
Private Circuits with Quasilinear Randomness

Vipul Goyal1,2, Yuval Ishai3, and Yifan Song1

1 Carnegie Mellon University, USA.
vipul@cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, USA.
3 Technion, Israel.

yuvali@cs.technion.ac.il

Abstract. A t-private circuit for a function f is a randomized Boolean
circuit C that maps a randomized encoding of an input x to an encoding
of the output f(x), such that probing t wires anywhere in C reveals noth-
ing about x. Private circuits can be used to protect embedded devices
against side-channel attacks. Motivated by the high cost of generating
fresh randomness in such devices, several works have studied the question
of minimizing the randomness complexity of private circuits.

The best known upper bound, due to Coron et al. (Eurocrypt 2020), is
O(t2 · log ts) random bits, where s is the circuit size of f . We improve
this to O(t · log ts), including the randomness used by the input encoder,
and extend this bound to the stateful variant of private circuits. Our
constructions are semi-explicit in the sense that there is an efficient ran-
domized algorithm that generates the private circuit C from a circuit for
f with negligible failure probability.

1 Introduction

The notion of private circuits, due to Ishai, Sahai, and Wagner (ISW) [9], is a
simple abstraction of leakage-resilience computation. It is simple both in terms
of the underlying computational model, namely Boolean circuits, and in terms
of the class of leakage attacks it should protect against.

ISW defined two flavors of private circuits: stateless and stateful. The former
captures a one-time computation that maps an encoded (or “secret-shared”)
input to an encoded output, whereas the latter captures an evolving computation
that may update a secret internal state. We will start by considering the simpler
stateless model and later discuss an extension to the stateful case.

A (stateless) t-private circuit for a function f is defined by a triple (I, C,O),
where I is a trusted, randomized input encoder, mapping an input x to an
encoded input x̂, C is a randomized Boolean circuit mapping x̂ to an encoded
output ŷ, and O is a trusted, deterministic output decoder mapping the encoding
ŷ to an output y. The natural correctness requirement is that for every input
x, we have O(C(I(x))) = f(x) (with probability 1). The security requirement
asserts that an adversary who can probe any set of t wires of C learns nothing
about x. Moreover, it is required that I and O be universal in the sense that they

are independent of (and are typically much smaller than) C and may depend only
on the input length and t. This rules out trivial solutions in which I or O compute
f . The default encoder I, referred to as the canonical encoder, independently
splits each input bit xi into t+ 1 random bits whose parity is xi.

The simplicity of the private circuits model makes it attractive as an object
of theoretical study, enabling a clean and rigorous analysis of the achievable
tradeoffs between security and efficiency. On the downside, the same simplic-
ity that makes the model theoretically appealing also makes it a very crude
approximation of reality. In particular, the bounded probing attacks that pri-
vate circuits are designed to protect against are much too restrictive to capture
real-life side-channel attacks.

Somewhat unexpectedly, private circuits have gained popularity as a practi-
cal method for “higher-order masking” countermeasures that protect embedded
devices against realistic side-channel attacks. A partial theoretical explanation
was given by Duc et al. [6], who showed that the security of private circuits
against probing attacks is enough to also guarantee security against a certain
level of noisy leakage, which independently leaks a small amount information
about each wire.

Minimizing randomness complexity. A natural complexity measure for pri-
vate circuits is their randomness complexity, measured by default as the total
number of random bits used by the randomized circuit C. (We will later also
address the goal of minimizing the randomness used by the input encoder.) The
question of minimizing the randomness complexity of private circuits is not only
a natural theoretical question, but is also motivated by the high costs of gen-
erating fresh randomness on embedded devices.4 This question has also found
unexpected applications to efficiently mitigating selective failure attacks in se-
cure computation protocols based on garbled circuits [8].

The original ISW construction [9] used O(t2) fresh random bits to compute
each AND gate in a circuit computing f . This gives an upper bound of O(t2 · s)
where s is the circuit size of f . Several subsequent works obtained improvements
to this bound, with the canonical encoder described above.

Ishai et al. [8], in the broader context of studying robust pseudorandomness
generators, show how to reduce the randomness complexity to O(t3+ε · log ts),
for any ε > 0, thus making it almost independent of the circuit size s. Beläıd et
al. [2] focus on the randomness complexity of implementing a single AND gate,
for which they present a probabilistic construction of a gadget that requires only
O(t log t) random bits, compared to O(t2) in ISW. However, their technique does
not efficiently extend to multiple gates, and their construction is not compos-
able in the sense of [1,3] (see Section 2 for further discussion). Faust et al. [7]
present a practically-oriented approach for reusing randomness across multiple
AND gadgets, reducing the total amount of randomness for small values of t

4 Even if one settles for computational security, alternative approaches based on cryp-
tographic pseudorandom generators (PRGs) are also quite expensive, especially since
the PRG computation itself is subject to leakage [9].

2

(t ≤ 7) by a constant factor. The current state of the art was obtained by the
recent construction of Coron et al. [5], which uses O(t2 · log ts) random bits.
This construction not only improves the bound of [8] by more than a factor of t,
but also eliminates the use of low-degree expander graphs that hurts concrete
efficiency.

1.1 Our Contribution

In this work, we improve the best previous asymptotic bound of Coron et al. [5]
by an additional factor of t. Concretely, we show that any function f computed
by a Boolean circuit of size s admits a t-private circuit which uses only O(t·log ts)
random bits.

Our construction is only semi-explicit in the sense that there is an efficient
randomized algorithm that generates C from a Boolean circuit for f with neg-
ligible failure probability. However, similarly to the construction from [5] (and
unlike the earlier construction from [8]), our construction does not require the
circuit C to use a good low-degree expander, and we do not see inherent barriers
to good concrete efficiency (which we did not attempt to optimize).

We also present the following additional extensions of our main result:

– Randomness-efficient input encoder. By using a randomness-efficient
encoder I instead of the canonical one, we can obtain the same O(t · log ts)
bound even when counting the internal randomness of the input encoder.
This is optimal up to the logarithmic factor.

– Leakage-tolerant circuits. We can get the same bound in the (stronger)
model of leakage-tolerant private circuits [8]. In this model there are no
trusted input encoder or output decoder, and an adversary probing t wires
of C is allowed to learn a similar number of input and output bits.

– Stateful private circuits. Finally, our O(t · log ts) bound applies also to
the standard stateful model of private circuits from [9] (see the full version),
counting the number of fresh random bits in each invocation.

Open questions. We conjecture that our O(t · log ts) upper bound is asymptoti-
cally optimal in all of the above settings, and leave open the question of proving
(or disproving) this conjecture. We also leave open the existence of a fully explicit
variant of our constructions.

2 Technical Overview

In this section, we give a detailed technical overview of our main results, starting
with some necessary background.

Background: Leakage-resilient and Leakage-tolerant Private Circuits. In [9], Ishai
et al. introduced the fundamental notion of private circuits. This notion comes
in two flavors, a stateful variant and a simpler stateless variant. Here we will

3

start by focusing on the latter for simplicity, but will later show how to extend
our results to the stateful model.

Informally, for a function f , a private (stateless) circuit consists of an input
encoder I, a compiled circuit C, and an output decoder O. The compiled circuit
C takes an encoded input x̂ generated by I(x) and computes an encoded output
ŷ such that O(y) = f(x). The security requires that any t wires in C should
be independent of the function input. This notion is also referred to as leakage-
resilient private circuits. We focus by default on the canonical encoder: I encodes
each input bit xi by a vector of t + 1 random bits with parity xi. (Later we
will consider a different encoder, in the context of minimizing the randomness
complexity of the encoder.) As to the decoder, we consider by default a relaxation
of the canonical decoder: To decode each output bit, O takes the parity of a block
of bits (which are not restricted to be t+ 1 bits).

– As noted in [8], without any requirement on I and O, a trivial solution
is having I compute a secret sharing of f(x) which is passed by C to the
decoder.

– In this work, we focus on the additional randomness used in the compiled
circuit C. We want to avoid encoders which output a large amount of ran-
domness.

We may also define the notion of leakage-tolerant private circuits. In this
setting, the input and output are not encoded. I.e., the encoder and the decoder
are the identity function. The security requires that any set of at most t wires
in C can be simulated by the same number of input and output wires.

In this work, we show that for any function f with circuit size s, there is a
(leakage-resilient) private circuit which uses O(t · log ts) random bits.

Background: (Strong) t-wise Independent Pseudo-random Generator. Our con-
struction makes use of the notion of (strong) t-wise independent pseudo-random
generators (PRG). Informally, a function G : {0, 1}n → {0, 1}m is a t-wise in-
dependent PRG if any t bits in G(x) are independent and uniformly random
when the input x is uniformly distributed in {0, 1}n. Moreover, if any t bits
in (x,G(x)) are independent and uniformly random, then we say G is a strong
t-wise independent PRG.

We say that G is linear if any output bit of G is equal to the XOR of a
subset of its input bits. See Section 3.2 for an explicit construction of a linear
and strong t-wise independent PRG with input size n = O(t · logm).

Limitations of Previous Approaches. We first recall the definition of robust t-
wise independent PRGs introduced in [8]. Intuitively, any probing attack towards
a robust t-wise independent PRG is equivalent to a probing attack towards the
output bits. The following definition corresponds to the strong robust t-wise
independent PRGs in [8].

Definition 1 (Robust t-wise Independent PRGs [8]). A circuit implemen-
tation C of a function G : {0, 1}m → {0, 1}n is a (t, k, q)-robust pseudo-random

4

generator if the following holds. Let u be a vector of m uniformly random bits,
and r = G(u). For any set S of at most k wires in C, there is a set T of at
most q|S| output bits such that conditioned on any fixing of the values CS of the
wires in S and rI , where I = {i : ri ∈ T}, the values rĪ of the output bits not
in T are t-wise independent.

A generic approach of derandomizing a private circuit introduced in [8] works
as follows:

1. First, derandomize a private circuit by assuming an access to t-wise inde-
pendent random source. This is achieved by considering the notion of ran-
domness locality of a private circuit. The randomness locality of a private
circuit is the number of random bits that are used to compute each wire.
If each wire uses at most ` random bits (i.e., the randomness locality is `),
then we may replace the uniform random source by a (` · t)-wise independent
random source to protect against t-probing attacks. It is because any t wires
depend on at most ` · t random bits, and therefore, the distribution of these
t wires when using uniform random source is identical to that when using
(` · t)-wise independent random source.

