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Abstract. A natural solution to increase the efficiency of secure compu-
tation will be to non-interactively and securely transform diverse inexpensive-
to-generate correlated randomness, like, joint samples from noise sources,
into correlations useful for secure computation protocols. Motivated by
this general application for secure computation, our work introduces the
notion of secure non-interactive simulation (SNIS). Parties receive sam-
ples of correlated randomness, and they, without any interaction, securely
convert them into samples from another correlated randomness.
Our work presents a simulation-based security definition for SNIS and
initiates the study of the feasibility and efficiency of SNIS. We also study
SNIS among fundamental correlated randomnesses like random samples
from the binary symmetric and binary erasure channels, represented by
BSS and BES, respectively. We show the impossibility of interconversion
between BSS and BES samples.
Next, we prove that a SNIS of a BES(ε′) sample (a BES with noise
characteristic ε′) from BES(ε) is feasible if and only if (1−ε′) = (1−ε)k,
for some k ∈ N. In this context, we prove that all SNIS constructions
must be linear. Furthermore, if (1 − ε′) = (1 − ε)k, then the rate of
simulating multiple independent BES(ε′) samples is at most 1/k, which
is also achievable using (block) linear constructions.
Finally, we show that a SNIS of a BSS(ε′) sample from BSS(ε) samples is
feasible if and only if (1− 2ε′) = (1− 2ε)k, for some k ∈ N. Interestingly,
there are linear as well as non-linear SNIS constructions. When (1−2ε′) =
(1 − 2ε)k, we prove that the rate of a perfectly secure SNIS is at most
1/k, which is achievable using linear and non-linear constructions.
Our technical approach algebraizes the definition of SNIS and proceeds
via Fourier analysis. Our work develops general analysis methodologies
for Boolean functions, explicitly incorporating cryptographic security
constraints. Our work also proves strong forms of statistical-to-perfect se-
curity transformations: one can error-correct a statistically secure SNIS
to make it perfectly secure. We show a connection of our research with
homogeneous Boolean functions and distance-invariant codes, which may
be of independent interest.
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1 Introduction

Secure multi-party computation [52, 26] (MPC) allows mutually distrusting par-
ties to compute securely over their private data. MPC protocols often offload
most cryptographically and computationally intensive components to an offline
procedure [38, 8, 17, 45]. The objective of this offline procedure is to output se-
cure samples from highly structured correlated randomness, for example, Beaver
triples [4]. The offline procedure relies on public-key cryptography to achieve this
objective and, consequently, is computation and communication intensive.

On the other hand, there are diverse inexpensive-to-generate correlated ran-
domness, like, joint samples from noise sources, that can also facilitate secure
computation via interactive protocols [30]. A natural approach to increase the
efficiency of this offline phase will be to non-interactively and securely transform
such correlated randomness into correlations useful for secure computation while
incurring low computational overhead. Motivated by this general application for
secure computation, our work introduces the notion of secure non-interactive
simulation (SNIS).

In SNIS, parties receive samples of correlated randomness, and they, with-
out any interaction, securely convert them into samples from another corre-
lated randomness. Section 1.1 defines this cryptographic primitive. SNIS is an
information-theoretic analog of pseudorandom correlation generators (PCG) in-
troduced by Boyle et al. [11, 12]. PCG is a silent local computation that trans-
forms the input correlated private randomness into samples from a target cor-
relation without any interaction. Boyle et al. [11, 12] construct this primitive
based on various hardness of computation assumptions and illustrate their ap-
plications to increasing the efficiency of the preprocessing step of MPC protocols.
SNIS shall convert diverse forms of correlated randomness sources into samples
of a specific target correlation that is useful for the online phase of an MPC
protocol with information-theoretic security.

SNIS is an extension of non-interactive simulation of joint distribution [21,
50, 49, 27, 28, 25, 18, 24] (NIS) and non-interactive correlation distillation [41,
40, 51, 9, 13] (NICD) from information theory. In NIS, the emphasis is on the
correctness of simulation, and cryptographic security is not a concern. Conse-
quently, erasing information from parties’ views, for example, is permissible in
NIS, which may not be cryptographically secure. NICD specifically aims to es-
tablish shared keys securely; however, shared keys alone do not suffice for general
secure computation [23, 35, 36]. The objective of SNIS extends to securely sim-
ulating more general correlated randomness as well, referred to as the complete
correlations [30], which are necessary for general secure computation. One can
also interpret SNIS as the non-interactive version of one-way secure computa-
tion [22, 2] (OWSC) – secure computations where only one party sends messages.

Our work presents a simulation-based security definition for SNIS and initi-
ates the study of the feasibility and efficiency of SNIS. Any hardness of compu-
tation results from NIS and OWSC automatically transfer to SNIS. This work
initiates the study of tight feasibility and rate characterization in SNIS and
considers the inter-conversion among fundamental correlated randomnesses like
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random samples from the binary symmetric and binary erasure channels. In this
context, our work reveals strong forms of statistical-to-perfect security transfor-
mations where one can error-correct a statistically secure SNIS (with sufficiently
small insecurity) to transform it into a perfect SNIS. In particular, there is a
dichotomy: either (1) a perfect SNIS exists, or (2) every SNIS is constant in-
secure. For example, there are perfect rate-achieving SNIS; however, surpassing
the maximum rate by how-so-ever small quantity immediately incurs constant-
insecurity.

Our technical approach algebraizes the definition of SNIS and proceeds via
Fourier analysis. A central contribution of our work is the development of gen-
eral analysis methodologies for Boolean functions that explicitly incorporate the
cryptographic security constraints. Our research uncovers fascinating new con-
nections of SNIS with homogeneous Boolean functions and distance-invariant
codes, which may be of independent interest (refer to Section 2.6).

Paper organization. Section 1.1 presents the SNIS model. Section 2 sum-
marizes our contributions, connections to other research areas (Section 2.6). All
our results consider SNIS with randomized reductions and statistical security (ex-
cept Theorem 6, which considers only perfect security). Section 3 introduces the
technical background for our proofs. Section 4, Section 5, and Section 6 present
the technical outline and details of our proofs. A full version of this paper is
available at [29].

Independent work. Independently, motivated by studying cryptographic
complexity [7, 37, 33, 6, 44], Agarwal, Narayanan, Pathak, Prabhakaran, Prab-
hakaran, and Rehan [1] introduced SNIS as secure non-interactive reduction.
They use spectral techniques to analyze this primitive. Determining tight rate
of SNIS reductions and results pertaining to editing statistical reductions into
perfect ones are beyond the scope of their work.

1.1 Definition: Secure Non-Interactive Simulation

Let (X,Y ) be a joint distribution over the sample space (X ,Y), and (U, V )
be a joint distribution over the sample space (U ,V).1 The intuitive definition of
secure non-interactive simulation of joint distributions (SNIS) closely follows the
presentation in Figure 1 (with parameter m = 1). Sample (xn, yn)

$←− (X,Y )
⊗n,

i.e., draw n independent samples from the distribution (X,Y ). Alice gets xn ∈
Xn, and Bob gets yn ∈ Yn. Alice has private randomness rA

$←− RA and Bob has,
independent, private randomness rB

$←− RB , where RA, RB are random variables
over the sample spaces RA and RB , respectively. Suppose fn : Xn × RA → U
and gn : Yn × RB → V are the (possibly randomized) reduction functions for
Alice and Bob, respectively. Alice computes u′ = fn(xn, rA) and Bob computes
v′ = gn(yn, rB).

1 As is typical in this line of work in cryptography and information theory, the joint
distributions (U, V ) and (X,Y ) assign probabilities to samples that are either 0 or
at least a positive constant.
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(xn, yn)
$←− (X,Y )⊗n

Alice

xn

U⊗m 3 u′ = fn(x
n, rA)

rA
$←− RA Bob

yn

v′ = gn(y
n, rB) ∈ V⊗m

rB
$←− RB

Fig. 1. Model for secure non-interactive simulation: SNIS.

For the ease of presentation, this section only considers deterministic reduc-
tion functions, i.e., there is no RA and RB . All formal definitions and results in
this work consider randomized reductions.

