessed Ran-
domized Encoding (PRE) scheme are: (i) encodings can be generated using
degree-(O(1), 2) polynomials h on pre-processed inputs (PI,SI); and (ii) the in-
put preprocessing has sublinear time succinctness. More precisely, the syntax of
PRE is described below.

6 Aayush Jain, Huijia Lin, and Amit Sahai

Preprocessed Randomized Encoding

– PRE.PreProc(p,x)→ (PI, SI). The preprocessing algorithm converts an input
x ∈ {0, 1}n and random tape r into a preprocessed input (PI, SI) over Zp. It
is important that preprocessing does not depend on the circuit to be encoded
later (but only an upper bound on its size). It must satisfy sublinear time-
succinctness in the sense that preprocessing time is sublinear in the size of
the computation, TPreProc = m1−ϵpoly(λ).

– PRE.Encode(C,PI, SI) = π. The encoding algorithm takes a circuit C of size
mpoly(λ) and a preprocessed input (PI, SI), and produces a binary randomized
encoding π. PRE.EncodeC can be computed by a polynomial mapping over
Zp with constant degree in PI and degree 2 in SI.

– PRE.Decode(π) = y. The decoding algorithm decodes the output y = C(x)
from π.

Indistinguishability security: PRE guarantees that (PI, π) generated from (C,x0)
or (C,x1) are indistinguishable as long as C(x0) = C(x1).

If we had such PRE, we can easily construct the desired powerful FE as
follows:

FE.SK : PHFE.SKh , where h(PI,SI) = PRE.EncodeC(PI,SI) = π

FE.CT : PHFE.CT(PI,SI) , where (PI,SI)← PRE.PreProc(p,x)

The simulation security of the underlying PHFE guarantees that the only infor-
mation revealed is PI, π. Hence by the indistinguishability security of pRE, FE
ciphertexts of inputs x0, x1 that produce the same outputs are indistinguishable.
For time succinctness, since the preprocessing takes sublinear time m1−ϵpoly(λ)
and PHFE encryption takes time proportional to the length of the preprocessed
inputs, which is also sublinear, we have that FE encryption has sublinear time
succinctness.

2.1 Challenges to Constructing Preprocessed Randomized Encoding

We now explain how to construct PRE for NC1. The main challenges are making
sure that: (i) encoding is only degree 2 in the private preprocessed input SI;
and (ii) preprocessing has sublinear time-succinctness. Towards this, our start-
ing point is to consider a known randomized encoding scheme for NC1 that has
constant locality and sublinear randomness (explained next), and somehow mod-
ify it so that it can enjoy degree-(O(1), 2) encoding. Such a constant-degree RE
scheme can be obtained by combining a constant-locality RE, such as [41], with
a PRG in NC0. The encoding algorithm works as π = Encode′C(x; r

′ = PRG(r)),
where the random tape has sublinear length |r| = m1−τpoly(λ) if the Encode′

algorithm uses a linear number of random coins |r′| = O(m)poly(λ) and PRG
has appropriate polynomial stretch. We call this property sublinear randomness;
it is needed because the PRE encoding algorithm is deterministic and hence the
sublinearly short preprocessed input (PI,SI) must encode all the randomness
needed for producing the encoding. Observe that Encode′ has constant locality
(and hence degree) in (x, r), but the locality is much higher than 2.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 7

High-level approach for PRE: So how can we use preprocessing to reduce the
encoding degree to just 2 in private proprocessed inputs? We start by adapting
several ideas from [30] that were used to construct objects called structured-seed
PRGs, to constructing our desired PRE. Here is the high-level approach:

– Since the public input PI is supposed to hide x′ = x, r, we will set PI as an
encryption HEEnc(x′) of x′ using a special-purpose homomorphic encryption
scheme.

– We set SI to contain the secret key of this homomorphic encryption and some
other “preprocessed information" about the encryption. Crucially, we need
to ensure that PI,SI can be computed by a circuit of size sublinear in size of
C.

– Given PI,SI, the encode algorithm Encode first takes PI and homomorphically
evaluate Encode′ to obtain an output encryption HEEnc(π). Then, it takes
SI and decrypts HEEnc(π) to obtain π. We will ensure that homomorphic
evaluation of a locality-d function Encode′ is a degree d operation on PI, and
crucially decryption is a degree 2 operation in SI (and has at most constant
degree in HEEnc(π)). Because of this, Encode will have degree-(O(1), 2).

Instantiation via LPN over Fp. An example of such a homomorphic encryption
scheme is based on LPN over Fp.

PI = HEEnc(x′) = (A,b = sA+ e+ x′ mod p)

where the dimension dim is polynomially related with λ, but relatively small
as we describe below. We sample A ← Zdim×|x′|

p , s ← Z1×dim
p , and the errors

e is chosen so that each coordinate is non-zero with probability dim−δ for any
constant δ > 0 associated with the LPN over Fp assumption.

To come up with SI for decryption. We observe that for every locality-d
polynomial h the following equation holds:

h(b−As) = h(x′ + e)

The LHS of the equation tells us that if we include in SI all degree-d monomials
of s, namely, SI = (1||s)⊗d, then the above quantity can be computed by a
polynomial that is degree d in PI = (A,b) and in fact linear in SI. By choosing
dim to be polynomially smaller than |x|, the above SI will still be sufficiently
succinct for our purposes. The RHS of the equation tells us that the error e is
sparse, and h depends only on a constant number d variables, and thus with
probability 1−O(dim−δ), we have h(x′+e) = h(x′). This almost matches what
we want, except that decryption has a noticable error probability O(dim−δ).

To correct the decryption errors, the key observation is that for a polynomial
mapping Encode′C with long outputs, the error vector Corr = Encode′C(x

′+ e)−
Encode′C(x

′) is sparse: only a O(dim−δ) fraction of elements in Corr are non-zero.
Prior work [30] developed a technique for “compressing” such sparse vector Corr
into (U, V) of sublinear length |U, V | = m1−ϵpoly(λ). From U, V , Corr can be
expanded out using only degree 2. Therefore, by adding (U, V) to SI, we can

8 Aayush Jain, Huijia Lin, and Amit Sahai

decrypt and then correct errors in the output with just degree-2 computation in
U, V .

SI = (1||s)⊗d, U, V

However, the compression mechanism of [30] only guarantees that U, V are size-
succinct, but are not time-succinct, and in fact, constructing them takes time
linear in the circuit size m.

Barriers to time-succinctness: Unfortunately, the above approach cannot achieve
time-succinctness for the following reasons: The preprocessing algorithm needs
to compute the errors Corr = Encode′C(x

′ + e)− Encode′C(x
′) in the decryption

output. Though the error vector is sparse, every element could be wrong with
Ω(dim−δ) probability, depending on the LPN noises e used to encrypt x′ and the
input-output dependency graph of the function Encode′C computed. Therefore,
the circuit implementing the preprocessing must have Encode′C stored. This cre-
ates two problems: (i) the proprocessing time (in the circuit model) is at least
|C|, and more subtly, (ii) the proprocessing depends on C.

In the previous work of [30], they deal with the first issue by invoking the
transformation from size-succinct FE to time-succinct FE [22,35] assuming LWE.
The second issue is not a problem, since they construct structured-seed PRG
and only apply the aforementioned technique to a fixed PRG in NC0. However,
structured-seed PRG alone is not enough for FE bootstrapping, and they need to
additionally rely on FHE based on LWE, and the security amplification technique
of [20] which again relies on LWE 4.

In this work, to streamline the construction of iO, and to weaken the un-
derlying assumptions, we want to construct PRE that directly achieves time-
succinctness. Next, we discuss how to address the first issue above using the
idea of amortization.

Key idea: Amortization. To get around the hurdle that preprocessing a single
input x seems to inherently take time proprotional to |C|, we ask a simpler
question: can we “batch-preprocess" in sublinear time? To make it precise, say
we have k input vectors x1, . . . ,xk each of dimension n, and we are interested
in learning h(x1), . . . , h(xk) w.r.t. a polynomial mapping h : {0, 1}n → {0, 1}m′

with constant locality. Can we batch-process {x1, . . . ,xk} into a public and a
secret input (PI,SI) in time sublinear in m′ · k, such that each h(xi) can be
computed with constant degree in PI and degree 2 in SI. Our answer is Yes!

