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Abstract. This paper continues the study of memory-tight reductions
(Auerbach et al, CRYPTO ’17). These are reductions that only incur
minimal memory costs over those of the original adversary, allowing pre-
cise security statements for memory-bounded adversaries (under appro-
priate assumptions expressed in terms of adversary time and memory
usage). Despite its importance, only a few techniques to achieve memory-
tightness are known and impossibility results in prior works show that
even basic, textbook reductions cannot be made memory-tight.

This paper introduces a new class of memory-tight reductions which
leverage random strings in the interaction with the adversary to hide
state information, thus shifting the memory costs to the adversary.

We exhibit this technique with several examples. We give memory-tight
proofs for digital signatures allowing many forgery attempts when con-
sidering randomized message distributions or probabilistic RSA-FDH
signatures specifically. We prove security of the authenticated encryp-
tion scheme Encrypt-then-PRF with a memory-tight reduction to the
underlying encryption scheme. By considering specific schemes or re-
stricted definitions we avoid generic impossibility results of Auerbach et
al. (CRYPTO ’17) and Ghoshal et al. (CRYPTO ’20).

As a further case study, we consider the textbook equivalence of CCA-
security for public-key encryption for one or multiple encryption queries.
We show two qualitatively different memory-tight versions of this result,
depending on the considered notion of CCA security.

Keywords: Provable security, memory-tightness, time-memory trade-
offs

1 Introduction

The aim of concrete security proofs is to lower bound, as precisely as possi-
ble, the resources needed to break a cryptographic scheme of interest, under
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some plausible assumptions. The traditional resource used in provable security
is time complerity (as well as related metrics, like data complexity). Recent
works [1,22,21,17,12,11,7,16,15,9,20,10] have focused on additionally taking the
memory costs of the adversary into account. This is important, as the amount
of available memory can seriously impact the feasibility of an attack.

This paper presents new techniques for memory-tight reductions, a notion
introduced by Auerbach et al. [1] to relate the assumed time-memory hardness of
an underlying computational problem to the security of a scheme. More precisely,
the end goal is to prove, via a reduction, that any adversary running in time ¢ and
with s bits of memory can achieve at most advantage € = €(¢, s) in compromising
a scheme, by assuming that some underlying computational problem can only
be solved with advantage § = 6(¢', s") by algorithms running in time ¢’ and with
memory s’. A memory-tight reduction guarantees that s ~ §’, and usually, we
want this to be tight also according to other parameters, i.e., t ~ ¢’ and € ~ 4.

Memory-tight reductions are of value whenever the underlying problem is
(conjectured to) be memory sensitive, i.e., the time needed to solve it grows
as the amount of memory available to the adversary is reduced. Examples of
memory-sensitive problems include classical ones in the public-key setting, such
as breaking RSA and factoring, lattice problems and LPN, solving discrete log-
arithms over finite fields,* as well as problems in the secret-key setting, such as
finding k-way collisions (for k > 2), finding several collisions at once [11], and
distinguishing random permutations from random functions [17,12,20].

Developing memory-tight reductions is not always easy, and can be (prov-
ably) impossible [1,22,16,15]. This makes it fundamental to develop as many
techniques as possible to obtain such reductions. In this paper, we identify a class
of examples which admit a new kind of memory-tight reductions. Our approach
relies on the availability of random strings exchanged between the adversary and
the security game, and which the reduction can leverage to encode state which
can be recovered from later queries of the adversary, without the need to store
this information locally, and thus saving memory. (In particular, the burden of
keeping this information remains on the adversary, which needs to reproduce
this random string for this state information to be relevant.) We present these
techniques abstractly in the next section, with the help of a motivating example,
and then move on to an overview of our specific results.

1.1 Our Techniques - An Overview

As a motivating example, consider the standard UFCMA security notion for
signatures. It is defined via a game where the attacker, given the verification key
vk, obtains signatures for chosen messages m1, ms, ..., after which it outputs a
candidate message-signature pair (m*, o*), and wins if m* was not signed before,
and o* is valid for m*. When ignoring memory, this notion is tightly equivalent

4 However, the discrete logarithm problem in elliptic-curve groups, or any other group
in which the best-known attacks are generic, is not memory sensitive, since optimal
memory-less attacks are known.
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to one (which we refer to as mUFCMA) that allows for an arbitrary number of
“forgery attempts” for pairs (m*,o*), and the adversary wins if one of them
succeeds in the above sense. This is convenient: we generally target mUFCMA,
but only need to deal with proving the simpler UFCMA notion.

The classical reduction transforms any mUFCMA adversary into a roughly
equally efficient UFCMA adversary, which wins with the same probability, by (1)
simulating forgery queries using the verification key, and (2) outputting the first
forgery query (m®*, c*) which validates and such that m* is fresh. This reduction
is however not memory-tight, as we need to ensure the freshness of m*, which
requires remembering the previously signed messages. ACFK [1] prove that this
is in some sense necessary, by showing that a (restricted) class of reductions
cannot be memory-tight via a reduction to streaming lower bounds.

OUR IDEA: EFFICIENT TAGGING. To illustrate our new technique, which we refer
to as efficient tagging, imagine now that we only use the signature scheme to
sign random messages my,ma, ..., my «s {0,1}¢, and consider a corresponding
variant of mUFCMA security, which we want to reduce to (plain) UFCMA se-
curity. This, intuitively, does not seem to help resolve the above issue, because
random messages are hardest to compress.

However, what is important here is that the reduction is responsible for simu-
lating the random messages, and can simulate them in special ways, and program
them so that they encode state information. For instance, assume that the re-
duction has access to an injective random function f : [¢] — {0, 1}¢, with inverse
f~1, which can be simulated succinctly from a short key as a pseudorandom
object. Then, the reduction to UFCMA can set m; < f(i) for the i-th query,
and upon simulating a forgery query for (m®*, o*), the reduction checks whether
f71(m*) € [q] to learn whether m* is a fresh signing query or not.

Of course, the simulation is not perfect: The original m;’s are not necessarily
distinct (this can be handled via the classical “switching lemma”). Also, the
reduction could miss a valid forgery if the adversary outputs m; before it is
given to the adversary, but this again only occurs with small probability.

INEFFICIENT TAGGING AND NON-TIME-TIGHT REDUCTIONS. In the above exam-
ple, we can efficiently check that f~!(m*) € [¢]. However, in some cases we may
not — again, consider an example where the messages to be signed are sampled
as m; < h(r;), where h is a hard-to-invert function and r; is random. Then, we
could adapt our proof above by setting m; < h(f(i)), but now, to detect a prior
signing query, we would have to check whether m* = h(f(¢)) for some i € [¢],
and this can only be done in linear time. The resulting UFCMA adversary runs
in time t' = t+6(qr-q), where t is the running time of the original adversary and
qr is the number of forgery attempts. For example, if ¢ ~ qr =~ t, the reduction
is not time tight, and the adversary runs in time ¢ = O(¢?).

ARE NON-TIME-TIGHT REDUCTIONS USELESS? It turns out that such non-time-
tight reductions can still be helpful to infer that breaking a scheme requires
memory, although this ultimately depends on the concrete security of the prob-
lem targeted by the reduction. Say, for example, a reduction for a given scheme
transforms a successful adversary running in time ¢ and using memory s into an



4 Ashrujit Ghoshal, Riddhi Ghosal, Joseph Jaeger, Stefano Tessaro

adversary running in time ¢?> and using memory s breaking discrete logarithms
over [Fp,, for a 4096-bit prime p. It turns out that if we have fewer than 278
bits of memory, no known discrete logarithm algorithm is better than a generic
one (i.e. runs in time better than 2294®) which means that our non-time-tight
reduction is still sufficient to infer security for any s < 27® as long as t < 21924,

MESSAGE ENCODING. At the highest level, what happens is that the reduction is
in control of certain random values which we can exploit to hide state information
which can later be uniquely recovered, since triggering a situation where the
reduction needs to remember requires the adversary to actually give back to
the reduction this value. In the above, this state information is simple, namely
whether the query is old or not. But as we will show below, the paradigm can
be used to store complex information — we refer to this technique as message
encoding, and discuss an example below.

A NEW VIEWPOINT: F-ORACLE ADVERSARIES. In our technique described above
we needed access to a large random injection, which we argue can be simulated
pseudorandomly. Prior works have similarly used PRFs to pseudorandomly sim-
ulate random oracles [1,6] with low memory. The fact that one needs to decide
how to simulate such objects when stating a memory-tight reduction is rather
inconvenient: different instantiations seemingly lead to quantitatively different
reductions, although this fact does not appear to be a reflection of any particular
reality. In this paper, we propose (and advocate for) what we believe to be the
“right” viewpoint: Our reductions are stated in terms of F-oracle adversaries
where F is a set of functions and such an adversary expects oracle access to
a random f € F. Then, a memory-tightness theorem is obtained in one of two
ways, by either (1) applying a generic lemma stating that f can be instantiated
in low memory using an F-pseudorandom function, or (2) assuming that the use
of f does not functionally increase the success chances of the adversary because
f is independent of the problem instance being solved (this is provably the case
for some information theoretic problems). In particular, (1) is more conservative
than (2), but it is very likely that (2) is also a viable approach which leads to
cleaner result — indeed, we do not expect any of the considered memory-sensitive
problems to become easier given access to an oracle from any natural class F —
e.g., Factoring does not become easier given access to a random injection.