2. Then, replace the (` · t)-wise independent random source by a robust (` · t)-
wise independent PRG.

In [8], Ishai et al. constructed a private circuit with randomness locality O(t2)
based on the private circuit constructed in [9]. The recent work of Coron et
al. [5] further improves the randomness locality to O(t). Combined with a robust
O(t2)-wise independent PRG from [8], this gives a private circuit which uses only
Õ(t2+ε)5 random bits, for any constant ε > 0. Moreover, they also show that in
their construction the robust O(t2)-wise independent PRG can be replaced by
O(t) independent O(t)-wise independent PRGs. This reduces the randomness
complexity to Õ(t2) and results in better concrete efficiency.

However, the approach of using randomness locality inherently requires Ω(t2)
random bits. Intuitively, the randomness locality of a private circuit cannot be
smaller than t, or otherwise, an adversary may learn extra information about
the input by probing a wire and all random bits that are used to compute this
wire. It means that the random source should be at least t2-wise independent,
which requires Ω(t2) random bits.

To overcome this bottleneck:

1. We first switch the view from computing secret shared wire values, the main-
stream method in the literature of private circuits [9,8,5], to computing
masked wire values. We note that computing masked wire values is com-
monly used in the literature on secure multi-party computation. However,
to the best of our knowledge, this method was not used in the literature
on private circuits. We use this to bypass the limitation of using random-
ness locality and reduce the problem of constructing a private circuit to

5 In this paper, we use Õ notation to hide logarithmic factors in either a PRG output
size or a circuit size.

5

that of constructing a leakage-tolerant private circuit for the XOR function,
which we refer to as a leakage-tolerant XOR gadget. Specifically, assuming
the existence of a leakage-tolerant XOR gadget, we construct a private cir-
cuit which uses Õ(t) random bits (excluding the randomness used in the
leakage-tolerant XOR gadgets).

2. Then, we focus on the leakage-tolerant XOR gadget. We start with a straight-
forward construction of a leakage-tolerant XOR gadget assuming the access
to correlated random bits. Then we use a special kind of robust PRG, which
we refer to as a robust parity sharing generator, to generate the correlated
random bits. Compared with [8], we extend the notion of robust PRGs in
the following two directions: (1) the output bits of the robust PRG should
be correlated as required by the basic construction of the XOR gadget, and
(2) unlike the robust t-wise independent PRG [8], which only focuses on
the number of random bits on which the probed wires depend, we also take
into account the concrete dependence on the random bits induced by the
construction of the XOR gadget. This more fine-grained approach allows
us to bypass the limitation of using randomness locality when constructing
leakage-tolerant XOR gadgets. By using probabilistic arguments, we obtain
a semi-explicit construction of a robust parity sharing generator which uses
Õ(t) random bits. This yields a leakage-tolerant XOR gadget with random-
ness complexity Õ(t).

Combining the above two steps, we obtain a private circuit in the plain model
which uses Õ(t) random bits. We note that a similar approach is used in [2]
to reduce the randomness complexity of a single multiplication gate. Concretely,
Beläıd et al. [2] use probabilistic arguments and show the existence of a t-private
multiplication circuit, which takes shared inputs and produces shared output,
with randomness complexity O(t log t). However there are three key differences
which make their technique difficult to work for a general circuit (i.e., not re-
stricting to a single multiplication gate):

– The solution in [2] only reduces the randomness complexity for a single
multiplication gate. However, to obtain our result, we have to reuse the
randomness across all gadgets or otherwise the randomness complexity will
be proportional to the circuit size. It is unclear how their result can be
extended to reducing the randomness complexity for multiple multiplication
gates. Our solution, on the other hand, reuses the randomness across all
leakage-tolerant XOR gadgets. See more discussion in Remark 2.

– As discussed in Section 7.2 in [2], their private multiplication circuit is not
composable. As a result, Beläıd et al. [2] cannot obtain a private circuit for
a general function from their private multiplication circuit without affecting
the achieved randomness complexity per gate.

– The construction in [2] takes shared inputs and computes shared output.
As discussed above, derandomizing shared wire values may require at least
Ω(t2) random bits.

6

Extensions. Beyond the basic construction, we consider the following two exten-
sions:

1. The first extension is replacing the canonical encoder by a randomness-
efficient encoder. Note that the canonical encoder requires t ·ni random bits
to encode ni input bits. We construct a randomness-efficient encoder which
reduces the randomness complexity to O(t · log ni). As a result, for any func-
tion with circuit size s, we obtain a private circuit which uses O(t · log ts)
random bits including the randomness used in the encoder.

2. The second extension is to construct a private stateful circuit. A stateful
circuit models the scenario where the circuit has an internal state. In each
invocation, the circuit computes the function which takes as input its in-
ternal state and the external input, outputs the result of the function, and
stores its new internal state. The security of a private stateful circuit requires
that an adversary, which has control over the external input, cannot learn
any information about the internal state of the circuit over multiple execu-
tions of the circuit with the power of adaptively choosing a set of t internal
wires before each execution depending on the output values and the wire
values observed in previous executions. We show how to extend our basic
construction to a private stateful circuit which uses O(t · log t|C|) random
bits for any stateful circuit C in each invocation.

More details can be found in Section 2.3.

2.1 Outer Construction: Private Circuits via Leakage-tolerant XOR
Gadgets

For a boolean function f : {0, 1}ni → {0, 1}no , let C̃ denote a circuit that
computes the function f . To protect the wire values in C̃, our idea is to mask
each wire value in C̃ by an output bit of a t-wise independent PRG. Since
any t output bits of a t-wise independent PRG are independent and uniformly
distributed, any t masked wire values in C̃ leak no information about the input.

In our construction, we choose to use a linear and strong 2t-wise independent

PRG G : {0, 1}m → {0, 1}|C̃|. Informally, this is because

– A probing attack can not only probe the masked wire values in C̃, but also
the input random bits of G. We need to protect the input random bits of G
by using a strong 2t-wise independent PRG.

– A linear PRG allows us to compute each output bit ofG by simply computing
the XOR of a subset of its input bits. As we will show later, our construction
directly uses a leakage-tolerant XOR gadget to compute each masked wire
value. In this way, the implementation of G is hidden in the leakage-tolerant
XOR gadgets and we do not need to worry about the intermediate wires in
the implementation of G.

– As we will see later, our construction may leak at most 2t masked wire values
within t probes. It requires us to use a 2t-wise independent PRG.

7

We use u = (u1, u2, . . . , um) to denote the input ofG and r = (r1, r2, . . . , r|C̃|)
to denote the output of G. Since G is linear, each output bit ri is the XOR
of a subset of {u1, u2, . . . , um}. We refer to this set as the support of ri, de-
noted by supp(ri). For the circuit C̃, all wires are denoted by g1, g2, . . . , g|C̃|
(including input wires and output wires). The goal is to compute gi ⊕ ri for all
i ∈ {1, 2, . . . , |C̃|}. Note that we can view {gi ⊕ ri}

⋃
supp(ri) as an additive

sharing of gi since the XOR of the bits in supp(ri) is equal to ri. We use [gi] to
represent the set {gi ⊕ ri}

⋃
supp(ri). At first glance, one may think that our

approach is very similar to the generic approach of constructing private circuits
in [9,8,5] since the latter also computes an additive sharing for each wire value.
However, we would like to point out that there are two key differences between
our approach and the generic approach:

– First, for each additive sharing [gi] in our approach, the number of shares
depends on the size of supp(ri), which may vary for different i. On the other
hand, the additive sharings in the generic approach all have the same number
of shares.

– Second, in our approach, the shares are reused among different additive
sharings, which is not the case in the generic approach.

As a result, our approach does not need to derandomize the shares of additive
sharings since they reuse the input random bits of the PRG G, which is of size
O(t log |C̃|). It allows us to bypass the limitation of using randomness locality.

In the outer construction, we assume the existence of a leakage-tolerant XOR
gadget (or equivalently, a leakage-tolerant private circuit for the XOR function).
Recall that the input encoder is the canonical encoder, which encodes each input
bit xi by a vector of t+1 random bits with parity xi. We may view the encoding
of xi as an additive sharing of xi, denoted by [xi]. The outer construction works
as follows:

1. We first transform the input encoding [xi] to the masked input bit. Let gi
be the input wire of C̃ which is initialized to xi. Then we want to compute
gi ⊕ ri = xi ⊕ ri. This is done by using a leakage-tolerant XOR gadget to
XOR the bits in [xi]

⋃
supp(ri).

2. For each addition gate with input wires ga, gb and output wire gc in C̃, the
masked output wire gc ⊕ rc is computed by using a leakage-tolerant XOR
gadget to XOR the bits in [ga]

⋃
[gb]

⋃
supp(rc).

3. For each multiplication gate with input wires ga, gb and output wire gc in C̃,
we first define [ga]⊗ [gb] = {u ·v : u ∈ [ga], v ∈ [gb]}. Note that ga = ⊕u∈[ga]u
and gb = ⊕v∈[gb]v. Therefore

gc = ga · gb = (⊕u∈[ga]u) · (⊕v∈[gb]v) = ⊕u∈[ga],v∈[gb]u · v,

which means that gc is equal to the XOR of the bits in [ga]⊗ [gb]. The circuit
first computes u · v for all u ∈ [ga] and v ∈ [gb]. The masked output wire
gc ⊕ rc is then computed by using a leakage-tolerant XOR gadget to XOR
the bits in ([ga]⊗ [gb])

⋃
supp(rc).

8

4. For each output gate with input wire ga in C̃, we have computed ga ⊕ ra.
Recall that [ga] = {ga ⊕ ra}

⋃
supp(ra) and the XOR of bits in [ga] is equal

to ga. The circuit simply outputs bits in [ga].

Let C denote the circuit constructed above. The correctness of C is straight-
forward from the description. The security follows from the following three facts:

– By the definition of leakage-tolerant private circuits, any probing attack
towards a leakage-tolerant XOR gadget is equivalent to a probing attack
(that probes the same number of wires) towards the input wires and the
output wire of this gadget. Therefore, we only need to focus on two kinds of
wires: (1) the input wires of C, and (2) the rest of wires which excludes the
internal wires of leakage-tolerant XOR gadgets. The second kind contains the
input bits of the PRG G and the masked wire values, i.e., {ui}mi=1

⋃
{gi ⊕

ri}|C̃|i=1, and the values in [ga] ⊗ [gb] for all multiplication gate with input
wires ga and gb in C̃.