We say that (U, V ) reduces to (X,Y )
⊗n via reduction functions fn, gn with

insecurity ν(n) (represented by, (U, V ) vν(n)
fn,gn

(X,Y )
⊗n) if the following three

conditions are satisfied.

1. Correctness. The distribution of the samples (u′, v′) is ν(n)-close to the dis-
tribution (U, V ) in the statistical distance.

2. Security against corrupt Alice. Consider any (u, v) in the support of the dis-
tribution (U, V ). The distribution of xn, conditioned on u′ = u and v′ = v, is
ν(n)-close to being independent of v.2

3. Security against corrupt Bob. Consider any (u, v) in the support of the dis-
tribution (U, V ). The distribution of yn, conditioned on the fact that u′ = u
and v′ = v, is ν(n)-close to being independent of u.

To discuss rate, consider SNIS of the form (U, V )⊗m(n) vν(n)
fn,gn

(X,Y )⊗n. Here,
the reduction functions output m(n)-independent samples from the distribution
(U, V ). Fixing (X,Y ) and (U, V ), our objective is to characterize the maximum
achievable production ratem(n)/n over all possible reductions (a standard single-
letter characterization). Finally, R( (U, V ), (X,Y ) ) represents the maximum
achievable m(n)/n, as n→∞, when considering all SNIS of (U, V ) from (X,Y ).

When n is clear from the context, then, instead of xn and fn, we shall only
write x and f for brevity.

Remark 1 (Adversarial model). Since we consider non-interactive protocols with-
out private inputs, semi-honest and malicious security (with abort) are equiv-
alent. So, for the simplicity, the presentation considers (statistical) security
against semi-honest adversaries, that is, parties follow the protocol but are cu-
rious to find more information.
2 The conditional distribution (A|B = b) is ν-close to being independent of b if there
exists a distribution A∗ such that (A|B = b) is ν-close to A∗ in the statistical
distance, for all b ∈ Supp(B).
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Remark 2 (Reasoning for providing private coins). In the cryptographic context,
complete joint distributions [30] (X,Y ) are the primary resources that one uses
frugally. So, to define the rate with respect to the cryptographically expensive
resource (namely, samples from the distribution (X,Y )⊗n), our definition of
SNIS considers randomized reductions and provides private independent random
coins as a free resource. If private coins are not free, they can be incorporated
into the setup by considering the input joint distribution to be (X,Y )⊗n⊗Coins.

2 Our Contribution

Rabin and Crépeau [47, 48, 14] and Crépeau and Kilian [15, 16], respectively,
proved that erasure and binary symmetric channels suffice for general secure
computation. These elegant sources of noise provide an uncluttered access to
abstracting the primary hurdles in achieving security. In a similar vein, to initiate
the study of the feasibility and rate of SNIS, this paper considers samples from
the following two families of distributions.

1. Binary symmetric source. X and Y are uniformly random bits {+1,−1} such
that X 6= Y with probability ε ∈ (0, 1/2). We represent this joint distribution
by BSS(ε).

2. Binary erasure source. X is a uniformly random bit {+1,−1}, and Y = X
with probability (1−ε), where ε ∈ (0, 1); otherwise, Y = 0. We represent this
joint distribution by BES(ε).

+1

−1

+1

−1

1− ε

εε

1− ε

BSS(ε)

+1

−1

+1

−1

0

1− ε

ε

ε

1− ε

BES(ε)

Fig. 2. Binary Symmetric Source (BSS) and Binary Erasure Source (BES) with noise
characteristic ε.

Comparison models. In information theory, non-interactive simulation of joint
distributions (NIS) is a similar notion of simulating joint distributions [21, 50,
49, 27, 28, 25, 18, 24]. However, NIS only considers correctness (not security). On
the other hand, there is also research on performing secure computation using
one-way messages, a.k.a., one-way secure computation (OWSC) [22, 2] – only
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one party sends messages to the other party. Table 1 compares our feasibility
results to results in NIS and OWSC.

Remark 3. Non-interactive correlation distillation [41, 40, 51, 9, 13] is a special
case of SNIS where (U, V ) is restricted to shared coin, i.e., BSS(0) or BES(0)
samples. This model has strong impossibility results and comparison with this
model is not particularly insightful.

2.1 SNIS Composition and Projection

The following composition and projection results follow from the simulation-
based definition of SNIS.

1. Parallel Composition. Let P, P ′, Q, and Q′ be joint distributions. If ν-SNIS
of P from Q and ν′-SNIS of P ′ from Q′ exist, then a (ν+ ν′)-SNIS of (P‖P ′)
from (Q‖Q′) exists. The distribution (P‖P ′) generates samples from both the
joint distributions P and P ′, and (Q‖Q′) generates samples from both the
joint distributions Q and Q′.

2. Sequential Composition. Let P,Q, and R be joint distributions. If ν-SNIS of
P from Q and ν′-SNIS of Q from R exist, then a (ν + ν′)-SNIS of P from R
exists.

3. Projection. Let P,Q, and R be joint distributions. If a ν-SNIS of (P‖Q) from
R exists, then a ν-SNIS of P from R also exists.

These composition and projection theorems shall assist in proving our feasibility
and rate results.

2.2 Derandomization

There are a few flavors of derandomization results (for reductions) that are useful
for different contexts like feasibility/rate results with perfect/statistical security.

For feasibility results. Let (X,Y ) be a joint distribution such that the distribu-
tion (X|Y ) has average conditional min-entropy [20]. Then, Alice can extract
(statistically) secure coins from a sufficiently large number of (X,Y ) samples.3
Analogously, if (Y |X) has average conditional min-entropy, then Bob can also
construct statistically secure coins using other (X,Y ) samples. Complete joint
distributions [30] (X,Y ) have both these average conditional min-entropy prop-
erties.4 Consequently, the following result is immediate.
3 Alice can perform a random walk on an appropriate expander graph using her sam-
ples to get one random bit that is statistically secure conditioned on Bob’s samples.

4 A joint distribution (X,Y ) is complete if there exists samples x0, x1 ∈ Supp(X) and
y0, y1 ∈ Supp(Y ) such that

1. Pr[X = x0, Y = y0],Pr[X = x1, Y = y0],Pr[X = x1, Y = y1] > 0, and
2. Pr[X = x0, Y = y0] ·Pr[X = x1, Y = y1] 6= Pr[X = x0, Y = y1] ·Pr[X = x1, Y = y0].
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Proposition 1 (Derandomization: Feasibility results). Let (X,Y ) be a
complete joint distribution. Consider a randomized SNIS (U, V ) vνf,g (X,Y )⊗n

with nA and nB Alice and Bob private randomness complexities, respectively.
Then, there exists a deterministic SNIS (U, V ) vν′f ′,g′ (X,Y )⊗n

′
such that (for

large-enough k ∈ N)

n′ = k · nA + k · nB + n, and
ν′ = (nA + nB) · exp(−Θ(k)) + ν.

The reduction function f ′ uses the first knA samples to extract nA private bits
for Alice, each with exp(−Θ(k)) statistical security. The reduction function g′

uses the next knB samples to extract nB private bits for Bob. Finally, the re-
duction functions (f ′, g′) restricted to the last n samples are identical to (f, g).
This proposition effectively rules out the usefulness of independent private ran-
domness in SNIS for feasibility results.

For rate results with perfect security. To study rate of SNIS, one needs a sample-
preserving derandomization. However, in the context of perfect security, such a
result is immediate for complete joint distribution (U, V ). Intuitively, one can
fix Alice’s local randomness to an arbitrary value, and Bob’s local randomness
to an arbitrary value. Then, the reduction functions (with these fixed random
tapes) continue to be a perfectly secure SNIS.

Proposition 2 (Derandomization: Sample-preserving & Perfect secu-
rity). Let (U, V ) be a complete joint distribution. For any randomized SNIS
(U, V ) v0

f,g (X,Y )⊗n, there is a deterministic SNIS (U, V ) v0
f ′,g′ (X,Y )⊗n.