1.2 Our Results

We now move to an overview of our results (summarized in Fig. 1) which exem-
plify different applications of the tagging and message-encoding techniques.

MULTI-CHALLENGE SECURITY OF DIGITAL SIGNATURES. Our first results con-
sider the security of digital signatures in the face of multiple forgery attempts (i.e.,
challenge queries), generalizing the examples discussed above. We work with a
notion we refer to as UFRMA (unforgeability under randomized message at-
tack). This notion is parameterized by a message distribution D and when the
attacker makes a signing query for m it receives a signature of m’ = D(m;r) for
a random 7. If m and r can be extracted from m’, giving the notion xUFRMA
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(or mxUFRMA for many forgery attempts), we can generalize our efficient tag-
ging approach above by having the reduction to UFCMA choose r = f(m,1)
where each f(m,-) is a random injection. This setting can capture, e.g., the sig-
natures used in key exchange protocols like TLS 1.3 where the server signs a
transcript which includes a random 256-bit nonce. A version of our inefficient
tagging example works when only m can be extracted from m’ (WUFRMA); we
pick r = f(m, i) and in verification of a forgery query perform the linear time
check of whether m* = D(m; f(m,i)) for some ¢ € [¢]. This setting captures
places where the message to be signed includes a fresh public key or ciphertext.
This includes, for example, the use of signatures for signing certificates, in some
key exchange protocols, and in signcryption.

We further prove mUFCMA security for particular schemes. First, we can
randomize any digital signature scheme DS (obtaining a scheme we call RDS)
by signing m | r for random r chosen by the signing algorithm and including r
as part of the signature. An immediate implication of our mxUFCRA result is
a tight reduction from the mUFCMA security of RDS to the UFCMA security
of the underlying scheme. One particular instantiation of RDS is Probabilistic
Full Domain Hash with RSA (RSA-PFDH) which was introduced by Coron [8] to
provide a variant of Full Domain Hash [4] with an (advantage-) tighter security
proof. Using our efficient tagging technique we obtain a fully tight proof of the
strong mUFCMA security of RSA-PFDH from the RSA assumption.

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10]
studied the mUFCMA security of digital signature schemes. They also considered
the RDS construction, proving that if DS can be proven strong UFCMA1 secure®
with a restricted class of “canonical” memory-tight reductions then there is a
memory-tight reduction for the strong mUFCMA security of RDS. This com-
plements our result, showing memory-tight strong mUFCMA security of RDS
based on a restricted class of schemes while our result proves memory-tight plain
mUFCMA security based on any plain UFCMA scheme. They apply their RDS
result to establish tight proofs for the strong mUFCMA security of RSA-PFDH
(matching our direct proof in Theorem 3)). as well as schemes based on lossy
identification schemes and pairings.

AUTHENTICATED ENCRYPTION SECURITY. Ghoshal, Jaeger, and Tessaro [15]
have recently observed that in the context of authenticated encryption (AE), it is
difficult to lift confidentiality of the scheme, in terms of INDR security, to full AE
security, when additionally assuming ciphertext integrity, if we want to do so in a
memory-tight way. This is well motivated, as several works establish tight time-
memory trade-offs for INDR security [21,17,12,9,20], which we would like to lift
to their AE security. The difficulty in the proof is that the INDR reduction must
simulate a decryption oracle which rejects all ciphertexts except those forwarded
from an encryption query. Recognizing these forwarded ciphertexts seems to
require remembering state.

® The suffix ‘1’ indicates a variant of UFCMA security in which the adversary can
only obtain a single signature per message. The security game always returning the
same signature if the adversary repeats signature queries.
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l Assumption ‘ Scheme ‘ Result ‘Time‘Memory‘Advantage‘ New Technique
1UFCMA Any mxUFRMA| v v v Efficient tagging
RDS mUFCMA | v/ v v Efficient tagging
Any mwUFRMA| X v v Inefficient tagging

RSA RSA-PFDH|mSUFCMA| v v v Efficient tagging
(PRF, INDR) EtP AE V)| (XV) (V) | Efficient tagging
1CCA Any mCCA X v X Inefficient tagging
1$CCA Any m$CCA v v X Message encoding

Fig. 1. Memory-tight reductions we provide. A 1 vs. an m prefix indicates whether one
or many challenge queries are allowed. A v vs. an X indicates whether the reduction
is tight with respect to that complexity metric. Reductions lacking tightness multiply
running time/advantage by O(q) or add O(q) to the memory complexity, where ¢ is the
number of queries. An x vs. a w indicates whether the coins underlying the distribution
of messages can be extracted from the message. RDS is randomization of any digital sig-
nature scheme by padding input messages with randomness. RSA-PFDH is probabilistic
full-domain hash with RSA. EtP is the Encrypt-then-PRF AE construction.

Here, we give a different take and show that for specific schemes — in particu-
lar, those obtained by adding integrity via a PRF, following the lines of [19,3,18]
— a memory-tight reduction can be given. Our INDR reduction is applied after
arguing that the PRF looks like a random function f and thus forgeries are un-
likely to occur. It uses f in a version of our efficient tagging technique to identify
whether a ciphertext queried to decryption is fresh.®

CHOSEN CIPHERTEXT SECURITY: ONE TO MANY. A classical textbook result
for public-key encryption shows that CCA-security against a single encryption
query (1CCA) implies security against multiple queries (mCCA), with a quanti-
tative advantage loss accounting to the number of such queries. ACFK [1] claim,
incorrectly, that the associated reduction from 1CCA to mCCA is easy to make
memory-tight, but this appears to be an oversight: No such reduction is known,
and here we use our techniques to recover a memory-tight version of this result.
Let us consider concretely the “left-or-right” formulation of 1CCA/mCCA-
security: The reduction from 1CCA to mCCA, given an adversary A, picks a
random ¢ «s [¢] (where ¢ is the number of encryption queries) and simulates the
multi-query challenger to A by answering its first ¢ — 1 encryption queries with
an encryption of the left message, whereas the last ¢ — ¢ queries are answered
by encrypting the right message. Only the answer to the i-th query is answered
by the single-query challenger. A problem arises when simulating the decryption
queries: Indeed, we need to guarantee that a decryption query for any of the
challenge ciphertexts cf,...,cy returns an error L, yet this suggests that we
seemingly need to remember the extra challenge ciphertexts c;‘ for j # .

5 Ghoshal et al. [15] in fact described three variants of AE with different conventions
for how decryption responds to non-fresh queries. By our results, memory-tight re-
ductions to INDR are possible for two of the three variants.
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We will resolve this in two ways. First, we give a new memory-tight reduction
using the inefficient tagging method, with the same advantage loss as the original
textbook reduction. Our reduction is non-time-tight, so may not be suitable for
all situations. The main idea here is that we use the randomness used to generate
the challenge ciphertext as our tag.

To obtain a reduction which is also tight with respect to time, we resort
to the observation that changing to a stronger (but still commonly achieved)
definition of CCA-security allows for different memory-tight reductions. We give
in particular a memory-tight and time-tight reduction (with the usual factor ¢
advantage loss) from the notion of 1$CCA-m security to the notion of m$CCA-m
security. These are variants of CCA security where (1) encryption queries are
with respect to a single message, and return either the encryption of the message,
or a random, independent ciphertext, and (2) decryption queries on a challenge
ciphertext ¢} returns the associated message.

Our reduction uses the full power of our message encoding approach, sim-
ulating random ciphertexts in a careful way which allows for recovering the
associated challenge plaintext.

A FEW REMARKS. The above results on CCA security show us that the ability
to give a memory-tight reduction is strongly coupled with definitional choices. In
particular, different equivalent approaches to modeling the decryption oracle in
the memory unbounded regime may not be equivalent in the memory-bounded
setting. This means in particular that we need to exercise more care in choos-
ing the right definition. We believe, for example, that the approach taken in
m$CCA-m security is the more “natural” one (as it does not require artificially
blocking the output of the decryption oracle, by always returning a message),
but there may be contexts where other definitional choices are favored.

Another important lesson learnt from our AE result is that impossibility
results, such as those in [1,22,16,15], do not preclude positive results in form of
memory-tight reductions, either by leveraging the structure of specific schemes,
or by considering restricted security notions.

1.3 Paper Outline

Section 2 introduces notation, our computational model, and basic cryptographic
background. Section 3 discusses our convention of using JF-oracle adversaries.
Section 4 gives our memory-tight reduction for digital signature schemes when
many forgery attempts are allowed. In particular, the generic results are in Sec-
tion 4.2, while the result specific to RSA-PFDH is in Section 4.5. Section 5 proves
the security of Encrypt-then-PRF with a memory-tight reduction to the INDR
security of the encryption scheme. Section 6 gives our results relating the one-
and many-challenge query variants of CCA security. In particular, Section 6.1
gives our result for the traditional “left-vs.-right” notion and Section 6.2 gives
our result for the “indistinguishable from random” variant. The full version of
this paper [14] contains omitted proofs.
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2 Preliminaries

Let N = {0,1,...} and [n] = {1,...,n} for n € N. If x € {0,1}* is a string,
then |z| denotes its length in bits. If S is a set, then |S| denotes its size. We let
x|y ... denote an encoding of the strings x,y, ... from which the constituent
strings can be unambiguously recovered. We identify bitstrings with integers in
the standard way.