– For input wires of C, since each input bit x is encoded by t+ 1 random bits
with parity x, any t bits are uniformly random. Therefore, the input wires
are leakage resilient.

– For the second kind of wires, note that each value u · v ∈ [ga] ⊗ [gb] can be
computed by u ∈ [ga] and v ∈ [gb]. Thus, any t wires can be determined by

at most 2t values in {ui}mi=1

⋃
{gi⊕ ri}|C̃|i=1. The security follows from that G

is a strong 2t-wise independent PRG.

We refer the readers to Section 4 for more details.

2.2 Inner Construction and Robust Parity Sharing Generator

Given the outer construction in Section 2.1, it is sufficient to move our focus to
the construction of a leakage-tolerant XOR gadget. Our main technical contri-
bution is a new notion of robust PRGs which we refer to as robust parity sharing
generators.

Basic Construction of Leakage-Tolerant XOR Gadgets. We first introduce a
straightforward construction of leakage-tolerant XOR gadgets assuming access
to ideal correlated random bits, which is adapted from the basic MPC protocol
for XOR of Kushilevitz and Mansour [10]. Let x1, x2, . . . , xn denote the input
bits of the gadget G. The goal is to compute the output ⊕ni=1xi. The circuit is
given access to n random bits r1, r2, . . . , rn with parity 0. (Note that here xi’s
and ri’s are different variables from those in Section 2.1.)

The basic construction works as follows:

1. For all i ∈ {1, 2, . . . , n}, the circuit computes gi := xi ⊕ ri in parallel. (Here
too, gi is a different variable from that in Section 2.1.)

2. Then the circuit computes the XOR of g1, g2, . . . , gn by using a dlog ne-depth
addition circuit: In each round, the addition circuit partitions the input bits
into groups of size 2. For each group, the addition circuit computes the XOR

9

of the bits in this group. The output bits are provided as input bits to the
next round.

In fact, our construction works for any addition circuit with the same randomness
complexity. Here we choose to use the addition circuit with the smallest depth
so as to minimize the depth of the private circuit. In [10], the basic protocol
computes ⊕ni=1gi by adding up {gi}ni=1 from g1 to gn.

We show that this simple construction is leakage-tolerant. First note that
the input wires and output wires of the gadget can always be simulated by
having access to the corresponding wires. In the following, we only focus on the
intermediate wires in G.

We may divide the intermediate wires in G into two sets: (1) the first set
contains the correlated random bits r1, r2, . . . , rn, and (2) the second set contains
all wires in the addition circuit, which is either gi for some i ∈ {1, 2, . . . , n} or
a linear combination of {g1, g2, . . . , gn}. If all probed wires are in the first set,
the simulator can simply sample the random bits r1, r2 . . . , rn with parity 0
and output the probed wires. This requires no information about the input and
output bits. Suppose at least one wire in the second set is probed. The main
observation is that, after mask xi by ri, g1, g2, . . . , gn are uniformly random bits
with parity ⊕ni=1xi. Thus, the simulator works as follows:

1. The simulator first queries the output bit⊕ni=1xi, and then randomly samples
g1, g2, . . . , gn with parity ⊕ni=1xi. In this way, any probed wire in the second
set can be simulated.

2. For each wire ri in the first set, the simulator queries xi and computes
ri = gi ⊕ xi.

Note that the number of input and output wires queried by the simulator is
bounded by the number of probed wires. The main issue of the basic construction
is that it uses too many random bits: it requires n − 1 uniformly random bits
to compute the XOR of n input bits. To reduce the randomness complexity, we
first analyse what kind of random source is sufficient for the basic construction.
We note that the analysis in [10] is specific to their order of computing {gi}ni=1

and appears difficult to generalize to other orders. Our analysis uses a different
argument, described below.

Sufficient Conditions for the Random Source in the Basic Construction. First
of all, the correctness of our construction requires that the random variables
(r1, r2, . . . , rn) have parity 0. Now we want to relax the requirement that r1, r2, . . . , rn
are uniformly random bits with parity 0. Going forward, let r1, r2, . . . , rn be ar-
bitrary possibly correlated bits with parity 0. Let r̃1, r̃2, . . . , r̃n be uniformly
random bits with parity 0.

We observe that a direct sufficient condition is that the distribution of the
probed wires when using r1, r2, . . . , rn is identical to the distribution of the
probed wires when using r̃1, r̃2, . . . , r̃n. This is because we have shown that the
basic protocol is leakage-tolerant when using uniformly random bits r̃1, r̃2, . . . , r̃n
with parity 0. With the above sufficient condition, we can simulate the probed

10

wires in the same way as that for the basic construction when replacing r̃1, r̃2, . . . , r̃n
with r1, r2, . . . , rn.

More concretely, let r = (r1, r2, . . . , rn), x = (x1, x2, . . . , xn), and r̃ =
(r̃1, r̃2, . . . , r̃n). For a set W of at most t intermediate wires in G, the above
sufficient condition requires that

Dist((x, r),W) = Dist((x, r̃),W),

where Dist((x, r),W) refers to the distribution of W when instantiated by
(x, r). We will reduce this to a requirement on the random source r.

Recall that there are two sets of intermediate variables in G: (1) the first set
contains the correlated random bits r1, r2, . . . , rn, and (2) the second set contains
all wires in the addition circuit, which is either gi for some i ∈ {1, 2, . . . , n} or a
linear combination of {g1, g2, . . . , gn}. Note that each bit in the second set can
be written as ⊕i∈Lgi = (⊕i∈Lxi)⊕(⊕i∈Lri) for some set L ⊂ {1, 2, . . . , n}. Since
x are fixed input bits, it is sufficient to only consider the distribution of ⊕i∈Lri.
Therefore, consider the set A defined as:

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

Each variable in A is a linear combination of {r1, r2, . . . , rn}. The sufficient
condition above can be transformed to that, for any set W of at most t variables
in A, Dist(r,W) = Dist(r̃,W) holds.

We refer to A as the access structure of the random variables {r1, r2, . . . , rn}.
Formally, an access structure A of a set of variables {r1, r2, . . . , rn} is a set which
satisfies that (1) for all i ∈ {1, 2, . . . , n}, ri ∈ A, and (2) every variable in A is a
linear combination of (r1, r2, . . . , rn). One may think that a probing attack can
only probe variables in A.

Therefore, we can summarize the sufficient conditions for the distribution of
the random source r in the basic construction as follows:

1. The parity of (r1, r2, . . . , rn) is 0.
2. Let A be the access structure of (r1, r2, . . . , rn) as defined above. Let r̃ =

(r̃1, r̃2, . . . , r̃n) be uniformly random bits with parity 0. For any set W of at
most t variables in A, Dist(r,W) = Dist(r̃,W).

Robust Parity Sharing Generator. Now we consider to use a robust PRG to
generate the above correlated random bits. We follow the notion of robust t-wise
independent PRGs in [8] and define what we refer to as robust parity sharing
generators as follows.

Definition 2 (Robust Parity Sharing Generators). Let G : {0, 1}m →
{0, 1}n be a function and A be an access structure of the output bits of G. Let u
be a vector of m uniformly random bits, and r = G(u). A circuit implementation
C of the function G is a (t, k, q)-robust parity sharing generator with respect to
A if the following holds:

– The parity of the output bits r is 0.

11

– Let r̃ ∈ {0, 1}n be uniformly random bits with parity 0. For any set S of at
most k wires in C, there is a set T of at most q|S| output bits such that for
any set W of t variables in A and for any fixing of the values CS of the wires
in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W) = Dist(r̃|r̃I=rI

,W),

where Dist(r,W) is the distribution of the variables in W when they are
instantiated by r, r|CS ,rI

is the random variable r conditioned on CS and
rI , and r̃|r̃I=rI

is the random variable r̃ conditioned on r̃I = rI .

Informally, a robust parity sharing generator outputs n random bits with
parity 0. The output of a robust parity sharing generator satisfies that any t
variables in the access structure A have the same distribution when these t
variables are instantiated by n uniformly random bits with parity 0. As a robust
t-wise independent PRG, any probing attack towards a robust parity sharing
generator is equivalent to a probing attack towards the output bits. In Lemma 1,
we formally prove that by replacing the randomness source by a robust parity
sharing generator in the basic construction, we obtain a leakage-tolerant XOR
gadget in the plain model.

Remark 1. The notion of robust parity sharing generators extends the notion of
robust t-wise independent PRGs in the following two directions: (1) the parity of
the output bits should be 0, and (2) an adversary may access to the output bits
by learning not only a single output bit, but also a linear combination specified
in the access structure A.

If A only contains all the output bits, we may obtain a robust t-wise indepen-
dent PRG from a robust parity sharing generator by removing the last output
bit.

Remark 2. Recall that the outer construction uses the leakage-tolerant XOR
gadget to compute each masked wire value. We note that if we use fresh ran-
domness for each leakage-tolerant XOR gadget, then the total number of random
bits will depend on the circuit size. To solve it, our construction uses a single
leakage-tolerant private circuit for all XOR functions, which we refer to as a
multi-phase leakage-tolerant XOR gadget, to replace the leakage-tolerant XOR
gadgets invoked in the outer construction. Note that it is sufficient for our pur-
pose since the number of probed wires is bounded by t in the whole circuit.
Correspondingly, we also extend the notion of robust parity sharing generators
to what we refer to as multi-phase robust parity sharing generators. We refer
the readers to Section 5.2 for more details.

In the following, however, we still focus on robust parity sharing generators
for simplicity. The idea can be easily extended to the multi-phase version.

Construction of a Robust Parity Sharing Generator. Let u = (u1, u2, . . . , um)
denote the input random bits of the generator G. Our idea is to use a matrix M
of size n×m to compute the output correlated random bits r = (r1, r2, . . . , rn) =
M · u. To compute ri,

12

1. For all w ∈ {1, 2, . . . ,m}, G computes Mi,w ·uw in parallel. Here Mi,w is the
entry at i-th row and w-th column in M .

2. G computes the ri = ⊕mw=1Mi,w ·uw by using a dlogme-depth addition circuit
(See Section 2.2 for more details about the addition circuit).

Requiring that the parity of r1, r2, . . . , rn is 0 is equivalent to requiring that∑n
i=1Mi = 0.
Our idea is to use a random matrix M and show that the construction of G

is a robust parity sharing generator with high probability when m = O(t · log tn).
Note that the structure of G is independent of the matrixM . Although a probing
attack can depending onM , the set of all possible probing attacks is independent
of M . This allows us to first analyse the probability that G is secure against
a fixed probing attack and then apply the union bound on all possible probing
attacks.