Furthermore, in order to get around the subtler problem that preprocessing
depends on Encode′C , we will consider a version of amortized preprocessing for
4 Besides [20], there are other works that contain FE security amplification tech-

niques [4,5,26]. However, it has been recently acknowledged that there is a common
issue in these techniques due to an incorrect application of the leakage simulation
lemma. The work of [20] circumvents the use leakage simulation lemma, but achieves
only weaker security amplification, which nevertheless is still sufficient for construct-
ing iO.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 9

computing polynomials h that have a fixed set of monomials Q = {Q1, . . . , Qm′}.
We say that h(x1, · · · ,xk) has monomial pattern Q if it has form:

h(x1, · · · ,xk) =
∑
i,j

ηi,jQj(xi) mod p , where ηi,j are integer coefficients (1)

The preprocessing is then allowed to depend on the monomials Q, but not the
polynomials h to be computed later. We formalize this tool called Preprocessed
Polynomial Encoding (PPE) below.

Preprocessed Polynomial Encoding

– PPE.PreProc(p,Q,x1, · · · ,xk)→ (PI, SI). Given a collection of constant degree-
d monomials, Q = {Q1, . . . , Qm′}, the preprocessing algorithm converts a
batch of k inputs {xi ∈ {0, 1}n}i∈[k] into a preprocessed input (PI, SI) over
Zp. It satisfies sublinear time-succinctness in the sense that preprocessing
time is sublinear in m′ · k.

– PPE.Decode(p,Q, h,PI, SI) = y. The decoding algorithm decodes the output

y = h(x1, · · · ,xk) =
∑
i,j

ηi,jQj(xi) mod p .

Indistinguishability security: PPE guarantees that PI for any two different
inputs x1, · · · ,xk and x′

1, · · · ,x′
k are indistinguishable.

Next we need to answer two questions: (i) Can we construct PPE?; and (2) Is
this amortization useful to construct PRE? Below, we answer the second question
first.

Constructing PRE using (amortized) PPE. In order to construct PRE scheme,
we need a randomized encoding scheme (with sublinear randomness) with an
encoding algorithm Encode′C that is exactly the kind of polynomials that PPE can
handle (Equation 1). Then, we can simply use the PPE preprocessing as the PRE
preprocessing. More precisely, there should exist a universal set of monomials Q,
such that, for every complex circuit C,

Encode′C(x, r) =
{
hl(x1, · · · ,xk) =

∑
i,j

ηl,i,jQj(xi) mod p
}
l

where ηl,i,j ’s depend on C, but Qj ’s do not.

We construct such an RE for NC1, denoted as ARE, using Yao’s garbling scheme
[41] and a PRG in NC0. Recall that we consider circuits C : {0, 1}n → {0, 1}m=m′k

where every output bit is computable by a formula of fixed size, say λ. We can
divide C into k chunks C1, . . . , Ck where circuit Ci computes the ith chunk of
outputs of C and has size m′λ, and then we can garble each of the chunks
separately.

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(C1,x;PRG(r1)), . . . ,Yao.Gb(Ck′ ,x;PRG(rk)),

10 Aayush Jain, Huijia Lin, and Amit Sahai

The idea is viewing {xi = (x, ri)} as the k inputs to be batch processed. But,
do the functions {Yao.Gb(Ci, ⋆, ⋆)} share a universal set of monomials? Unfortu-
nately, this is not the case since the computation of each garbled table depends
on the gates in Ci. To solve this problem, we modify our approach to garble the
universal circuit and treat Ci’s as part of input to be garbled. More precisely,

ARE.Encode(C,x, r1, . . . , rk) = Yao.Gb(U, (C1,x),PRG(r1)), . . . ,Yao.Gb(U, (Ck,x),PRG(rk)),

where U is a universal circuit that takes as input Ci,x and outputs Ci(x). Now
the computation of the garbled tables no longer depend on Ci, neither does the
input garbling of x. The only part that depends on Ci is the input garbling of Ci,
which looks like (1−Cij)l0+Cij l1, for every bit of description of Ci. Examining
more closely, we see that the monomials for computing the labels are in fact
universal, and Ci only affects the coefficients that combine these monomials.
This is exactly the type of polynomials that PPE can handle.

Note that our ARE only handles NC1 circuits because they can be written
as formulas. In a formula, every wire w feeds into a single gate g as an input
wire. Hence, it suffices to use a PRG with linear stretch to expand the label for
wire w into pseudorandom masks used for creating the garbled table for g. If
the fan-out were unbounded, we would need a PRF in order to generate the
pseudorandom masks for all the gates that wire w feeds into. However, we do
not have PRF with constant locality. More details are provided in Section 5,
where we also show that the size of the garbling is linear in |C| = mλ and the
total input length |x′ = (x, r)| is sublinear in m.

2.2 Constructing Proprocessed Polynomial Encoding

We now construct our key technical tool PPE. For simplicity, in this overview,
we will focus on computing just the a collection of degree d monomials Q =
{Qi(xj)}i∈[m′],j∈[k], as it illustrates the idea behind our preprocessing procedure,
and polynomials with monomial pattern Q can be computed in the same degree
as the monomials. Similar to before, the public preprocessed input PI contains
a LPN encryption of each xj , that is,

PI = {HEEnc(xj) = (Aj ,bj = sAj + ej + xj)}j∈[k],

where Aj ← Zn×k
p , s ← Z1×k

p , and ej ∈ Zk
p where each coordinate is zero

with probability k−δ. Here we set the LPN dimension to k, which is set to be
polynomially related to but polynomially smaller than n. Given PI, we can ho-
momorphically evaluate all monomials in Q to obtain encryption of the outputs
{HEEnc(Qi(xj))}i,j .

Next, we construct SI so that these ciphertexts can be decypted and errors can
be corrected. For decryption, SI includes all degree d monomials in the secret key
s, SI0 = (1||s)⊗d, so that one can obtain the erroneous outputs {Qi(xj + ej)}i,j .
Next, think of the errors Corr as arranged in a m′ × k matrix, where Corr[i, j] =
Qi(xj+ej)−Qi(xj). We do not compress the entire matrix Corr in one shot, nor

Indistinguishability Obfuscation from LPN, DLIN and PRGs 11

compressing it column by column, the new idea is compressing it row by row.
Each row, denoted by Corri, has dimension k and contains the errors related to
computing a single monomial Qi on all inputs {xj}j ,

Corri = {Qi(xj + ej)−Qi(xj)}j∈[k] .

If we can compress each Corri into SIi in (amortized) sublinear time (k1−Ω(1))poly(λ),
then the overall time for computing SI = (SI0,SI1, · · · ,SI′m) is (k1−Ω(1)·mk)poly(λ),
sublinear in m′ · k. Given such SI, we can indeed correct all errors in degree 2
and obtain the desired outputs {Qi(xj)}i,j .

The compressed version SIi. So what is special about compressing each row
Corri? The key is that elements in one row {Corr[i, j]}j are all independent,
because the value Corr[i, j] depends on ej ,xj , which is independent for different
j’s. In comparison, note that this is not the case for elements in one column
{Corr[i, j]i}. This is because two different monomials Qi and Qi′ may depend
on the same input variable, say the k’th, and hence Corr[i, j] and Corr[i′, j] both
depend on the same noise ej,k used for hiding xj,k. The independence and the
fact that each element Corr[i, j] is non-zero with probability O(k−δ) imply that
each row Corri has O(k1−δ) non-zero elements with overwhelming probability.