FuncTIONS. Let T be a set (called the tweak set) and for each ¢t € T let D; and
R; be sets. Then Fes(T, D, R) denotes the set of all f such that for each t € T,
f(t,-) is a function from D; to R,. Similarly, Inj(T, D, R) denotes the set of all
f such that for each t € T, f(¢,-) is an injection from D; to R;. When D; or R;
are independent of the choice of ¢ we may omit the subscript.

If f € Inj(T, D, R), then its inverse f ! is defined by f~1(¢, f(t,z)) = x for all
(t,z) and f~1(t,y) = L fory ¢ f(t, D;). For such f we let f* denote the function
defined by f*(+,z) = f(z) and f*(—,z) = f~(x). Welet Inj* (T, D, R) = {f* :
fenj(T,D,R)}.

2.1 Computational Model

PSEUDOCODE. We regularly use pseudocode inspired by the code-based frame-
work of [5]. We think of algorithms as randomized RAMs when not specified
otherwise. If A is an algorithm, then y « A®"(x1,...;r) denotes running A
on inputs x1,... with coins 7 and access to the oracles O1, ... to produce output
y. When the coins are implicit we write «s in place of < and omit r.

We let & «<—s D denote sampling x according to the distribution D. If D is a
set, we overload notation and let D also denote the uniform distribution over
elements of D. The domain of D is denoted by [D].

Security notions are defined via games; for an example see Fig. 2. The prob-
ability that G outputs true is denoted Pr[G]. In proofs we sometimes define a
sequence of “hybrid” games in one figure, using comments of the form “//Hy; ;).”
A line of code commented thusly is only included in the hybrids Hy for i < k < j.
(We are of course referring only to values of k € N.) By this convention to iden-
tify the differences between Hy_1 and Hy one looks for comments Hp; ) (code
no longer included in the k-th hybrid) and Hy ;) (code new to the k-th hybrid).

We let L be a special symbol used to indicate rejection. If we do not explicitly
include 1| in a set, then L is not contained in that set. If 1 is an input to a
function or algorithm, then we assume its output is L. We do not distinguish
between L and tuples (L,...,L). Algorithms cannot query L to their oracles.

COMPLEXITY MEASURES. To measure the complexity of algorithms we follow
the conventions of measuring their local complexity, not including the complex-
ity of whatever oracles they interact with. Local complexity was preferred by
Auerbach et al. [1] for analyzing memory-limited adversaries so that analysis
can be agnostic to minor details of security definitions’ implementations. We fo-
cus on worst-case runtime Time(.A) and memory complexity Mem(.A) (i.e. how
many bits of state it stores for local computation). These exclude the internal
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complexity of oracles queried by A, but include the time and memory used to
write the query and receive the response. If A expects access to n oracles then
we let Query(A) = (¢1,...,¢,) where ¢; is an upper bound on the number of
queries to its i-th oracle. (Here we index from left to right, so for A®1+On the
i-th oracle is O;.) If S is a scheme, then Time(S) and Mem(S) are the sums
of the corresponding complexities over all of its algorithms. If G is a game, then
we define Time(G) and Mem(G) to exclude the complexity of any adversaries
embedded in the game.

2.2 Cryptographic Background

IDEAL MODELS. Some schemes we look at may be proven secure in ideal models
(e.g. the random oracle or ideal cipher models). To capture this we can think of a
scheme S as specifying a set of functions S.I. At the beginning of a security game
a function h will be sampled from this set. The adversary and all algorithms of
S are given oracle access to h.

FuNcTION FAMILIES. A family of functions F
specifies, for each K € F.K, an efficiently com-
putable function Fx € F.F. We refer to F.F as

the function space of F. Pseudorandom (PR pr

security of F is captured by the game( de? %ﬁw EV((LE)Fh( )
fined in Fig. 2. It measures how F with a ran- K s I;.K z; < fa)x
dom key can be distinguished from a random | ¢ F Return g,
function in F.F via oracle access. We define b s ABVD

Advp'(A) = Pr[GE,(A)] — Pr[GF((A)]. The | Returnt' =1

standard notions of (tweakable) pseudorandom
functions/injections/permutations or strong in-

jections/permutations are captured by appro- Fig. 2. Security game capturing
priate choices of F.F. the pseudorandomness of func-

tion family F.
SWITCHING LEMMA. We make use of the fol-

lowing standard result which bounds how well
a random function and a random injection can
be distinguished.

Lemma 1 (Switching Lemma). Fiz T, D, and R. Let N = minger |Ry|.
Then for any adversary A with ¢ = Query(A) we have that

| Pr[Af = 1] — Pr[AY = 1]| < 0- ¢*/N.

The probabilities are measured over the coins of A, the uniform choice of f from
Fes(T, D, R), and the uniform choice of g from Inj(T, D, R).

Recent papers [17,11,20] have given improved versions of the switching lemma
for adversaries with bounded memory complexity, as long as it does not repeat
oracle queries. In our application of the switching lemma the adversary’s memory
complexity is too large for these bounds to provide any improvement.



10 Ashrujit Ghoshal, Riddhi Ghosal, Joseph Jaeger, Stefano Tessaro

OTHER PRIMITIVES. We recall relevant syntax and security definitions for digital
signatures, nonce-based encryption, and public key encryption schemes in the
sections where we consider them (Sections 4, 5, and 6 respectively).

3 Adversaries With Access to Random Functions

This paper proposes and adopts what we consider to be a better formalism to
deal with memory-tight reductions. Namely, all of our reductions will require
access to some variety of large random functions which it will query on a small
number of inputs (specifically uniformly random functions and invertible random
injections). That is, our reduction adversaries can be written in the form shown
of the left below, for some set of functions F and algorithm As. (On the right is
a pseudorandom version of .4 which we will discuss momentarily.)

Adversary A° (in)|Adversary AP (in)

fesF K «sF.K
out —s A7 (in)  |out s AQFE (in)
Return out Return out

We refer to such an A as an F-oracle adversary. In this section we will generally
discuss such adversaries, rather than separately providing the discussion for such
adversaries each time we apply them.

The time and memory complexity of any F-oracle adversary must include
the complexity of sampling, storing, and evaluating f. This will be significant if
F is large. However, as we will argue, this additional state and time should be
assumed to not significantly increase the advantage of A. As such, we will define
the reduced complezity of A by

Time*(A) = Time(A>) and Mem™(A) = Mem/(A5).

Later we state theorems in terms of reduced complexity.

PSEUDORANDOM REPLACEMENT. The most conservative justification of F-oracle
adversaries is to bound how much the oracle can help by replacing it with a pseu-
dorandom version. This was the approach taken by Auerbach et al. [1] when they
used pseudorandom functions for purposes such as emulating random oracles
and storing the coins required by an adversary with low memory, and has been
adopted by follow-up work [22,7,10]. If F is a function family with F.F = F, then
the adversary Af we gave above does exactly this. It replaces As’s oracle access
to f with access to F for a random K. The following lemma is straightforward.

Lemma 2. Let A be an F-oracle adversary for a game G. Then for any function
family F with F.F = F we can define a pseudorandomness adversary A; such that

Pr[G(A)] < Pr[G(Af)] + AdvE'(A4;), Time(A;) = Time*(A) + Time(G(A)),
Query(Aj) = ¢, and Mem(A;) = Mem™(A) + Mem(G(A)).

Here q is an upper bound on the number of queries As makes to its second oracle.
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Note that the complexity of Af is given by Time(Af) = Time™*(A) + ¢ -
Time(F) and Mem(Ar) = Mem™(A) + Mem(F). Thus the existence of an
appropriate pseudorandom F ensures that the memory and time complexity
excluded by Time™* and Mem™ cannot significantly aid an adversary. In the use
of this technique by Auerbach et al. [1] the reduction A; was memory-tight. Note
this is not strictly necessary as long as we are willing to assume the existence of
F with sufficient security as a function of attackers’ time and query complexities
without regard to memory complexity.

We could have combined Lemma 2 with any of our coming theorems to obtain
bounds in terms of Time and Mem, rather than their reduced version. However
we find the use of reduced complexity cleaner as it simplifies our theorems,
allowing us to focus on the conceptual core of the proofs without having to
repeat the rote step of replacing random objects with pseudorandom ones.

When combining the lemma with a theorem, game G would correspond to the
security game played by the reduction adversary. For our theorems, that game
will have low time and memory overhead over that of A, so the application of
the lemma would be time- and memory-tight. That said, the tightness of this
is less important than the tightness of the other components of the theorem we
would apply it to. Note that the definition of A; is independent of the choice of
F. Consequently, we can always choose F with a very high security threshold to
counteract any looseness in the lemma. In the full version [14], we summarize the
F used in our theorems and how they could be pseudorandomly instantiated.

ASSUMED INDEPENDENCE. As a second observation why the storage of f may
not help A, note that f is completely “independent” of the problem A is try-
ing to solve (as specified by in and the behavior of O). In various settings it
seems likely that such independent state does not help. For example, it would
be very surprising (or even a breakthrough) to show a better factoring or lattice
algorithm given access to a random function f from a natural set. Indeed, crypt-
analytic work often makes use of random oracles without significant comment
(from which other types of random functions can be constructed).