Therefore, the problem becomes that for a fixed set S of at most k wires in
G and a fixed set W of at most t variables in A, there is a set T of at most q|S|
output bits (where T only depends on S) such that for any fixing of the values
GS of the wires in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W) = Dist(r̃|r̃I=rI

,W).

At a high-level, the proof works as follows:

1. We first determine the set T . For each wire in S, if it is ri or an interme-
diate wire when computing ri, we insert ri in T . Then T contains at most
|S| output bits. Intuitively, T corresponds to the set of output bits whose
distributions are affected by the wires in S.

2. We note that if a variable w in W is a linear combination of other variables
in W

⋃
T , then we can safely remove w and only consider W\{w}. Note that

if the argument holds for W\{w}, then it also holds for W since w is fully
determined by the variables in W

⋃
T\{w}. Therefore, our second step is to

find W̃ ⊂ W such that no variable in W̃ is a linear combination of other
variables in W̃

⋃
T .

3. Recall that W̃ ⊂W ⊂ A and T ⊂ A. Thus, all variables in W̃
⋃
T are linear

combinations of r1, r2, . . . , rn. We show that the distribution Dist(r̃|r̃I=rI
,

W̃) is the same as the distribution of |W̃ | uniform bits. Therefore, the prob-
lem is reduced to analyse the probability that the distribution Dist(r|CS ,rI

, W̃)

is the distribution of |W̃ | uniform bits.
4. We prove that this is equivalent to showing that the probability that for

all non-empty subset X ⊂ W̃ and for all subset Y ⊂ S
⋃
T , the XOR of

all bits in X
⋃
Y is uniformly distributed. To this end, we first analyse the

probability for fixed sets X,Y and then apply the union bound on all possible
X,Y .

5. Finally, we note that all variables in S
⋃
T
⋃
W̃ are linear combinations of

the input random bits u1, u2, . . . , um. Therefore, there exists a vector v(w)
for all w ∈ S

⋃
T
⋃
W̃ such that w = v(w) ·u. The XOR of all bits in X

⋃
Y

is uniformly distributed if and only if the summation of the vectors v(w) for

13

all w ∈ X
⋃
Y is a non-zero vector. Since M is a uniformly random matrix,

we show that this holds with overwhelming probability.

We refer the readers to Section 6 for more details. Combining all the components
we construct, we have the following theorem.

Theorem 1. Any function f with circuit size s and output size no admits a
t-private implementation (I, C,O) with the canonical encoder I and the decoder
O which, for each output bit, takes the parity of a block of bits (which are not
restricted to t+ 1 bits), where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit
of size s that computes f , and outputs, except with ≤ 2−λ probability, a t-private
implementation (I, C,O) such that C uses O(t · log ts+ λ) random bits.

In the full version, we show how to construct a t-leakate-resilient private
circuit with the canonical decoder at the cost of O(t · log λ) extra random bits.

Randomness Complexity of t-Leakage-Tolerant Private Circuits. In Remark 3,
we show that a t-leakage-tolerant private circuit can be obtained from our outer
construction with small modifications. When the leakage-tolerant XOR gadgets
are instantiated by a multi-phase leakage-tolerant XOR gadget, we have the
following theorem.

Theorem 2. Any function f with circuit size s admits a t-leakage-tolerant pri-
vate implementation C, where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a cir-
cuit of size s that computes f , and outputs, except with ≤ 2−λ probability, a
t-leakage-tolerant implementation C such that C uses O(t · log ts + λ) random
bits.

2.3 Extensions

Replacing the Canonical Encoder with a Randomness-Efficient Encoder. We note
that the canonical encoder has already required t · ni random bits for the input
in I. When ni ≥ t, it means that the encoding of the input has already contained
O(t2) random bits. It may lead to the following objection: a potential solution
may reuse the randomness output by the encoder and may even be deterministic
due to the large amount of randomness output by the encoder. We show that we
can replace the canonical encoder by a randomness-efficient encoder, and achieve
randomness complexity of O(t · log ts) including the input encoder.

We first construct an encoder which only requires O(t · log ni) random bits
to encode ni bits by using a linear and strong t-wise independent PRG G :
{0, 1}m → {0, 1}ni . The construction works as follows:

1. The encoder Enc takes x ∈ {0, 1}ni as input and ρ ∈ {0, 1}m as randomness.
2. The encoder Enc first computes r = G(ρ). Then it computes x⊕ r.
3. The output of Enc is (ρ,x⊕ r).

14

Note that it follows the same idea as the outer construction. We then show that
we can directly replace the canonical encoder with this construction. Informally,
this is because each input bit xi is equal to the XOR of a subset of output bits
of the encoder. To see this, since G is linear, each output bit ri of G is equal
to the XOR of a subset supp(ri) of bits of the input ρ. Therefore, each output
bit xi is equal to the XOR of the bits in supp(ri)

⋃
{xi ⊕ ri} which are all in

the output of the encoder. Thus, we may define [xi] = supp(ri)
⋃
{xi ⊕ ri} and

we can use the same outer construction to transform the input encoding to the
masked input bits.

As a result, we have the following theorem. We refer the readers to the full
version for more details.

Theorem 3. Any function f with circuit size s and input size ni admits a t-
private implementation (I, C,O), where I uses O(t · log ni) random bits and C
uses O(t · log ts) random bits. Moreover, there exists a PPT algorithm which
takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit of size s that computes f , and
outputs, except with ≤ 2−λ probability, a t-private implementation (I, C,O) such
that C uses O(t · log ts+ λ) random bits.

Private Stateful Circuit. We follow the same argument as [9] to transform our
basic construction to a private stateful circuit. Concretely, in the first step, we
extend our construction to support unprotected input bits and output bits. The
unprotected input bits and output bits are not encoded and can be observed by
the public. Note that for an unprotected input xi, we may set [xi] = {xi} so
that we can continue to use our basic construction.

In the second step, we use the randomness-efficient encoder Enc constructed
above to encode the initial state. In each invocation, we use the private circuit
which takes as input the encoded state and the unprotected external input, and
outputs the encoded updated state and the external output. Note that since Enc

follows from the same idea as the outer construction, the encoded updated state
produced by our private circuit has the same form as that computed by Enc.
Therefore, the encoded updated state produced by our private circuit is stored
and will be used in the next invocation. The security directly follows from the
private circuit that supporting unprotected input bits and output bits.

As a result, we have the following theorem. We refer the readers to the full
version for more details.

Theorem 4. Any stateful circuit C with initial state s0 admits a t-private im-
plementation C ′[s′0] which uses O(t · log t|C|) random bits. Moreover, there ex-
ists a PPT algorithm which takes (C, s0, 1

t, 1λ) as input and outputs, except
with ≤ 2−λ probability, a t-private implementation C ′[s′0] such that C ′ uses
O(t · log t|C|+ λ) random bits.

3 Preliminaries

3.1 Private Circuits

We start by defining the simple “stateless” variant of private circuits.

15

Definition 3 (Private Circuit [9]). A private (stateless) circuit for f : {0, 1}ni →
{0, 1}no is a triple (I, C,O) where I : {0, 1}ni → {0, 1}n̂i is a randomized in-
put encoder, C is a randomized boolean circuit with input x̂ ∈ {0, 1}n̂i , output
ŷ ∈ {0, 1}n̂o , and randomness ρ ∈ {0, 1}m, and O : {0, 1}n̂o → {0, 1}no is an
output decoder, such that for any input x ∈ {0, 1}ni , we have

Pr[O(C(I(x),ρ)) = f(x)] = 1,

where the probability is over the randomness of I and ρ.

In this work, the term “private circuit” will refer to the above stateless notion
by default. In the full version, we also discuss the stateful variant and show how
to extend our main result to this stronger model.

We will be interested in two different notions of security for private circuits:
the standard notion of leakage-resilience (against probing attacks) and a more
refined notion of leakage-tolerance. We define both notions below.

Leakage-resilient Private Circuit. In the setting of leakage-resilient private cir-
cuits, we consider the canonical encoder: I encodes each input bit xi by a vector
of t+ 1 random bits with parity xi. This is mainly to avoid encoders which are
function-dependent or provide large amount of randomness. For each input bit
x, we use [xi] to denote the set of bits in the encoding of xi. As to the decoder,
we consider a relaxation of the canonical decoder: To decode each output bit, O
takes the parity of a block of bits (which are not restricted to be t+ 1 bits).

We note that the canonical encoder consumes O(t ·ni) random bits to encode
an input x ∈ {0, 1}ni . Later on, we will also consider a randomness-efficient
encoder which only uses O(t log ni) random bits.

Definition 4 (t-leakage-resilient Privacy [9]). We say that C is a t-leakage-
resilient private implementation of f with encoder I and decoder O if for any
x,x′ ∈ {0, 1}ni and any set P of t wires in C, the distributions CP (I(x),ρ) and
CP (I(x′),ρ) are identical, where CP denotes the set of t bits on the wires from
P .

In the following, whenever we say t-private circuit, we refer to a t-leakage-
resilient private circuit.

Leakage-tolerant Private Circuit. In the setting of leakage-tolerant private cir-
cuits, we restrict the encoder and the decoder to be the identity function. The
security requires that any set of at most t wires in C should leak at most the
same number of input and output bits. Formally,

Definition 5 (t-leakage-tolerant privacy). We say that C is a t-leakage-
tolerant private implementation of f if there exists a simulator S = (S1,S2)
such that for all x and any set P of at most t wires in C, S1(C,P) outputs a
set P ′ of |P | input and output wires in C such that

CP (x,ρ) = S2(C,CP ′(x,ρ)),

where CP (w.r.t. CP ′) denotes the set of bits on the wires from P (w.r.t. P ′).

16

We note that the input wires and output wires can be naively simulated
by having access to those wires. Therefore, it is sufficient to only consider the
intermediate wires in C. We have the following equivalent definition.

Definition 6. We say that C is a t-leakage-tolerant private implementation of
f if there exists a simulator S = (S1,S2) such that for all x and any set P of
at most t intermediate wires in C, S1(C,P) outputs a set P ′ of |P | input and
output wires in C such that

CP (x,ρ) = S2(C,CP ′(x,ρ)),

where CP (w.r.t. CP ′) denotes the set of bits on the wires from P (w.r.t. P ′).

