
Incompressible Cryptography

Jiaxin Guan ID 1,?, Daniel Wichs2,3,??, and Mark Zhandry ID 1,3,? ? ?

1 Princeton University, Princeton NJ 08544, USA,
2 Northeastern University, Boston MA 02115, USA,
3 NTT Research, Inc., Sunnyvale CA 94085, USA

Abstract. Incompressible encryption allows us to make the ciphertext
size flexibly large and ensures that an adversary learns nothing about
the encrypted data, even if the decryption key later leaks, unless she
stores essentially the entire ciphertext. Incompressible signatures can be
made arbitrarily large and ensure that an adversary cannot produce a
signature on any message, even one she has seen signed before, unless
she stores one of the signatures essentially in its entirety.
In this work, we give simple constructions of both incompressible public-
key encryption and signatures under minimal assumptions. Furthermore,
large incompressible ciphertexts (resp. signatures) can be decrypted (resp.
verified) in a streaming manner with low storage. In particular, these no-
tions strengthen the related concepts of disappearing encryption and sig-
natures, recently introduced by Guan and Zhandry (TCC 2021), whose
previous constructions relied on sophisticated techniques and strong,
non-standard assumptions. We extend our constructions to achieve an
optimal “rate”, meaning the large ciphertexts (resp. signatures) can con-
tain almost equally large messages, at the cost of stronger assumptions.

1 Introduction

Security breaches are ubiquitous. Therefore, it is natural to wonder: will en-
crypted messages remain secure, even if the secret decryption key is later leaked?
Forward secrecy deals exactly with this problem, but requires either multi-round
protocols or key updates, both of which may be undesirable in many scenarios.
And in the usual time-bounded adversary model, unfortunately, such limitations
are inherent: an adversary can simply store the ciphertext and wait for the secret
key to leak, at which point it can easily decrypt.

Incompressible encryption. In this work we ask: can we force a would-be “save-
it-for-later adversary” to actually store the ciphertext in its entirety, for the
entire length of time it is waiting for the secret key to leak? At a minimum such
storage may be inconvenient, and for very large files or long time frames, it may

? E-mail:jiaxin@guan.io. Part of this research was conducted while this author was
a research intern at NTT Research, Inc.

?? E-mail:danwichs@gmail.com
? ? ? E-mail:mzhandry@gmail.com

https://orcid.org/0000-0003-1823-8845
https://orcid.org/0000-0001-7071-6272

2 J. Guan, D. Wichs, M. Zhandry

be prohibitively costly. Even for short messages, one may artificially increase the
ciphertext size, hopefully forcing the adversary to use much more storage than
message length. We may therefore hope that such an incompressible encryption
scheme maintains the privacy of messages even if the secret key is later revealed.

Remark 1. For an illustrative example, an individual with a gigabit internet
connection can transmit ∼10TB per day, potentially much more than their own
storage. Of course many entities will have 10TB or even vastly more, but an
incompressible scheme would force them to devote 10TB to storing a particular
ciphertext for potentially years until the key is revealed. Across millions or bil-
lions of people, even powerful adversaries like state actors would only be able to
devote such storage to a small fraction of victims.

Unfortunately, traditional public key encryption schemes are not incompress-
ible; an adversary may be able to store only a short digest of the ciphertext and
still obtain non-trivial information about the plaintext once the secret key is
leaked. For example, for efficiency reasons, hybrid encryption is typically used
in the public key setting, where the encryption of a message m may look like:

(Enc(pk, s) , G(s)⊕m) .

Here, s is a short seed, and G is a pseudorandom generator used to stretch
the random seed into a pseudorandom pad for the message m. A save-it-for-
later adversary need not store the entire ciphertext; instead, they can store just
Enc(pk, s) as well as, say, the first few bits of G(s) ⊕m. Once the secret key is
revealed, they can learn s and then recover the first few bits of m. This may
already be enough to compromise the secrecy of m. Such an attack is especially
problematic if we wanted to artificially increase the ciphertext size by simply
padding the message and appending dummy bits, since then the first few bits of
m would contain the entire secret plaintext.

The compressibility issue is not limited to the scheme above: we could replace
G(s)⊕m with a different efficient symmetric key encryption scheme such as CBC-
mode encryption, and essentially the same attack would work. The same goes
for bit encryption as well.

Incompressible public key encryption instead requires that if the adversary
stores anything much smaller than the ciphertext, the adversary learns absolutely
nothing about the message, even if the secret key later leaks.

Remark 2. We note that plain public key encryption does have some incompress-
ibility properties. In particular, it is impossible, in a plain public key encryption
scheme, for the adversary to significantly compress the ciphertext and later be
able to reconstruct the original ciphertext. However, this guarantee implies noth-
ing about the privacy of the underlying message should the key leak.

Incompressible Signatures. A canonical application of signatures is to prevent
man-in-the-middle attacks: by authenticating each message with a signature,
one is assured that the messages were not tampered with. However, a man-in-
the-middle can always delay sending an authenticated message, by storing it for

Incompressible Cryptography 3

later. The only way to block such attacks in the usual time-bounded adversary
model is to use multi-round protocols, rely on synchronized clocks and timeouts,
or have the recipients keep state, all of which may be undesirable. We therefore
also consider the case of incompressible signatures, which force such a delaying
adversary to actually store the entire signature for the duration of the delay.

In slightly more detail, in the case of plain signatures, a forgery is a signature
on any new message, one the adversary did not previously see signed. The reason
only new signed messages are considered forgeries is because an adversary can
simply store a valid signature it sees, and later reproduce it. An incompressible
signature, essentially, requires that an adversary who produces a valid signature
on an existing message must have actually stored a string almost as large as the
signature. By making the signatures long, we may hope to make it prohibitively
costly to maintain such storage. As in the case of encryption, existing signature
schemes do not appear to offer incompressible security; indeed, it is usually
desired that signatures are very short.

Feature: Low-storage for streaming honest users. Given that communication
will be inconveniently large for the adversary to store, a desirable feature of
incompressible ciphertexts and signatures is that they can be sent and received
with low storage requirements for the honest users. In such a setting, the honest
users would never store the entire ciphertext or signature, but instead generate,
send, and process the communication bit-by-bit in a streaming fashion.

Feature: High rate. With incompressible ciphertexts and signatures, communi-
cation is set to be deliberately large. If the messages themselves are also large, it
may be costly to further blow up the communication in order to achieve incom-
pressibility. Therefore, a desirable feature is to have the rate—the ratio of the
maximum message length to the communication size—be as close to 1 as possi-
ble. In this way, for very large messages, there is little communication overhead
to make the communication incompressible.

1.1 Prior Work

Dziembowski [Dzi06b] constructed information-theoretically secure symmetric-
key incompressible encryption (referred to as forward-secure encryption) via ran-
domness extractors. The focus of our work is on public-key encryption and sig-
nature schemes, which inherently cannot be information-theoretically secure.4

Very recently, Guan and Zhandry [GZ21] define and construct what they
call disappearing public key encryption and digital signatures. Their notions are

4 The symmetric-key scheme of [Dzi06b] also only offers one-time security. However,
a simple hybrid argument shows that this implies many-time security, where the
adversary can compress each of many ciphertexts separately and later sees the secret
key. However, it inherently does not offer any security if the adversary can jointly
compress many ciphertexts, even if the compressed value is much smaller than a
single ciphertext! In contrast, public-key incompressible encryption automatically
ensures security in such setting via a simple hybrid argument.

4 J. Guan, D. Wichs, M. Zhandry

very similar to ours, except with an important distinction: they assume both
honest and malicious parties operate as space-bounded streaming algorithms
throughout their operation. Honest users are assumed to have a somewhat lower
storage bound than the adversary’s.

In terms of the functionality requirement for honest users, their model cor-
responds to the low-storage streaming variant of incompressible cryptography.
However, in terms of the security requirement, disappearing cryptography is
somewhat weaker, since it restricts the adversary to also be space-bounded
throughout its entire operation, and observe the ciphertexts/signatures produced
by the cryptosystem in a streaming manner. On the other hand, incompressible
cryptography allows the adversary to observe each ciphertext/signature in its
entirety and compute on it using an unrestricted amount of local memory, but
then store some small compressed version of it afterwards. Some disappearing
schemes may be insecure in the incompressible threat model: for example, one
of the disappearing ciphertext schemes from [GZ21] could potentially even be
based on symmetric key cryptography, despite being a public key primitive.5 Yet
public key incompressible ciphertexts easily imply public key encryption, which
is believed to be stronger than symmetric key cryptography [IR90].

In summary, incompressible cryptography with low-storage streaming is also
disappearing, but the reverse direction does not hold.

Guan and Zhandry explain several interesting applications of disappearing
ciphertexts and signatures, including deniable encryption [CDNO97]. Here, one
imagines that the secret key holder is coerced into revealing their key. In order
to protect the contents of an encrypted message, traditional deniable encryp-
tion allows the key holder to generate a fake key that causes the ciphertext to
decrypt to any desired value. Unfortunately, such receiver-deniable encryption
is impossible in the standard model [BNNO11]. Disappearing ciphertexts offer
a solution, since the contents are protected without even faking the key, as the
space-bounded attacker is unable to store the ciphertext.

However, in addition to achieving a weaker security model than incompress-
ible cryptography, the schemes of [GZ21] are based on non-standard heuristic
assumptions. In particular:

– Their schemes are built from a novel object called online obfuscation, a very
strong proposed form of program obfuscation in the bounded storage setting.
While [GZ21] gives plausible candidate constructions, the constructions are
complex and it is unclear how to prove security. It is even plausible that the
notion of online obfuscation is impossible.