The deterministic reduction functions f ′, g′ are the randomized reductions f, g
with their random tapes arbitrarily fixed.

For rate results with statistical security. For a statistical SNIS, we prove a
sample-preserving derandomization result of the following form.

Theorem 1 (Derandomization: Sample-preserving & Statistical secu-
rity). Fix (X,Y ) and a complete joint distribution (U, V ). There is a positive
constant c such that the following holds. Consider a randomized SNIS (U, V ) vνf,g
(X,Y )⊗n. Then, there is a deterministic SNIS (U, V ) vν′f ′,g′ (X,Y )⊗n such that
(a) ν′ = c ·ν1/4, (b) the reduction function f is ν′-close to the reduction function
f ′, and (c) the reduction function g is ν′-close to the reduction function g′.

This theorem also yields Proposition 2 as a corollary.
The closeness of a randomized and a deterministic function is defined as

follows. The function f , for example, has domain Xn ×RA. Extend the domain

Multiple samples of a complete distributions can be used to (interactively) implement
oblivious transfer [30], the atomic primitive for secure computation. The joint distri-
bution BES(ε), for ε ∈ (0, 1), and BSS(ε), for ε ∈ (0, 1/2), are complete distributions.
However, BSS(0) = BES(0), BES(1), and BSS(1/2) are not complete distributions.
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of the deterministic function f ′ from Xn to Xn × RA. The two functions are
ν′-close if their outputs differ for (at most) ν′ fraction of the inputs.

The constant c in the theorem depends on the joint distributions (X,Y ) and
(U, V ); however, it is independent of n. So, one can, for example, meaningfully
derandomize the statistically secure SNIS BES(ε′)⊗2 vν BES(ε)⊗n by consider-
ing (U, V ) = BES(ε′)⊗2 and (X,Y ) = BES(ε). However, it may not be possible
to meaningfully derandomize the statistically secure SNIS BES(ε′)⊗m(n) vν(n)

BES(ε)⊗n by considering (U, V ) = BES(ε′)⊗m(n) and (X,Y ) = BES(ε). Because
the value of c depends on n (via its dependence on m(n)), and the resulting
insecurity bound c · ν(n)1/4 may be meaningless (it may be greater than one).
This discussion highlights a subtlety in proving the rate result in Theorem 4.

2.3 BSS from BES Samples

Input Joint Output Joint Feasible set of ε′

Distribution Distribution OWSC [22] SNIS (Our Work) NIS [53]

BES(ε)
BES(ε′) (0, 1)

{
1− (1− ε)k : k ∈ N

}
[ε, 1)

BSS(ε′) ⊇ ∅ ∅ ⊇ [ε/2, 1/2)

⊆
[
1−
√

1−ε
2

, 1/2
)

BSS(ε)
BES(ε′) ∅ ∅ ∅
BSS(ε′) ⊇

{
1−(1−2ε)k

2
: k ∈ N

} {
1−(1−2ε)k

2
: k ∈ N

}
[ε, 1/2)

Table 1. Comparison of feasible parameters for OWSC, SNIS, and NIS involving
reductions between BES and BSS families. A “⊇ S” entry indicates that the feasible set
is a superset of the set S. Therefore, a “⊇ ∅” entry indicates that no characterization
of the feasible set is known. Similarly, a “⊆ S” entry indicates that the feasible set is a
subset of the set S.

It is impossible to have a SNIS of BES(ε′) from any number of BSS(ε) samples,
for any n ∈ N, ε ∈ (0, 1/2), and ε′ ∈ (0, 1), because this reduction is already
impossible in NIS and OWSC. Reverse-hypercontractivity [3, 10, 41, 42, 28, 18, 5,
40] is a typical technical tool in NIS to show such impossibility results. Consider
the feasibility of (U, V ) v BSS(ε)⊗n. Reverse-hypercontractivity states that if
there are two samples u and v such that Pr[U = u] > 0 and Pr[V = v] > 0,
then Pr[U = u, V = v] > 0. Therefore, for example, correctly constructing BES
samples and random oblivious transfer samples are impossible, let alone securely.

The following result considers the reverse direction.

Theorem 2 (Infeasibility: BSS from BES). Fix noise parameters ε ∈ (0, 1)
and ε′ ∈ (0, 1/2). There is a positive constant c = c(ε, ε′) such that BSS(ε′) vν
BES(ε)⊗n, for any n ∈ N, implies that ν > c.

Section 4 proves this theorem. This impossibility result remains open in NIS and
OWSC. However, using the properties of security, we even rule out SNIS that
are constant-insecure. In particular, one cannot use a larger number of BES(ε)
samples to arbitrarily reduce the insecurity.
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2.4 BES from BES Samples

Next, we consider the inter-conversion among binary erasure sources with differ-
ent erasure probabilities. At the outset, let us begin with an example of perfectly
secure SNIS of BES(ε′) from BES(ε)⊗k, where (1−ε′) = (1−ε)k for some k ∈ N.
Alice’s reduction function f : {±1}k → {±1} is defined by f(x) = x1 · x2· · ·xk,
a linear function. Bob’s reduction function g : {±1, 0}k → {±1, 0} is defined by
g(y) = y1 · y2· · · yk. Observe that g(y) = 0 if and only if there is i ∈ {1, . . . , k}
such that yi = 0. Such reductions (or their negations) shall be referred to as
k-linear functions. One can verify that this reduction is a perfect SNIS.

Feasibility. We prove that, essentially, k-linear functions are the only reductions
possible among BES samples.

Theorem 3 (Feasibility: BES-BES). Fix erasure probabilities ε, ε′ ∈ (0, 1).

1. If (1 − ε′) 6= (1 − ε)k, for all k ∈ N: There is a positive constant c = c(ε, ε′)
such that BES(ε′) vν BES(ε)⊗n, for any n ∈ N, implies that ν > c.

2. If (1−ε′) = (1−ε)k, for some k ∈ N: There are positive constants c = c(ε, ε′)
and d = d(ε, ε′) such that the following result holds. If BES(ε′) vνf,g BES(ε)⊗n,
for any n ∈ N, and ν 6 c, then f is νd-close to a reduction function f∗, and
g is νd-close to a reduction function g∗ such that BES(ε′) v0

f∗,g∗ BES(ε)⊗n.
Furthermore, f∗ is a k-linear function.

We remark that the “νΘ(1)-closeness” in the theorem above can be replaced by
“Θ(
√
ν)-closeness;” however, we forego this optimization as it does not change the

qualitative nature of our results. This theorem intuitively states the following.

1. If (1− ε′) 6∈
{

(1− ε), (1− ε)2, (1− ε)3, . . .
}
, then any SNIS of BES(ε′) from

BES(ε) must be constant-insecure.
2. If (1 − ε′) = (1 − ε)k and reduction functions f, g implement a SNIS of

BES(ε′) from BES(ε) with sufficient small insecurity, then the reduction func-
tions f and g can be error-corrected (at at most νd-fraction of its inputs)
to create reduction functions f∗, g∗, respectively, such that the new SNIS is
a perfectly secure. Furthermore, the function f∗(x) = ±xi1 · xi2 · · ·xik , for
distinct i1, i2, . . . , ik ∈ {1, . . . , n}. This result, intuitively, is a strong form
of statistical-to-perfect transformation: reductions implementing SNIS with
sufficiently small insecurity can be error-corrected into perfectly secure SNIS
reductions. Furthermore, the lower the insecurity, the lesser amount of error-
correction shall be needed.

In the context of OWSC, one can achieve erasure probability ε′ that is either
lower or higher than the erasure probability ε. For SNIS, however, we show that
ε′ > ε is necessary. Interestingly, our linear SNIS construction is identical in spirit
to the OWSC protocol, as presented in [22] when (1−ε′) ∈ {(1−ε), (1−ε)2, . . . .}.
However, all other values of ε′ are feasible only for OWSC [22]; not for SNIS.