3.2 Strong t-wise Independent Pseudo-random Generator

Our work will make use of the following notion of (strong) t-wise independent
pseudo-random generator.

Definition 7 ((Strong) t-wise Independent PRG). A function G : {0, 1}n →
{0, 1}m is a t-wise independent pseudo-random generator (or PRG for short) if
any subset of t bits of G(x) is uniformly random and independently distributed
when x is uniformly sampled from {0, 1}n.

If any subset of t bits of (x,G(x)) is uniformly random and independently
distributed when x is uniformly sampled from {0, 1}n, then we say G is a strong
t-wise independent PRG.

We say a (strong) t-wise independent PRG G is linear if any output bit of
G(x) is equal to the XOR of a subset of bits in x.

Generic Construction of Linear and Strong t-wise Independent PRGs. In [4],
Chor et al. introduce the notion of t-resilient functions. A t-resilient function
Ext : {0, 1}n → {0, 1}n′

satisfies that the output of Ext is uniformly random
given any t bits from the input.

A generic approach of constructing a linear and strong t-wise independent
PRG is to combine a linear t-resilient function Ext : {0, 1}n → {0, 1}n′

and a
linear t-wise independent PRG G′ : {0, 1}n′ → {0, 1}m. Consider the function
G : {0, 1}n → {0, 1}m which is defined to be G(x) = G′(Ext(x)). Since Ext

and G′ are linear, G is also linear. Note that after fixing at most t bits in x,
the output of Ext(x) is uniformly distributed, which means that the output
of G(x) = G′(Ext(x)) is t-wise independent. Therefore, any subset of t bits of
(x,G(x)) is uniformly random and independently distributed, which means that
G is a linear and strong t-wise independent PRG.

A Concrete Instance. For our purposes, it will suffice to use the following sim-
ple construction using polynomial evaluation over a finite field F2k . We use
α0, α1, . . . , α2k−1 to represent field elements in F2k . Let r = (r0, r1, . . . , rt−1) ∈

17

F t2k . Consider the degree-(t−1) polynomial hr(·) which satisfies that hr(αi) = ri
for all i ∈ {0, 1, . . . , t− 1}. That is

r = (hr(α0), hr(α1), . . . , hr(αt−1)).

If r is a uniform vector in Ft2k , then hr(·) is a random degree-(t−1) polynomial,
which means that any t distinct evaluation points of hr(·) are uniformly random
and independently distributed. Thus, for all ` ≤ 2k− t we may define G : Ft2k →
F`2k by:

G(r) = (hr(αt), hr(αt+1), . . . , hr(α`+t−1)).

To see why G is a strong t-wise independent PRG, note that (r, G(r)) =
(hr(α0), hr(α1), . . . , hr(α`+t−1)), and any t distinct evaluation points of hr(·)
are uniformly random and independently distributed when r is uniformly sam-
pled from Ft2k .

Since every element in F2k can be represented by k bits, it gives us a strong
t-wise independent PRG which takes as input t · k bits and outputs ` · k bits.
Note that ` can be as large as 2k − t+ 1. Therefore, to construct a strong t-wise
independent PRG which outputs m bits, we only need to use a field of size O(m),
which means that the input size can be as small as O(t · logm).

We note that in the above construction, each output element hr(αi) can be
written as a linear combination of r. Since we are in an extension field of the
binary field where addition is equivalent to coordinate-wise XOR, it implies that
every output bit of G is the XOR of a subset of its input. Therefore, for all
m, we obtain a linear and strong t-wise independent PRG which takes as input
O(t · logm) bits.

4 Outer Construction: t-private Circuit via
Leakage-tolerant XOR Gadgets

For a boolean function f : {0, 1}ni → {0, 1}no , let C̃ denote a circuit that
computes the function f . Let G be a linear and strong 2t-wise independent PRG

G : {0, 1}m → {0, 1}|C̃|. We use u = (u1, u2, . . . , um) to denote the input of
G and r = (r1, r2, . . . , r|C̃|) to denote the output of G. Since G is linear, each
output bit ri is the XOR of a subset of the input bits in u1, u2, . . . , um. We refer
to this set as the support of ri, denoted by supp(ri).

Our idea is to compute a masked bit for each wire value in C̃ using the
output bit of G. Concretely, suppose all the wire values in C̃ are denoted by
g1, g2, . . . , g|C̃| (including input wires and output wires). For all i ∈ 1, 2, . . . , |C̃|,
we want to compute gi⊕ri, where ri is the i-th output bit ofG. Intuitively, any set
of t bits in {u1, u2, . . . , um, g1⊕r1, g2⊕r2, . . . , g|C̃|⊕r|C̃|} are uniformly random
and independently distributed and therefore can be simulated by simply choosing
t uniform bits. Note that for each wire value gi, we can view {gi⊕ri}

⋃
supp(ri)

as an additive sharing of gi since the XOR of the bits in supp(ri) is equal to ri.
We use [gi] to represent the set {gi ⊕ ri}

⋃
supp(ri).

18

We will first construct a t-private circuit by using a t-leakage-tolerant private
circuit for the XOR function, which we referred to as a t-leakage-tolerant XOR
gadget.

Intuitively, a leakage-tolerant XOR gadget satisfies that any probing attack
towards the gadget is equivalent to a probing attack (that probes the same
number of wires) towards the input wires and the output wire of this gadget.
The construction of the circuit C works as follows.

1. The circuit C takes as input the input encoding [x1], [x2], . . . , [xni] and the
randomness ρ ∈ {0, 1}m. We use ρ as the input of the PRG G.

2. Transforming Input Encoding: We first transform the input encoding to the
masked input bits using the corresponding output bits from G. For each
input xi, let gi denote the input wire in C̃ that takes xi as input. Then we
want to compute the bit gi ⊕ ri in the circuit C. This is done by using a
t-leakage-tolerant XOR gadget G with input bits in [xi] and supp(ri).

3. Evaluating Addition Gates in C̃: For each addition gate in C̃ with input
wires ga, gb and output wire gc. Suppose we have constructed the circuit to
compute ga⊕ ra and gb⊕ rb in C. To compute gc⊕ rc, we insert a t-leakage-
tolerant XOR gadget G with input bits in [ga], [gb] and supp(rc).

4. Evaluating Multiplication Gates in C̃: For each multiplication gate in C̃ with
input wires ga, gb and output wire gc. Suppose we have constructed the circuit
to compute ga⊕ ra and gb⊕ rb in C. Recall that [ga] = {ga⊕ ra}

⋃
supp(ra)

and [gb] = {gb ⊕ rb}
⋃
supp(rb). Let [ga] ⊗ [gb] := {u · v : u ∈ [ga], v ∈ [gb]}.

Then the XOR of all bits in [ga] ⊗ [gb] is equal to ga · gb = gc. Thus, to
compute gc ⊕ rc, we first compute u · v for all u ∈ [ga], v ∈ [gb] and then
insert a t-leakage-tolerant XOR gadget G with input bits in [ga] ⊗ [gb] and
supp(rc).

5. Transforming to Output Encoding: The last step is to transform each masked
output bit to the encoding of this output bit. For each output wire ga in C̃,
suppose we have constructed the circuit to compute ga⊕ra in C. Recall that
[ga] = {ga ⊕ ra}

⋃
supp(ra). Therefore, the XOR of the bits in [ga] is equal

to ga. The circuit simply outputs the wires in [ga] as the encoding of the
output bit ga.

Theorem 5. Assume G is a t-leakage-tolerant XOR gadget. The circuit C con-
structed above is a t-private implementation of the function f .

Proof. Following the definition of the t-privacy in Definition 4, it is sufficient to
show that, for any x,x′ ∈ {0, 1}ni and any set P of t wires in C, the distributions
CP (I(x),ρ) and CP (I(x′),ρ) are identical, where CP denotes the set of t bits on
the wires from P . Since G is t-leakage-tolerant, any set of at most t intermediate
variables within G can be perfectly simulated by probing the same number of the
input wires and the output wire of G. Therefore, it is sufficient to only focus on
the set of t wires in C that does not include intermediate wires in the gadgets.

We first divide the wires in C (excluding the intermediate wires in the gad-
gets) into two disjoint sets:

1. The set of input wires of C: {[x1], [x2], . . . , [xni
]}.

19

2. The set of the rest of wires in C. It is consist of the random bits ρ ∈ {0, 1}m,
the masked bits of the wire values g1 ⊕ r1, g2 ⊕ r2, . . . , g|C̃| ⊕ r|C̃|, and the

bits in the set [ga] ⊗ [gb] for each multiplication gate in C̃ with input wires
ga and gb.

Note that the output wires are included in the second set. We strengthen the
argument by allowing to choose t wires in each of these two sets and show that
these 2t wires can be simulated without knowing the input and the output of f .

For the first set, note that each sharing of x1, . . . , xni is a random additive
sharing with t + 1 shares. Therefore, any t shares in the first set are uniformly
random. We can simulate the bits on the t wires chosen in the first set by uniform
values.

For the second set, let ρ = (u1, u2, . . . , um) ∈ {0, 1}m. Note that any wire
u·v ∈ [ga]⊗[gb], where u ∈ [ga] and v ∈ [gb], is determined by u and v. Therefore,
any t wires in the third set are determined by at most 2t wires in the set T =
{u1, u2, . . . , um, g1⊕r1, g2⊕r2, . . . , g|C̃|⊕r|C̃|}. Recall that (r1, r2, . . . , r|C̃|) is the

output of G on input ρ = (u1, u2, . . . , um) ∈ {0, 1}m. Since G is a strong 2t-wise
independent PRG, when ρ = (u1, u2, . . . , um) ∈ {0, 1}m is chosen uniformly,
(u1, u2, . . . , um, r1, r2, . . . , r|C̃|) are 2t-wise independent. Thus, we can simulate
the bits on the t wires chosen in the third set by first sampling 2t random bits
for the wires in T that determine these t wires and then compute the bits on
these t wires.

Remark 3. Recall that in the setting of leakage-tolerant private circuits, function
input and output are not encoded. We note that the above construction with
small modifications gives a t-leakage-tolerant private implementation of f : (1)
for each input bit xi, we use [xi] = {xi} in the above construction; and (2) for
each output bit yi, we use an additional leakage-tolerant XOR gadget with bits
in [yi] to compute yi.