INFORMATION THEORETIC SETTINGS. In some information theoretic settings,
the “independence” of f from the problem can be made rigorous. Information
theoretic results are typically depending only on the query complexity of the
attacker or its memory usage, ignoring code size. In such settings, we expect
bounds of the form Adv(A) < e(Mem(A), Query(A)) for some function e. Be-
cause this bound does not depend on the code size of A, if A is an F-oracle
adversary we should be able to prove Adv(A) < ¢(Mem*(A), Query(A)) by
a coin-fixing argument in which we fix the random choice of function ahead of
time and embed it in the description of the adversary. This is, for example, the
case for the recent time-memory tradeoffs shown for distinguishing between a
random function and a random injection without repeating queries [17,11,20].
A coin-fixing readily shows that these tradeoffs hold when using Mem™(A) in
place of Mem(.A), Query(A).
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4 Multi-challenge Security of Digital Signature Schemes

In the context of memory-tightness, the security of digital signature schemes
has been considered in several works [1,22,10]. The standard security notion for
signatures asks the attacker, given examples, to come up with a forged signature
on a fresh message. A straightforward proof shows (in the standard setting where
memory efficiency is not a concern) that the security notion is equivalent whether
the attacker is allowed one or many forgery attempts. However, Auerbach et
al. [1] proved an impossibility result showing that a (certain form of black-box)
reduction cannot be time, memory, and advantage tight. The difficulty faced by
the reduction is in distinguishing between when the adversary has produced a
novel forgery and when it is simply repeating a signature that it was given.

In this section we show a few ways that security against many forgery at-
tempts (i.e., multiple challenges) can be proven to follow from security against
a single forgery (i.e., a single challenge) in a memory-tight manner. Our first
results consider a variant definition of digital signature security we introduce
(called UFRMA) in which the adversary has only partial control over the mes-
sages being signed. Using our new techniques, we show that single challenge
UFCMA security implies multi-challenge UFRMA security in a memory-tight
manner (for some practically relevant distributions over messages). We also con-
sider the security of the RSA full domain hash digital signature scheme. Auer-
bach et al. [1] gave a memory-, but not advantage-tight proof of the security of
the standard version of this scheme in the single challenge setting. By consid-
ering a probabilistic variant of the scheme introduced by Coron [8] we are able
to provide a memory-, time-, and advantage-tight proof of the many-forgery
SUFCMA security of the variant.

4.1 Syntax and Security

DIGITAL SIGNATURE SYNTAX. A digital signature
scheme DS specifies a key generation algorithm
DS.K, a signing algorithm DS.Sign, and a verifica-

tion algorithm DS.Ver. The syntaxes of these al- DS Syntax

gorithms are shown in Fig. 3. We capture ideals | 1 “sps|

models by providing DS.Sign and DS.Ver with or- (vk, sk) «s DS.K

acle access to a function h drawn at random from o «s DS.Sign" (sk, m)
the set DS.I. When relevant we let DS.M denote | d <« DS.Ver"(vk,m,o)

the set of messages it accepts. The verification and
signing keys are respectively denoted by vk and sk.
The message to be signed is m, the signature pro- Fig.3. Syntax of digital
duced is o, and the decision is d € {true, false}. Cor- signature scheme.

rectness requires DS.Verh(vk,m,J) = true for all

h e DS.I, all (vk, sk) € [DS.K], all m € DS.M, and all

o € [DS.Sign" (sk,m)].



Hiding in Plain Sight: Memory-tight Proofs via Randomness Programming 13

Game [GFE™ (A)], GBS (A) |SIGN(m) RSIGN(m)

h s DS.I S—=Suim} r<sDR

(vk, sk) «s DS.K o s DS.Sign"(sk,m) |m’ < D.S(m;7)
S—g Return o S Sui{m'}

win « false Force(m™,o™) o <= DS Sign" (sk, m')
‘Run ASIf:N,FoRGE,h(vk)‘ W Return (0'7 ’I“)

Run ARSIGN’FORGE’h(”k) If DS.Ver" (vk, m, 0):

Return win win « true

Fig. 4. Security games capturing the unforgeability of a digital signature scheme.

MESSAGE DISTRIBUTION SYNTAX. One of the security notions we consider for
digital signature schemes will be parameterized by a message distribution via
which the adversary is given incomplete control over the messages which are
signed. A message distribution D specifies sampling algorithm D.S which sam-
ples an output message m’ based on parameters m given as input (written
m’ «sD.S(m)). The parameters m must be drawn from a set D.M, which we
typically leave implicit. When making the randomness of the sampling algorithm
explicit we let D.R be the set from which its randomness is drawn and write m’ <
D.S(m;r). If there exists an extraction algorithm D.X such that D.X(D.S(m;r)) =
(m,r) for all m, r then we say D is extractable. If D.X(D.S(m;r)) = m for
all m,r then we say D is weakly extractable. We assume that D.X(m') = L if
m’ # D.S(m;r) for all m,r. We define the min-entropy of D as

D.H, = —lgmaxPr[r <sD.R: D.S(m;r) = m'] .

UNFORGEABILITY SECURITY. The unforgeability security notions we consider
are defined in Fig. 4. The standard notion of UFCMA (unforgeability under
chosen message attack) security is captured by GU*™m which includes the boxed
but not the highlighted code, giving the adversary access to a regular signing
oracle SIGN. The goal of the adversary is to query FORGE with a valid signature
o* of a message m* which was not previously included in a signing query (as
stored by the set S). We define Adviis™ (A) = Pr[Gicm(A)].

Our new security notion UFRMA (unforgeability under randomized message
attack) is captured by the game G“f™2 which is parameterized by a message
distribution D. In this game the adversary is instead given access to the ran-
domized signing oracle RSIGN where the message to be signed is chosen by D.
Note that the coins used by D are returned to the adversary along with the
signature. Otherwise this game matches that of UFCMA security. We define
AV (A) = Pr[GULTE (A)].

We will relate the advantage of attacks making only a single forgery attempt
and those making many such attempts. When wanting to make the distinction
explicit we prefix the abbreviation of a security notion with an ‘m’ or ‘1°. Strong
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UFCMA security, denoted SUFCMA, is captured by modifying GUf™2 to store
the tuple (o,m) in § in SIGN and checking (m*,c*) ¢ S in FORGE. We de-
note this by G“*m2 and the corresponding advantage by Adv*“™™. We define
SUFRMA, G and Adv®"™2 analogously. We write XUFRMA when assum-
ing that D is extractable and wUFRMA when assuming it is weakly extractable.

4.2 Multi-Challenge Security for Extractable Message Distributions

The first applications we show for our techniques are generic methods of tightly
implying security of a digital signature scheme against multiple forgery attempts
(i.e., multi-challenge security). Recall that Auerbach et al. [1] gave a lower bound
showing that a black-box reduction proving that single UFCMA security implies
many UFCMA cannot be made memory-tight and time-tight. We avoid this in
two ways; first by considering mUFRMA, rather than mUFCMA, security and
then by considering a particular choice of digital signature scheme.

HiGH-LEVEL IDEA. The primary difficulty of a tight proof that TUFCMA security
implies mUFCMA security is that a successful mUFCMA attacker may have
made many FORGE queries which verify correctly, one of which is a valid forgery
and the rest of which were just forwarded from its SiGN oracle. A 1TUFCMA
reduction must then somehow be able to identify which of the queries is the true
forgery so it can forward this to its own FORGE oracle.

The technical core of the coming proof for mUFRMA is that our reduction
adversary will use the random coins of the message distribution D to signal things
to its future self. In particular, when A, makes a query RSIGN(m), the reduction
will choose coins for D.S viar « f(m, ) where ¢ is a counter which is incremented
with each query and f is a random tweakable function/injection. The coins then
act as a sort of authentication tag for m. On a later FORGE(m™*,o*) query, if
m* = D.S(m;r) where r = f(m,i) for some i € [gsioy] the reduction can safely
assume this message was signed by an earlier RSIGN query.

When D is fully extractable, we can perform the requisite check for FORGE
by having f be an injection. We extract m and r from m* and then compute
i < f~1(m,r). This is the strategy used in Theorem 1. If we assume only that D
is weakly extractable, we can extract m if D has a sufficient amount of entropy,
and then individually check if D.S(m; f(m,)) holds for each choice of i. This
reduction strategyobtains the same advantage at the cost of an extra runtime
being needed to iterate over the possible choices of ¢ in FORGE.

EXTRACTABLE MESSAGE DISTRIBUTION. If the message distribution D is ex-
tractable, the following theorem captures that 1TUFCMA security tightly implies
mUFRMA security. The proof makes use of our efficient tagging technique.

Theorem 1 (1TUFCMA = mxUFRMA). Let DS be a digital signature
scheme and D be an extractable message distribution. Let A, be an adversary
with (gsien, qForer, ¢n) = Query(A,) and assume gsign < 0.5|D.R|. Let A, be the
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Adversary ASCVFORGER (1) | SIMRSIGN(m) SIMFORGE(m*, o*)

10 te—i+1 (m,r) « D.X(m*)

f «sInj*(DS.M, [gsien], D.R)) |r « f(m, 1) If 7 (m,r) ¢ [gsiex]:

Run ArS[MRS]GN,S[MFOI{GE,]’!(Uk) m/ - DS(m, ,r.) 1f DS.Verh(vk,m*7 U*)I
o « SiaN(m') Query FORGE(m*, o*)
Return (o,7) Halt execution

Fig. 5. Adversary A, used in proof of Theorem 1.