We rely on both the sparsity of and independence of elements in Corri to
compress it. Let’s first see how the compressed version SIi looks like. We assign
elements in Corri into T = k1−δ square matrices {Mi,γ}γ∈[T], each of size (t =

kδ/2) × (t = kδ/2). The assignment can be arbitrary as long as every element
Corr[i, j] is assigned to a unique location in one of the matrices Mi,j1 [j2, j3].
We denote by ϕ this assignement, ϕ(j) = (j1, j2, j3). Observe that on average,
each matrix Mi,γ contains less than 1 non-zero entries. By the independence of
elements in Corri again, every matrix Mi,γ has at most λ non-zero entries, with
overwhelming probability in λ. Thus, every matrix Mi,γ has rank less than λ
and can be decomposed into Ui,γ ,Vi,γ ∈ Zt×λ

p such that Mi,γ = Ui,γ · V⊤i,γ .
The compressed version SIi = {Ui,γ ,Vi,γ}γ∈[t1] contains exactly these U,V
matrices, and the value of Qi(xj) can be computed in degree (O(1), 2) from PI,
SI0 and SIi as follows:

Qi(xj) = Qi(bj − sAj)−
(
Corr[i, j] = Mi,j1 [j2, j3]

)
= Qi(bj − sAj)−

(
Ui,j1 ·V⊤i,j1

)
[j2, j3]

The size of SIi = O(T × t× λ) = O(k1−δ × kδ/2 × λ) = O(k1−δ/2λ) is sublinear
in k as desired.

Computing of SIi in sublinear time. We now show that beyond being size-
succinct, each SIi can also be computed in time sublinear in k in an amortized
fashion. More precisely, we show that the collection of SI1, . . . ,SIm′ can be com-
puted by a circuit of size (nk2 +m′k1−δ/2)poly(λ), which is sublinear in m′ · k
when k is set appropriately. We break down the task of computing SI1, . . . ,SIm′

in two steps.

12 Aayush Jain, Huijia Lin, and Amit Sahai

1. Clearly, to compute each SIi in amortized sublinear time in k, we cannot
afford to compute the entire row Corri which has dimension k. Instead, we
compute the list NZCorri of non-zero entries in Corri only, which has size
O(k1−δ). More precisely, NZCorri consists of tuples of the form

NZCorri = {(j, ϕ(j) = (j1, j2, j3), Corr[i, j]) | j ∈ [k], Corri[j] ̸= 0} .

That is, it contains the index j of the non-zero entries in Corri, the matrix
location they are assigned to Mi,j1 [j2, j2], and the value of the error Corr[i, j].
Moreover, the list is sorted in ascending order with respect to coordinate j1,
so that tuples with the same value j1 appear contiguously.

2. In the second step, we use these special lists {NZCorri} to compute SIi.

Let’s see how to do each step in amortized sublinear time, starting with the
easier second step.

The second step: Given NZCorri, we can compute SIi in time poly(λ)(k1−δ/2).
This is done by making a single pass on NZCorri and generating rows and columns
of {Ui,γ ,Vi,γ}γ∈[T “on the fly”. We can start by initializing these matrices with
zero entries. Then for the ℓ’th tuple (j, ϕ(j) = (j1, j2, j3),Corr[i, j]) in NZCorri,
we set Ui,j1 [j2, ℓ] = Corr[i, j] and Vi,j1 [j3, ℓ] = 1. Since each matrix Mi,γ gets
assigned at most λ non-zero entries, the index ℓ ranges from 1 up to λ, fitting
the dimension of U’s, and V’s. Hence, this way of generating Ui,γ and Vi,γ

guarantees that Mi,γ = Ui,γV
⊤
i,γ .

The first step: Next, we first illustrate how to generate all lists {NZCorri}i∈[m′]

in sublinear time in m′k, in the Random Access Memory (RAM) model. The
first sub-step is collecting information related to all the non-zero elements in the
LPN errors {ej}j∈[k] used to encrypt the inputs {xj}j∈[k]. More precisely, for
every coordinate l ∈ [n] in an input, form the list

NZInpl = {(j, xj,l, ej,l) | ej,l ̸= 0}j∈[k] .

That is, NZInpl contains the index j of each input xj , such that, the l’th element
xj,l is blinded by a non-zero error ej,l ̸= 0, as well as the values xj,l, ej,l of the
input and error elements. Tuples in this list are sorted in ascending order with
respect to coordinate j. Note that these lists can be computed in time O(nk).

Now, think of a database that contains all {NZInpl}l and inputs {xj}j , which
can be randomly accessed. The second sub-step makes a pass over all mono-
mials Q1, . . . Qm′ . Each monomial Qi depends on at most d variables (out of
n variables), say Qi depends on variables at coordinates {l1, . . . , ld}. For ev-
ery monomial Qi, with random access to the database, make a single pass on
lists NZInpl1 , . . . ,NZInpld and generate NZCorri on the fly. The fact that every
list NZInpl is sorted according to j ensures that the time spent for each Qi is
O(k1−δ). Thus, in the RAM model {NZCorri}i can be constructed in sublinear
time O(m′k1−δ). All we need to do now is coming up with a circuit to do the
same.
Circuit Conversion. To obtain such a circuit, we examine each and every step
inside the above RAM program and then replace them by suitable (sub)circuits,

Indistinguishability Obfuscation from LPN, DLIN and PRGs 13

while preserving the overall running-time. Since the conversion is very technical,
we refer the reader to the full version for details, and only highlight some of
the tools used in the conversion. We make extensive use of sorting circuits of
almost linear size [1] and Turing machine to circuit conversions. For example,
at some point we have to replace RAM memory lookups by circuits. To do so,
we prove the following simple lemma about RAM look up programs. A RAM
lookup program P lookup

q,N indexed with a number N ∈ N and a number q ∈ N is
a program with the following structure: It takes as input q indices {i1, . . . , iq}
and a database DB ∈ {0, 1}N and it outputs {DB[i1], . . . ,DB[iq]}. We show that
this can be implemented efficiently by a circuit:

Lemma 3. Let q,N ∈ N. A RAM lookup program PRAM
q,N (that looks up q indices

from a database of size N) can be implemented by an efficiently uniformly gen-
eratable boolean circuit of size O((q +N)poly(log2(q ·N))) for some polynomial
poly.

Please see the full version [29] for how we use the above lemma and other tech-
nical details.

Outline This completes are technical overview. In the main body, we present
three abstractions PPE, ARE and PRE. In the full version, we show how to
combine these abstactions along with a partially hiding FE scheme to build a
sublinear functional encryption. The outline is summarized in Figure 1.

3 Preliminaries

We now set up some notations that will be used throughout the paper. Through-
out, we will denote the security parameter by λ. For any distribution X , we
denote by x ← X the process of sampling a value x from the distribution X .
Similarly, for a set X we denote by x ← X the process of sampling x from
the uniform distribution over X. For an integer n ∈ N we denote by [n] the
set {1, .., n}. Throughout, when we refer to polynomials in security parameter,
we mean constant degree polynomials that take positive value on non-negative
inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity.

We use standard Landau notations. We will also use Õ, where for any function
a(n, λ), b(n, λ), we say that a = Õ(b) if a(n, λ) = O(b(n, λ)poly(λ, log2 n)) for
some polynomial poly. A function negl : N→ R is negligible if negl(λ) = λ−ω(1).
Further, the negl is subexponentially small if negl(λ) = 2−λ

Ω(1)

.
We denote vectors by bold-faced letters such as b and u. Matrices will be

denoted by capitalized bold-faced letters for such as A and M. For any k ∈ N,
we denote by the notation v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸

k

the standard tensor product. This

contains all the monomials in the variables inside v of degree exactly k.

14 Aayush Jain, Huijia Lin, and Amit Sahai

LPN PRG in NC0 DLIN

Construction
of PPE

Section 4

Construction
of ARE

Section 5

Construction
of PHFE
[27, 40]

Construction
of PRE

Section 6

Constructions
of FE, iO
Full ver-
sion [29]

Fig. 1. Flowchart depicting the technical outline.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 15

Multilinear Representation of Polynomials and Representation over Zp. A straight-
forward fact from analysis of boolean functions is that every NC0 function
F : {0, 1}n → {0, 1} can be represented by a unique constant degree multi-
linear polynomial f ∈ Z[x = (x1, . . . , xn)], mapping {0, 1}n to {0, 1}. At times,
we consider a mapping of such polynomial f ∈ Z[x] into a polynomial g over
Zp[x] for some prime p. This is simply obtained by reducing the coefficients of f
modulo p and then evaluating the polynomial over Zp. Observe that g(x) = f(x)
mod p for every x ∈ {0, 1}n as f(x) ∈ {0, 1} for every such x. Furthermore, given
any NC0 function F , finding these representations take polynomial time.