Recall that in the setting of leakage-tolerant private circuits, the security
requires that any set of t wires in C can be simulated by the same number of
input and output bits. To show security, we divide the wires in C (after the
modifications) into two disjoint sets: (1) the set of all input wires and output
wires, and (2) the set of the rest of wires. Note that the second set is consist of
the random bits ρ ∈ {0, 1}m, the masked bits of the wire values g1 ⊕ r1, g2 ⊕
r2, . . . , g|C̃|⊕r|C̃|, and the bits in the set [ga]⊗ [gb] for each multiplication gate in

C̃ with input wires ga and gb. The simulator works by querying the corresponding
input and output wires in the first set and simulating the wires in the second
set in the same way as described in the proof of Theorem 5.

5 Inner Construction: Leakage-tolerant XOR Gadget

Following from Theorem 5, it is sufficient to construct a leakage-tolerant XOR
Gadget. We first start with a basic construction which is given access to corre-
lated randomness.

20

5.1 Basic Construction via Correlated Randomness

Let x1, x2, . . . , xn denote the input bits of the gadget G. The goal is to compute
the output ⊕ni=1xi. The construction of the circuit works as follows:

1. The circuit takes as input n bits x1, x2, . . . , xn. The circuit is given an access
to n correlated random variables r1, r2, . . . , rn which are uniformly random
bits with parity 0.

2. The circuit first computes gi = xi ⊕ ri for all i ∈ {1, 2, . . . , n} in parallel.
3. The circuit computes ⊕ni=1gi using a dlog ne-depth addition circuit. Con-

cretely, in each iteration, all input bits are divided into groups of size 2 and
then, for each group, we compute the XOR of the two bits in this group. The
results are provided as input bits for the next iteration. Note that in each
iteration, we reduce the number of input bits by a factor of 2. The whole
process will end after dlog ne iterations.

We show that this simple construction is t-leakage-tolerant given the correlated
random variables r1, r2, . . . , rn.

First note that there are two different kinds of intermediate variables: (1)
the first kind contains the correlated random variables {r1, r2, . . . , rn}, (2) the
second kind contains the variables {g1, g2, . . . , gn} computed in Step 2, and all
intermediate variables when computing the addition circuit. Note that they are
all in the form of ⊕i∈Lgi where L ⊂ {1, 2, . . . , n}.

For any set W of t1(≤ t) intermediate variables, we first determine the set
T ⊂ {x1, x2, . . . , xn,⊕ni=1xi} of size at most t1 that will be used to simulate
the intermediate variables in W . We first define I to be a subset of the indices
{1, 2, . . . , n} such that for all ri ∈ W , i ∈ I; or equivalently I := {i : ri ∈ W}.
Initially, we set T to be an empty set.

– For all i ∈ I, we insert the i-th input bit xi in T .
– If W contains any intermediate variable of the second kind (i.e., an inter-

mediate bit in the form of ⊕i∈Lgi where L ⊂ {1, 2, . . . , n}), we insert the
output bit ⊕ni=1xi in T .

Note that the size of T is at most t1.
Now we show how to simulate the intermediate variables in W using the

input bits and the output bit in T . For all ri ∈ W , we sample a random bit
as ri. Since xi ∈ T , we also compute gi = xi ⊕ ri. If W does not contain any
intermediate variable of the second kind, then we are done. Otherwise, the rest
of variables in W are all in the form of ⊕i∈Lgi where L ⊂ {1, 2, . . . , n}. If we can
generate gi for all i ∈ {1, 2, . . . , n}, then we can simulate the rest of variables in
W . Since we have computed gi for all i ∈ I, it is sufficient to focus on gi where
i 6∈ I.

Recall that for all i ∈ I, we have xi ∈ T . Also recall that if W contains any
intermediate variable of the second kind, then ⊕ni=1xi ∈ T . Therefore, we can
compute the parity of {xi : i 6∈ I} by ⊕i6∈Ixi = (⊕i∈Ixi) ⊕ (⊕ni=1xi). Note that
{ri : i 6∈ I} are random bits with parity ⊕i 6∈Iri = ⊕i∈Iri. For all i 6∈ I, since we

21

use ri to mask the bit xi, {gi : i 6∈ I} are random bits with parity ⊕i6∈Igi. Thus,
we first compute

⊕i 6∈Igi = (⊕i 6∈Ixi)⊕ (⊕i 6∈Iri) = (⊕i∈Ixi)⊕ (⊕ni=1xi)⊕ (⊕i∈Iri).

Then, we sample n − |I| random bits with parity ⊕i 6∈Igi as {gi : i 6∈ I}. Fi-
nally, we compute the intermediate variables of the second kind in W using
{g1, g2, . . . , gn}.

5.2 Robust Parity Sharing Generator

Now, we consider to use a generation circuit G for correlated random variables
r1, r2, . . . , rn in the basic construction. In this case, an adversary can also probe
wires in G. We first review the definition of robust t-wise independent PRGs
introduced in [8]. Then we will extend the notion of robust t-wise independent
PRGs to what we refer to as robust parity sharing generators. The following
definition corresponds to the strong robust t-wise independent PRGs in [8].

Definition 1 (Robust t-wise Independent PRGs [8]). A circuit implemen-
tation C of a function G : {0, 1}m → {0, 1}n is a (t, k, q)-robust pseudo-random
generator if the following holds. Let u be a vector of m uniformly random bits,
and r = G(u). For any set S of at most k wires in C, there is a set T of at
most q|S| output bits such that conditioned on any fixing of the values CS of the
wires in S and rI , where I = {i : ri ∈ T}, the values rĪ of the output bits not
in T are t-wise independent.

Intuitively, any probing attack towards a robust t-wise independent PRG is
equivalent to a probing attack towards the output bits. In [8], Ishai, et al. show
that a private circuit can be derandomized by the following two steps:

1. First, derandomzie a private circuit by assuming an access to t-wise inde-
pendent random source. This is achieved by considering the notion of ran-
domness locality of a private circuit. The randomness locality of a private
circuit is the number of random bits that are used to compute each wire.
If each wire uses at most ` random bits (i.e., the randomness locality is `),
then we may replace the uniform random source by a (` · t)-wise independent
random source to protect against t-probing attacks. It is because any t wires
depend on at most ` · t random bits, and therefore, the distribution of these
t wires when using uniform random source is identical to that when using
(` · t)-wise independent random source.

2. Then, replace the (` · t)-wise independent random source by a robust (` · t)-
wise independent PRG.

However, this approach may inherently requires Ω(t2) random bits. Intuitively,
the randomness locality of a private circuit cannot be smaller than t, or oth-
erwise, an adversary may learn extra information about the input by probing
a wire and all random bits that are used to compute this wire. It means that

22

the random source should be at least t2-wise independent, which requires Ω(t2)
uniform random bits.

To overcome this bottleneck, our idea is to use a different approach to de-
randomize our basic construction of the leakage-tolerant XOR gadget. We first
analyse what random source we need in our construction.

Sufficient Conditions of the Random Source in the Basic Construction. First
of all, the correctness of our construction requires that the random variables
(r1, r2, . . . , rn) should have parity 0. Now we want to relax the requirement that
(r1, r2, . . . , rn) are uniformly random bits with parity 0.

We use r to denote the random variables (r1, r2, . . . , rn) and x to denote
the input bits (x1, x2, . . . , xn). For a set W of intermediate variables in G, we
use Dist((x, r),W) to denote the distribution of the variables in W when they
are instantiated by (x, r). Let r̃ = (r̃1, r̃2, . . . , r̃n) be uniformly random bits
with parity 0. Since we have shown that G is a leakage-tolerant XOR gad-
get when using r̃ as random source, a straightforward sufficient condition of
the distribution of r is that, for any set W of t1(≤ t) intermediate variables,
Dist((x, r),W) = Dist((x, r̃),W) holds for all x. With this condition, when
using r as the random source in G, we can simulate the intermediate variables
in W by using the same way as that when the random source is r̃.

Recall that in our construction, there are two kinds of intermediate vari-
ables: (1) the first kind contains the random variables {r1, r2, . . . , rn}, (2) the
second kind contains the variables {g1, g2, . . . , gn} computed in Step 2, and all
intermediate bits when computing the addition circuit, which are in the form of
⊕i∈Lgi where L ⊂ {1, 2, . . . , n}. Note that ⊕i∈Lgi = (⊕i∈Lxi)⊕ (⊕i∈Lri). Since
x are fixed input bits, it is sufficient to only consider the distribution of ⊕i∈Lri.
Therefore, consider the set A defined as:

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

Each variable in A is a linear combination of {r1, r2, . . . , rn}. The sufficient
condition above can be transformed to that, for any set W of t1(≤ t) variables in
A, Dist(r,W) = Dist(r̃,W) holds, where Dist(r,W) refers to the distribution
of the variables in W when they are instantiated by r. We refer to A as the access
structure of the random variables {r1, r2, . . . , rn}. Formally, an access structure
A of a set of variables {r1, r2, . . . , rn} is a set which satisfies that (1) for all
i ∈ {1, 2, . . . , n}, ri ∈ A, and (2) every variable in A is a linear combination of
(r1, r2, . . . , rn). One may think that an probing attack can only probe variables
in A.

Therefore, we can summarize the sufficient conditions of the distribution of
the random source r in the basic construction as follows:

1. The parity of (r1, r2, . . . , rn) is 0.
2. Let A be the access structure of (r1, r2, . . . , rn) as defined above. Let r̃ =

(r̃1, r̃2, . . . , r̃n) be uniformly random bits with parity 0. For any set W of
t1(≤ t) variables in A, Dist(r,W) = Dist(r̃,W).

23

Robust Parity Sharing Generator. Now we are ready to define the notion of
robust parity sharing generators.

Definition 2 (Robust Parity Sharing Generators). Let G : {0, 1}m →
{0, 1}n be a function and A be an access structure of the output bits of G. Let u
be a vector of m uniformly random bits, and r = G(u). A circuit implementation
C of the function G is a (t, k, q)-robust parity sharing generator with respect to
A if the following holds:

– The parity of the output bits r is 0.
– Let r̃ ∈ {0, 1}n be uniformly random bits with parity 0. For any set S of at

most k wires in C, there is a set T of at most q|S| output bits such that for
any set W of t variables in A and for any fixing of the values CS of the wires
in S and rI , where I = {i : ri ∈ T},

Dist(r|CS ,rI
,W) = Dist(r̃|r̃I=rI

,W),

where Dist(r,W) is the distribution of the variables in W when they are
instantiated by r, r|CS ,rI

is the random variable r conditioned on CS and
rI , and r̃|r̃I=rI

is the random variable r̃ conditioned on r̃I = rI .