– One of their candidates requires, at a minimum, standard-model virtual grey
box (VGB) obfuscation [BCKP14], which is stronger even than indistin-
guishability obfuscation [BGI+01], already one of the strongest known as-
sumptions in cryptography. And even assuming VGB, the security remains
unproven. Their other candidate could plausibly be information-theoretic

5 It’s not hard to see that one-way functions, and therefore symmetric key cryptogra-
phy, are implied by disappearing ciphertexts, since the secret key can be information-
theoretically recovered from the public key.

Incompressible Cryptography 5

(but again, currently not proven), but is limited to a quadratic separation
between the ciphertext/signature size and the honest users’ storage.

– Their encryption and signature schemes involve ciphertexts/signatures that
are significantly larger than the messages, and so their schemes are low “rate”
when the messages are large.

To summarize, prior to this work it was not known how to achieve disappear-
ing/incompressible public-key encryption/signatures with provable security even
under very strong assumptions such as indistinguishability obfuscation!

1.2 Our Results

We give new positive results for incompressible cryptography:

– Under the minimal assumption of standard-model public key encryption, we
construct a simple incompressible public key encryption scheme. The scheme
supports streaming with constant storage, independent of the ciphertext
size. As a special case, we achieve provably secure disappearing ciphertexts
with optimal honest-user storage and under mild assumptions, significantly
improving on [GZ21]. The ciphertext size is |c| = |S|+|m|×poly(λ), where |S|
is the adversary’s storage, |m| the message size, and λ the security parameter.

– Under the minimal assumption of one-way functions, we construct incom-
pressible signatures. Our scheme supports streaming with constant storage,
independent of the signature size. Thus we also achieve provably secure dis-
appearing signatures under minimal assumptions, again significantly improv-
ing on [GZ21]. The total communication (message length plus signature size)
is |S|+ |m|+ poly(λ).

– Under standard-model indistinguishability obfuscation (iO), we construct
“rate 1” incompressible public-key encryption, where |c| = |S|+ poly(λ) and
the message length can be as large as roughly |S|. In particular, for very
large messages, the ciphertext size is roughly the same as the message size.

The public keys of our scheme are small, but the secret keys in this scheme
are at least as large as the message, which we explain is potentially inherent
amongst provably-secure high-rate schemes.

Along the way, we give the first rate-1 construction of functional encryption
for circuits, where |c| = |m|+ poly(λ).

– We consider a notion of “rate-1” incompressible signatures, where the total
communication is only |S| + poly(λ), and the message can be as large as
roughly |S|. Note that the signature by itself must have size at least |S|
for incompressibility (since m may be compressible), and so if we separately
send the message and signature, the total communication would be at least
|S|+ |m|, which is not rate 1. Instead, we just send a signature and require
the message to be efficiently extractible from the signature.

We show that rate-1 incompressible signatures are equivalent to incompress-
ible encodings, defined by Moran and Wichs [MW20]. By relying on the

6 J. Guan, D. Wichs, M. Zhandry

positive results of [MW20], we obtain such signatures under either the De-
cisional Composite Residuosity (DCR) or Learning With Errors (LWE) as-
sumption, in either the CRS or random oracle model. The random oracle
version supports low-space streaming, as does the CRS model if we assume
the (large) CRS is streamed. On the other hand, by relying on the negative
results of [MW20], we conclude that a provably secure rate-1 construction
in the standard model is unlikely.

1.3 Other Related Work

Bounded Storage Model. Guan and Zhandry [GZ21] is set in Maurer’s [Mau92]
Bounded Storage Model (BSM), which leverages bounds on the adversary’s
storage to enable applications. Most prior work in the BSM is about achiev-
ing unconditionally secure schemes for the types of scenarios for which we al-
ready have computationally secure schemes in the standard model (CPA en-
cryption [CM97, AR99, Lu02, Raz17, GZ19], Key Agreement [CM97, GZ19,
DQW21], Oblivious Transfer [CCM98, Din01, DHRS04, GZ19, DQW21], etc.).
Time-stamping [MST04] is perhaps the first application of the BSM beyond
achieving information-theoretic security by assuming additional computational
assumptions. Similarly, our work, as well Guan and Zhandry [GZ21], considers
scenarios for which computationally secure schemes in the standard model are
impossible and which only make sense in the BSM (public-key encryption where
the adversary gets the secret key after seeing the ciphertext, signature schemes
where the adversary cannot sign messages whose signatures she has previously
observed). Our results necessarily rely on computational assumptions.

Big-Key Cryptography in the Bounded Retrieval Model. The study of big-key
cryptography in the Bounded Retrieval Model (BRM) has evolved through a
series of works [Dzi06a, DLW06, CDD+07, ADW09, ADN+10, BKR16]. The
high-level difference is that in the BRM, the secret keys are made large to pre-
vent exfiltration, while the communication (e.g., ciphertexts, signatures) are kept
small. Incompressible cryptography is the reverse: we make the communication
large to prevent an adversary from being able to remember it in its entirety,
while the secret key is ideally small. On a technical level, while there are some
high-level similarities such as relying on a combination of computational and
information-theoretic techniques, the concrete schemes are quite different.

Symmetric Cryptography with Memory-Bounded Adversaries. There has been
various studies into the symmetric-key setting where the adversaries are memory-
bounded. For instance, the work by Rivest [Riv97] introduces all-or-nothing
encryption, a symmetric-key encryption scheme such that only knowing some
individual bits of the ciphertext reveals no information about the message.
This is similar to the forward-secure encryption due to [Dzi06b], except that
in forward-secure encryption, the adversary is allowed to compute an arbitrary
function (with a small-sized output) of the ciphertext, instead of only know-
ing a few individual bits of it. So all-or-nothing encryption can be thought

Incompressible Cryptography 7

of as disappearing encryption in the symmetric-key setting, whereas forward-
secure encryption is cloaser the a symmetric-key incompressible encryption. The
work by Zaverucha [Zav15] further extends the idea of all-or-nothing encryp-
tion, constructing a password-based encryption scheme. Building on this, the
work by Biryukov and Khovratovich [BK16] constructs memory-hard encryp-
tion by combing the idea from [Zav15] together with an external memory-hard
function, which allows for high memory bounds even with a small block size. All
of these prior works are in the symmetric-key setting, and it is not obvious how
to extend them to the public-key setting as we study in this paper.

1.4 Technical Overview

Incompressible Encryption. We first consider incompressible public key encryp-
tion. The syntax is identical to that of standard-model encryption, but the se-
curity game is different:

1. The challenger first gives the adversary the public key.
2. The adversary then produces two messages m0,m1.
3. The challenger encrypts one of the two messages, as the ciphertext c.
4. Now the adversary produces a state s of size somewhat smaller than c.
5. The challenger then reveals the secret key.
6. The adversary, given only the small state s but also the secret key, now

makes a guess for which message was encrypted.

Note that, except for the size of the state s being bounded between Steps 4
and 6, the size of the adversary’s storage is unbounded. It is also easy to see
that this definition implies standard semantic security of public-key encryption.

Remark 3. Note that this security definition is quite similar to that of disappear-
ing public key encryption by Guan and Zhandry [GZ21] with two distinctions.
Firstly, in the disappearing encryption security experiment, there is no Step 4 as
above. Instead, the adversary is bounded by some space throughout the entire ex-
periment. Additionally, functionality wise, disappearing encryption requires the
protocol to be executable by honest parties with some space bound lower than
the adversary’s storage. In our setting, we do not consider this to be an inherent
requirement, but rather a desirable feature that some of our schemes satisfy. As
we will see in Remark 4, this feature is incompatible with rate-1 schemes, and
hence we will drop it in that setting.

Our Solution. We give a construction of incompressible encryption in Section 3,
under the minimal assumption of generic public key encryption.

We describe our solution using functional encryption (FE), which is a form
of public key encryption where the secret key holder can give out function secret
keys for functions f ; a function secret key allows for learning f(m) but nothing
else about the message. For our application, we only need a very special case
of single-key functional encryption, which we instantiate with a simple and po-
tentially practical construction from generic public key encryption scheme. Our
incompressible encryption scheme works as follows:

8 J. Guan, D. Wichs, M. Zhandry

– The public key is just the public key for the underlying FE scheme. The
secret key is a function secret key for the function fv defined as

fv(s, b) =

{
s if b = 0

s⊕ v if b = 1

where the value v is chosen uniformly at random and hard-coded into fv.
Here, s, v are reasonably short strings, whose length will be discussed shortly.

– To encrypt m, choose a random s, and compute c← FE.Enc(FE.mpk, (s, 0))
as an encryption of (s, 0) under the FE scheme. Then choose a large random
string R. Interpret s as the pair (s′, t), where t is a string of length equal to
the message length, and s′ is the seed for a strong extractor. Then compute
z = Extract(R; s′)⊕ t⊕m. The final ciphertext is (c,R, z).

– To decrypt, use the FE secret key to recover s = (s′, t) from c. Then recover
m = z ⊕ Extract(R; s′)⊕ t.

We can generate and transmit the string R in a streaming fashion. We can then
use an online extractor [Vad03] so that Extract(R; s′) can be computed without
having to store R in its entirety. Note that R is the only “big” component of the
ciphertext, so encryption and decryption therefore require small space.