Computational Indistinguishability. We now describe how computational indis-
tinguishability is formalized.

Definition 4 (ϵ-indistinguishability). We say that two ensembles X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are ϵ-indistinguishable where ϵ : N → [0, 1] if for every prob-
abilistic polynomial time adversary A it holds that: For every sufficiently large
λ ∈ N, ∣∣∣∣ Pr

x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ ϵ(λ).

We say that two ensembles are computationally indistinguishable if they are ϵ-
indistinguishable for ϵ(λ) = negl(λ) for some negligible negl, and that two en-
sembles are sub-exponentially indistinguishable if they are ϵ-indistinguishable for
ϵ(λ) = 2−λ

c

for some positive real number c.

Assumptions We make use of three assumptions. We state the two assumptions
LPN and PRG below, which are used to build the components which are new to
this paper. Please see [30] for a formal definition of DLIN.

Definition 5 (δ-LPN Assumption, [9, 15, 16, 24]). Let δ ∈ (0, 1). We say
that the δ-LPN Assumption is true if the following holds: For any constant ηp >
0, any function p : N→ N s.t., for every ℓ ∈ N, p(ℓ) is a prime of ℓηp bits, any
constant ηn > 0, we set p = p(ℓ), n = n(ℓ) = ℓηn , and r = r(ℓ) = ℓ−δ, and we
require that the following two distributions are computationally indistinguishable:{

(A,b = s ·A+ e) | A← Zℓ×n
p , s← Z1×ℓ

p , e← D1×n
r (p)

}
ℓ∈N{

(A,u) | A← Zℓ×n
p , u← Z1×n

p

}
ℓ∈N

In addition, we say that subexponential δ-LPN holds if the two distributions above
are are subexponentially indistinguishable.

The second assumption we use is of that of an existence of Boolean PRG in
NC0 with polynomial stretch.

Definition 6. (Pseudorandom Generator.) A stretch-m(·) pseudorandom gen-
erator is a Boolean function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to

16 Aayush Jain, Huijia Lin, and Amit Sahai

m(n)-bit outputs (also known as the stretch) that is computable by a uniform
p.p.t. machine, and for any non-uniform p.p.t adversary A there exist a negli-
gible function negl such that, for all n ∈ N∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m
[A(z) = 1]

∣∣∣∣ < negl(n).

Further, a PRG is said to be in NC0 if PRG is implementable by a uniformly
efficiently generatable NC0 circuit. PRG is said to have polynomial stretch if
m(n) = n1+Ω(1). Finally, PRG is said to be subexponentially secure if negl(n) =
O(exp(−nΩ(1))).

Remark 7. In the candidate constructions, typically there is a sampling algo-
rithm that samples the description of PRG, and this property of computational
indistinguishability is expected to hold with probability 1− o(1) over the choice
of PRG. Such a PRG will give us an existential result. Constructively, this issue
can be addressed by constructing our FE scheme with multiple instantiations of
PRG so that with overwhelming probability, at least one of the FE schemes we
build is secure, and then using an FE combiner [3, 31].

4 Preprocessed Polynomial Encoding

In this section, we formally define a PPE scheme. Before we formally define the
notion we introduce the function class FPPE. We first define the notion of a degree
d monomial pattern Q over n variables which is just a collection of monomials
of degree at most d.

Definition 8 (d-monomial pattern and monomials). For an integer d > 0,
and an integer n > d ∈ N, we say Q is a d-monomial pattern over n variables,
if Q = {Q1, . . . , Qm}, where for every i ∈ [m], we have that 0 < |Qi| ≤ d, and
each Qi is a distinct subset of [n]. For any input x ∈ {0, 1}n and a set Q ⊆ [n],
define MonQ(x) =

∏
i∈Q xi to be the monomial in x corresponding to the set Q.

Thus, for any input x, a d-monomial pattern Q = {Q1, . . . , Qm} over n variables
defines m monomials of degree at most d.

We denote by Γd,n the set of all d-monomial patterns over n variables.

Definition 9 (Polynomial Class FPPE). For a constant d ∈ N, the family
of classes of polynomials FPPE,d = {FPPE,d,nPPE,Q,kPPE

}d≤nPPE∈N,Q∈Γd,nPPE
,kPPE∈[N]

consists of polynomials f ∈ FPPE,d,nPPE,Q,kPPE
of the following kind: f is defined

by a sequence of integers (ζ
(j)
i)j∈[kPPE],i∈[mPPE]. It takes as input x consisting of

kPPE blocks x = (x(1), . . . ,x(kPPE)) each of nPPE variables, and has form:

f(x) :=
∑

j∈[kPPE], Qi∈Q

ζ
(j)
i MonQi

(x(j)),

where Q is a d-monomial pattern with |Q| = mPPE.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 17

In a nutshell, FPPE consists of polynomials that take as input a kPPE blocks of
inputs of size nPPE, and computes all polynomials that are linear combination
of some fixed constant degree d monomials on those inputs governed by a set Q.
Looking ahead, for the PPE scheme we will require that the size of the circuit
computing (PI,SI) will be sublinear in |Q| · kPPE.

Definition 10 (Syntax of PPE). For any constant d > 0, a PPE scheme for
function class FPPE,d consists of the following p.p.t. algorithms:

– (PI,SI)← PreProc(1nPPE , 1kPPE , p, Q,x ∈ ZnPPE·kPPE
p) : The randomized Pre-

processing algorithm takes as input the block length parameter nPPE, the num-
ber of blocks parameter kPPE, a prime p, a d-monomial pattern on nPPE vari-
ables Q of size mPPE, and an input x ∈ ZnPPE·kPPE

p . It processes it to output
two strings, a public string PI and a private string SI. Both these strings are
vectors over Zp. We denote by ℓPPE = ℓPPE(nPPE,mPPE, kPPE) the combined
dimension of (PI,SI) over Zp.

– y ← Eval(f ∈ FPPE,d,nPPE,Q,kPPE
, (PI,SI)) : The deterministic evaluation algo-

rithm takes as input the description of a function f ∈ Fd,nPPE,Q,kPPE
and a

pre-processed input (PI,SI). It outputs y ∈ Zp.

The correctness requirement is completely straightforward namely y should be
equal to f(x) with high probability.

Definition 11 ((Statistical) Correctness of PPE). Let d > 0 be a constant
integer, a PPE scheme for the function class Fd,PPE satisfies correctness if: For
every kPPE ∈ N, nPPE = kΘ(1), and Q ∈ Γd,nPPE

with mPPE ≥ 1 sets, any function
f ∈ Fd,PPE,nPPE,Q,kPPE

, any prime p and any input x ∈ ZnPPE·kPPE
p :

Pr
[
Eval(f, (PI,SI)) = f(x) mod p (PI,SI)← PreProc(1nPPE , 1kPPE , p,Q,x)]

]
≥ 1−O(exp(−kPPEΩ(1)))

Note that we require correctness to hold when kPPE is large enough, we will
also require the security to hold for large values of kPPE. The next definition we
discuss is that of security. The security definition roughly requires that for any
input x ∈ ZnPPE·kPPE

p , the public part of the computed pre-processed input while
pre-processing x is computationally indistinguishable to the public part of the
pre-processed input when the pre-procssing is done for the input 0nPPE·kPPE .