Let G be the t-leakage-tolerant XOR gadget we constructed in Section 5.1
that uses correlated randomness. Recall that (x1, x2, . . . , xn) are input bits,
(r1, r2, . . . , rn) are random bits with parity 0, and gi = xi ⊕ ri for all i ∈
{1, 2, . . . , n}. Also recall that the access structure A of {r1, r2, . . . , rn} is defined
by

A = {r1, r2, . . . , rn}
⋃
{⊕i∈Lri : ⊕i∈Lgi is an intermediate wire in G}.

We show how to construct a t-leakage-tolerant XOR gadget G′ in the plain model
(i.e., without access to correlated randomness) by using a (t, t, 1)-robust parity
sharing generator with respect to A. The construction simply uses a (t, t, 1)-
robust parity sharing generator with respect to A to generate correlated ran-
domness (r1, r2, . . . , rn) for G and then uses G to compute the output.

Lemma 1. The gadget G′ constructed above is a t-leakage-tolerant XOR gadget.

Proof. It is sufficient to show that for any t1 ≤ t and any set W of t1 intermediate
variables, there exists a subset T ⊂ {x1, x2, . . . , xn,⊕ni=1xi} of size at most t1
such that the t1 intermediate variables in W can be perfectly simulated from the
bits in T . In the following, we use G to denote the (t, t, 1)-robust parity sharing
generator.

We first divide the intermediate variables in G′ into two categories:

– The first category contains all the wires in G, including the input ran-
dom source (u1, u2, . . . , um) and the output correlated random variables
(r1, r2, . . . , rn).

24

– The second category contains the rest of intermediate wires in G′. In other
words, the second category contains all intermediate wires in G except the
correlated randomness (r1, r2, . . . , rn). For all i ∈ {1, 2, . . . , n}, let gi = xi ⊕
ri. By the construction of G, each variable in the second category is a linear
combination of (g1, g2, . . . , gn).

Let S be the set of intermediate variables in W that belong to the first category,
and W ′ be the set of intermediate variables in W that belong to the second
category. Then |W | = |S|+ |W ′|, and |S|, |W ′| ≤ t.

We first determine the set T ⊂ {x1, x2, . . . , xn,⊕ni=1xi} that is used to sim-
ulate the intermediate variables in W . Let T ′ be the set of output bits of G in
Definition 2. Then |T ′| = |S|. There are two cases.

– If W ′ = ∅, then T = {xi : ri ∈ T ′}. In this case |T | = |T ′| = |S| = |W | = t1.
– If W ′ 6= ∅, then T = {xi : ri ∈ T ′}

⋃
{⊕ni=1xi}. In this case, |T | = |T ′|+ 1 ≤

|S|+ |W ′| = |W | = t1.

Now we describe the simulation of intermediate wires in W .

– For all intermediate wires in S, we sample uniformly random bits as u1, u2, . . . , um
and compute G by taking u1, u2, . . . , um as input. Then we output the values
associated with the intermediate wires in S.

– The following step is only done if W ′ 6= ∅. In this case, T = {xi : ri ∈
T ′}

⋃
{⊕ni=1xi}. Let I = {i : ri ∈ T ′}. Then T is also equal to {xi : i ∈

I}
⋃
{⊕ni=1xi}

For all intermediate wires in W ′, let W̃ = {⊕i∈Lri : ⊕i∈Lgi is in W ′}. Then
W̃ ⊂ A and |W̃ | = |W ′| ≤ t. Since G is a (t, t, 1)-robust parity sharing
generator, by Definition 2,

Dist(r|GS ,rI
, W̃) = Dist(r̃|r̃I=rI

, W̃).

Since (x1, x2, . . . , xn) are fixed input bits, we have Dist(r|CS ,rI
,W ′) =

Dist(r̃|r̃I=rI
,W ′). Therefore, it is sufficient to simulate the intermediate

wires in W ′ by using correlated randomness r̃ subject to r̃I = rI .
Recall that each variable in W ′ is a linear combination of (g1, g2, . . . , gn).
Therefore, we first generate g1, g2, . . . , gn and then compute the variables in
W ′. For all i ∈ I, we compute gi = xi⊕r̃i. Note that {r̃i : i 6∈ I} are uniformly
random bits with parity ⊕i 6∈I r̃i = ⊕i∈I r̃i. Also note that we can compute the
parity of {xi : i 6∈ I} by (⊕ni=1xi)⊕(⊕i∈Ixi). Therefore, {gi = xi⊕ r̃i : i 6∈ I}
are uniformly random bits with parity (⊕i 6∈I r̃i) ⊕ (⊕i 6∈Ixi). We generate
uniformly random bits with parity (⊕i 6∈I r̃i)⊕ (⊕i 6∈Ixi) as {gi : i 6∈ I}. Now
we can compute variables in W ′ by using (g1, g2, . . . , gn).

Multi-Phase Leakage-Tolerant XOR Gadget and Multi-Phase Robust Parity Shar-
ing Generator. We note that if we use a robust parity sharing generator for each
gadget G, then the total number of random bits will depend on the circuit size.
To solve it, we first consider what we call multi-phase leakage-tolerant XOR
gadgets, which can compute a bounded number of XOR functions. Formally,

25

Definition 8 (Multi-Phase Leakage-Tolerant XOR Gadget). Let p and
n1, n2, . . . , np be positive integers. For all j ∈ {1, 2, . . . , p}, the function f takes

as input a sequence of nj bits x
(j)
1 , x

(j)
2 , . . . , x

(j)
nj and outputs ⊕nj

i=1x
(j)
i . We say G

is a multi-phase t-leakage-tolerant XOR gadget if it is a t-leakage-tolerant private
implementation of f .

Note that it is strictly weaker than p compositions of t-leakage-tolerant XOR
gadgets since a multi-phase t-leakage-tolerant XOR gadget can only tolerate t
probes across all phases while p compositions of t-leakage-tolerant XOR gadgets
can tolerate t probes for each gadget, i.e., p · t probes in total. However, a
multi-phase t-leakage-tolerant XOR gadget is sufficient to replace the t-leakage-
tolerant XOR gadgets used in the outer protocol (see Section 4) since the number
of probed wires is bounded by t in the whole circuit.

To construct a multi-phase t-leakage-tolerant XOR gadget, we extend the
t-robust parity sharing generator to the multi-phase version as follows.

Definition 9 (Multi-Phase Robust Parity Sharing Generators). Let p
and n1, n2, . . . , np be positive integers, G : {0, 1}m → {0, 1}n1 × {0, 1}n2 × . . .×
{0, 1}np be a function, u be a vector of m uniformly random bits, and r =
(r(1), r(2), . . . , r(p)) = G(u), where r(j) ∈ {0, 1}nj for all j ∈ {1, 2, . . . , p}. For

each r(j), let Aj be an access structure of the output bits {r(j)
1 , r

(j)
2 , . . . , r

(j)
nj }. Let

A =
⋃p
j=1Aj. A circuit implementation C of the function G is a multi-phase

(t, k, q)-robust parity sharing generator with respect to A if the following holds:

– For all j ∈ {1, 2, . . . , p}, the parity of the output bits r(j) is 0.
– Let r̃ = (r̃(1), r̃(2), . . . , r̃(p)) ∈ {0, 1}n1×{0, 1}n2× . . .×{0, 1}np be uniformly

random bits such that for all j ∈ {1, 2, . . . , p}, the parity of {r̃(j)
1 , r̃

(j)
2 , . . . , r̃

(j)
nj }

is 0. For any set S of at most k wires in C, there is a set T of at most q|S|
output bits such that for any set W of t variables in A and for any fixing of

the values CS of the wires in S and rI , where I = {(j, i) : r
(j)
i ∈ T} and rI

is the vector that contains all bits in {r(j)
i : (j, i) ∈ I},

Dist(r|CS ,rI
,W) = Dist(r̃|r̃I=rI

,W),

where Dist(r,W) is the distribution of the variables in W when they are
instantiated by r, r|CS ,rI

is the random variable r conditioned on CS and
rI , and r̃|r̃I=rI

is the random variable r̃ conditioned on r̃I = rI .

Let G be the t-leakage-tolerant XOR gadget we constructed in Section 5.1
that uses correlated randomness. We construct a multi-phase t-leakage-tolerant
XOR gadget G′ as follows:

1. First, we use a multi-phase t-robust parity sharing generator G with respect
to a proper access structure A to prepare the correlated randomness for all
phases.

2. Then, we use G to compute the XOR function in each phase.

26

The access structure A is defined as follows. For all j ∈ {1, 2, . . . , p}, let x(j) =

(x
(j)
1 , x

(j)
2 , . . . , x

(j)
nj) be the input bits and r(j) = (r

(j)
1 , r

(j)
2 , . . . , r

(j)
nj) be the ran-

dom bits with parity 0, and g
(j)
i = x

(j)
i ⊕ r

(j)
i for all i ∈ {1, 2, . . . , n}. We define

the access structure Aj of {r(j)
1 , r

(j)
2 , . . . , r

(j)
nj } to be

Aj = {r(j)
1 , r

(j)
2 , . . . , r(j)

nj
}
⋃
{⊕i∈Lr(j)

i : ⊕i∈Lg(j)
i is an intermediate wire of G(x(j); r(j))}.

Then, the access structure A =
⋃p
j=1Aj . We show that this simple construction

G′ is a multi-phase t-leakage-tolerant XOR gadget.

Lemma 2. The gadget G′ constructed above is a multi-phase t-leakage-tolerant
XOR gadget.

The proof can be found in the full version.

Randomness Complexity of Our t-Private Circuit. In Section 6, we will show
the following theorem.

Theorem 6. For all positive integers p and n1, n2, . . . , np, let N =
∑p
i=1 ni

and A be the access structure defined above. There exists a PPT algorithm which
takes (1t, 1λ,A) as input, and outputs a multi-phase (t, t, 1)-robust parity sharing
generator with respect to A with probability 1 − 2−λ such that the input size
m = O(t · log tN + λ).

The proof follows from Lemma 3 in Section 6.
We analyse the randomness complexity of our t-private circuit. Recall that

f is the function we want to compute and ni is the input size of f .

– Recall that in the outer construction, the random bits are used as input of
a linear and strong 2t-wise independent PRG G with output size |C̃|, where
C̃ is a circuit that computes the function f . By using the construction in
Section 3.2, the number of random bits that are used in G is bounded by
O(t · log |C̃|).