We prove security through a hybrid argument. First, we use FE security
to switch to c being generated as c ← FE.Enc(FE.mpk, (s ⊕ v, 1)). Since this c
decrypts equivalently under the secret key, this change is indistinguishable.

We then observe that the string u = s ⊕ v being encrypted under the FE
scheme, as well as the string z included in the final ciphertext, are both just
uniformly random strings. We can therefore delay the generation of the secret
key and v until the very end of the experiment. Now we think of the adversary’s
state (as well as some other small values needed to complete the simulation) as
a leakage on the large random string R. Since the adversary’s storage is required
to be small compared to R, R has min-entropy conditioned on this leakage. This
means we can invoke the randomness guarantee of the randomness extractor to
replace Extract(R; s′) with a uniform random string. At this point, m is one-time-
padded with a uniform string, and therefore information-theoretically hidden.

We explain how to instantiate the functional encryption scheme. Since the
adversary only ever sees a single secret key, we can build such a functional
encryption scheme generically from public key encryption, using garbled circuit
techniques [GVW12]. On the other hand, our functional encryption scheme only
needs to support an extremely simple linear function. We show a very simple
and potentially practical solution from any public key encryption scheme.

Remark 4. We note that our scheme has a less-than-ideal rate, since the cipher-
text size is at least as large as the adversary’s storage plus the length of the
message. Low rates, however, are inherent to schemes supporting low-storage
streaming. Indeed, the storage requirements of the honest users must be at least
as large as the message, and in the high-rate case this means the honest users
must be capable of storing the entire ciphertext. This remains true even if the

Incompressible Cryptography 9

message itself is streamed bit-by-bit, which can be seen as follows: by incompress-
ibility, the decrypter cannot start outputting message bits until essentially the
entire stream has been sent. Otherwise, an attacker can store a short prefix of the
ciphertext, and then when it gets the secret key mimic the decrypter until it out-
puts the first message bit. Now, at the point right before the decrypter outputs
the first message bit, the entire contents of the message must be information-
theoretically contained within the remaining communication (which is short) and
the decrypter’s state, since the decrypter ultimately outputs the whole message.
Thus the decrypter’s state must be almost as large as the message.

A rate-1 solution. We now discuss how we achieve a rate-1 scheme, using indis-
tinguishability obfuscation. This is our most complicated construction, and we
only give a brief overview here with the full construction in Section 4.

The central difficulty in achieving a rate-1 scheme is that we cannot guarantee
a ciphertext with large information-theoretic entropy. Indeed, the ciphertext
must be almost as small as the message, so there is little room for added entropy
on top of the message. But the message itself, while large, many not have much
entropy. Therefore, our approach of using randomness extraction to extract a
random string from the ciphertext will not work naively.

Our solution, very roughly, is to have the large random value in the secret
key. Using a delicate argument, we switch to a hybrid where the ciphertext
is just an encryption of large randomness R, and the secret key contains the
message, masked by a string extracted from R. Now we can mimic the low-rate
case, arguing that given the small state produced by the adversary, R still has
min-entropy. Thus, the message m is information-theoretically hidden.

The result is that we achieve an incompressible encryption scheme whose
rate matches the rate of the underlying functional encryption scheme. Unlike the
low-rate case, our FE scheme appears to need the full power of FE for circuits,
since it will be evaluating cryptographic primitives such as PRGs and extractors.
Unfortunately, all existing FE schemes for general circuits, even using iO, have
poor rate. For example, if we look at the original iO scheme of [GGH+13], the
ciphertext contains two plain public key encryption encryptions of the message,
plus a NIZK proof of consistency. The result is that the rate is certainly at
most 1/3. Another construction due to [BCP14] sets the ciphertext to be an
obfuscated program containing the message; since known obfuscation schemes
incur a large blowup, the scheme is not rate-1.

We give a novel rate-1 FE scheme (with many key security), by building on
ideas from [BZ14]. They build an object called private linear broadcast encryp-
tion (PLBE), which can be seen as a special case of FE for simple comparison
functionalities. However, their approach readily generalizes to more complex
functionalities. The problem with their construction is that their proof incurs a
security loss proportional to the domain size. In their case, the domain is poly-
nomial and this is not a problem. But in our case, the domain is the message
space, which is exponential. One may hope to use complexity leveraging, but
this would require setting the security parameter to be at least as large as the

10 J. Guan, D. Wichs, M. Zhandry

message. However, this will not give a rate-1 scheme since the ciphertext is larger
than the message by an additive factor linear in the security parameter.

We therefore devise new techniques for proving security with just a poly-
nomial loss, even for large messages, thus giving the first rate-1 FE scheme for
general circuits, from iO and one-way functions. Details in Section 7.

Remark 5. We note that the final construction of rate-1 incompressible encryp-
tion has very short public keys, but large secret keys. We therefore leave as
an interesting open question devising a scheme that also has short secret keys.
However, achieving such a scheme with provable security under standard as-
sumptions appears hard. Indeed, cryptographic assumptions typically make no
restrictions on the adversary’s storage. The issue is that the message itself may
have little entropy, and so to prove that a ciphertext is incompressible it seems
the computational assumptions will be used to transition to a hybrid where the
ciphertext has nearly full entropy (indeed, this is how our proof works). But
this transition happens without space bounds, meaning the reduction actually
is capable of decrypting the ciphertext and recovering the message once the key
is revealed. Yet in this hybrid the ciphertext was “used up” in order to make
it high-entropy, and it seems the only place left to embed the message is the
secret key (again, this is how our proof works). If the message is large, it there-
fore seems the secret key must be large as well. We believe this intuition can
be formalized as a black-box separation result, similarly to analogous results of
[Wic13], but we leave this for future work.

Incompressible Signatures. An incompressible signature scheme is defined by the
following experiment:

1. The challenger first gives the adversary the public key.

2. The adversary makes repeated signing queries on arbitrary messages. In
response, the challenger produces a signature on the message.

3. After observing many signatures, the adversary must produce a small state
s of size somewhat smaller than a single signature.

4. Next, the adversary, is given the small state s, and wins if it produces a valid
signature on any message, potentially even one used in a prior signing query.

Note that, except for the size of the state s being bounded between Steps 3
and 4, the size of the adversary’s storage is unbounded.

Remark 6. This definition is also quite similar to that of disappearing signature
due to Guan and Zhandry [GZ21] except for two differences. For disappearing
signatures, the security experiment does not have Step 3 as above, and instead
requires the adversary to be bounded by some space throughout the entire ex-
periment. Functionality wise, disappearing signature requires the scheme can be
run by honest parties with a space bound somewhat lower that the adversary’s
storage, whereas we don’t require that for incompressible signatures.

Incompressible Cryptography 11

Our Solution. We give a very simple construction of incompressible signatures
in Section 5. To sign m, first choose a large uniformly random string R, and
then compute σ ← Sign(sk, (R,m)), where Sign is a standard-model signature
scheme. The overall signature is then (R, σ). Verification is straightforward.

Both signing and verification can be evaluated in a low-space streaming fash-
ion, provided Sign can be evaluated as such. One can always assume this property
of Sign: first hash the message using a streaming-friendly hash function such as
Merkle-Damg̊ard, and then sign the hash. Since the hash is small and computing
the hash requires low-space, the overall signing algorithm is low space.

For security, consider an adversary which produces a small state s somewhat
smaller than the length of R. Since R is random, it will be infeasible for the
adversary to re-produce R in Step 4. Therefore, any valid signature must have
an R different than any of the messages previously signed. But this then violates
the standard unforgeability of Sign.

A rate-1 solution. In Section 6, we modify the above construction to get a rate-
1 solution. We note that “rate” here has to be defined carefully. In the above
solution, the signature size is independent of the message size, and so it seems
that the signature has good rate. However, communication will involve both
the signature and the message, and so the total length of the communication
will be significantly larger than the message. We therefore want that the total
communication length is only slightly longer than the message being signed.

On the other hand, if the message is very long, one may naturally won-
der whether we can just sign the message using any standard-model signature
scheme, and have the resulting communication be rate-1. However, a long mes-
sage may in fact be compressible. What we want is to achieve rate-1 total com-
munication, and incompressibility, even if the message may be compressed.

We therefore define a rate-1 incompressible signature as an incompressible
signature where the signature is only slightly longer than the message, and where
there is a procedure to extract the message from the signature. In this way, all
that needs to be sent is the signature itself, and therefore the total communica-
tion remains roughly the same as the message.

Equivalence to incompressible encodings. We next demonstrate that incompress-
ible signatures are equivalent to incompressible encodings [MW20]. These are
public encoding schemes where the encoding encodes a message into a codeword
c that is only slightly longer than the message. From c, the original message
can be recovered using a decoding procedure. For security, the adversary then
receives the codeword as well as the message, tries to compress the codeword
into a small storage s. Then the adversary, given s and the message, tries to
recover the exact codeword c.

A rate-1 incompressible signature (with small public keys) gives an incom-
pressible encoding: to encode a message, simply generate a new public/secret key
pair, and sign the message. The codeword c is then the public key together with
the signature. Decoding and security follow readily from the message extraction
procedure and security of the incompressible signature.

12 J. Guan, D. Wichs, M. Zhandry

In the other direction, to sign a message, first incompressibly encode the
message and then sign the result using a standard-model signature scheme. The
final signature is the codeword together with the standard-model signature. Ex-
traction follows from the decoding procedure. If the incompressible encoding
supports low-space streaming, so does the signature scheme. For security, since
the adversary cannot produce the original codeword that was signed due to the
security of the incompressible encoding, they must produce some other code-
word. But a valid signature would also contain a standard-model signature on
this new codeword, violating the security of the signature scheme.