Definition 12 (Security of PPE). Let d > 0 be an integer constant. A PPE
scheme is secure, if the following holds: Let β > 0 be any constant and p :
N→ N be any function that on input an integer r, outputs an rβ bit prime. Let
nPPE = kPPE

Θ(1) be any polynomial in kPPE. Let p = p(kPPE) and {xkPPE
}kPPE∈N

be any ensemble of inputs where each xkPPE
∈ ZnPPE·kPPE

p and {QkPPE
}kPPE∈N be

ensemble of monomial patterns with QkPPE
∈ Γd,nPPE

with size mPPE ≥ 1. Then for
kPPE ∈ N, it holds that for any probabilistic polynomial time adversary, following

18 Aayush Jain, Huijia Lin, and Amit Sahai

distributions are computationally indistinguishable with the advantage bounded
by negl(kPPE).{

PI | (PI, SI)← PreProc(1nPPE , 1kPPE , p, QkPPE
, xkPPE

)
}
kPPE{

PI | (PI,SI)← PreProc(1nPPE , 1kPPE , p, QkPPE
, 0nPPE·kPPE)

}
kPPE

Further, the scheme is said to be subexponentially secure if negl(kPPE) = exp(−kPPEΩ(1)).

Definition 13 (Sublinear Pre-processing Efficiency). Let d > 0 be a con-
stant integer. We say that PPE scheme for FPPE,d satisfies sublinear efficiency if
there exists a polynomial poly and constants c1, c2, c3 > 0 such that for nPPE, kPPE ∈
N, Q ∈ Γd,nPPE

with size mPPE ≥ 1 and a prime p the size of the circuit comput-
ing PreProc(1nPPE , 1kPPE , p, Q, ·) is tPPE = O((nPPE · kPPEc1 +mPPE · kPPE1−c2 +
kPPE

c3)poly(log2 p)).

The reason we call this requirement as sublinear pre-processing efficiency is
that if mPPE = nPPE

1+Ω(1), then, one can find a small enough kPPE = nPPE
Ω(1)

such that tPPE = Õ((mPPEkPPE)
1−Ω(1)) where Õ hides polynomial factors in

log2 p. Finally we present the requirement that the evaluation for any function
f , can be done by a constant degree polynomial gf that is just degree two in SI.

Definition 14 (Complexity of Evaluation). Let d ∈ N be any constant. We
require that PPE scheme for FPPE,d satisfies the following. We require that for
every kPPE ∈ N, nPPE = kPPE

Θ(1), and Γ ∈ Γd,nPPE
of size mPPE ≥ 1, any prime p,

any input x ∈ ZnPPE·kPPE
p , any pre-processed input (PI,SI)← PreProc(1nPPE , 1kPPE , p, Γ, x),

and any f ∈ Fd,nPPE,Q,kPPE
, the following relation is satisfied:

Eval(f, (PI,SI)) = gf,Q(PI,SI) mod p

where gf,Q(·, ·) is an efficiently computable (multivariate) polynomial over Zp of
degree O(d) in PI and degree 2 in SI.

4.1 PPE Construction Details

In this section, we present our construction of PPE scheme. Before delving into
the construction, we describe the list of notations that will be useful:

– Parameters t1 = ⌈k1−δ⌉ and T = ⌈kδ/2⌉. Observe that 2 · kPPE ≥ t1 · T 2 ≥
kPPE.

– t is the slack parameter. It is set as kPPE
δ
10 ,

– Map ϕ: We define an injective map ϕ which canonically maps kPPE elements
into t1 buckets (equivalently called as a matrices in the text below), each
having a size of T × T . For every j ∈ [kPPE], ϕ(j) = (j1, (j2, j3)) where
j1 ∈ [t1], (j2, j3) ∈ [T]×[T]. Such a map can be computed in time polynomial
in log2 kPPE and can be computed by first dividing j ∈ [kPPE] by t1 and setting
its remainder as j1. Then the quotient of this division is further divided by
T . The quotient and the remainder of this division are set as (j2, j3).

Indistinguishability Obfuscation from LPN, DLIN and PRGs 19

Construction of PPE

(PI,SI)← PreProc(1nPPE , 1kPPE , p,Q = (Q1, . . . , QmPPE
),x): Below we describe

the pseudo-code. We show how to construct a circuit for the same when
we talk about preprocessing efficiency property of the scheme. Perform
the following steps:
– Parse x = (x1, . . . ,xkPPE

) where each xj ∈ ZnPPE
p . Parse xj =

(xj,1, . . . , xj,nPPE
).

– The overall outline is the following: We first show how to sample
components PI′ = (PI1, . . . ,PIkPPE

), and then how to sample SI along
with a boolean variable flag. PI will be set as (flag,PI′).

– Sampling PI′ = (PI1, . . . ,PIkPPE
): Sample s ← ZkPPE

p . For every
i ∈ [nPPE], and j ∈ [kPPE]:
1. Sample aj,i ← ZkPPE

p .
2. Sample ej,i ← Ber(kPPE

−δ) · Zp. Denote ej = (ej,1, . . . , ej,nPPE
).

3. Compute bj,i = ⟨aj,i, s⟩+ ej,i + xj,i mod p.
For j ∈ [kPPE], set PIj = {aj,i, bj,i}i∈[nPPE].

– Sampling SI: SI has mPPE + 1 components. That is, SI = (SI0, . . .

,SImPPE
). Set SI0 = (1, s)⊗⌈

d
2 ⌉. We now show how to compute SIr for

r ∈ [mPPE].
1. For j ∈ [kPPE], compute Corrr,j = MonQr (xj)−MonQr (xj +ej).
2. Initialize for every γ ∈ [t1], matrices Mr,γ in ZT×T

p with zero
entries.

3. For j ∈ [kPPE], compute ϕ(j) = (j1, (j2, j3)) and set Mr,j1 [j2, j3] =
Corrr,j . If any matrix Mr,γ for γ ∈ [t1], has more than t non-zero
entries, then set flagr = 0. Otherwise, set flagr = 1.

4. If flagr = 1, then, for γ ∈ [t1], compute matrices Ur,γ ,V
⊤
r,γ ∈

ZT×t
p such that Mr,γ = Ur,γ ·Vr,γ . Otherwise for every γ ∈ [t1],

set Ur,γ ,Vr,γ to be matrices with zero-entries.
5. Set SIr = {Ur,γ ,Vr,γ}γ∈[t1].

– Sampling flag: For every i ∈ [nPPE], let Seti = {j ∈ [kPPE]|ej,i ̸=
0}. If any of these sets have size outside the range [kPPE

1−δ −
tkPPE

1−δ
2 , kPPE

1−δ + tkPPE
1−δ
2], set flag = 0. Otherwise, set flag =

min{flagr}r∈[m].
y ← Eval(f, (PI,SI)) : Parse PI = (flag,PI1, . . . ,PIkPPE

) where PIj = {aj,i,
bj,i}i∈[nPPE]. Similarly, parse SI = (SI0, . . . ,SImPPE

). Here SI0 = (1, s)⊗⌈
d
2 ⌉

and SIr = {Ur,γ ,Vr,γ}γ∈[t1] for r ∈ [mPPE]. Parse x = (x1, . . . ,xkPPE
)

and f(x) =
∑

r∈[mPPE],j∈[kPPE]
µr,jMonQr

(xj) for µr,j ∈ Z. Output:

gf,Q(PI,SI) =
∑

r∈[mPPE],j∈[kPPE]

µr,jwr,j(PI,SI),

20 Aayush Jain, Huijia Lin, and Amit Sahai

where the polynomial wr,j(PI,SI) is the following:

wr,j(PI,SI) =flag · (MonQr
(bj,1 − ⟨aj,1, s⟩, . . . , bj,nPPE

− ⟨aj,nPPE
, s⟩))

+ flag ·Ur,j1 ·Vr,j1 [j2, j3],

where ϕ(j) = (j1, (j2, j3)). We remark that the polynomial above is
written as a function of s and not SI0, however, since we always mean
SI0 = (1, s)⊗⌈

d
2 ⌉, we treat this polynomial as some degree-2 polynomial

in SI0.

Remark 15. The only difference to the scheme described in the overview is that
the scheme also uses a boolean variable flag. flag will be 1 with overwhelming
probability, and is set to 0 when “certain" low probability events happen. As
described earlier, the size of the input (PI,SI) is already sublinear. Later, we
describe how even the time to compute it is sublinear.