Typically, NIS literature’s impossibility results rely on leveraging the reverse
hypercontractivity theorem [27, 28, 43]. However, this approach encounters a
significant hurdle for samples from the binary erasure channel [27]. The addition
of the security constraint in our setting helps overcome this hurdle.
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Rate of Statistical SNIS. Observe that if (1 − ε′) = (1 − ε)k, for k ∈ N, then a
block-linear reduction achieves 1/k-rate via a perfectly secure SNIS. Our rate re-
sult states that these reductions are, essentially, the only rate-achieving construc-
tions. For rate results, we consider (possibly, randomized) reduction functions
~f : {±1}n → {±1}m and ~g : {±1, 0}n → {±1, 0}m. We interpret these reductions
as the concatenation of m reductions. For example, ~f =

(
f (1), f (2), . . . , f (m)

)
such that f (i) : {±1}n → {±1}, for each i ∈ {1, 2, . . . ,m}. We refer to the func-
tion f (i) as the i-th component of ~f .

Theorem 4 (Rate: BES-BES). Let ε, ε′ ∈ (0, 1) be erasure probabilities such
that (1− ε′) = (1− ε)k, for some k ∈ N. There are positive constants c = c(ε, ε′)
and d = d(ε, ε′) such that the following result holds. Suppose BES(ε′)⊗m vν~f,~g
BES(ε)⊗n, for some m,n ∈ N, and ν 6 c. Then, there are deterministic reduction
functions ~f∗ and ~g∗ such that the following conditions are satisfied.

1. f (i) is νd-close to f∗(i), for i ∈ {1, . . . ,m},
2. g(i) is νd-close to g∗(i), for i ∈ {1, . . . ,m},
3. Each f∗(i) is k-linear with disjoint support, for i ∈ {1, . . . ,m}, and
4. mk 6 n, i.e., R(BES(ε′),BES(ε)) 6 1/k.

A block-linear construction achieves the rate as well. We emphasize that the
reductions ~f and ~g are possibly randomized. Note that this theorem does not
claim that the reduction function ~f is close to ~f∗.

Section 5 outlines the proof of Theorem 3 and Theorem 4.

2.5 BSS from BSS Samples

Finally, we consider the inter-conversion among binary symmetric samples with
different noise characteristics. Observe that if (1 − 2ε′) = (1 − 2ε)k, for some
k ∈ N, then the following reduction functions f, g : {±1}k → {±1} implement
a perfectly secure SNIS of BSS(ε′) from BSS(ε)⊗k: f(x) = x1 · x2· · ·xk and
g(y) = y1 ·y2· · · yk. One can verify that this is a perfectly secure SNIS. However,
surprisingly, unlike BES inter-conversions, linear functions are not the only secure
reductions in BSS inter-conversions. For k > 2, consider the following non-linear
reductions f (1)

2k , g
(1)
2k : {±1}2k → {±1}, g(1)

2k = f
(1)
2k where f (1)

2k (x) = (x1−x2)
2 ·∏k+1

i=3 xi + (x1+x2)
2 ·

∏2k
i=k+2 xi. In fact, any k-homogeneous Boolean reduction

function f and g = f define a perfectly secure SNIS.
Although these non-linear constructions individually have worse efficiency

than the linear constructions, they can achieve rate 1/k, similar to the block-
linear constructions. For example, consider another pair of reduction functions
f

(2)
2k , g

(2)
2k : {±1}2k → {±1}, g(2)

2k = f
(2)
2k where f (2)

2k (x) = (x1−x2)
2 ·

∏2k
i=k+2 xi −

(x1+x2)
2 ·

∏k+1
i=3 xi. Now, interestingly, the two reductions f (1)

2k ‖f
(2)
2k and g(1)

2k ‖g
(2)
2k

realize BSS(ε′)⊗2 v0 BSS(ε)⊗2k at rate 1/k.
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Feasibility. With this discussion as background, we mention our feasibility result.

Theorem 5 (Feasibility: BSS-BSS). Fix noise characteristics ε, ε′ ∈ (0, 1/2).

1. If (1− 2ε′) 6= (1− 2ε)k, for all k ∈ N: There is a positive constant c = c(ε, ε′)
such that BSS(ε′) vν BSS(ε)⊗n, for any n ∈ N, implies that ν > c.

2. If (1 − 2ε′) = (1 − 2ε)k, for some k ∈ N: There are positive constants c =
c(ε, ε′) and d = d(ε, ε′) such that the following result holds. If BSS(ε′) vνf,g
BSS(ε)⊗n, for any n ∈ N, and ν 6 c, then f is νd-close to a reduction function
f∗ and g is νd-close to a reduction function g∗ such that BSS(ε′) v0

f∗,g∗

BSS(ε)⊗n. Furthermore, f∗ = g∗ is a k-homogeneous Boolean function.

Similar to the theorem for binary erasure sources, this theorem also states a
strong form of a statistical-to-perfect transformation. In the binary symmetric
source case, the perfect reduction need not be a linear function; it may be a
k-homogeneous Boolean function. Incidentally, as a consequence of the Kindler-
Safra junta theorem [31, 32] (refer to Imported Theorem 1), the k-homogeneous
Boolean functions implicitly are also juntas. This junta property shall be crucial
in our proofs to show that the simulation error cannot be driven arbitrarily low
by using larger number of input samples.

Note that one cannot increase the reliability of the binary symmetric source,
which is identical to the result in [22]. However, unlike [22], we also rule out the
possibility of SNIS for any (1−2ε′) 6∈

{
(1− 2ε), (1− 2ε)2, . . .

}
. For such ε′, any

non-interactive simulation is constant-insecure.

Rate for Perfect SNIS. Unlike, the rate result for BES samples, we only prove a
rate result for perfectly secure SNIS for BSS samples. We leave the rate result
for statistically-secure SNIS as a fascinating open problem.

Theorem 6 (Perfect Security Rate: BSS-BSS). Let ε, ε′ ∈ (0, 1/2) be noise
characteristics such that (1−2ε′) = (1−2ε)k, for some k ∈ N. If BSS(ε′)⊗m v0

~f,~g

BSS(ε)⊗n, for some m,n ∈ N, then ~g = ~f , each component of ~f is a k-
homogeneous Boolean function, and mk 6 n, i.e., R(BSS(ε′),BSS(ε)) 6 1/k.

We emphasize that the components of the reduction ~f need not have disjoint
input supports (as illustrated by the example above where we construct 2 output
samples from 2k input samples using non-linear functions with identical input
support). Both linear and non-linear rate-achieving perfect SNIS exist.

Section 6 outlines the proof of Theorem 5 and Theorem 6.

2.6 Technical Contribution and Connections

Homogeneous Boolean functions. A Boolean function f : {±1}n → {±1} is k-
homogeneous if its Fourier weight is entirely on degree-k (multi-)linear terms.
For example, f(x) = x1· · ·xk is a k-homogeneous function and is linear as well
(because its entire Fourier weight is concentrated on one character). Refer to
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the functions f (1)
2k , f

(2)
2k in Section 2.5 for examples of non-linear k-homogeneous

functions. The algebraization of security in Claim 13 implies the following result.

Proposition 3. BSS(ε′) v0
f,g BSS(ε)⊗n if and only if g = f , f is a k-homogeneous

Boolean function, and (1− 2ε′) = (1− 2ε)k.

In fact, we show a stronger result. If the reduction in the proposition above
realizes a SNIS with sufficiently small insecurity, then the reduction can be error-
corrected to obtain a perfect reduction (see Theorem 5).

This proposition presents a new application for the study of homogeneous
Boolean functions. The characterization of k-homogeneous Boolean functions
is not well-understood. For example, the Kindler-Safra junta theorem [31, 32]
implies that such functions are juntas as well. A better understanding of the
analytical properties of these functions shall help resolve the rate of statistical
SNIS among BSS samples.

Distance-invariant codes. For a reduction function f : {±1}n → {±1}, one can
equivalently identify it by the following code

{±1}n ⊇ C(f,+1) = {x : f(x) = +1} .