Moran and Wichs [MW20] instantiate incompressible encodings under either
the Decisional Composite Residuosity (DCR) or Learning With Errors (LWE)
assumptions, in either the CRS or random oracle models. We observe that their
incompressible encodings simply break the message into blocks of length poly(λ)
and encode each block separately; as such they can be easily streamed in low
space, though the CRS-based scheme would need the CRS to be streamed as
well. We obtain the incompressible signatures under the same assumptions in
the same models, with low-space streaming.

We also note that we can have the signer generate the CRS and include
it in the public key, giving a standard-model incompressible encoding scheme
with large public keys. Note that such a scheme is not immediately equivalent to
incompressible encodings, since the codeword contains the public key, and would
therefore be too large.

On the other hand, [MW20] show that a CRS or random oracle is somewhat
necessary, by giving a black box separation relative to falsifiable assumptions
in the standard model. Due to our equivalence, this implies such a black box
impossibility for incompressible signatures in the standard model as well.

2 Preliminaries

Min-Entropy Extractor. Recall the definition for average min-entropy:

Definition 1 (Average Min-Entropy). For two jointly distributed random
variables (X,Y), the average min-entropy of X conditioned on Y is defined as

H∞(X|Y) = − log E
y

$←Y
[max
x

Pr[X = x|Y = y]].

Lemma 1 ([DRS04]). For random variables X,Y where Y is supported over
a set of size T , we have H∞(X|Y) ≥ H∞(X,Y)− log T ≥ H∞(X)− log T.

Definition 2 (Extractor [Nis90]). A function Extract : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε) strong average min-entropy extractor if, for all jointly dis-
tributed random variables (X,Y) where X takes values in {0, 1}n and H∞(X|Y) ≥
k, we have that (Ud,Extract(X;Ud), Y) is ε-close to (s, Um, Y), where Ud and Um
are uniformly random strings of length d and m respectively.

Remark 7. Any strong randomness extractor is also a strong average min-entropy
extractor, with a constant loss in ε.

Incompressible Cryptography 13

Digital Signatures. We also generalize the syntax of a signature scheme, which
will ultimately be necessary to achieve a meaningful high “rate”. Instead of
producing a signature that is sent along side the message, we would implicitly
embed or encode the message into the signature. The signature is then all that
is sent to the receiver, from which the message can be decoded and verified. Any
standard signature scheme can readily be viewed in our generalized syntax by
just calling (m,σ) the “signature.”

A public key signature scheme for message space {0, 1}Lm and signature
space {0, 1}Lσ is a tuple of PPT algorithms Π = (Gen,Sign,Ver) such that:

– Gen(1λ)→ (vk, sk) samples a verification key vk, and a signing key sk.
– Sign(sk,m) → σ takes as input the signing key sk and a message m, and

computes a signature σ that implicitly contains the message m.
– Ver(vk, σ) → m/⊥ takes as input the verification key vk and a signature
σ, and outputs either the message m or ⊥. Outputting m means that the
signature verifies, and outputting ⊥ means that the signature is invalid.

Definition 3 (Correctness). For all λ ∈ N and message m ∈ {0, 1}Lm , let
(vk, sk)← Gen(1λ), then we have Pr[Ver(vk,Sign(sk,m)) = m] ≥ 1− negl(λ).

We modify the security experiment slightly by asking the adversary to output
a signature σ instead of a message-signature pair, and the adversary wins the
game if and only if Ver(vk, σ) /∈ {⊥,m1, . . . ,mq} where mi’s are the previously
queried messages. The “rate” of the signature scheme is defined to be Lm/Lσ.

Functional Encryption. For our constructions we also need single-key game-
based functional encryption. Let λ be the security parameter. Let {Cλ} be a
class of circuits with input space Xλ and output space Yλ. A functional en-
cryption scheme for the circuit class {Cλ} is a tuple of PPT algorithms FE =
(Setup,KeyGen,Enc,Dec) defined as follows:

– Setup(1λ)→ (mpk,msk) takes as input the security parameter λ, and outputs
the master public key mpk and the master secret key msk.

– KeyGen(msk, C)→ skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

– Enc(mpk,m)→ ct takes as input the public key mpk and a message m ∈ Xλ,
and outputs the ciphertext ct.

– Dec(skC , ct)→ y takes as input a function key skC and a ciphertext ct, and
outputs a value y ∈ Yλ.

We can analogously define the “rate” of an FE scheme to be the ratio between
the message length to the ciphertext length. We require correctness and security
of a functional encryption scheme.

Definition 4 (Correctness). A functional encryption scheme FE = (Setup,
KeyGen,Enc,Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

y = C(m) :

(mpk,msk)← Setup(1λ)
skC ← KeyGen(msk, C)

ct← Enc(mpk,m)
y ← Dec(skC , ct)

 ≥ 1− negl(λ).

14 J. Guan, D. Wichs, M. Zhandry

Consider the following Semi-Adaptive Security Experiment, DistSemiAdpt
FE,A (λ):

– Run FE.Setup(1λ) to obtain (mpk,msk) and sample a random bit b← {0, 1}.
– On input 1λ and mpk, The adversary A submits the challenge query con-

sisting of two messages m0 and m1. It then receives ct← FE.Enc(mpk,mb).
– The adversary now submits a circuit C ∈ {Cλ} s.t. C(m0) = C(m1), and

receives skC ← FE.KeyGen(msk, C).
– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary

succeeds and experiment outputs 1. Otherwise, the experiment outputs 0.

Definition 5 (Single-Key Semi-Adaptive Security). For security parame-
ter λ, a functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) is said to
have single-key semi-adaptive security if for all PPT adversaries A :

Pr
[
DistSemiAdpt

FE,A (λ) = 1
]
≤ 1

2
+ negl(λ).

We can also consider selective security, where the adversary only receives mpk
after sending the challenge messages. We can also consider many-time semi-
adaptive/selective security, where the adversary is able to adaptively query for
as many skC as it would like, provided they all occur after the challenge query.

3 Incompressible Encryption: Our Basic Construction

Here we show how to construct an incompressible public key encryption scheme
with low “rate”, i.e. the ratio of the message size to the ciphertext size. First, we
define what it means for a public key encryption scheme to be incompressible.

3.1 Definition

We give the definition of incompressible encryption, which is based on the similar
definition of disappearing encryption [GZ21]. For security parameters λ and S,
an incompressible public key encryption scheme with message space {0, 1}Lm
and ciphertext space {0, 1}Lct is a tuple of PPT algorithms Π = (Gen,Enc,Dec).

Remark 8. For the original disappearing PKE defined in [GZ21], it is addition-
ally required that Gen, Enc, and Dec can be run in space N � Lct. Here, we will
consider schemes that have both large and small space.

The rest of the syntax of an incompressible PKE scheme is identical to that
of a classical PKE scheme. The “rate” of the PKE scheme is simply Lm/Lct.

For the security definition, consider the following indistinguishability exper-
iment for an adversary A = (A1,A2):

Incompressible Encryption Security Experiment DistIncomEnc
A,Π (λ):

1. The adversary A1, on input 1λ, outputs a space bound 1S .
2. Run Gen(1λ, 1S) to obtain keys (pk, sk).

Incompressible Cryptography 15

3. Sample a uniform bit b ∈ {0, 1}.
4. The adversary is then provided the public key pk.
5. The adversary replies with the challenge query consisting of two messages
m0 and m1, receives ct← Enc(pk,mb).

6. A1 produces a state st of size at most S.
7. The adversary A2 is given the tuple (pk, sk,m0,m1, st) and outputs a guess
b′ for b. If b′ = b, we say that the adversary succeeds and the output of the
experiment is 1. Otherwise, the experiment outputs 0.

Definition 6 (Incompressible Encryption Security). For security param-
eters λ and S, a public key encryption scheme Π = (Gen,Enc,Dec) has incom-
pressible encryption security if for all PPT adversaries A = (A1,A2):

Pr
[
DistIncomEnc

A,Π (λ) = 1
]
≤ 1

2
+ negl(λ).

Remark 9. The original Disappearing Ciphertext Security [GZ21] has a very sim-
ilar security notion, except that the adversary has a space bound of S throughout
the entire experiment, and that the ciphertext is a long stream sent bit by bit.
Notice that our definition of Incompressible Encryption Security is a strictly
stronger security definition than Disappearing Ciphertext Security.

3.2 Construction

Construction 1. Given FE = (Setup,KeyGen, Enc,Dec) a single-key selectively
secure functional encryption scheme with a rate of ρFE and a strong average
min-entropy extractor Extract : {0, 1}n × {0, 1}d → {0, 1}Lm , with d = poly(λ)
and n = S + poly(λ) the construction Π = (Gen,Enc,Dec) works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk)← FE.Setup(1λ). Then, generate
the secret key for the following function fv with a hardcoded v ∈ {0, 1}d+Lm :

fv(s
′ = (s, t), flag) =

{
s′ if flag = 0

s′ ⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv ← FE.KeyGen(FE.msk, fv).
– Enc(pk,m): Sample a random tuple s′ = (s, t) where s ∈ {0, 1}d is used as

a seed for the extractor and t ∈ {0, 1}Lm is used as a one-time pad. The
ciphertext consists of three parts: FE.ct ← FE.Enc(FE.mpk, (s′, 0)), a long
randomness R ∈ {0, 1}n, and z = Extract(R; s)⊕ t⊕m.