Inji(DS.I\/I, [gsien], D.R)-oracle adversary shown in Fig. 5. Then,

AqungTS(Ar) < Aqungma (Au) +(0.5- quGN + 2 gsion * qroree)/|D-R|

Query(Ay) = (gsiens 1, g + grorcr - Query(DS))
Time*(A,) = Time(A,) + gsicy - Time(D) + grorce(Time(D) + Time(DS))
Mem*(A,) = Mem(A,) + Mem(D) + Mem(DS) + lg(gsiox)-

This is time-tight because Time(A,) € 2(gsign + ¢rores) must hold and
Time(D) and Time(DS) will be small. This is memory-tight because Mem(D),
Mem(DS), and 1g(gsiex) will be small.

The main idea of A, is using the output of an invertible random injection f
on the message and a counter as coins instead of sampling them uniformly at
random when answering RSIGN queries. Since D is fully extractable, during a
FORGE query on m*, we can extract (m,r) « D.X(m?*) and use the fact that
f is invertible to compute f~1(m,r) and check if the index is in [gsicy]- This
is used to avoid remembering S. If m* € S, and (m,r) « D.X(m*), then there
exists j € [gsien] such that r = f(m,j) — so the check passes. We can argue
that if m* ¢ S, our check is unlikely to pass. We give the formal proof of this
theorem in Section 4.3. It applies the switching lemma to argue the use of f
cannot be distinguished from honestly sampling r with advantage better than
0.5 - ¢%,.x/|D-R| and shows that the probability of falsely making the check pass
is bounded by 2¢siexgrorce/|D-R].

We would not be able to use the technique in this proof to prove mxSUFRMA
from 1SUFCMA in a memory-tight way. In particular, since the coins r of the
message distribution are chosen before ¢ is known, our trick of using r to signal
freshness of a forgery query does not work for a message-signature pair.

4.3 Proof of Theorem 1 (1TUFCMA=mUFRMA)

Proof. We consider a sequence of hybrids Hy through H, defined in Fig. 6. When
examining these hybrids recall our conventions regarding “//Hp; ;)" comments
described in Sec. 2.1. Of these hybrids we will make the following claims, which
establish the upper bound on the advantage of A, claimed in the proof.
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Games Hy, for 0 < h <4 RSIGN(m)

h s DS.| r«sD.R//Hpo.)

(vk,sk) «<sDS.K; S « J te—i+1//Hp o

win « false r— f(m,1) //Hp0)

i =0 I[] — & I[m] « I[m] v {i} //Hjz.4)

f «sFes(DS.M, [gsien], D.R) //H[1,2) |m’ « D.S(m;7)

f<sInj*(DS.M, [gsien], D.R) //H2.) |S — S U {m'} //Ho5)

Run ARSENFORGER (4, o «s DS.Sign" (sk, m)

Return win Return (o, 1)

FORGE(m™, o *)

(m,r) « D.X(m*)

If m* ¢ S: //H[()’g)

If f_l(m7 ) ¢ [[m]: //H[:;A)

It f_l(m7 7) & [gsien]: //H[”hl)
If DS.Ver® (vk, m*, o*):

win « true

Fig. 6. Hybrid games used in proof of Theorem 1.

1. Pr[GYIme (A,)] = Pr[Ho] = Pr[Hi] 4. Pr[Hs] < Pr[Ha] + 2qsiox@ronce/|D-R|
2. Pr[H:] < Pr[HQ] +0.5- @2 /ID.R| 5. Pr[Hy] = Advifem(4,)
3 PI‘[HQ] = [H3]

TRANSITION Hg TO H;. The hybrid Hy is simply a copy of the game GUfrma,
(We also added code to initialize variables ¢ and I[-] that will be used in later
hybrids.) Hence Pr[G''™2(A,)] = Pr[Ho]. In hybrid H;, we replace the random
sampling of r for D in RSIGN with the output of a random function f applied
to m, using a counter i to provide domain separation between different queries.
This method of choosing r is equivalent, so Pr[Hg] = Pr[H].

TRANSITION H; TO Hs. In hybrid Hy we replace the random function with a
random injection. This modifies the behavior of the game only in that values
of r are guaranteed not to repeat across different signing queries that used the
same message. There are at most gg,cy invocations of f, so the switching lemma
(Lemma 1) tells us that Pr[H;] < Pr[H2] 4+ 0.5 - ¢%,../ID-R|.

TRANSITION Hy TO Hgs. In hybrid Hs, we replace the check whether m* ¢ S in
oracle FORGE with a check if f~1(m,r) ¢ I|m] where (m,r) = D.X(m*). Here
I[] is a new table introduced into the game. In RSIGN, code was added which
uses I[m] to store each of the counter values for which .4, made a signing query
for m. Hence f~'(m,r) will be in I[m] iff m* is in S and so Pr[Hz] = Pr[H3].
TRANSITION Hs TO Hy. In the final transition to hybrid Hy we replace the
FORGE check f~1(m,7) ¢ I[m] with f~1(m,r) ¢ [gsicx]. This does change be-
havior if A, ever makes a successful forgery query for m* = D.S(m; f(m,1))
without its i-th signing query having used the message m. This would require
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guessing f(m,4) for some i € [gsian]\I[m]. We can bound the probability of
this ever occurring by a union bound over the FORGE queries made by A,.
Consider the set f(m,[gsiex]\[m]) = {f(m,3) : i € [gsien]\I[m]}. It has size
at most ggoy. Because f is a random injection it is uniform subset of the
set D.R\f(m, I[m]) (which has size at least |D.R| — gsiax). Hence the prob-
ability of any particular query triggering this different behavior is at most
gsien/ (DRl = gsien) < 2¢sien/|D-R|. Applying the union bound gives us Pr[Hs] <
PT[H4] + 2¢gsion - qFORGE/|D~R|-

REDUCTION TO UFCMA. We complete the proof using adversary A, from Fig. 5
which simulates hybrid Hs and succeeds whenever A, would. The adversary
A, samples f at random from Inj(DS.M, [gsiex], D-R). When run on input vk,
it runs A, on the same input. It gives A, direct access to h. To simulate a
query RSIGN(m), it computes m’ « D.S(m; f(m, 1)), increments ¢, and queries
SIGN(m'), returning the result to A,. On a query FORGE(m™*, o*), it computes
(m,r) < D.X(m*). If f~1(r) ¢ [gsiex] and DS.Ver(vk,m*,o*) = true then it
queries its own oracle with (m*,o*) and halts. Otherwise it ignores the query.

If adversary A, ever makes a FORGE query, it will succeed. It ensured that
(m*,0*) is verified correctly and f~!(r) ¢ [gsicx] ensures that it is has not
previously made a SIGN query for m*. If A, would have succeeded in hybrid
Hy, its winning query will cause A, to make a FORGE query. Hence, we have
Pr[H,] = Advis™ (AL).

4.4 Applications and Weakly Extractable Variant

We discuss some applications of Theorem 1. This includes scenarios where ex-
tractable message distributions are used and proving security of digital signature
schemes when their messages are padded with randomness. Additionally, we give
a variant of the theorem when the underlying message distribution is only weakly
extractable. The resulting reduction is memory- but not time-tight.

EXAMPLE EXTRACTABLE DISTRIBUTIONS. The simplest extractable distribution
does not accept parameters as input and simply outputs its randomness as the
message. Security with respect to this is the standard notion of security against
random message attacks which was originally introduced by Even, Goldreich,
and Micali [13].

Extractable distributions arise naturally when the messages being signed
include random values. For example, protocols often include random nonces in
messages that are signed. In TLS 1.3, for example, when the server is responding
to the Client Hello Message it signs a transcript of the conversation up until that
point which includes a 256-bit nonce just chosen by the server. We could think
of the security for this setting being captured by an extractable distribution Dy
that takes as input message parameter m that specifies all of the transcript other
than the nonce and sets the nonce to its randomness r € {0, 1}2°6.

PADDING SCHEMES WITH RANDOMNESS. Using Theorem 1, we can see that aug-
menting any digital signature scheme by appending auxiliary randomness will
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give us a memory-tight reduction from the mUFCMA security of the augmented
scheme to the ITlUFCMA security of the original scheme.

Let DS be a digital signature scheme and R be a set. We define RDS[DS, R]
by having RDS[DS, R].Sign(sk, m) do “r «—s R; Return DS.Sign(sk, m || r) || 7" and
having RDS[DS, R].Ver(vk, m,o’) do “c||r <« o'; Return DS.Ver(vk,m|r,c).”
We also define a related message distribution RD[R] by RD[R].R = R and
RD[R].S(m;r) = m | r. Clearly it is extractable.

The following reduces the mUFCMA security of RDS to the mUFRMA secu-
rity of DS. Theorem 1 can in turn be used to reduce this to the ITUFCMA security
of DS. It also relates the mSUFCMA security of RDS to the mSUFRMA security
of DS. We note this because if DS has unique signatures, then its mSUFRMA
and mUFRMA security are identical and hence UFCMA security of DS implies
mSUFCMA security of RDS in a memory-tight way.

Theorem 2. Let DS be a digital signature scheme and R be a set. Then for
any A, we can construct A, such that Adv‘é%'ng&R] (Ay) = Adv“ngT,fD[R] (A,). It
additionally holds that Advf;”écs"[‘Bs’R] (Ay) = Adv%’éiEB[R] (A,). Adversary A, has
essentially the same complezity as A,.

Proof (Sketch). The proof of this is straightforward. If A, queries SIGN(m),
then A, queries SIGN(m) and receives (o, r) and returnso | r to A,. If A, queries
FORGE(m®*,o* | r*), then A, queries FORGE(m™ || r*,0*). Note that A, wins
whenever A, would. |

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10] also
considered RDS, proving that if DS can be proven SUFCMA1 secure (in this
notion the game records its responses to signature queries and repeats them if
the adversary repeats a query) with a restricted class of “canonical” memory-
tight reductions, then there is a memory-tight reduction for the mSUFCMA
security of RDS. This complements our results as they use a more restrictive
assumption to prove mSUFCMA while we use a generic assumption to prove
mUFCMA.