Analogously, the code C(f,−1) is the complement of the set C(f,+1).
A code C ⊆ {±1}n is distance-invariant [34] if the number of codewords

Ai(c) at distance i ∈ {0, 1, . . . , n} from a codeword c ∈ C is independent of c.
For example, linear codes are distance-invariant. There are non-linear distance-
invariant codes as well. For example, when k = 2, the function f (1)

2k in Section 2.5
yields the following code.

{±1}2k ⊃ C(f
(1)
2k ,+1) =

{
1111, 11−11, 1−11−1, −1−11−1, −1−1−1−1

1−111, −11−11, −11−1−1,

}
.

The codewords are sorted based on their distance from the codeword 1111 (i.e.,
their Hamming weight). Observe that every codeword c ∈ C(f

(1)
2k ,+1) has 2

codewords at distance 1, 2, and 3; and 1 codeword at distance 0 and 4. That is,
the distance enumerator A(c, Z) :=

∑2k
i=1Ai(c)Z

i = 1 + 2Z + 2Z2 + 2Z3 + Z4,
for any codeword c ∈ C(f

(1)
2k ,+1).

In fact, the code C(f
(1)
2k ,−1) is also distance-invariant (codewords are sorted

by weight below) and has an identical distance enumerator.

{±1}2k ⊃ C(f
(1)
2k ,−1) =


−1111, −1−111, 1−1−1−1,
111−1, −111−1, −1−1−11,

1−1−11,
11−1−1,

 .

Each codeword c ∈ C(f
(1)
2k ,−1) has 2 codewords at distance 1, 2, and 3; and 1

codeword at distance 0 and 4. These properties are no coincidence.
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Proposition 4. BSS(ε′) v0
f,g BSS(ε), for some ε, ε′ ∈ (0, 1/2), if and only if

(a) f = g, and (b) the distance enumerators for any codeword in C(f,+1) and
C(f,−1) are identical.

Therefore, if distance-invariant codes C(f,+1) and C(f,−1) have identical dis-
tance enumerator then f is homogeneous.

3 Preliminaries

We denote [n] as the set {1, 2, . . . n}. For two functions f, g : Ω → R, the equation
f = g means that f(x) = g(x) for every x ∈ Ω. We use X ,Y,U ,V, or Ω to
denote the sample spaces. We also use (X,Y ) to denote the joint distribution
over (X ,Y) with probability mass function π, and πx, πy to denote the marginal
probability distributions of X and Y , respectively. For x ∈ Xn, we represent
xi ∈ X as the i-th coordinate of x.
Statistical Distance. The statistical distance (total variation distance) be-
tween two distributions P and Q over a finite sample space Ω is defined as
SD (P,Q) = 1

2

∑
x∈Ω |P (x)−Q(x)|.

Norms. We use L2(Ω,µ) to denote the real inner product space of functions
f : Ω → R with inner product 〈f, g〉µ = Ex∼µ [f(x) · g(x)] . The p-norm of a
function f ∈ L2(Ω,µ) is defined as ‖f‖p := [Ex∼µ|f(x)|p]1/p .

3.1 Introductory Fourier Analysis over Boolean Hypercube

We recall some background in Fourier analysis that will be useful for our analysis
(see [46] for more details). Let f, g : {±1}n → R be two real-valued functions.
We define the inner product of two functions as following.

〈f, g〉 =
1

2n

∑
x∈{±1}n

f(x) · g(x) = E
x

[f(x) · g(x)]

A function is Boolean if its range is {±1}. For each S ⊆ [n], the character-
istic function χS(x) =

∏
i∈S xi is a linear function. The set of all χS forms

an orthonormal basis for the space of all real-valued functions on {±1}n. For
any S ⊆ [n], the Fourier coefficient of f at S is defined as f̂(S) = 〈f, χS〉.
Any function f can be uniquely expressed as f =

∑
S⊆[n] f̂(S)χS which is

called multi-linear Fourier expansion of f . The Fourier weight of f on a set
S ⊆ [n] is defined to be f̂(S)2, and the Fourier weight of f at degree k is
Wk[f ] :=

∑
S:|S|=k f̂(S)2. Similarly, the Fourier weight of f on all degrees ex-

cept k is W 6=k[f ] :=
∑
S:|S|6=k f̂(S)2 and the Fourier weight of f on all degrees

greater than k isW>k[f ] :=
∑
S:|S|>k f̂(S)2. Parseval’s Identity says that ‖f‖22 =∑

S⊆[n] f̂(S)2. In particular, if f is Boolean, it implies that
∑
S⊆[n] f̂(S)2 = 1.

Next, we summarize the basic Fourier analysis of Boolean function with
restriction on the sub-cubes. Let J and J̄ be a partition of the set [n]. Let
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fJ|z : {±1}J → R denote the restriction of f to J when the coordinates in J̄

are fixed to z ∈ {±1}|J̄|. Let f̂J|z(S) be the Fourier coefficient of the function
fJ|z corresponding to the set S ⊆ J . Then, when we assume that z ∈ {±1}|J̄| is
chosen uniformly at random, we have

E
z
[f̂J|z(S)] = f̂(S) (1)

E
z
[f̂J|z(S)2] =

∑
T⊆J̄

f̂(S ∪ T )2 (2)

For any y ∈ {±1, 0}n, we define Jy := {i ∈ [n] : yi = 0}, J̄y := [n] \ Jy, and we
also define zy as the concatenation of all non-zero symbols of y. For example, if
y = (1, 0,−1, 0), then Jy = {2, 4}, J̄y = {1, 3} and zy = (1,−1).
Degree of a Function. The degree of a function f : {±1}n → R is the degree
of its multilinear expansion, i.e., max{|S| : f̂(S) 6= 0}.
Homogeneous Functions. A function f : {±1}n → R is k-homogeneous if
every term in the multi-linear expansion of f has degree k.
Junta Functions. A function f : {±1}n → R is d-junta if the output of the
function f depends on at most d inputs, where d is usually a constant indepen-
dent of n.
Linear Functions. A function f is linear if f = ±χS for some S ⊆ [n].

3.2 Noise and Markov Operators

Noise Operator. Let ρ ∈ [0, 1] be the parameter determining the noise. For
each fixed bit string x ∈ {±1}n, we write y $←− Nρ(x) to denote that the random
string y is drawn as follows: for each i ∈ [n], independently, yi is equal to xi
with probability ρ and it is chosen uniformly at random with probability 1− ρ.
The noise operator with parameter ρ ∈ [0, 1] is the linear operator Tρ that takes
as input a function f : {±1}n → R and outputs the function Tρf : {±1}n → R
defined as Tρf(x) = Ey∼Nρ(x)[f(y)].

Markov Operator [39]. Let (X,Y ) be a finite distribution over (X ,Y) with
probability distribution π. The Markov operator associated with this distribu-
tion, denoted by T, maps a function g ∈ L2(Y, πy) to a function Tg ∈ L2(X , πx)
by (Tg)(x) := E[g(Y ) | X = x], where (X,Y ) is distributed according to π. Fur-
thermore, we define the adjoint operator of T, denoted as T, maps a function
f ∈ L2(X , πx) to a function Tf ∈ L2(Y, πy) by (Tf)(y) = E[f(X) | Y = y].

Example 1. For BSS(ε), both marginal distributions πx and πy are the uniform
distribution over {±1}. Both the Markov operator T and its adjoint T associated
with BSS(ε) are identical to the noise operator Tρ, where ρ = 1− 2ε.

Example 2. For BES(ε), the marginal distribution πx is the uniform distribution
over {±1}, and πy satisfies πy(+1) = πy(−1) = (1−ε)/2 and πy(0) = ε. For any
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functions f ∈ L2({±1}, πx) and g ∈ L2({±1, 0}, πy), the Markov operator and
its adjoint associated with BES(ε) are as follows.

(Tg)(x) = (1− ε) · g(x) + ε · g(0) for every x ∈ {±1}

(Tf)(y) =

{
f(y) if y ∈ {±1}
1/2 · f(1) + 1/2 · f(−1) if y = 0

3.3 Imported Theorems

This section present results that are useful for our proofs. We use the following
version of Kindler-Safra junta theorem (Theorem 1.1 in [19]).