– Dec(sk, ct = (FE.ct, R, z)): First, obtain s′ ← FE.Dec(FE.skfv ,FE.ct), and
then use the seed s to compute Extract(R; s)⊕ z ⊕ t to recover m.

Note that if Extract is an online extractor [Vad03], then encryption and decryp-
tion can be run in a low-space streaming fashion, by first sending FE.ct, then
streaming R, and then sending z. The rate of this construction is

Lm
Lct

= Lm

(
d+ Lm + 1

ρFE
+ n+ Lm

)−1
=

1

(1/ρFE + 1) + S/Lm
− o(1).

16 J. Guan, D. Wichs, M. Zhandry

Theorem 1. Assuming the existence of a functional encryption scheme with
single-key selective security and a rate of 1/poly(λ), and a (poly(λ), negl(λ)) av-
erage min-entropy extractor, there exists an incompressible PKE with ciphertext
size S + Lm + poly(λ) + poly(λ)Lm, public key size poly(λ) and secret key size
poly(λ). It supports streaming decryption using Lm + poly(λ) bits of memory.

3.3 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

– H0: The original incompressible encryption security experiment DistIncomEnc
A,Π ,

where the bit b in the experiment is fixed to be 0.
– H1: In step 5, instead of computing FE.ct ← FE.Enc(FE.mpk, (s′, 0)), com-

pute FE.ct← FE.Enc(FE.mpk, (s′ ⊕ v, 1)).
– H2: In step 2, only sample (FE.mpk,FE.msk) ← FE.Setup(1λ). In step 5,

after receiving the challenge query, sample uniformly random z ∈ {0, 1}Lm ,
u ∈ {0, 1}d+Lm , R ∈ {0, 1}n and send back FE.ct← FE.Enc(FE.mpk, (u, 1)),
R, and z as the ciphertext. In step 7, sample a uniformly random s ∈ {0, 1}d,
and compute t = Extract(R; s)⊕ z⊕m0, and v = s′⊕u where s′ is the tuple
(s, t). Use this v to compute sk = FE.skfv ← FE.KeyGen(FE.msk, fv).

– H3: In step 7, sample a uniformly random r ∈ {0, 1}Lm and compute t =
r ⊕ z ⊕m0 instead.

– H4: Swap the bit b in the security experiment to be 1 instead of 0.
– H5: Switch back to the case where t = Extract(R; s)⊕ z ⊕m1.
– H6: Switch back to the case where we produce sk in step 2 instead of step 5.
– H7: Switch the FE ciphertext back to the real one FE.Enc(FE.mpk, (s′, 0)).

Notice here we’re at the original incompressible encryption security experi-
ment, where the bit b is fixed to be 1.

Proof of Hybrid Arguments

Lemma 2. If the functional encryption scheme FE has single-key selective se-
curity, then no PPT adversary can distinguish between H0 and H1 (respectively
H6 and H7) with non-negligible probability.

Proof. Here we will prove the case for H0 and H1. The case for H6 and H7 follows
analogously. This is by a simple reduction to the single-key selective security
of the functional encryption scheme. If an adversary A is able to distinguish
between H0 and H1, we show how to construct an adversary A′ that breaks
security of the functional encryption scheme FE. The only difference between
H0 and H1 is that in H0 the adversary receives an encryption of (s′, 0), while in
H1 the adversary receives an encryption of (s′⊕v, 1). But notice that fv(s

′, 0) =
s′ = fv(s

′ ⊕ v, 1), so the adversary A is able to distinguish between two FE
ciphertexts that have the same functional output on function fv, for which it has
a secret key. This directly breaks the underlying functional encryption security.
Concretely, A′ works as follows by using A = (A1,A2) as a subroutine:

Incompressible Cryptography 17

– On input 1λ, sample uniform values s′ and v, and submit the challenge query
FE.m0 = (s′, 0) and FE.m1 = (s′ ⊕ v, 1) to the challenger. Receive FE.mpk
and FE.ct in response.

– Send 1λ to A1 and receive 1S .
– Send FE.mpk to A1, receive challenge query m0 and m1, and respond with

FE.ct, R and z, where R is a random string of length S + poly(λ), and
z = Extract(R; s) ⊕ t ⊕ m0. The adversary A1 produces a state st. Notice
that the only component that’s different for H0 and H1 is FE.ct, and it does
not depend on the challenge query from A1. R and z remain unchanged.

– Send fv to the challenger and receive FE.skfv . Forward sk = FE.skfv to A2

together with (FE.mpk,m0,m1, st).
– If A2 outputs that it is in H0, output 0. Otherwise, output 1.

It is straightforward to verify that if A wins the game, A′ wins as well. ut

Lemma 3. No adversary can distinguish between H1 and H2 (respectively H5

and H6) with non-negligible probability.

Proof. We prove the case for H1 and H2, the case for H5 and H6 follows analo-
gously. Since pk does not depend on sk, and sk is not used until in step 7, now
instead of fixing fv (and thus sk = FE.skfv) in step 2, we sample it lazily in
step 7. Our new sampling procedure in H2 makes the following two changes to
H1: First, in H1, we sample a uniform t and compute z = Extract(R; s)⊕ t⊕m0,
while in H2, we sample a uniform z and compute t = Extract(R; s)⊕z⊕m0. This
is just a change of variables, and gives two identical distributions. Second, in H1

we sample a uniform v and encrypt u = v⊕s′, while in H2 we encrypt a uniform
u and compute v = u⊕ s′. Again, these are identical distributions. Thus, no ad-
versary can distinguish between H1 and H2 with non-negligible probability. ut

Lemma 4. If the extractor Extract is a (poly(λ), negl(λ)) average min-entropy
extractor, then no adversary that produces a state st of size at most S can dis-
tinguish between H2 and H3 (resp. H4 and H5) with non-negligible probability.

Proof. We prove the case for H2 and H3. The other case follows naturally.
Here let the random variablesX = R, and Y = (FE.mpk,FE.msk,m0,m1, u, z)

and Z = st. By Lemma 1, we have

H∞(X|Y,Z) ≥ min
y
H∞(X|Y = y, Z) ≥ min

y
H∞(X|Y = y)− S = poly(λ).

The last equality above follows since X = R is a uniformly random string,
independent of Y , of length S + poly(λ). By extractor security, no adversary
can distinguish (s,Extract(R; s), Y, Z) from (s, ULm , Y, Z) except with negl(λ)
probability. Since we now sample u ← ULm , no adversary can now distinguish
between t = Extract(R; s)⊕ z ⊕m0 and t = u⊕ z ⊕m0, i.e. H2 and H3. ut

Lemma 5. No adversary can distinguish H3 from H4 with non-zero probability.

18 J. Guan, D. Wichs, M. Zhandry

Proof. Notice that the only difference between H3 and H4 is that in H3 we have
t = r⊕z⊕m0 while in H4 we have t = r⊕z⊕m1, where r is uniformly random.
Thus t is uniformly random in both cases, and H3 and H4 are identical. ut

Theorem 2. If FE is a functional encryption scheme with single-key selective
security, and Extract is a (poly(λ), negl(λ)) average min-entropy extractor, then
Construction 1 has incompressible encryption security.

Proof. The lemmas above show a sequence of hybrids where no PPT adversary
that produces a state with size at most S can distinguish one from the next with
non-negligible probability. The first hybrid H0 corresponds to the incompressible
encryption security game where b = 0, and the last one H7 corresponds to the
case where b = 1. The security of the indistinguishability game follows. ut

3.4 Instantiating our FE

We now give a simple construction of functional encryption for our needed func-
tionality. Recall that our functions fv have the form fv(s, flag) = s⊕ (flag · v).

Construction 2. Let (Gen′,Enc′,Dec′) be a public key encryption scheme. Our
scheme FE = (Setup,KeyGen,Enc,Dec) for message length n+ 1 is defined as:

– Setup(1λ): For i ∈ {1, . . . , n}, b ∈ {0, 1}, run (pki,b, ski,b)← Gen′(1λ). Output
(mpk = (pki,b)i,b , msk = (ski,b)i,b).

– KeyGen(msk, fv) = (ski,vi)i.
– Enc(mpk, (s, flag)): For i ∈ {1, . . . , n}, b ∈ {0, 1}, compute ci,b = Enc′(pki,b, si⊕

(flag · b)). Output c = (ci,b)i,b.
– Dec(skfv , c): Output x = x1x2 · · ·xn where xi = Dec′(ski,vi , ci,vi)

For correctness, note that xi = si⊕(flag ·vi), and therefore x = s⊕(flag ·v) =
fv(s, flag). Note that the rate of this scheme is 1/poly(λ). Thus the overall rate
of our incompressible encryption scheme is 1/poly(λ).

Theorem 3. If (Gen′,Enc′,Dec′) is a CPA secure public key encryption scheme,
then Construction 2 is single key semi-adaptively secure for the functions fv.

Proof. Consider a single key semi-adaptive adversary for Construction 2. Let
m0 = (s0, flag0),m1 = (s1, flag1) be the challenge messages. For a fixed flag bit,
fv is injective. Therefore, if m0 6= m1, it must be that flag0 6= flag1. Then if the
adversary’s secret key query is on fv, we must have v = s0 ⊕ s1. Thus the two
possibilities for the challenge ciphertext are the same for ci,vi , but encrypt oppo-
site bits in ci,1−vi . Since the adversary never gets to see the secret keys ski,1−vi ,
a simple hybrid argument shows that flipping these bits is indistinguishable. ut

Corollary 1. Assuming the existence of a CPA secure public key encryption
scheme and a (poly(λ), negl(λ)) average min-entropy extractor, there exists an
incompressible PKE with ciphertext size S + Lm + poly(λ) + poly(λ)Lm, public
key size poly(λ) and secret key size poly(λ). Furthermore, it supports streaming
decryption using Lm + poly(λ) bits of memory.