In the full version [14], we further show that if D is only weakly extractable
(but still has high entropy), then we can prove a variant of Theorem 1 with
a less efficient reduction. In particular, the running time of the reduction has
an additional term of grorcr - gsien - Time(D.S). This difference arises because
rather than extracting r and computing j « f~!(m,r) in FORGE we instead
need to iterate over the possible values of f(m,j) to check for consistency. Thus
the proof for this is an instance of our inefficient tagging technique.

4.5 mSUFCMA Security of RSA-PFDH

The RSA-based Probabilistic Full-Domain Hash (RSA-PFDH) scheme, origi-
nally introduced by Coron [8], can be viewed as the result of applying the RDS][]
transform to RSA-based Full-Domain Hash [4] (RSA-FDH). Auerbach et al. [1]
gave a memory-, but not time-tight reduction from the 1TUFCMA security of
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RSA-FDH to the one-wayness of RSA. Applying Theorems 1 and 2 would give
a memory-, but not time-tight reduction for the security of RSA-PFDH.

By a careful combination of our tagging technique with the proof ideas of
Coron and of Auerbach et al. we can analyze RSA-PFDH directly. We prove
the following result — a time, memory, and advantage tight reduction for the
security of RSA-PFDH. The theorem is properly formalized and proven in the
full version [14].

Theorem 3 (Informal, mSUFCMA security of RSA-PFDH). Define
RSA := RDS[RSA-FDH, {0, 1}"]. Let Ay, be an adversary with (gsicx, qForce Gh) =
Query(An). Then we can construct an adversary Arsa against one-wayness of
rl-bit RSA such that

AdVEquZma (-Am) < Advo (-ARSA) + (0-5 ' q%IGN +2- gsion (ZFORGE)/2r|

The running time and memory of Arsa is roughly the same as Ap.

In concurrent work, Diemert, Gellert, Jager, and Lyu [10] also give a time, mem-
ory, and advantage tight reduction for RSA-PFDH via a different proof.

5 AE Security of Encrypt-then-PRF

For nonce-based secret-key encryption schemes, we often want Authenticated
Encryption (AE) security which simultaneously asks for confidentiality and ci-
phertext integrity. The common approach to prove AE security of a nonce-based
encryption scheme is to give separate reductions to the indistinguishability of
its ciphertexts from truly random ones (INDR security) and its ciphertext in-
tegrity. Ghoshal et al. [15] proved an impossibility result showing that a (certain
form of black-box) reduction from AE security to INDR security and cipher-
text integrity cannot be memory-tight. Making the INDR part memory-tight
is of particular interest because of results which establish tight time-memory
trade-offs for INDR security [21,17,12,9,20].

In this section we look at a particular scheme which we refer to as Encrypt-
then-PRF. Given a nonce-based encryption scheme NE that only has INDR
security, one generic way to construct a new encryption scheme NE' which also
achieves ciphertext integrity is to use a PRF and let the ciphertext of NE' be
the concatenation of the ciphertext of NE and a tag which is the evaluation of
the PRF on the ciphertext and the nonce.

We show that in the context of Encrypt-then-PRF, for two of the notions
of AE security introduced in [15], we can give a memory-tight reduction to the
INDR security of the underlying encryption scheme and a non-memory-tight
reduction to the security of the PRF. This shows that we can bypass the generic
impossibility result of [15] if we consider specific constructions of nonce-based
authenticated encryption schemes. In more detail, the impossibility result of [15]
rules out lifting the INDR security of a scheme to full AE security in a memory
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Game GNE', (A) ENCy(n, m) DECY (n, ¢)
K «sNE.K c1 <+ NEE(K,n,m) |If M[n,c] # L:
b — AN co s {0, 1}NE<UmD Return M[n,c] if w =m
Return b’ = 1 Mn,cy] <« m Return ¢ if w = ¢
ae-w Return ¢, Return 1 if w= 1
?:MN—W m1 < NE.D(k,n,c)
«—$ .
’ ENCy , DECY mo < 1
bV — A \'lcb b Return my
Return b’ =1

Fig. 7. Games defining INDR and AE-w security of NE for w € {m,©, L}.

tight way, when additionally assuming ciphertext integrity for a generic scheme.
Here, we show that for the specific case of Encrypt-then-PRF schemes, lifting the
INDR security of the encryption scheme to full AE security of Encrypt-then-PRF
is possible in a memory-tight way, assuming security of the PRF.

5.1 Syntax and Security Definitions

NONCE-BASED ENCRYPTION. A nonce-based (secret-key) encryption scheme NE
specifies algorithms NE.K, NE.E, and NE.D. It specifies message space NE.M and
nonce space NE.N. The syntax of the algorithms is shown in Fig. 8. The secret
key is denoted by K, the message is m, the nonce is n, and the ciphertext is c.
The decryption algorithm may return m = L
to indicate rejection of the ciphertext. Correct-
ness requires for all K € [NE.K], n e NE.N, and

m € NE.M that NE.D(K,n,NE.E(K,n,m)) = NE Syntax
m. We assume there is a ciphertext-length func- K <s NE.K
tion NE.cl : N — N such that for all K" € [NE.K], ¢ «— NE.E(K,n,m)
n € NEN, and m € NEM we have |¢| = m « NE.D(K,n,c)

NE.cl(|m|) where ¢ «— NE.E(K,n,m). We de-
fine NE.C = J,,cne m {0, IINESU™D . Typically,
a nonce-based encryption scheme also takes as- Fig. 8. Syntax of (nonce-based)
sociated data as input which is authenticated secret-key encryption scheme.
during encryption. This does not meaningfully

affect our proof, so we omit it for simplicity.

ENCRYPT-THEN-PRF. In this section we consider the Encrypt-then-PRF con-
struction of a nonce-based encryption scheme, due to Rogaway [19]. Namprempre
et al. [18] gave a more extensive exploration of the many ways to construct an
AEAD encryption scheme via generic composition. Given nonce-based encryp-
tion scheme NE and function family F, we define EtP[NE, F] by the following al-
gorithms. We refer to the ¢ component of the ciphertext returned by EtP[NE, F].E
as the “tag” below. When including associated data, it would be input to F.
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EtP[NE,F].K |EtP[NE,F].E(K,n, m)|EtP[NE, F].D(K, n, c)

K «sNE.K (K,K') « K (K,K') « K; (d,t) «c

K «sF.K ¢ < NEE(K,n,m) |Ift=Fg(n,c):

Return (K, K')|t « Fg/(n,c") Return NE.D(K,n,m)
Return (¢, t) Return L

Our security result will analyze the authenticated security of EtP assuming NE
has ciphertexts indistinguishable from random ciphertexts and F is pseudoran-
dom. Let us recall these security notions.

INDISTINGUISHABILITY FROM RANDOM (INDR) SECURITY. This security no-
tion requires that ciphertexts output by the encryption scheme cannot be dis-
tinguished from random strings. Consider the game Gjjg", defined in Fig. 7. Here
an adversary A is given access to an encryption oracle ENCy to which it can
query a pair (n,m) and receive an honest encryption of message m with nonce
n if b = 1 or a random string of the appropriate length if b = 0. We restrict
attention to “valid” adversaries that never repeat the nonce n across different
encryption queries. We define Adv',{,“E"(A) = Pr[Gi,{,‘gfl (A)] - Pr[Gi,{l‘gto(A)].
AUTHENTICATED ENCRYPTION (AE) SECURITY. AE security simultaneously
asks for integrity and confidentiality. Consider the games GRg% which defines
three variants of authenticated encryption security parameterized by w € {m, o, L}
shown in Fig. 7. In this game, the adversary is given access to an encryption or-
acle and a decryption oracle. Its goal is to distinguish between a “real” and
“ideal” world. In the real world (b = 1) the oracles use NE to encrypt messages
and decrypt ciphertexts. In the ideal world (b = 0) encryption returns random
messages of the appropriate length and decryption returns L. For simplicity, we
will again restrict attention nonce-respecting adversaries which do not repeat
nonces across encryption queries. (Note that there is no restriction placed on
nonces used for decryption queries.)

The decryption oracle is parameterized by the value w € {m,o, L} corre-
sponding to three different security notions. In all three, we use a table M[-, -]
to detect when the adversary forwards encryption queries on to its decryption
oracle. When w = m, the decryption oracle returns M[n,c]. When w = o, it
returns a special symbol ¢. When w = L1, it returns the symbol L which is also
used by the encryption scheme to represent rejection. For w € {m, ¢, L} we define
the advantage of an adversary A by Advig” (A) = Pr[GRE (A)] — Pr[GRE 5 (A)].
DiscussION OF VARIANTS. This choice of considering three variants of the def-
inition follows the same choice made by Ghoshal et al. [15]. First off, we note
that if there are no restrictions on the memory of the adversary, all the three
definitions are tightly equivalent. An adversary can simply remember its past
encryption queries and answers, and without loss of generality never make a de-
cryption query on the answer of an encryption query. In the memory restricted
setting these definitions no longer appear to be equivalent. The only known impli-
cation is that w = ¢ security tightly implies w = 1 security. Other implications
seem to require remembering all encryption queries to properly simulate the de-
cryption oracle. In Sec. 6 we parameterize public-key encryption CCA definitions
similarly. This discussion applies to those definitions as well.
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Ghoshal et al. argued that w = m is the “correct” definition. They argue that
chosen ciphertext security is intended to capture the power of an adversary that
can observe the behavior of a decrypting party. Both the w = 1 and w = ¢
definitions restrict what the adversary learns about this behavior when honestly
generated ciphertexts are forwarded, which does not seem to model anything
about real use of encryption. The w = m definition avoids this unnatural restric-
tion.