Imported Theorem 1 (Kindler-Safra Junta Theorem [31, 32]) Fix d >
0. There exists ε0 = ε0(d) and constant C such that for every ε < ε0, if
f : {±1}n → {±1} satisfies W>d[f ] = ε then there exists a Cd-junta and de-

gree d function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 (ε+ Cdε5/4).

This theorem says that any Boolean function whose Fourier spectrum is concen-
trated on low degree multi-linear terms is close to a low degree Boolean Junta.

Lemma 1 (Exercise 1.11 Chapter 1 [46]). Suppose that f : {±1}n → {±1}
has degree d > 1. Then, for every S ⊆ [n], the Fourier coefficient f̂(S) is an
integer multiple of 2/2d.

This lemma states that a bounded-degree function’s spectrum is coarse-grained.

4 Technical Overview: BSS from BES Samples

We outline the proof of Theorem 2 below.

Infeasibility Outline. Consider a randomized SNIS BSS(ε′) vνf,g BES(ε)⊗n,
where ε ∈ (0, 1) and ε′ ∈ (0, 1/2). Using Proposition 1 (the derandomization
result for feasibility results), we can, without loss of generality, assume that f
and g are deterministic functions. Therefore, we have f : {±1}n → {±1} and
g : {±1, 0}n → {±1}. Define ρ = (1− ε) and ρ′ = (1− 2ε′).

Step 1: Algebraization of security. The simulation-based definition of SNIS of
BSS from BES samples can be algebraized as follows.

Claim 1 (BSS-BES Algebraization of Security) For any ε ∈ (0, 1) and ε′ ∈
(0, 1/2), the following statements hold.

1. If BSS(ε′) vνf,g BES(ε)
⊗n, then E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − ρ′g∥∥
1
6 4ν, and

‖Tg − ρ′f‖1 6 4ν.
2. If E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − ρ′g∥∥
1
6 ν, and ‖Tg − ρ′f‖1 6 ν, then BSS(ε′) v2ν

f,g

BES(ε)
⊗n.
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Recall that T and T are the Markov and the adjoint Markov operators associated
with the BES⊗n joint distribution. This claim shows the qualitative equivalence
of the simulation-based security definition and the algebraized definition (they
incur only a multiplicative constant loss in insecurity during interconversion).
Furthermore, this claim preserves perfect security.

Step 2: Approximate eigenvector problem. Let us focus on the reduction function
f : {±1}n → {±1}. Composing the two constraints (a)

∥∥Tf − ρ′g∥∥
1
6 4ν, and

(b) ‖Tg − ρ′f‖1 6 4ν, we get that
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν. This property is an

eigenvector problem for the TT = Tρ operator.

Claim 2 (“Noisy Close-to-Scaling” Constraint) If BSS(ε′) vνf,g BES(ε)
⊗n,

then it holds that
∥∥∥TTf − ρ′2f∥∥∥

1
=
∥∥∥Tρf − ρ′2f∥∥∥

1
6 8ν.

Step 3: Homogeneous property. Recall that Tρ operator scales f̂(S) proportional
to ρ|S|. If ρ′2 6∈ {ρ, ρ2, ρ3, . . . }, then Tρf cannot be close to ρ′2f . In this case,
when f is Boolean, there shall always be a constant gap between Tρf and ρ′2f .
That is, ν is at least a constant. The proof is done.

On the other hand, suppose ρ′2 = ρk, for some k ∈ N. In this case, any weight
on f̂(S) such that |S| 6= k contributes to the gap between Tρf and ρ′2f . Conse-
quently, most of the Fourier-weight of f must be on the degree-k (multi-)linear
terms. The following claim formalizes this argument.

Claim 3 (Properties of Reduction Functions) Suppose
∥∥Tρf − ρkf∥∥1

6 δ,
then there exists D = D(k) such that the following statements hold.

1. The function f is 2δ
(1−ρ)ρ2k -close to k-homogeneous.

2. There exists a Boolean k-homogeneous D-junta function f̃ : {±1}n → {±1}
such that

∥∥∥f − f̃∥∥∥2

2
6 σ +Dσ5/4, where σ = 2

(1−ρ)2ρ2k · δ.

The result that (the Boolean) f is close to a Boolean junta function is a conse-
quence of Kindler-Safra junta theorem [31, 32] (refer to Imported Theorem 1)
and this property of f shall be crucial for our strong statistical-to-perfect trans-
formation. Due to the qualitative equivalence of simulation-based and algebraic
definition of security, if f, g witness a secure SNIS with ν insecurity, then f̃ , g wit-
ness a secure SNIS with comparable insecurity (say, poly(ν)-insecurity). Hence-
forth, we shall use the k-homogeneous D-junta (Boolean) reduction function f̃
instead of the reduction f . The proof of the entire argument presented in this
step relies on Theorem 8 and Theorem 9.

Step 4: Infeasibility. This step is the continuation of the case that ρ′2 = ρk,
for k ∈ N. In this step, we shall use the properties of the reduction func-
tion g : {±1, 0}n → {±1} and security to conclude that the reduction must
be constant-insecure.
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Theorem 7 (Insecurity Lower Bound). Let T be the adjoint Markov opera-
tor associated with the joint distribution BES(ε)

⊗n. Suppose h : {±1}n → {±1}
is a Boolean k-homogeneous D-junta function, and g : {±1, 0}n → {±1} be any
arbitrary function. Then

∥∥Th− ρ′g∥∥
1
> ρ′ ·min

((
1−ε

2

)D
, εD

)
.

Observe that without the junta property of h, we would not have obtained a
constant lower bound to the insecurity. Section 4.2 proves this theorem.

4.1 Our Technical Results

This section presents our technical results that are crucial to the proofs of the
feasibility and rate results (for not only SNIS of BSS from BES but also SNIS of
BES from BES and BSS from BSS). The following theorem basically solves the
“approximate eigenvector problem”. Intuitively, it says that if the noisy version
of a Boolean function is sufficiently-close to a scaling of that function, then (1)
the scaling factor must be an eigenvalue of the noise operator and (2) the Fourier
spectrum of that function is concentrated on some particular degree, i.e., it is
close to a homogeneous (not necessarily Boolean) function.

Theorem 8 (Constant Insecurity or Close to Homogeneous). Fix pa-
rameters ρ, ρ′ ∈ (0, 1). Let f : {±1}n → {±1} be a Boolean function, and let
δ = ‖Tρf − ρ′f‖1. Then, the following statement hold.

1. If ρt+1 < ρ′ < ρt for some t ∈ [n], then δ > 1
2 min((ρ′ − ρt)2, (ρ′ − ρt+1)2).

2. If ρ′ = ρk for some k ∈ [n], then Wk[f ] > 1− 2
(1−ρ)2ρ′2 · δ.

Proof. Since |(Tρf)(x)| 6 1 and f(x) ∈ {±1} for every x, we have

|(Tρf)(x)− ρ′ · f(x)| 6 1 + ρ′ 6 2 for every x.

This implies that

‖(Tρf)(x)− ρ′f‖22 = E
x

[(Tρf)(x)− ρ′ · f(x)]
2
6 2E

x
|(Tρf)(x)− ρ′ · f(x)| 6 2δ.

Case 1: If ρt+1 < ρ′ < ρt for some t ∈ [n], then δ = ‖(Tρf)(x)− ρ′f‖1 is
bounded from below by

1

2
‖(Tρf)(x)− ρ′f‖22 =

1

2

∑
S⊆[n]

(ρ|S| − ρ′)2f̂(S)2 >
1

2
min((ρ′ − ρt)2, (ρ′ − ρt+1)2).

Case 2: ρ′ = ρk for some k ∈ N. Observe that
∣∣ρ|S| − ρ′∣∣ > ∣∣ρk+1 − ρk

∣∣ for any
|S| 6= k. Therefore, we have∑
|S|6=k

(ρk+1 − ρk)2f̂(S)2 6
∑
|S|6=k

(ρ|S| − ρk)2f̂(S)2 =
∥∥(Tρf)(x)− ρkf

∥∥2

2
6 2δ.