In the full version [29], we argue correctness, efficiency, complexity and security
properties.

Summing up: From the above theorems, we have the following result:

Theorem 16. Assuming δ-LPN assumption (Definition 5) holds for any con-
stant δ > 0, then there exists a PPE scheme satisfying Definition 10. Further, if
the assumption is subexponentially secure, then so is the resulting PPE scheme.

5 Amortized Randomized Encoding

We now formally define the notion of an amortized RE scheme (which we will
denote by ARE). The notion is designed to be exactly compatible with a PPE
scheme. The function class FARE is identical to the class for the PRE scheme FPRE.
Namely, FARE = {FARE,nARE,mARE,kARE,λ}nARE,kARE,mARE,λ∈N consists of all circuits
C : {0, 1}nARE → {0, 1}mARE·kARE where every bit of the output is computed by a
Boolean formula of size λ (circuits where each gate has a single fan-out). Such
an ARE scheme has the following syntax:

Definition 17 (Syntax of ARE). An ARE scheme consists of the following
p.p.t. algorithms:

– Encode(C ∈ FARE,nARE,mARE,kARE,λ,x ∈ {0, 1}nARE) → y. The encoding algo-
rithm is a randomized algorithm that takes as input a circuit C ∈ FARE,nARE,mARE,kARE,λ

along with an input x ∈ {0, 1}nARE . It outputs a string y ∈ {0, 1}∗.
– Decode(1λ, 1nARE , 1mARE , 1kARE ,y) → z : The deterministic decode algorithm

takes as input a string y. It outputs z ∈ ⊥ ∪ {0, 1}mARE·kARE .

An ARE scheme satisfies the following properties.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 21

Definition 18 ((Perfect) Correctness of ARE). A ARE scheme for the func-
tion class FARE satisfies correctness if: For every polynomials nARE(·),mARE(·), kARE(·),
every λ ∈ N, let nARE = nARE(λ),mARE = mARE(λ), kARE = kARE(λ). Then, for
every x ∈ {0, 1}nARE , C ∈ FARE,nARE,mARE,kARE,λ:

Pr
[
Decode(1λ, 1nARE , 1mARE , 1kARE ,y) = C(x) y← Encode(C,x)

]
= 1

Definition 19 (Indistinguishability Security). We say that ARE scheme is
secure if the following holds: Let λ ∈ N be the security parameter, and nARE,mARE, kARE =
Θ(λΘ(1)) be polynomials in λ. For every sequence {C,x0,x1}λ where x0,x1 ∈
{0, 1}nARE and C ∈ FARE,nARE,mARE,kARE,λ with C(x0) = C(x1), it holds that for
λ ∈ N the following distributions are computationally indistinguishable

{y | y← ARE.Encode(C,x0)}
{y | y← ARE.Encode(C,x1)}

Further, we say that ARE is subexponentially secure the above distributions are
subexponentially indistinguishable.

Efficiency Properties. We require that such an ARE scheme is compatible with
a PPE scheme. Namely, the encoding operation Encode(C, ·) uses a constant
degree d-monomial patternQ of small size m′ARE = O((nARE+mARE)poly(λ)) over
n′ARE = O((nARE +m

1−Ω(1)
ARE)poly(λ)) variables such that every bit is computable

using those monomials. Namely:

Definition 20 (Efficiency). We require that there exists constants d ∈ N, c1, c2 >
0, such that the following holds. For any λ ∈ N and any nARE, kARE,mARE =
λΩ(1), there exists an efficiently samplable degree d-monomial pattern Q of size
m′ARE = O((nARE +mARE)λ

c1) such that for any circuit C ∈ FARE,nARE,mARE,kARE,λ

and input x ∈ {0, 1}nARE , Encode(C,x; r) → y ∈ {0, 1}T satisfies the following
requirements:

– Parse r = (r1, . . . , rkARE
) where each component is of equal size. Let ai =

(x, ri). Then the length of ai ∈ {0, 1}n
′
ARE is n′ARE = O((nARE +m1−c2

ARE)λc1).
– For i ∈ [T], each yi =

∑
Q∈Q,j∈[kARE]

µi,Q,j · MonQ(aj) for efficiently sam-
plable µi,Q,j ∈ Z.

The first property is to ensure that ai for i ∈ [kARE] will be the kARE blocks
that will be preprocessed by the PPE scheme in our construction of PRE. The
monomial pattern used by the PRE will be Q, and it will be used to compute y.

5.1 Construction Details

In Figure 2, we now give the formal construction of the ARE scheme. We estab-
lish some useful notations and recall the tools we need.
Notation and Ingredients: λ ∈ N is the security parameter, nARE,mARE, kARE
are parameters associated with the function class FARE,nARE,mARE,kARE

.

22 Aayush Jain, Huijia Lin, and Amit Sahai

Tool: We use a PRG in NC0 (denoted by G) that stretches t1−ϵ bits to t bits (t
is set below). We also use a PRG in NC0 (denoted by H) that stretches λ bits to
2 · λ+ 2 bits. Denote by H0 the function that computes first half of the output
of H and by H1 the function that computes the other half.
We set n′ARE = (nARE + m1−ϵ

ARE)poly(λ) for a large enough polynomial poly. We
will set t = n′ARE − nARE.
Universal formula implementing a formula: Let U = UmAREλ,nARE,mARE

:
{0, 1}mARE·λ × {0, 1}nARE → {0, 1}mARE be the universal circuit formula for evalu-
ating Boolean formulas with nARE-bit inputs, mARE-bit outputs, and size mARE ·λ.
In particular, U(Ci,x) = Ci(x) for circuits Ci and input xi satisfying the re-
quirements. The size of each U is Õ(nARE + mARE), where Õ hides polynomial
factors in log nARE, log nARE, λ. Since nARE,mARE are all polynomials in λ, we
ignore its dependence on logarithmic factors.

In full version [29], we discuss why all the properties are satisfied. Thus, we
have the following theorem:

Theorem 21. Assuming the existence of a boolean PRG in NC0 with a stretch
n1+ϵ for some constant ϵ > 0 where n is the input length to the PRG (see
Definition 6), then there exists an ARE scheme satisfying Definition 17. Further,
if the PRG is subexponentially secure, then so is ARE.

6 Preprocessed Randomized Encoding

In this section, we define a Preprocessed Randomized Encoding scheme. We
define and build it for the following function class:

Function Class: The function class FPRE = {FPRE,nPRE,mPRE,kPRE,λ}nPRE,mPRE,kPRE∈Poly,λ∈N
is indexed with three polynomials nPRE,mPRE, kPRE : N → N and a parameter
λ ∈ N. We define this function class to be exactly FFE,nPRE,mPRE·kPRE,λ, consisting
of all Boolean formulas with nPRE(λ) input bits and mPRE(λ) · kPRE(λ) output
bits where every output bit is computed by a Boolean formula of size λ.

Definition 22 (Syntax of Preprocessed Randomized Encoding). A pre-
processed randomized encoding scheme PRE for the function class FPRE contains
the following polynomial time algorithms:

– PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE) → (PI,SI). The prepro-
cessing algorithm takes as inputs the security parameter λ, input length 1nPRE ,
output block length 1mPRE , number of output blocks parameter 1kPRE a prime
p and an input x ∈ {0, 1}n. It outputs preprocessed input (PI,SI) ∈ ZℓPRE

p ,
where PI is the public part and SI is the private part of the input.

– PRE.Encode(C, (PI,SI)) = y. The encoding algorithm takes inputs a circuit
C ∈ FPRE,nPRE,mPRE,kPRE,λ, and preprocessed input (PI,SI). It outputs a binary
encoding y.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 23

The ARE scheme

Encode Encode(C,x, r): Parse C = (C1, . . . , CkARE) such that Ci : {0, 1}nARE →
{0, 1}mARE is the Boolean formula computing the ith chunk of output of C of
size mARE. The size of circuit Ci is mAREλ. Parse r = (r1, . . . , rkARE) where ri ∈
{0, 1}n

′
ARE−nARE . Set ai = (x, ri) ∈ {0, 1}n

′
ARE for i ∈ [kARE]. For every κ ∈ [kARE],

compute Πκ as follows:

– Using G expand rκ into (σ,b) of length (nARE + mARE)poly(λ). Here σ will
be used as labels to produce garbling of U(Cκ,x) and b will be used as
permutation bits for every wire in the circuit U . Precisely, for every wire w in
U , we let σw,0, σw,1 ∈ {0, 1}λ be the two labels for the wire, and bw ∈ {0, 1}
the permutation bit for the wire.