Incompressible Cryptography 19

4 Rate-1 Incompressible Encryption

Here, we construct incompressible encryption with an optimal rate of 1 − o(1),
i.e. the message length is (almost) the same as the ciphertext length.

4.1 Construction

For our construction, we require a functional encryption scheme with single-key
semi-adaptive security and a rate of 1, a strong average min-entropy extractor,
and a secure pseudorandom generator (PRG). Our construction works as follows.

Construction 3. Given FE = (Setup,KeyGen, Enc,Dec) a rate-1 functional en-
cryption scheme satisfying single-key semi-adaptive security, Extract : {0, 1}Lm×
{0, 1}d → {0, 1}n a strong average min-entropy extractor where d, n = poly(λ),
and PRG : {0, 1}n → {0, 1}Lm a secure PRG, the constructionΠ = (Gen,Enc,Dec)
works as follows:

– Gen(1λ, 1S): First, obtain (FE.mpk,FE.msk)← FE.Setup(1λ). Then, generate
the secret key for the following function fv,s with a hardcoded large random
pad v ∈ {0, 1}Lm and a small extractor seed s ∈ {0, 1}d:

fv,s(x, flag) =

{
x if flag = 0

PRG(Extract(x; s))⊕ v if flag = 1
.

Output pk = FE.mpk and sk = FE.skfv,s ← FE.KeyGen(FE.msk, fv,s). Set
Lm = S + poly(λ).

– Enc(pk,m): The ciphertext is simply an encryption of (m, 0) using the un-
derlying FE scheme, i.e. FE.ct← FE.Enc(FE.mpk, (m, 0)).

– Dec(sk, ct): Decryption also corresponds to FE decryption. The output is
simply FE.Dec(FE.skfv,s , ct) = fv,s(m, 0) = m as desired.

Let ρFE be the rate of FE. Then the ciphertext size is (Lm + 1)/ρFE and
the rate of our incompressible encryption scheme is ρΠ = ρFE/(1 + L−1m). If
ρFE = 1− o(1), then ρΠ = 1− o(1) as well.

Theorem 4. Assuming the existence of a functional encryption scheme with
single-key semi-adaptive security and a rate of 1− o(1), and a (poly(λ), negl(λ))
average min-entropy extractor, there exists an incompressible PKE with message
size of up to S− poly(λ), ciphertext size S+ poly(λ), public key size poly(λ) and
secret key size poly(S, λ).

4.2 Proof of Security

We organize our proof of security into a sequence of hybrids.

20 J. Guan, D. Wichs, M. Zhandry

Sequence of Hybrids

– H0: The original incompressible encryption security experiment DistIncomEnc
A,Π ,

where the bit b in the experiment is fixed to be 0.
– H1: Instead of fixing v and s in step 2 of the security experiment, lazily

sample v and s in step 7 where we need to provide sk. Also, instead of
sampling v directly, first sample a uniformly random u ∈ {0, 1}Lm , and then
compute v = u⊕m0.

– H2: We further modify how we sample v. Now instead of sampling a random
u, we sample a random PRG key k ∈ {0, 1}n, and set v = PRG(k)⊕m0.

– H3: We once more modify how we sample v. We now sample a long random-
ness R ∈ {0, 1}Lm and use that to compute v = PRG(Extract(R; s))⊕m0.

– H4: In step 5, set the ciphertext to be FE.ct← FE.Enc(FE.mpk, (R, 1)).
– H5: In step 7, revert to computing v = PRG(k)⊕m0 for a uniform k.
– H6: In step 7, revert to computing v = u⊕m0 for a uniform u.
– H7: Switch the bit b of the experiment from 0 to 1.
– H8: In step 7, sample v as PRG(k)⊕m1.
– H9: In step 7, sample v as PRG(Extract(R; s))⊕m1.
– H10: In step 5, change the ciphertext back to FE.ct← FE.Enc(FE.mpk, (m1, 0)).
– H11: In step 7, sample v as PRG(k)⊕m1.
– H12: In step 7, sample v as u⊕m1.
– H13: Sample a uniform v back at the beginning of the experiment in step 2.

Notice that now we’re back at the original incompressible encryption security
experiment, where the bit b is fixed to be 1.

For the proofs of the hybrids and Theorem 4, please refer to the full version.

5 Incompressible Signatures: Our Basic Construction

5.1 Definition

Here we give the definition of incompressible signatures. An incompressible sig-
nature scheme Π = (Gen,Sign,Ver) takes an additional space parameter S, and
in addition to the standard model signature security (where the adversary has
unbounded space throughout the game), we also require incompressible signature
security that utilizes the following experiment for adversary A = (A1,A2):

Signature Forgery Experiment SigForgeIncomSig
A,Π (λ):

– The adversary A1, on input 1λ, outputs a space bound 1S .
– Run Gen(1λ, 1S) to obtain keys (vk, sk).
– The adversary A1 is given the public key vk.
– For q = poly(λ) rounds,A1 submits a messagem, and receives σ ← Sign(sk,m).

At the end of the last round, A1 produces a state st of size at most S.
– The adversary A2 is given the public key vk, the state st, and all the queried

messages m, and outputs a signature σ′. If Ver(vk, σ′) outputs ⊥, output 0.
Otherwise, output 1.

Incompressible Cryptography 21

Notice that traditionally, we would require Ver(vk, σ′) to be distinct from the
messages m’s queried before, but here we have no such requirement. With this
experiment in mind, we now define the additional security requirement for an
incompressible signature scheme.

Definition 7 (Incompressible Signature Security). For security parame-
ters λ and S, an incompressible signature scheme Π = (Gen,Sig,Ver) has in-
compressible signature security, if for all PPT adversaries A = (A1,A2):

Pr
[
SigForgeIncomSig

A,Π (λ) = 1
]
≤ negl(λ).

5.2 Construction

We present a very simple construction from classical public key signature schemes.

Construction 4. Let λ, S be security parameters. Given Sig = (Gen,Sign,Ver)
a classical public key signature scheme with message space {0, 1}n+Lm where
n = S + poly(λ) and rate ρ′, we construct an incompressible signature scheme
Π = (Gen,Sign,Ver) as follows:

– Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk,Sig.sk). Output vk = Sig.vk
and sk = Sig.sk.

– Sign(sk,m): Sample randomnessR ∈ {0, 1}n, and output σ ← Sig.Sign(Sig.sk, (R,m)).
– Ver(vk, σ): Run M ← Sig.Ver(Sig.vk, σ). If M = ⊥, output ⊥. Otherwise, if
M = (R,m), output m.

Sig can be computed in an low-space streaming fashion, since we can hash the
message in low space first using Merkle-Damg̊ard. Then Construction 5 can
readily be computed with low space streaming. The rate of this construction is

Lm
Lσ

=
Lm

(S + Lm)/ρ′
= ρ′(1 + S/Lm)−1.

5.3 Proof of Security

Theorem 5. Assuming the existence of a secure public key signature scheme
with rate ρ′, there exists an incompressible signature scheme with signature size
ρ′(S + Lm + poly(λ)), public key size poly(λ) and secret key size poly(λ). Fur-
thermore, it supports streaming computation using poly(λ) bits of memory.

Proof. We show this through a reduction proof. Concretely, we show how one
can use an adversary A = (A1,A2) that breaks the incompressible signature
security as a subroutine to build an adversary A′ the breaks the underlying
classical Sig scheme. The adversary A′ works as follows:

– Send 1λ to A1, receive 1S , and set n = S + poly(λ).
– Receive vk from the challenger, and forward it to A1.

22 J. Guan, D. Wichs, M. Zhandry

– For each signing query mi made by A1, sample a random Ri ∈ {0, 1}n and
make a query (Ri,mi) to the challenger. Receive back σi and forward it
directly to A1.

– When A1 produces a state st, send vk, st and all the signing queries {mi}i
to A2. Output what A2 outputs as σ′.

Notice that if A wins, that means Ver(vk, σ′) = (R′,m′) 6= ⊥. If m′ 6∈ {mi}i,
then (R′,m′) is a pair not queried before by A′, and thus A′ wins the game. If
m′ = mj for some j, then we argue that with overwhelming probability R′ 6= Rj ,
and hence A′ wins as well. Indeed this is true since

H∞(Rj |st, vk, {mi}i) ≥ S + poly(λ)− S = poly(λ).

Therefore Rj is unpredictable conditioned on A2’s view, so the probability of
A2 producing some R′ = Rj is negligible. ut

6 Rate-1 Incompressible Signatures

6.1 Incompressible Encoding

Moran and Wichs [MW20] give the definition for incompressible encodings and
show construction based on either the Decisional Composite Residuosity (DCR)
or Learning With Errors (LWE) assumptions. We modify the definition slightly
to better accommodate the syntax in this paper.

Definition 8 (Incompressible Encodings [MW20]). Let λ be security pa-
rameters. An incompressible encoding scheme for message space {0, 1}Lm and
codeword space {0, 1}Lc is a pair of PPT algorithms Code = (Enc,Dec) that
utilizes the following syntax:

– Enc(1λ,m) → c on input the security parameter and a message, outputs a
codeword c.