We provide some technical context for this philosophical argument. In the full
version [14] we give memory-tight proofs for the security of encryption schemes
constructed with the KEM/DEM paradigm with w = m and noting this does
not seem possible for the other choices of w. In this section and Sec. 6 we prove
the AE/CCA-w security of encryption schemes for differing choices of w. We
view this as a general exploration of what results are possible with memory-
tight proofs. A proof which works for some w, but not others helps build some
understanding of how these notions related.

5.2 Security Result

Now we give a proof of the AE-¢ security of EtP[NE, F]. In particular we provide
a memory-tight reduction to the INDR, security of NE and a non-memory-tight
reduction to the security of F. Such a result is useful if a time-memory tradeoff
is known for NE and F is sufficiently secure even against high-memory attackers.

Theorem 4 (Security of EtP). Let NE be a nonce-based encryption scheme
and F be a family of function with F.F = Fcs(NE.N,NE.C,{0,1}7) for 7 € N. Let
A, be an AE-o adversary with (qexc, gpec) = Query(A,). Define adversaries
Ay, and A, as shown in Fig. 9. Then,

AdvEEing Fp(Aa) < AdVE'(Ap) + AdviE (Ar) + 2qpec/27

Query(Ap) = gexe + gprc Query(A;) = guxc
Time(A;) = Time(GEpne r(Aa)) Time"*(A,) = Time(A,)
Mem(A,) = Mem(Ggpine,r(Aa)) Mem*(A,) = Mem(A,).

Adversary A, is an F.F-oracle adversary.

The standard (not memory-tight) proof of the security of EtP begins iden-
tically to our proof; we start in sz‘:ff[NE’F]’l replace the use of F with a truly
random function (using Ap) and then information theoretically argue that the
attacker shall be incapable of creating any forgeries. In the standard proof we
would transition to a game where the decryption oracle is exactly that of DECY,
i.e. it always returns L when M[n,c] = L. Then we reduce to the security of NE
to replace the generated ciphertexts with random. However this standard reduc-
tion will not be memory-tight because the attacker must store the table M[-, -]
to know whether it should return ¢ or L when simulating decryption queries.”

" Note this would be memory-tight for AE-L security.
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Adversary ALY SIMENC(n, m) SIMDEC(n, ¢)

K «sNE.K ¢ « NE.E(K,n,m) |If M|n,c] # L: Return o

b/ - Ail]\ﬂEk‘C,SIMDEC b EV(TL, CI) (t, C/) —c

Return b ce— (t,¢) If t = Ev(n,d):
M[n,c] < m Return NE.D(k, n, )
Return ¢ Return L

Adversary AP SIMENC(n, m) SIMDEC(n, ¢)

f <3 Fes(NE.N,NE.M, {0,1}7) | ¢/ «— ENc(n,m) |(t,c) «c

b/ - AEIMEI\'C,SIMDEC t f(n, CI) Ift = f(TL, CI):

Return ¢/ c— (t,c) Return ©

Return ¢ Return L

Fig. 9. Adversaries used for proof of Theorem 4.

Instead we first transition to a world where F has been replaced by the random
function f and DEC always returns ¢ when given a ciphertext with a correct
tag. (Which we can do because either M|[n, c] # L held or the attacker managed
to guess a random tag, which is unlikely.) Now we can make our INDR reduc-
tion memory-tight. It forwards encryption queries to its encryption oracle and
then uses its own function f to create the tag. For decryption queries it checks
f(n,c') =t, returning ¢ if so and L otherwise. Then we can finally conclude by
switching to the decryption oracle DEC] by arguing that noticing this change
requires guessing a random tag. The full proof is given in the full version [14].
It does not seem possible to extend this proof technique to AE-m security
because the tag would be too short to embed values of m we need to remember.

6 Chosen Ciphertext Security of Public Key Encryption

Now we apply our techniques to give memory-tight reductions between single-
and multi-challenge notions of chosen-ciphertext security. The standard reduc-
tion bounds the advantage of an adversary making ggxc encryption queries by
qEnc times the advantage of an adversary making 1 query. The reduction requires
memory linear in ¢gye and so is not memory-tight.® In Section 6.1, we consider
the most common “left-or-right” definition of CCA security and introduce three
different variants (mirroring the three notions for AE security in Section 5).

8 Auerbach et al. [1] stated that this reduction is memory-tight for both CPA and
CCA security. While the former is correct, the latter depends on the definition of
CCA. In personally communication with Auerbach et al. [2], they concurred that
their claim was incorrect for their intended definition of CCA security (w = ¢) but
pointed out that it does work for an “exclusion” variant, w = F, which we discuss
in the full version [14].
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Game Gpge'h(A)  |ENCy(mo, ma) DEC"(c)
(ek, dk) «s PKE.K |// Imo| = |ma] If Mc] # L:

co «s PKE.E(ek, mo)
c1 «s PKE.E(ek, m1)
Mlep] < ma

Return ¢

Return MJc] if w =m
Return o if w = ¢
Return 1L if w = 1
m <« PKE.D(dk, c)
Return m

b/ - AENcb,Dm(ek)
Return b’ =1

Fig. 11. Game defining CCA-w security of PKE for w € {m, o, L}.

We give a memory-tight reduction between single- and multi-challenge security
for two of the three variants (¢ and L), but the reduction is not time-tight. In
Section 6.2, we look at the CCA security variant that requires ciphertexts be in-
distinguishable from random. We give a memory-tight and time-tight reduction
between single- and multi-challenge security for all three variants of this notion.

PUBLIC KEY ENCRYPTION. A public key encryption scheme PKE specifies al-
gorithms PKE.K, PKE.E, and PKE.D. The syntax of these algorithms is shown
in Fig. 10. The key generation algorithm PKE.K returns encryption key ek
and decryption key dk. The encryption al-
gorithm PKE.E encrypts message m with
ek to produce a ciphertext c. We write
PKE.E(ek, m;r) when making random coins r €

PKE Syntax

PKE.R explicit. The decryption algorithm de-
crypts ¢ with dk to produce m. The decryption
algorithm may output m = L to indicate rejec-

(ck, dk) —s PKE.K
¢ «<s PKE.E(ek, m)
m « PKE.D(dk, c)

tion.

Correctness requires that PKE.D(dk,c) = m
for all (ek,dk) € [PKE.K], all m, and all ¢ €
[PKE.E(ek,m)]. We define the min-entropy of
PKE as

Fig. 10. Syntax of a public key
encryption scheme PKE.

PKE.H,, = —1g max Pr[r «<s PKE.R : PKE.E(ek,m;7) = ¢] .

m,ek,c

6.1 Left-or-right CCA Security of PKE

LEFT-OR-RIGHT CCA SECURITY. In this section, we consider the left-or-right
definition of CCA-security most commonly used in the literature. For w €
{m, o, L} we denote this as CCA-w” and the corresponding security game PKE b 1
defined in Fig. 11. The adversary gets the encryption key ek and has access to an
encryption and a decryption oracle. The encryption oracle takes in messages my
and my and encrypts my; where b is the secret bit. The decryption oracle returns

9 The discussion in Section 5 about the choice to have three variants of the definitions
is applicable here as well.
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Adversary AP (ek) |SIMENC(mo, m1) SIMDEC(c)
k s [qexc] te—i+1 If ¢ = ¢*: Return ¢
i—0 For d € {0,1}: m « DEc(c)

D¢y « {0, 1}(') X [genc] rq < f(lmal, (ma, 1)) If m = 1L: Return L
f «s Fes(N, D, PKE.R) ca < PKE.E(ek,ma;7r4) |For j € [4] do:

b ASMENCSMDEC (o) | f 4 < ki ¢ Ifme{md& mi}and j=k:
Return v’ If i = k: Skip to next j
¢ «— ENnc(mo, m1) r« f(|m|, (m,J))
*—c If PKE.E(ek,m;T) = c:
(mg,mY) < (mo,m1) Return ¢
Ifi>k:ceco Return m
Return ¢

Fig. 12. Adversary A; for Theorem 5.

the decryption of a ciphertext, unless the ciphertext was previously returned by
an encryption query. This is tracked by table M. When w = m, the decryption or-
acle returns M [c] which is m; from the earlier encryption query. When w = o, it
returns . When w = 1, it returns | which is also used by the encryption scheme
to represent rejection. The advantage of an adversary A against the CCA-w se-
curity of PKE is defined as Advpge” (A) = Pr[GERE" (A)] — Pr[GEReH (A)]-

The goal of this section is to relate the advantage of attacks making only a
single encryption query and those making many such queries. When wanting to
make the distinction explicit we may use the adjectives “many” and “single” or
prefix the abbreviation of a security notion with an ‘m’ or ‘1’

1CCA-o TMPLIES mCCA-¢. The following theorem gives a memory-tight reduc-
tion establishing that CCA-¢ security against adversaries making one encryption
query implies security for an arbitrary number of queries. The proof makes use
of our inefficient tagging technique. The reduction performs a hybrid over the
encryption queries of the original adversary and is thus not advantage-tight.