This implies that W 6=k[f ] =
∑
S : |S|6=k f̂(S)2 6 2δ

ρ2k(1−ρ)2 , as desired.
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Next, we show that if a noisy version of a Boolean function is close to that
function scaled by an eigenvalue of the noise operator, then the function is close
to a homogeneous junta Boolean function.

Theorem 9 (Close to Homogeneous and Junta). Let ρ ∈ (0, 1) and k ∈ N.
There exist constants D = D(k) > 0, δ0 = δ0(ρ, k) > 0 such that the fol-
lowing statement holds. For any δ < δ0, if the function f : {±1}n → {±1}
satisfies

∥∥Tρf − ρkf∥∥1
= δ, then there exists a k-homogeneous D-junta function

f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 σ +Dσ5/4, where σ = 2

(1−ρ)2ρ2k · δ.

We use the Kindler-Safra junta theorem (Imported Theorem 1) and the following
claim to prove this theorem.

Claim 4 Let f, f̃ : {±1}n → {±1} be two Boolean functions. Suppose Wk[f ] >

1− δ and
∥∥∥f − f̃∥∥∥

2
6 γ. Then it holds that Wk[f̃ ] > 1− δ − 2γ.

Basically, the claim tells us that if a Boolean function f̃ is close to another
Boolean function that is also close to a homogeneous (not necessarily Boolean)
function, then f̃ is also close to a homogeneous function.

Proof (of Theorem 9). Applying Theorem 8 for the reduction function f satisfy-
ing
∥∥Tρf − ρkf∥∥1

6 δ yieldsW 6=k[f ] = 1−Wk[f ] 6 2
(1−ρ)2ρ2k ·δ. Let ε0 = ε0(k) be

the constant achieved by applying Imported Theorem 1. Let δ1 = (1−ρ)2ρ2k
2 · ε0.

Note that δ1 depends only on k and δ1 6 ε0. This implies that, for any δ < δ1, we
have W 6=k[f ] 6 ε0. Invoking Imported Theorem 1, there exists a Ck-junta and

degree k function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 σ + Ckσ5/4, where

σ = 2
(1−ρ)2ρ2k · δ. Next, we show that f̃ is k-homogeneous, i.e., Wk[f̃ ] = 1. By

Claim 4, we have Wk[f̃ ] > 1−σ−2
√
σ + Ckσ5/4. We choose δ2 to be a constant

such that σ + 2
√
σ + Ckσ5/4 < 1

22(k−1) for every δ < δ2. Note that δ2 depends
only on ρ and k. If Wk[f̃ ] 6= 1, it follows from Lemma 1 that W=k[f̃ ] is far from
1, in other words, Wk[f̃ ] 6 1 − 1/22(k−1) < 1 − σ − 2

√
σ + Ckσ5/4, which is a

contradiction. So it must be the case that Wk[f̃ ] = 1 when δ 6 δ2. Choosing
δ0 = min(δ1, δ2) completes the proof.

Finally, the following result says that two low-degree Boolean functions can-
not be too close. We use the granularity property of low-degree Boolean function
(see Lemma 1) to prove this lemma.

Lemma 2 (Low-degree Boolean Functions are Far). If h, ` : {±1}n →
{±1} are distinct Boolean functions of degree (at most) d, then ‖h− `‖2 > 2/2d.

Proof. Since h and ` are two distinct functions, there exists a S∗ ⊆ [n] such that
ĥ(S∗) 6= ̂̀(S∗). Invoking Lemma 1 for low degree functions h and ` yields that
the Fourier coefficients of h and ` are integer multiple of 1/2d−1. This implies
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that
∣∣∣ĥ(S∗)− ̂̀(S∗)∣∣∣ > 1/2d−1. Therefore, we have

‖h− `‖22 =
∑
S⊆[n]

(ĥ(S)− ̂̀(S))2 > (ĥ(S∗)− ̂̀(S∗))2 > 1/22(d−1),

which completes the proof.

As a consequence, we have the following corollary.

Corollary 1. Fix noise parameter ρ ∈ (0, 1). Suppose h, ` : {±1}n → {±1} are
two distinct d-homogeneous Boolean functions. Then,

∥∥Tρh− ρd`∥∥2
> 2ρd/2d.

4.2 Proof of Theorem 7

First, we state some claims that are needed for the proof of Theorem 7. Recall
that Jy := {i ∈ [n] : yi = 0} and zy denotes the concatenation of all non-zero
symbols of y as defined in Section 3.2.

Claim 5 (Connection with Restriction of Functions) Let T be the adjoint
Markov operator of BES(ε)

⊗n, and let f : {±1}n → {±1}. Then, for every
y ∈ {±1, 0}n, it holds that (Tf)(y) = f̂Jy|zy (∅).

Proof. Since the distribution of (X,Y ) is BES(ε), for any i ∈ [n] that yi = 1,
Pr[Xi = 1|Yi = yi = 1] = 1 and for any i ∈ [n] that yi = −1, Pr[Xi = −1|Yi =
yi = −1] = 1; while for any i ∈ [n] that yi = 0, Pr[Xi = 1|Yi = yi = 0] = Pr[Xi =
−1|Yi = yi = 0] = 1/2. This implies that conditioned on non-zero symbols of
y, i.e., zy, the conditional distribution over the corresponding symbols of x is
deterministic while over the rest of symbols is uniform. Therefore, we have

(Tf)(y) = E[f(X)|Y = y] (Definition of adjoint operator)
= E[f(X)|Jy, zy] (Jy, zy implies y)
= E[fJy|zy (X)] (Definition of restriction function)

= f̂Jy|zy (∅).

Claim 6 (Fourier Property of Homogeneous Functions) Let f be a Boolean
k-homogeneous function. Then, for every y ∈ {±1, 0}n satisfying

∣∣J̄y∣∣ < k, it
holds that f̂Jy|zy (∅) = 0.

Proof. First, note that f̂(S) = 0 for every |S| 6= k. This together with equation
(2) implies that, for every y ∈ {±1, 0}n satisfying

∣∣J̄y∣∣ < k,

E
zy

[
f̂Jy|zy (∅)2

]
=
∑
T⊆J̄y

f̂(T )2 = 0.

Therefore, it must hold that f̂Jy|zy (∅) = 0 as desired.
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Now, we are ready to prove the main theorem.

Proof (of Theorem 7). We say that a node y ∈ {±1, 0}n is “bad” if it incurs
a large simulation error, in other words,

∣∣(Th)(y∗)− ρ′g(y∗)
∣∣ is large. First, we

show that there exists a “bad” y∗ ∈ {±1, 0}n. Let y∗ ∈ {±1, 0}n be such that∣∣J̄y∗ ∣∣ < k. It follows from Claim 5 and Claim 6 that (Th)(y∗) = ĥJy∗ |zy∗ (∅) =

0. Now, since the g(y∗) ∈ {±1}, we have
∣∣(Th)(y∗)− ρ′g(y∗)

∣∣ = ρ′. Next, we
construct a large set S(y∗) such that every y ∈ S(y∗) is bad. Let I denote the
set of the D coordinates that (might) have influence on the output of h. Since h
is a D-junta function, every coordinate in Ī = [n]\ I does not have any influence
on the output of the function. We construct a set of bad nodes as follow.

S(y∗) := {y ∈ {±1, 0}n : yI = y∗I}

Here, yI denotes the concatenation of all yi where i ∈ I. It follows from the junta
property of h that (Th)(y) = (Th)(y∗) = (TIh)(yI) for every y ∈ S(y∗), where
TI denotes the adjoint Markov operator associated with BES(ε)

⊗|I|. So it holds
that

∣∣(Th)(y)− ρ′g(y)
∣∣ = ρ′ for every y ∈ S(y∗). Note that |S(y∗)| = 3n−D.