– Dec(c)→ m on input a codeword, outputs the decoded message m.

The “rate” of the incompressible encoding is Lm/Lc.
6

We additionally require correctness and S-incompressibility7:

Definition 9 (Correctness). For all λ ∈ N and m ∈M, Pr[Dec(Enc(1λ,m)) =
m] ≥ 1− negl(λ).

Next, consider the following experiment for adversary A = (A1,A2):

Codeword Compression Experiment CompIncomCode
A,Code (λ, S):

– On input 1λ, the adversary A1 submits a message m and auxiliary input
aux. It receives c← Enc(1λ,m), and produces a state st of size at most S.

6 This is equivalent to the α-expansion property as defined in [MW20] for α = Lc/Lm.
7 This is equivalent to β-incompressibility as defined in [MW20] for β = S.

Incompressible Cryptography 23

– The adversary A2 is given the state st, the message m, and the auxiliary
information aux; it produces a codeword c′. Output 1 if and only if c′ = c.

Definition 10 (S-Incompressibility). For security parameter λ, we require
that for all PPT adversary A = (A1,A2):

Pr
[
CompIncomCode

A,Code (λ, S) = 1
]
≤ negl(λ).

6.2 Construction

Now we show how we modify Construction 4 to get an incompressible signature
scheme with a rate of 1. Essentially we can think of the procedure of attaching
a long random string in Construction 4 as a form of an incompressible encoding
with a poor rate. Here we just need to replace it with an incompressible encoding
with a rate of 1.

Construction 5. Let λ, S be security parameters. Given Sig = (Gen,Sign,Ver)
a classical signature scheme with rate 1, and Code = (Enc,Dec) an incompress-
ible encoding scheme with rate 1 and S-incompressibility, we construct an in-
compressible signature scheme Π = (Gen,Sign,Ver) as follows:

– Gen(1λ, 1S): Run Sig.Gen(1λ) to obtain (Sig.vk,Sig.sk). Output vk = Sig.vk
and sk = Sig.sk.

– Sign(sk,m): First compute the codeword c ← Code.Enc(1λ,m), and then
compute σ ← Sig.Sign(Sig.sk, c).

– Ver(vk, σ): Run c← Sig.Ver(Sig.vk, σ). If c = ⊥, output ⊥. Otherwise, output
m← Code.Dec(c).

The rate of our scheme is the product of the rates of the incompressible
encoding and standard-model signature scheme. We can construct a classical
signature scheme with rate 1 − o(1) from any one-way function by hashing the
message using a universal one-way hash function, and then signing the hash
value. Our incompressible signatures therefore have rate 1− o(1), in the CRS or
random oracle model. The following is proved in the full version:

Theorem 6. Assuming the existence of a secure public key signature scheme
with rate 1 and an incompressible encoding scheme with rate 1, there exists an
incompressible signature scheme with signature size Lm, public key size poly(λ)
and secret key size poly(λ). Furthermore, it supports streaming computation us-
ing poly(λ) bits of memory, assuming either the random oracle model, or the
streaming of the CRS in the CRS model.

6.3 Equivalence to Incompressible Encoding

Lastly, we quickly show that incompressible signatures are equivalent to incom-
pressible encodings (plus one-way functions) by showing how to construct an
incompressible encoding scheme from an incompressible signature scheme.

24 J. Guan, D. Wichs, M. Zhandry

Construction 6. Let λ be a security parameter. Given Sig = (Gen,Sign,Ver)
an incompressible signature scheme with rate 1 and small verification keys, we
construct an incompressible encoding scheme Π = (Enc,Dec,Ver) as follows:

– Enc(1λ,m): Sample (Sig.vk,Sig.sk) ← Sig.Gen(1λ, 1S), and then compute
σ ← Sig.Sign(Sig.sk,m). Output c = (Sig.vk, σ).

– Dec(c = (Sig.vk, σ)): Simply output m← Sig.Ver(Sig.vk, σ).

The codeword length is the signature length (equal to message length if Sig
has rate 1) plus the length of the verification length. Hence the rate is 1 if the
verification keys are short. Correctness follows directly from the correctness of
the signature scheme. Security also follows directly: if an adversary using a state
st of size at most S is able to produce c′ = c, then it has also produced a valid sig-
nature σ and hence wins the incompressible signature security game. Therefore,
by Construction 5 and 6, incompressible signatures and incompressible encodings
(plus one-way functions) are equivalent.

7 Constructing Rate-1 Functional Encryption

Here, we build rate-1 functional encryption (FE). For our application, we only
need one key security. However, our construction satisfies many-key security,
though we need indistingishability obfuscation (iO). We leave it as an open
question whether such high-rate single key FE can be built from standard tools.

Our construction is based on the techniques of Boneh and Zhandry [BZ14],
who build from iO something called private linear broadcast encryption, which
is a special case of general FE. A number of issues arise in generalizing their
construction to general functions, which we demonstrate how to handle.

7.1 Building Blocks

Definition 11 (Indistinguishability Obfuscation [BGI+01]). An indistin-
guiability obfuscator iO for a circuit class {Cλ} is a PPT uniform algorithm
satisfying the following conditions:

– Functionality: For any C ∈ Cλ, then with probability 1 over the choice of
C ′ ← iO(1λ, C), C ′(x) = C(x) for all inputs x.

– Security: For all pairs of PPT adversaries (S,D), if there exists a negligible
function α such that

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← S(λ)] > 1− α(λ)

then there exists a negligible function β such that∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

When Cλ is the class of all polynomial-size circuits, we simply call iO an
indistinguishability obfuscator. There are several known ways to construct in-
distinguishability obfuscation:

Incompressible Cryptography 25

– Garg et al. [GGH+13] build the first candidate obfuscation from crypto-
graphic multilinear maps.

– Provably from novel strong circularity assumptions [BDGM20, GP21, WW20]
– Provably from “standard” assumptions [JLS21]: (sub-exponentially secure)

LWE, LPN over fields, bilinear maps, and constant-locality PRGs

Definition 12 (Puncturable PRF [BW13, KPTZ13, BGI14]). A punc-
turable PRF with domain Xλ and range Yλ is a pair (Gen,Punc) where:

– Gen(1λ) outputs an efficiently computable function PRF : Xλ → Yλ
– Punc(PRF, x) takes as input a function PRF and an input x ∈ Xλ, and

outputs a “punctured” function PRFx.
– Correctness: With probability 1 over the choice of PRF← Gen(1λ),

PRFx(x′) =

{
PRF(x′) if x′ 6= x

⊥ if x′ = x

– Security: For all x ∈ Xλ, (PRFx,PRF(x)) is computationally indistinguish-
able from (PRFx, y), where PRF← Gen(1λ) and y ← Yλ.

Such puncturable PRFs can be built from any one-way function [GGM86].
We now give a new definition of a type of signature scheme with a single-

point binding (SPB) property. This allows, given a message m, for generating a
fake verification key together with a signature on m. The fake verification key
and signature should be indistinguishable from the honest case. Yet there are no
signatures on messages other than m relative to the fake verification key. [BZ14]
implicitly constructs such signatures from iO and one-way functions, but with a
logarithmic message space, which was good enough for their special-purpose FE
scheme. In our case, we need to handle very large exponential message spaces.
The problem with [BZ14]’s approach is that the security loss is proportional to
the message space; to compensate requires assuming (sub)exponential hardness,
and also setting the security parameter to be larger than the message length.
This results in the signature size being polynomial in the message size, resulting
in a low-rate FE scheme. SPB signatures avoid the exponential loss, so we can
keep the security parameter small, resulting in a rate-1 FE scheme.

Definition 13. A single-point binding (SPB) signature is a quadruple of algo-
rithms (Gen,Sign,Ver,GenBind) where Gen,Sign,Ver satisfy the usual properties
of a signature scheme. Additionally, we have the following:

– (vk, σ)← GenBind(1λ,m) takes as input a message m, and produces a veri-
fication key vk and signature σ.

– For any messages m and with overwhelming probability over the choice of
(vk, σ)← GenBind(1λ,m), Ver(vk, σ′) ∈ {m,⊥} for any σ′. That is, there is
no message m′ 6= m such that there is a valid signature of m′ relative to vk.

– For any m, GenBind(1λ,m) and (vk,Sign(sk,m)) are indistinguishable, where
(vk, sk) ← Gen(1λ). Note that this property implies that Ver(vk, σ) accepts
and output m, when (vk, σ)← GenBind(1λ,m).

We explain how to construct SPB signatures in the full version of the paper,
either from leveled FHE (and hence LWE), or from iO and one-way functions.

26 J. Guan, D. Wichs, M. Zhandry

Our Rate-1 FE Scheme. We now give our rate-1 FE scheme:

Construction 7. Let iO be an indistinguishability obfuscator, Gen be a PRF,
(Gen′,Sig,Ver) a signature scheme, and PRG : {0, 1}λ → {0, 1}2λ,PRG′ : {0, 1}λ →
{0, 1}Lm be a PRG.

– Setup(1λ): Sample PRF← Gen(1λ). Set msk = PRF and mpk = iO(1λ, PEnc),
where PEnc is the program given in Figure 1.

– KeyGen(msk, f): output skf ← iO(1λ, PDec,f), where PDec,f is the program
given in Figure 2.

– Enc(mpk,m): Choose a random r, and evaluate (t, v)← mpk(r). Then parse
v = (w, u). Set c = PRG′(w) ⊕m. Next run (vk, sk) ← Gen′(1λ;u), using u
as the random coins for Gen′. Compute σ ← Sign(sk, c). Output (t, σ).