Theorem 5 (1CCA-0 = mCCA-¢). Let PKE be a public key encryption scheme.
Let Am be an adversary with (qexc, qoec) = Query(Am). Define D¢y by D, =
{0,1}" x[guxc]- Let Ay be the Fes(N, D, PKE.R)-oracle adversary shown in Fig. 12.
Then,

AdVERE® (Am) < gene - AdVERE (A1) + 4 - gexe - qprc/2PKE>

QuerY(Al) = (17qDEC)
Time*(.Al) = O(Time(Anm)) + genc(gprc + 1) Time(PKE)
Mem*(A;) = O(Mem(An)) + Mem(PKE) + Ig gexe.

The standard (non-memory-tight) reduction against 1CCA security picks an
index k € [gunc] Where ggxe is the number of encryption queries made by Ap. It
runs A, simulating encryption queries as follows. For the first k£ — 1 encryption
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Game Gﬁffé?g” (A) ENCy(m) DEc" (c)

(ek,dk) «s PKE.K |c1 <3 PKE.E(ek,m) |If M[c] # L:

b — AENODECY oy o s PKE.C(ek, [m[) | Return M[c] if w =m
Return ¥’ = 1 Mlcpy] «m Return ¢ if w = ¢
Return ¢ Return L if w =1
m « PKE.D(dk, c)
Return m

Fig. 13. Game defining $CCA-w security of PKE for w € {m, o, L}.

queries, it answers with an encryption of my, for the k-th encryption query it
forwards the query to its own encryption oracle, and the rest of the queries
it answers with an encryption of mg. To answer the decryption queries, the
reduction returns ¢ if it was ever queried the ciphertext for a previous encryption
query. Otherwise, it forwards the query to its own decryption oracle. Finally, the
reduction adversary outputs whatever A,, outputs. Standard hybrid analysis
shows that if the advantage of A, is €, then the advantage of the reduction
adversary is €/quxc. Simulating decryption queries required remembering all prior
encryption queries and hence the reduction is not memory-tight.

We give an adversary A; in Fig. 12 that is very similar to the reduction
just described, but avoids remembering prior encryption queries. The main idea
is that it picks the coins when encrypting mgo or m; locally as the output of
a random function f applied to the message and a counter. This allows A; to
detect whether a ciphertext ¢ queried to the decryption oracle is one it answered
to an earlier encryption query as follows: it first asks for the decryption of ¢
from its own decryption oracle and receives m. Then it iterates over all counter
values for which encryption queries have been made so far and checks if ¢ was the
encryption of m using the output of f on m and the counter as coins. If any of
these checks succeed it returns ¢, otherwise it returns m. If ¢ was the answer of
an encryption query A; detects it successfully. The probability that A; returns
o for a decryption query when it should not is small. We give the formal proof
of Theorem 5 in the full version [14] where we use a sequence of hybrid games

to transition from GpZe? to a hybrid game that is simulated by A;.

Notice that the additional memory overhead for A; is just that required to
store a counter, run PKE.E, and store (¢*, m{, m}). However, there is an increase
in runtime by ggxc - gprc - Time(PKE) because of the iteration over the counters
to answer decryption queries. As discussed in the introduction, such reductions
may be useful when the best attack for the underlying problem with low memory
requires significantly more running time than the best attack with high memory.

The same proof strategy would work essentially unchanged for CCA-L. For
CCA-m, the strategy does not suffice. If the adversary queries the decryption
oracle on a ciphertext ¢ which was an answer to a previous query for (mg, m)
the oracle needs to return m; even if ¢ is an encryption of my.
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6.2 Indistinguishable from Random CCA Security of PKE

We saw in the previous section that we could have a memory-tight reduction
from mCCA-¢ to 1CCA-¢; however, the reduction is not tight with respect to
running time. In this section, we show that for a different formalization of CCA
security, we can indeed have a memory-tight and time-tight reduction between
many- and single-challenge variants.

CIPHERTEXT AND ENCRYPTION KEY SPACE. Before describing the indistinguish-
able from random formalization of CCA security, we need to make some assump-
tions on PKE. We define the encryption keyspace by PKE.Ek = {ek : (ek,dk) €
PKE.K}. We assume for each ek € PKE.Ek and allowed message length n € N
there is a set PKE.C(ek,n) such that PKE.E(ek, m;r) € PKE.C(ek, |m|) always
holds. Let PKE.C~!(ek,c) returns n such that ¢ € PKE.C(ek,n). Correctness
implies that PKE.C(ek,n) and PKE.C(ek,n’) are disjoint for n # n'.

INDISTINGUISHABLE FROM RANDOM CIPHERTEXT CCA SECURITY. The security
notion we will consider in this section is captured by the game G¥<* shown
in Fig. 13. It requires that ciphertexts output by the encryption scheme can-
not be distinguished from ciphertexts chosen at random even given access to a
decryption oracle. The adversary gets the encryption key ek and has access to
an encryption oracle ENC and a decryption oracle DEC. The adversary needs to
distinguish the following real and ideal worlds: in the real world, a query to ENC
with a message m returns an encryption of m under ek, while in the ideal world,
the same query returns a uniformly random element of PKE.C(ek, |m|). The de-
cryption oracle DECY acts exactly as the corresponding oracle in G .10 The
advantage of an adversary A against the $CCA-w security of PKE is defined as
AdvESE 7 (A) = Pr{GEZE Y (A)] — Pr[GEeE s (A)].

1$CCA-m 1MPLIES m$CCA-m. The following theorem captures a memory-tight
reduction establishing that 1$CCA-m security implies m$CCA-m security. The
proof makes use of our message encoding technique.

Theorem 6 (13CCA-m = m$CCA-n). Let PKE be a public key encryption
scheme. Let T satisfy |PKE.C(ek,n)| = 2" - 27 for all n, ek. Let An be an ad-
versary with (qexc, ¢oec, ¢n) = Query(Any) and assume gexe + qpee < 0.5 - 27,
Let F = Inji(T,D,R) where T, D, and R are defined by T = N x PKE.Ek,
Dy = {0,1}" x [guxc] and Ry e = PKE.C(ek,n). Let Ay be the F-oracle
adversary defined in Fig. 14. Then,

Advg(f(cé-m(Am) < ¢Enc AdVgCKCE-m(Al) + 8¢EncqEc/2" + 5q]%NC/2T
Query(A;) = (1, gprc; n)
Time*(A;) = O(Time(Ay,)) + gene Time(PKE)
Mem*(A;) = O(Mem(A,)) + Mem(PKE) Ig qexc-
10°As mentioned, the discussion in Section 5 about the three variants definitions is
applicable here as well. In the full version [14] we give an example where we can

prove CCA security of a KEM/DEM scheme in the memory restricted setting, but
only if we use the w = m definition.
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Adversary AP (ek) SIMENC(m) SiMDEC(c)
//0<h<2 te—i+1 If ¢ = ¢*: Return m*
k s [grxc] c1 s PKE.E(ek,m) n « PKE.C™!(ek, c)
i—0 co < f((Iml,ek), (m,4))  |(m,j) « f~'((n,ek),c)
f <sInj*(T, D, R) Ifi<k:iceca Ifm#1land k<j<i
b — Ai{]\lENC,SIMDEC(ek) If i = k: 1If (m,]) — (m*’ k):
Return b’ ¢ « ENnc(m) Skip next line
(c*,m*) « (c,m) Return m
Ifi>kice—co m < DEC(c)
Return ¢ Return m

Fig. 14. Adversary A; for Theorem 6.

The standard (non-memory-tight) reduction against 13CCA security that runs
an m$CCA adversary A, works in a similar manner as the standard reduction
from an 1CCA adversary and an mCCA adversary that we described in Sec-
tion 6.1. Again here, simulating decryption queries requires remembering all the
answers of the encryption queries, and hence the reduction is not memory-tight.

We give an adversary A; in Fig. 14 that is very similar to the standard
reduction, but avoids remembering all the answers of the encryption queries.
The main idea here is picking the ciphertext ¢y as the output of a random
injective function f evaluated on the message and a counter, instead of sampling
it uniformly at random. This way of picking the ¢y allows A; detect whether
a ciphertext ¢ queried to the decryption oracle was the answer to an earlier
encryption query as follows: it first checks if the inverse of f on the ciphertext is
defined (i.e., not L), it returns the message part of the inverse. Otherwise it asks
for the decryption of the ciphertext to its own decryption oracle and returns the
answer. Using our assumption on the size of PKE.C(ek,n), we can argue that
except with small probability, A; simulates the decryption oracle correctly. We
give the formal proof in the full version [14] where we use a sequence of hybrid
games to transition from G%,CKCE;“ to a game that is perfectly simulated by Aj;.
The additional memory overhead for 4; is only a counter. Moreover, there is no
increase in the running time of A; unlike the adversary in Theorem 5.

EXTENSION TO $CCA-o, $CCA-L. We can prove the same result for SCCA-o,
$CCA- 1 but the adversary would not be tight with respect to running time. The
adversary in these cases would pick the coins for encrypting m (to compute ¢)
like the adversary in Theorem 5. This would require iterating over counters to
answer decryption queries and hence lead to looseness with respect to running
time. We omit the theorems for these notions because they would not involve
any new ideas beyond those presented in Theorems 5 and 6.
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