– For the inner construction, we only need to use random bits to instantiate
the multi-phase (t, t, 1)-robust parity sharing generator in Theorem 6. To
this end, we analyse the number of phases and the input size of each phase.
In the outer construction, we invoke the leakage-tolerant XOR gadget for
each wire in C̃. Therefore, the number of phases p = |C̃|.
Recall that for each wire value gi in the outer construction, we use [gi] to
represent the set {gi⊕ri}

⋃
supp(ri), where ri is the output bit of the 2t-wise

independent PRG G that is associated with gi. Since the input size of G is
bounded by O(t · log |C̃|), the size of [gi] is also bounded by O(t · log |C̃|).
Note that:
• For an input wire which carries the value xi, the input size of the leakage-

tolerant XOR gadget is |[xi]|+ |supp(ri)| = O(t · log |C̃|).
• For an addition gate with input wires ga, gb and output wire gc, the input

size of the leakage-tolerant XOR gadget is |[ga]| + |[gb]| + |supp(rc)| =
O(t · log |C̃|).

27

• For a multiplication gate with input wires ga, gb and output wire gc, the
input size of the leakage-tolerant XOR gadget is |[ga]⊗[gb]|+|supp(rc)| =
O(t2 log2 |C̃|).

Therefore, N ≤ p · max{n1, n2, . . . , np} = O(|C̃| · t2 log2 |C̃|). Thus, inner

construction requires O(t · log(t|C̃| · t2 log2 |C̃|) + λ) = O(t · log t|C̃| + λ)
random bits.

In summary, the randomness complexity of our t-private circuit is O(t · log t|C̃|+
λ).

Theorem 1. Any function f with circuit size s and output size no admits a
t-private implementation (I, C,O) with the canonical encoder I and the decoder
O which, for each output bit, takes the parity of a block of bits (which are not
restricted to t+ 1 bits), where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a circuit
of size s that computes f , and outputs, except with ≤ 2−λ probability, a t-private
implementation (I, C,O) such that C uses O(t · log ts+ λ) random bits.

Randomness Complexity of t-leakage-tolerant Private Circuits. As we discussed
in Remark 2, we can obtain a t-leakage-tolerant private circuit from our outer
construction with small modifications. As for the randomness complexity, we
need to invoke one more time of the leakage-tolerant XOR gadget for each output
bit and the input size of the XOR gadget is bounded by O(t · log |C̃|). When the
leakage-tolerant XOR gadgets are instantiated by a multi-phase leakage-tolerant
XOR gadget, the number of phases p = |C̃|+no = O(|C̃|), where no is the number
of output bits of f , and N ≤ p · max{n1, n2, . . . , np} = O(|C̃| · t2 log2 |C̃|). We
have the following theorem.

Theorem 2. Any function f with circuit size s admits a t-leakage-tolerant pri-
vate implementation C, where C uses O(t · log ts) random bits. Moreover, there
exists a PPT algorithm which takes (C̃f , 1

t, 1λ) as input, where C̃f is a cir-
cuit of size s that computes f , and outputs, except with ≤ 2−λ probability, a
t-leakage-tolerant implementation C such that C uses O(t · log ts + λ) random
bits.

Circuit Size. Our construction can be viewed as a composition of two parts:
(1) the computation of a multi-phase (t, t, 1)-robust parity sharing generator in
the inner construction, and (2) the computation for input wires, addition gates,
multiplication gates, and the leakage-tolerant XOR gadgets (and for output wires
in the leakage-tolerant variant).

For the first part, our construction of the multi-phase robust parity sharing
generator has size O(m ·N), where m is the input size of the generator, and N is
the output size (see Section 6). Let s denote the circuit size of C̃ that computes
f . Thus, the first part has size O((t · log ts + λ) · t2s · log2 s) = O(t3s · log2 s ·
log ts+ λ · t2s · log2 s).

For the second part, for each input wire and addition gate (and output wire
in the leakage-tolerant variant), we use the leakage-tolerant XOR gadget with

28

input size O(t · log s). For each multiplication gate, we first compute O(t2 · log2 s)
multiplications and then use the leakage-tolerant XOR gadget with input size
O(t2 · log2 s). Thus, the second part has size O(t2s · log2 s).

Thus, the overall circuit size is O(t3s · log2 s · log ts + λ · t2s · log2 s). Thus,
assuming λ ≤ Õ(t), the circuit size is Õ(t3s).

6 Construction of Multi-Phase Robust Parity Sharing
Generator

In this section, we show that there exists a multi-phase (t, t, 1)-robust parity
sharing generator with randomness complexityO(t·log tN), whereN =

∑p
j=1 nj .

In the following, addition and multiplication operations are in the binary field
Z2.

Let u = (u1, u2, . . . , um) denote the input of G. For all j ∈ {1, 2, . . . , p}, our

idea is to use a matrixM (j) ∈ {0, 1}nj×m to compute r(j) = (r
(j)
1 , r

(j)
2 , . . . , r

(j)
nj) =

M (j) · u. Specifically, to compute r
(j)
i ,

1. The circuit G first computes the coordinate-wise multiplication M
(j)
i ∗ u,

whereM
(j)
i is the i-th row ofM (j). That is, the circuit G computes M

(j)
i,w ·uw

for all w ∈ {1, 2, . . . ,m}.
2. Then, the circuitG computes r

(j)
i =

∑m
w=1M

(j)
i,w ·uw by using a dlogme-depth

addition circuit.

The requirement that the parity of r(j) is 0 is equivalent to
∑nj

i=1M
(j)
i = 0.

Let A be the access structure defined in the construction of the multi-phase
t-leakage-tolerant gadget in Section 5.2. We will show that when using random
matrices for {M (j)}pj=1 (with m = O(t log tN + log(1/ε))) which are subject

to
∑nj

i=1M
(j)
i = 0 for all j ∈ {1, 2, . . . , p}, with probability 1 − ε, the above

construction is a multi-phase (t, t, 1)-robust parity sharing generator with respect
to the access structure A.

To this end, for any set S of at most t wires in G, we first determine the set

T of at most |S| output bits. For each wire in S, if it is r
(j)
i or an intermediate

wire when computing r
(j)
i , we insert r

(j)
i in T . Then, it is clear that the size of

T is bounded by |S|. We will prove the following argument in the full version.

Lemma 3. Let {M (j)}pj=1 be random matrices subject to
∑nj

i=1M
(j)
i = 0 for

all j ∈ {1, 2, . . . , p}, and G be the circuit constructed above. Let A be the access
structure defined in the construction of the multi-phase t-leakage-tolerant gadget
in Section 5.2. For any set S of at most t wires in G, let T be the set of at most
|S| output bits defined above.

Then, when m = O(t log tN+log(1/ε)), where N =
∑p
j=1 nj, with probability

1−ε, for any set S of at most t wires in G, any set W of t variables in A and for

any fixing of the values GS of the wires in S and rI , where I = {(j, i) : r
(j)
i ∈ T}

and rI is the vector that contains all bits in {r(j)
i : (j, i) ∈ I},

Dist(r|GS ,rI
,W) = Dist(r̃|r̃I=rI

,W),

29

where Dist(r,W) is the distribution of the variables in W when they are in-
stantiated by r, r|GS ,rI

is the random variable r conditioned on GS and rI , and
r̃|r̃I=rI

is the random variable r̃ conditioned on r̃I = rI .

Acknowledgements. Y. Ishai supported by ERC Project NTSC (742754), BSF
grant 2018393, and ISF grant 2774/20. V. Goyal and Y. Song were supported
by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a
DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial
services innovation award, and a Cylab seed funding award. Y. Song was also
supported by a Cylab Presidential Fellowship.

References

1. G. Barthe, S. Beläıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y.
Strub, and R. Zucchini, Strong Non-Interference and Type-Directed Higher-
Order Masking, in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, New York, NY, USA, 2016, Association
for Computing Machinery, p. 116129.

2. S. Beläıd, F. Benhamouda, A. Passelègue, E. Prouff, A. Thillard, and
D. Vergnaud, Randomness Complexity of Private Circuits for Multiplication, in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S. Coron, eds.,
Berlin, Heidelberg, 2016, Springer Berlin Heidelberg, pp. 616–648.

3. G. Cassiers and F.-X. Standaert, Trivially and Efficiently Composing Masked
Gadgets With Probe Isolating Non-Interference, IEEE Transactions on Information
Forensics and Security, 15 (2020), pp. 2542–2555.

4. B. Chor, O. Goldreich, J. Hasted, J. Freidmann, S. Rudich, and
R. Smolensky, The bit extraction problem or t-resilient functions, in 26th Annual
Symposium on Foundations of Computer Science (sfcs 1985), 1985, pp. 396–407.

5. J.-S. Coron, A. Greuet, and R. Zeitoun, Side-Channel Masking with Pseudo-
Random Generator, in Advances in Cryptology – EUROCRYPT 2020, A. Canteaut
and Y. Ishai, eds., Cham, 2020, Springer International Publishing, pp. 342–375.

6. A. Duc, S. Dziembowski, and S. Faust, Unifying Leakage Models: From Probing
Attacks to Noisy Leakage., in Advances in Cryptology – EUROCRYPT 2014, P. Q.
Nguyen and E. Oswald, eds., Berlin, Heidelberg, 2014, Springer Berlin Heidelberg,
pp. 423–440.

7. S. Faust, C. Paglialonga, and T. Schneider, Amortizing Randomness Com-
plexity in Private Circuits, in ASIACRYPT 2017, Part I, 2017, pp. 781–810.

8. Y. Ishai, E. Kushilevitz, X. Li, R. Ostrovsky, M. Prabhakaran, A. Sahai,
and D. Zuckerman, Robust Pseudorandom Generators, in Automata, Languages,
and Programming, F. V. Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg, eds.,
Berlin, Heidelberg, 2013, Springer Berlin Heidelberg, pp. 576–588.

9. Y. Ishai, A. Sahai, and D. Wagner, Private Circuits: Securing Hardware against
Probing Attacks, in Advances in Cryptology - CRYPTO 2003, D. Boneh, ed., Berlin,
Heidelberg, 2003, Springer Berlin Heidelberg, pp. 463–481.

10. E. Kushilevitz and Y. Mansour, Randomness in Private Computations, SIAM
Journal on Discrete Mathematics, 10 (1997), pp. 647–661. Earlier version in PODC
1996.

30

	Private Circuits with Quasilinear Randomness