– (Input wire labels for Cκ and x) Generate input labels of (Cκ,x). That is for
every input wire wckt,i for i ∈ [mARE · λ] and winp,j for j ∈ [nARE].

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i)∥Cκ,i ⊕ bwckt,i,

Labj = σwinp,j ,0(1− xj) + σwinp,j ,1(xj)∥xj ⊕ bwinp,j

Above Cκ,i is ith bit of the circuit description.
– Compute garbled tables for U . That is, for every gate gate in U with input

wires w1, w2 and output wire w3, output the following garbled table.

Tgate =

H0(σw1,bw1

)⊕ H0(σw2,bw2
)⊕

(
σw3,g(bw1

,bw2
)||g(bw1 , bw2)⊕ bw3

)
H1(σw1,bw1

)⊕ H0(σw2,b̄w2
)⊕

(
σw3,g(bw1

,b̄w2
)||g(bw1 , b̄w2)⊕ bw3

)
H0(σw1,b̄w1

)⊕ H1(σw2,bw2
)⊕

(
σw3,g(b̄w1 ,bw2)||g(b̄w1 , bw2)⊕ bw3

)
H1(σw1,b̄w1

)⊕ H1(σw2,b̄w2
)⊕

(
σw3,g(b̄w1

,b̄w2
)||g(b̄w1 , b̄w2)⊕ bw3

)

(2)

– Let wout,γ for γ ∈ [mARE] denote the wires for output. Generate output
translation table OutTab = {(0, σwout,γ ,0), (1, σwout,γ ,1)}γ∈[mARE]. Set Πκ =
{LabCκ,i , Labj , Tgate,OutTab}i∈[mARE·λ], j∈[nARE], gate∈gate(U). The output of the
encode operation is Π = {Πκ}κ∈[kARE].

Decode Decode(Π = (Π1, . . . , ΠkARE)): Compute and output yκ =
YaoDecode(Πκ) for κ ∈ [kARE].

Fig. 2. ARE Scheme Description

24 Aayush Jain, Huijia Lin, and Amit Sahai

– PRE.Decode(y) = out. The decoding algorithm takes as input an encoding y
and outputs a binary output out.

Remark 23. Note that we could have defined the primitive without a parameter
kPRE by considering formulas with output length mPRE as described in the high-
level overview earlier. This is only done because this notation will align well with
rest of the primitives that we use and build in this paper. Instead of requiring the
size of the circuit computing the preprocessing to be proportional to mPRE

1−ϵ

for some constant ϵ > 0, we will require it to be proportional to mPRE · kPRE1−ϵ.
By setting kPRE to be sufficiently large function of mPRE, this will ensure the size
of the circuit computing the preprocessing is sublinear in mPRE · kPRE

In this paper, we care about constructions where for the function class above,
nPRE,mPRE and kPRE are all polynomially related with λ, that is, of magnitude
λΘ(1). Further, the output block length is super-linear in the input length, that
is, mPRE = nPRE

1+ϵ for some constant ϵ > 0.

Correctness and Security Requirements

Definition 24 (Correctness). We say that PRE is correct if the following
holds: For every λ ∈ N, nPRE,mPRE, kPRE = Θ(λΘ(1)), p a prime, x ∈ {0, 1}nPRE ,
and C ∈ FPRE,nPRE,mPRE,kPRE,λ.

Pr[Decode(Encode(C,PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x))) = C(x)] ≥ 1− exp(−λΩ(1)).

Definition 25 (Indistinguishability Security). We say that PRE scheme
is secure if the following holds: Let β, c1, c2, c3 > 0 be arbitrary constants, and
p : N → N be any function that takes as input any integer r and outputs a
rβ bit prime and nPRE(r) = rc1 , mPRE(r) = rc2 and kPRE = rc3 be three poly-
nomials. Let {C,x0,x1}λ∈N be any ensemble where x0,x1 ∈ {0, 1}nPRE(λ) and
C ∈ FPRE,nPRE(λ),mPRE(λ),kPRE(λ),λ with y = C(x0) = C(x1). Then it holds that
for any λ ∈ N, and letting p = p(λ), nPRE = nPRE(λ), mPRE = mPRE(λ) and
kPRE = kPRE(λ) it holds that the following distributions are computationally in-
distinguishable{
(PI,y) | (PI,SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x0), y← PRE.Encode(C,PI,SI)

}{
(PI,y) | (PI,SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x1), y← PRE.Encode(C,PI,SI)

}
Further, we say that PRE is subexponentially secure the above distributions are
subexponentially indistinguishable.

The Efficiency and Complexity Requirements

Definition 26 (Sublinear Efficiency of PRE). We require that there exists
a polynomial poly and constants c1, c2, c3 > 0 such that for every polynomials
nPRE,mPRE and kPRE and every security parameter λ ∈ N, every prime p, the
(randomized) circuit D(·) that on input x ∈ {0, 1}nPRE computes PRE.PreProc(1λ, 1nPRE , 1mPRE ,
1kPRE , p,x) has size bounded by ((nPRE+mPRE

1−c1)kPRE
c2+mPREkPRE

1−c3)poly(λ, log p).

Indistinguishability Obfuscation from LPN, DLIN and PRGs 25

In particular, this implies that when mPRE = mPRE(λ) = Θ(λΘ(1)), nPRE =
O(mPRE

1−ϵ) for some constant ϵ ∈ (0, 1), then, there exists some constant c >
0, γ(c1, c2, c3, c) > 0 such that when kPRE = nPRE

c, then the size of D is bounded
by (mPRE · kPRE)1−γ · poly(λ, log p)).

Definition 27 (Complexity of Encoding). We require that for every polyno-
mials nPRE,mPRE, kPRE, every security parameter λ ∈ N, every C ∈ FPRE,nPRE,mPRE,kPRE,λ,
and every prime p, there exists a polynomial mapping f satisfying the following:

– For every input x ∈ {0, 1}nPRE , and every (PI,SI)← PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p, x),

f(PI,SI) mod p = PRE.Encode(C, (PI,SI)) .

– There is a universal constant d ∈ N independent of all parameters, s.t., f
has degree d in PI and degree 2 in SI.

– f can be uniformly and efficiently generated from λ, nPRE,mPRE, kPRE, p, C.

6.1 Construction of Preprocessed Randomized Encoding

The construction of a PRE scheme is really straightforward. We simply com-
pose PPE with ARE. Let’s take a look at it formally. Let the function class we
are interested in is FPRE,nPRE,mPRE,kPRE,λ where λ is the security parameter and
nPRE,mPRE, kPRE are polynomials in the security parameter. Let p denote the
prime to be used for the PRE scheme.

Ingredients: We make use of two ingredients:

1. A ARE scheme. Let d > 0 be the constant degree which is the degree of
evaluation of the PRE scheme. We set:
– nARE = nPRE,
– mARE = mPRE,
– kARE = kPRE,
– m′ARE = (nPRE +mPRE) · λc1 ,
– n′ARE = (nPRE +mPRE

1−c2)λc1 , where c1, c2 > 0 are constants associated
with the efficiency requirements of ARE. Let QARE be the d-monomial
pattern of size m′ARE over n′ARE variables associated with the encoding
operation.

2. A PPE scheme, where we set:
– The prime to be used as p,
– nPPE = n′ARE,
– mPPE = m′ARE,
– Set the monomial pattern QPPE = QARE = Q. The degree of the mono-

mial pattern is d,
– Let d′ = O(d) be the constant degree of the polynomial gf (·) = PPE.Eval(f, ·)

mod p used to evaluate any polynomial f ∈ Fd,PPE,nPPE,Q,kPPE
.