– Dec(skf , (t, σ)) = skf (t, σ)

Fig. 1: The program PEnc.

Inputs: r
Constants: PRF

1. t← PRG(r).
2. v ← PRF(t).
3. Output (t, v).

Fig. 2: The program PDec,f .

Inputs: t, σ
Constants: PRF

1. (w, u)← PRF(t)
2. (vk, sk)← Gen′(1λ;u).
3. c← Ver(vk, c, σ). If c = ⊥, abort and output ⊥.
4. Output f(PRG′(w)⊕ c).

Correctness follows immediately from the correctness of the various compo-
nents. Notice that the ciphertext size is Lm + poly(λ), provided the signature
scheme outputs short signatures. Therefore, construction 7 has rate 1− o(1).

Provided the random coins for (Gen′,Sign,Ver) are independent of the mes-
sage length, PEnc has size poly(λ), independent of the message length. If Gen′,Sign
can be evaluated in a low-space streaming fashion, then so can Enc.

7.2 Proof of Security

Sequence of Hybrids

– H0: This is the FE security experiment, where the bit b in the experiment is
fixed to be 0. Note that in this hybrid, the challenge ciphertext is generated
as (t∗, σ∗), where r∗ ← {0, 1}λ, t∗ ← PRG(r∗), (w∗, u∗) ← PRF(t∗), x∗ ←
PRG′(w∗), c∗ ← x∗ ⊕m0, (vk∗, sk∗)← Gen′(1λ;u∗), and σ∗ ← Sign(sk∗, c∗).

– H1: This is identical to H0, except that we now generate t∗ uniformly at
random: t∗ ← {0, 1}2λ.

– H2: This is the same as H1, except that we change the way we generate

mpk, skf . First compute PRFt
∗ ← Punc(PRF, t∗), (w∗, u∗)← PRF(t∗). Then

let (vk∗, sk∗) ← Gen′(1λ;u∗) and x∗ = PRG(w∗). We now compute mpk ←
iO(1λ, P

punc
Enc) and answer secret key queries with skf ← iO(1λ, P

punc
Dec). Here,

P punc
Enc and P punc

Dec,f are the programs in Figures 3 and 4

Incompressible Cryptography 27

– H3: This is identical to H2, except that now we generate w∗, u∗ uniformly
at random, instead of (w∗, u∗)← PRF(t∗).

– H4: This is identical to H3 except that we now generate x∗ uniformly at
random instead of x∗ ← PRG(w∗).

– H5: This is identical to H4, except for the following changes:
• We generate c∗ uniformly at random at the beginning of the experiment.
• After the challenge query, we generate x∗ = c∗⊕m0. Note that x∗ is the

only place m0 enters the experiment.
– H6: This is identical toH5, except now we generate (vk∗, σ∗)← GenBind(1λ, c∗).
– H7 through H13: Hybrid H7+i is identical to H6−i, except that m0 is replaced

with m1. Thus H13 is the FE security experiment where b is fixed to be 1.

Inputs: m; r

Constants: PRF t∗ , t∗

1. t← PRG(r). If t = t∗, immediately abort and output ⊥.

2. v ← PRF t∗ (t).
3. Output (t, v).

Fig. 3: The program P punc
Enc . Differences from PEnc highlighted in yellow.

Inputs: t, σ

Constants: PRF
t∗

1 ,PRF
t∗

2 , t∗, x∗, vk∗

1. If t 6= t∗, skip to Step 2. If t = t∗, run c← Ver(vk∗, σ);

if c = ⊥, abort and output ⊥, otherwise abort and output f(x∗ ⊕ c).

2. (w, u)← PRF t∗ (t)
3. (vk, sk)← Gen′(1λ;u).
4. c← Ver(vk, c, σ). If c = ⊥, abort and output ⊥.
5. Output f(PRG(w)⊕ c).

Fig. 4: The program P
punc
Dec,f . Differences from PEnc,f highlighted in yellow.

For the proofs of the hybrid arguments, please refer to the full version.

References

ADN+10. Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and
Daniel Wichs. Public-key encryption in the bounded-retrieval model. In

28 J. Guan, D. Wichs, M. Zhandry

Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
113–134. Springer, Heidelberg, May / June 2010.

ADW09. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-
key cryptography in the bounded-retrieval model. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 36–54. Springer, Heidelberg,
August 2009.

AR99. Yonatan Aumann and Michael O. Rabin. Information theoretically secure
communication in the limited storage space model. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages 65–79. Springer, Heidel-
berg, August 1999.

BCKP14. Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On
virtual grey box obfuscation for general circuits. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 108–125. Springer, Heidelberg, August 2014.

BCP14. Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfusca-
tion. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
52–73. Springer, Heidelberg, February 2014.

BDGM20. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Can-
didate iO from homomorphic encryption schemes. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 79–109. Springer, Heidelberg, May 2020.

BGI+01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, August 2001.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BK16. Alex Biryukov and Dmitry Khovratovich. Egalitarian computing. In
Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages
315–326. USENIX Association, August 2016.

BKR16. Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key symmetric en-
cryption: Resisting key exfiltration. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 373–
402. Springer, Heidelberg, August 2016.

BNNO11. Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio
Orlandi. Lower and upper bounds for deniable public-key encryption. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 125–142. Springer, Heidelberg, December 2011.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 480–499. Springer, Heidelberg, August 2014.

CCM98. Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer
with a memory-bounded receiver. In 39th FOCS, pages 493–502. IEEE
Computer Society Press, November 1998.

Incompressible Cryptography 29

CDD+07. David Cash, Yan Zong Ding, Yevgeniy Dodis, Wenke Lee, Richard J. Lip-
ton, and Shabsi Walfish. Intrusion-resilient key exchange in the bounded
retrieval model. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 479–498. Springer, Heidelberg, February 2007.

CDNO97. Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
encryption. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 90–104. Springer, Heidelberg, August 1997.

CM97. Christian Cachin and Ueli M. Maurer. Unconditional security against
memory-bounded adversaries. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 292–306. Springer, Heidelberg,
August 1997.

DHRS04. Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-
round oblivious transfer in the bounded storage model. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages 446–472. Springer, Heidel-
berg, February 2004.

Din01. Yan Zong Ding. Oblivious transfer in the bounded storage model. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 155–170.
Springer, Heidelberg, August 2001.

DLW06. Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Perfectly
secure password protocols in the bounded retrieval model. In Shai Halevi
and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 225–244.
Springer, Heidelberg, March 2006.

DQW21. Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember
little: Cryptography in the bounded storage model, revisited. Cryptology
ePrint Archive, Report 2021/1270, 2021. https://ia.cr/2021/1270.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Christian
Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of
LNCS, pages 523–540. Springer, Heidelberg, May 2004.

Dzi06a. Stefan Dziembowski. Intrusion-resilience via the bounded-storage model.
In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 207–224. Springer, Heidelberg, March 2006.

Dzi06b. Stefan Dziembowski. On forward-secure storage (extended abstract). In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 251–
270. Springer, Heidelberg, August 2006.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Com-
puter Society Press, October 2013.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

GP21. Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular
security. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 736–749, 2021.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417
of LNCS, pages 162–179. Springer, Heidelberg, August 2012.

GZ19. Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded storage
model. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,

https://ia.cr/2021/1270

30 J. Guan, D. Wichs, M. Zhandry

Part III, volume 11478 of LNCS, pages 500–524. Springer, Heidelberg, May
2019.

GZ21. Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded
storage model. In Theoretical Cryptography Conference, 2021. https://ia.
cr/2021/406.

IR90. Russell Impagliazzo and Steven Rudich. Limits on the provable
consequences of one-way permutations. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 8–26. Springer, Heidelberg, Au-
gust 1990.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 60–73,
2021.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 669–684. ACM Press, November 2013.

Lu02. Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-
line strong extractors. In Moti Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 257–271. Springer, Heidelberg, August 2002.

Mau92. Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. Journal of Cryptology, 5(1):53–66, January 1992.

MST04. Tal Moran, Ronen Shaltiel, and Amnon Ta-Shma. Non-interactive times-
tamping in the bounded storage model. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 460–476. Springer, Heidel-
berg, August 2004.

MW20. Tal Moran and Daniel Wichs. Incompressible encodings. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 494–523. Springer, Heidelberg, August 2020.

Nis90. Noam Nisan. Psuedorandom generators for space-bounded computation.
In 22nd ACM STOC, pages 204–212. ACM Press, May 1990.

Raz17. Ran Raz. A time-space lower bound for a large class of learning problems. In
Chris Umans, editor, 58th FOCS, pages 732–742. IEEE Computer Society
Press, October 2017.

Riv97. Ronald L. Rivest. All-or-nothing encryption and the package transform. In
Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 210–218. Springer,
Heidelberg, January 1997.

Vad03. Salil P. Vadhan. On constructing locally computable extractors and
cryptosystems in the bounded storage model. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 61–77. Springer, Heidelberg,
August 2003.

Wic13. Daniel Wichs. Barriers in cryptography with weak, correlated and leaky
sources. In Robert D. Kleinberg, editor, ITCS 2013, pages 111–126. ACM,
January 2013.

WW20. Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE
sampling. Cryptology ePrint Archive, Report 2020/1042, 2020. https:

//eprint.iacr.org/2020/1042.
Zav15. Greg Zaverucha. Stronger password-based encryption using all-or-nothing

transforms, 2015.

https://ia.cr/2021/406
https://ia.cr/2021/406
https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042

	Incompressible Cryptography