We now describe our construction in Figure 3:
In the full version, we argue various properties associated with a PRE scheme.

Thus, we have the following theorem:

26 Aayush Jain, Huijia Lin, and Amit Sahai

The PRE scheme

Preprocessing PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE): Run the
following steps:
– Sample uniformly randomness r1, . . . , rkARE ∈ {0, 1}

n′
ARE−nARE used for

running ARE.Encode(·,x, r). Set ai = (x, ri) for i ∈ [kARE]. Here ai ∈
{0, 1}n

′
ARE=nPPE .

– Compute (PI, SI) ← PPE.PreProc(1nPPE , 1kPPE , p,Q,a). Output PI = PI
and SI = SI.

Encoding PRE.Encode(C, (PI, SI)): Run the following steps:
– By the efficiency property of ARE, for any circuit C ∈
FARE,nARE,mARE,kARE,λ, for i ∈ [T] where T is the output length of
ARE.Encode(C, ·), the ith output bit of ARE.Encode(C, ·) is computable
by an efficiently generatable polynomial fi ∈ FPPE,d,nPPE,Q,kPPE . Let gfi
be the degree (d′, 2)-polynomial evaluating PPE.Eval(fi, ·). Compute
yi = PPE.Eval(fi,PI, SI) = gfi(PI, SI). Output y = (y1, . . . , yT).

Decode PRE.Decode(y): Run and output ARE.Decode(y) = z.

Fig. 3. The Description of the PRE scheme.

Theorem 28. Assume that there exists two constant δ, ϵ > 0 such that:

– δ-LPN assumption (Definition 5) holds,
– There exists a PRG in NC0 with a stretch n1+ϵ where n is the length of the

input (Definition 6),

Then, there exists a PRE scheme (Definition 22). Further, assuming the un-
derlying assumptions are subexponentially secure, then so is the resulting PRE
scheme.

7 Summing Up

In the full version [29], we use a PRE scheme and combine it with a partially hid-
ing functional encryption, to build a sublinear functional encryption for Boolean
formulas and then bootstrap it to iO using prior results. Thus, we prove:

Theorem 29. If there exists constants δ, τ > 0 such that:

– δ-LPN assumption holds (Definition 5),
– There exists a PRG in NC0 with a stretch of n1+τ where n is length of the

input (Definition 6),
– The DLIN assumption over prime order symmetric bilinear groups holds.

Then, there exists a sublinear functional encryption scheme for circuits. Further
if the underlying assumptions are subexponentially secure, then there exists a
secure indistinguishability obfuscation for all circuits.

Indistinguishability Obfuscation from LPN, DLIN and PRGs 27

8 Acknowledgements

Aayush Jain is supported by NTT Research, a grant from CyLab security and
privacy institute and a start-up package by the computer science department at
CMU.

Huijia Lin is supported by NSF grants CNS- 2026774, CNS-1936825 (CA-
REER), Simons JP Morgan Faculty Award, and a Simons collaboration grant
on algorithmic fairness.

Amit Sahai is supported in part from a Simons Investigator Award, DARPA
SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2012378,
a Xerox Faculty Research Award, a Google Faculty Research Award, and an
Okawa Foundation Research Grant. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through Award
HR00112020024.

The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, DARPA, ARO, Simons, Intel,
Okawa Foundation, ODNI, IARPA, DIMACS, BSF, Xerox, the National Science
Foundation, NTT Research, Google, J.P. Morgan or the U.S. Government.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(n logn) sorting network. In: 15th ACM
STOC. pp. 1–9. ACM Press (Apr 1983)

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
FOCS. pp. 298–307. IEEE Computer Society Press (Oct 2003)

3. Ananth, P., Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: From FE com-
biners to secure MPC and back. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019,
Part I. LNCS, vol. 11891, pp. 199–228. Springer, Heidelberg (Dec 2019)

4. Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation
without multilinear maps: New paradigms via low degree weak pseudorandomness
and security amplification. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 284–332. Springer, Heidelberg (Aug 2019)

5. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation without multilinear
maps: io from lwe, bilinear maps, and weak pseudorandomness. IACR Cryptology
ePrint Archive 2018, 615 (2018)

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (Aug 2015)

7. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation from functional
encryption for simple functions. Eprint 730, 2015 (2015)

8. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: EUROCRYPT (2017)

9. Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: Extended ab-
stract. In: Roughgarden, T. (ed.) ITCS 2015. pp. 143–151. ACM (Jan 2015)

10. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: TCC. pp. 528–556 (2015)

28 Aayush Jain, Huijia Lin, and Amit Sahai

11. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage
via keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417
(2005), http://eprint.iacr.org/2005/417

12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001)

13. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A.D.
(eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg
(Oct / Nov 2016)

14. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS. pp. 171–190. IEEE Computer
Society Press (Oct 2015)

15. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (Aug 1994)

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 896–912. ACM
Press (Oct 2018)

17. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (Mar 2015)

18. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) Advances in Cryptology - EURO-
CRYPT 2010, 29th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Monaco / French Riviera, May 30 - June
3, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6110, pp. 24–43.
Springer (2010)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

20. Gay, R., Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from simple-
to-state hard problems: New assumptions, new techniques, and simplification.
In: EUROCRYPT. Lecture Notes in Computer Science, vol. 12698, pp. 97–126.
Springer (2021)

21. Goldreich, O.: Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC) 7(90) (2000)

22. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Confer-
ence, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. pp. 555–564. ACM (2013),
http://doi.acm.org/10.1145/2488608.2488678

23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings. pp. 162–179 (2012)

24. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (Aug 2008)

http://eprint.iacr.org/2005/417
http://doi.acm.org/10.1145/2488608.2488678

Indistinguishability Obfuscation from LPN, DLIN and PRGs 29

25. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: TCC Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings. pp. 294–314 (2009)

26. Jain, A., Korb, A., Manohar, N., Sahai, A.: Amplifying functional encryption,
unconditionally. CRYPTO 2020 (2020)

27. Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 251–281. Springer, Heidelberg (May
2019)

28. Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for iO.
IACR Cryptol. ePrint Arch. 2019, 1252 (2019), https://eprint.iacr.org/2019/
1252

29. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over f_p,
dlin, and prgs in ncˆ0. IACR Cryptol. ePrint Arch. p. 1334 (2021), https://
eprint.iacr.org/2021/1334

30. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021. pp. 60–73. ACM (2021)

31. Jain, A., Manohar, N., Sahai, A.: Combiners for functional encryption, uncondi-
tionally. In: Rijmen, V., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. pp. 141–168.
LNCS, Springer, Heidelberg (May 2020)

32. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (May 2016)

33. Lin, H.: Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5
prgs. In: CRYPTO. pp. 599–629. Springer (2017)

34. Lin, H., Matt, C.: Pseudo flawed-smudging generators and their application to
indistinguishability obfuscation. IACR Cryptology ePrint Archive 2018, 646 (2018)

35. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Theory of Cryptography Conference. pp. 96–124. Springer
(2016)

36. Lin, H., Tessaro, S.: Indistinguishability obfuscation from bilinear maps and
block-wise local prgs. Cryptology ePrint Archive, Report 2017/250 (2017), http:
//eprint.iacr.org/2017/250

37. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In: Dinur, I. (ed.) 57th FOCS. pp.
11–20. IEEE Computer Society Press (Oct 2016)

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press
(May 2005)

39. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM conference on Computer and communica-
tions security. pp. 463–472. ACM (2010)

40. Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In:
Pass, R., Pietrzak, K. (eds.) TCC 20. Lecture Notes in Computer Science, vol.
12550, pp. 210–228 (2020)

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS.
pp. 162–167 (1986)

https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2021/1334
https://eprint.iacr.org/2021/1334
http://eprint.iacr.org/2017/250
http://eprint.iacr.org/2017/250

	Indistinguishability Obfuscation from LPN over Fp, DLIN, and PRGs in NC0