Thus, we have∥∥Th− ρ′g∥∥
1

= E
y

∣∣(Th)(y)− ρ′g(y)
∣∣ (by definition)

>
∑

y∈S(y∗)

Pr[Y = y] ·
∣∣(Th)(y)− ρ′g(y)

∣∣
=

∑
y∈S(y∗)

Pr[Y = y] · ρ′ (identity transformation)

= ρ′ · Pr[YI = y∗I ] (identity transformation)

= ρ′ ·
(

1− ε
2

)D−t
· εt (t is the number of zeros in y∗I )

> ρ′ ·min

((
1− ε

2

)D
, εD

)
.

5 Technical Overview: BES from BES Samples

First, we outline the proof of Theorem 3 below, then Theorem 4.

Feasibility Outline. Consider a randomized SNIS BES(ε′) vνf,g BES(ε)⊗n,
where ε, ε′ ∈ (0, 1). Using Proposition 1, we can, without loss of generality,
assume that f and g are deterministic functions. Therefore, we have f : {±1}n →
{±1} and g : {±1, 0}n → {±1, 0}. Define ρ = (1− ε) and ρ′ = (1− ε′).

Step 1: Algebraization of security. We show that simulation-based SNIS defini-
tion is qualitatively equivalent to the algebraized definition of SNIS.

Claim 7 (BES-BES Algebraization of Security) For any ε, ε′ ∈ (0, 1), the
following statements hold.



Secure Non-interactive Simulation: Feasibility & Rate 21

1. If BES(ε′) vνf,g BES(ε)
⊗n, then E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − g∥∥
1
6 4ν, and

‖Tg − ρ′f‖1 6 4ν.
2. If E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − g∥∥
1
6 ν, and ‖Tg − ρ′f‖1 6 ν, then BES(ε′) v2ν

f,g

BES(ε)
⊗n.

Step 2: Approximate eigenvector problem. Focusing on the reduction function
and the guarantees (a)

∥∥Tf − g∥∥
1
6 4ν, and (b) ‖Tg − ρ′f‖1 6 4ν, we obtain

the following result.

Claim 8 (“Noisy Close-to-Scaling” Constraint) If BES(ε′) vνf,g BES(ε)
⊗n,

then it holds that
∥∥TTf − ρ′f∥∥

1
= ‖Tρf − ρ′f‖1 6 8ν.

Step 3: Homogeneous property. There are two cases to consider. If ρ′ 6∈ {ρ, ρ2, . . . },
then the reduction is constant insecure (and the proof is done). However, if
ρ′ = ρk, for some k ∈ N, then the reduction function must be close to a k-
homogeneous D-junta Boolean function f∗ (using Claim 3). We remark that
if security is perfect then f is identical to f∗. Intuitively, the set of all possible
junta functions has constant size and f can be error-corrected to the unique
closest f∗.

Step 4: Only linear functions. Now it remains to prove that f∗ is linear.

Theorem 10 (Must be Linear). Let T be the adjoint Markov operator as-
sociated with the joint distribution BES(ε)

⊗n. Suppose h : {±1}n → {±1} is a
Boolean k-homogeneous D-junta function, and g : {±1, 0}n → {±1, 0} be any ar-
bitrary function. There is a constant c = c(ε,D, k) such that if

∥∥Th− g∥∥
1
6 c,

then h must be a linear function.

Section 5.1 proves this theorem. The proof proceeds by considering an appro-
priate martingale of the Fourier-coefficients of the restrictions of the reduction
function.

It is instructive to compare this theorem with Theorem 7, where we proved
that any reduction is constant-insecure. In the theorem here, our objective is
to characterize h such that

∥∥Th− g∥∥
1
is small. In Theorem 7, the constraint

was
∥∥Th− ρ′g∥∥

1
instead, where ρ′ ∈ (0, 1). This additional ρ′ factor made every

reduction function constant-insecure.
Once we conclude that f is close to a k-linear f∗, we can argue that g is

also close to g∗ such that f∗, g∗ witness a perfect SNIS of BES(ε′) from BES(ε)
samples. The following claim formalizes this reasoning.

Claim 9 Suppose BES(ε′) vνf,g BES(ε)
⊗n, where (1 − ε′) = (1 − ε)k for some

k ∈ N. Suppose also that h : {±1}n → {±1} is a k-linear character χS for
some S ⊆ [n] and ‖f − h‖1 6 δ. Let ` : {±1, 0}n → {±1, 0}n be defined as
`(y) =

∏
i∈S yi. Then, it holds that BES(ε′) v0

h,` BES(ε)
⊗n and ‖g − `‖1 6 4ν+δ.

Finally, we emphasize that if ν = 0, then f and g are identical to f∗ and g∗.
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Outline: Rate of Statistical SNIS. The discussion below is the outline for
the proof of Theorem 4. Fix erasure probabilities ε, ε′ ∈ (0, 1). Consider a ran-
domized SNIS BES(ε′)⊗m vν~f,~g BES(ε)⊗n. We require a sample-preserving de-
randomization (for statistical SNIS) to prove the rate result. However, we cannot
directly derandomize this SNIS using Theorem 1 (refer to the discussion follow-
ing Theorem 1). Consequently, we have to follow a different strategy.

Let f (i), g(i) represent the i-th component of the reductions ~f,~g, where
i ∈ {1, . . . ,m}. Let f (i)‖f (j), for 1 6 i < j 6 m, represent the pair of components
f (i) and f (j). Similarly, define g(i)‖g(j). Observe that BES(ε′)⊗2 vν

f(i)‖f(j),g(i)‖g(j)

BES(ε)⊗n (by projecting on the i-th and j-th output samples). We can deran-
domize this construction using Theorem 1 (our sample-preserving derandomiza-
tion for statistical SNIS). So, we get deterministic reduction function f̃ (i)‖f̃ (j)

that is close to f (i)‖f (j) and deterministic g̃(i)‖g̃(j) that is close to g(i)‖g(j) such
that BES(ε′)⊗2 vν′

f̃(i)‖f̃(j),g̃(i)‖g̃(j)
BES(ε)⊗n, where ν′ = Θ

(
ν1/4

)
.

We show that there are deterministic functions f∗(i) and f∗(j) such that f∗(i)

is close to f̃ (i) (which is in turn close to f (i)) and f∗(j) is close to f̃ (j) (which is
in turn close to f (j)). Furthermore, there are reduction functions g∗(i) and g∗(j)

such that BES(ε′)⊗2 v0
f∗(i)‖f∗(j),g∗(i)‖g∗(j) BES(ε)⊗n. We emphasize that f∗(i) is

independent of the choice of j ∈ {1, . . . ,m}.
At this point, we can conclude that f∗(i) and f∗(j) are both k-linear (because

reductions for perfect BES-from-BES SNIS are linear). We can use a linear con-
struction to obtain one sample of BES(ε′′) from BES(ε′)⊗2 with perfect security,
where (1− ε′′) = (1− ε′)2. We compose these two constructions to obtain a per-
fectly secure SNIS of BES(ε′′) from BES(ε)n, where (1−ε′′) = (1−ε′)2 = (1−ε)2k.
So, the reduction of the composed SNIS must be 2k-linear; i.e., f∗(i) · f∗(j) is
2k-linear. We conclude that f∗(i) and f∗(j) are k-linear such that they do not
share any input variables.

So, we have f∗(1), . . . , f∗(m) : {±1}n → {±1} such that each function is k-
linear with pairwise disjoint inputs. Therefore, mk 6 n. This entire reasoning
describes the proof of Claim 10.

Claim 10 Let ε, ε′ ∈ (0, 1) be erasure probabilities satisfying (1− ε′) = (1− ε)k,
for some k ∈ N. There is a constant c = c(ε, ε′) such that the following holds.
Suppose BES(ε′)

⊗m vν~f,~g BES(ε)
⊗n for some ν 6 c. For each pair 1 6 i < j 6 m,

let f̃ (i)
ij ‖f̃

(j)
ij and g̃(i)

ij ‖g̃
(j)
ij be the deterministic functions obtained by derandom-

izing the SNIS of BES(ε′)
⊗2 vν

f(i)‖f(j),g(i)‖g(j) BES(ε)
⊗n using Theorem 1. Let

f∗ij
(i) and f∗ij

(j) be k-linear Boolean functions that are close to f̃
(i)
ij and f̃

(i)
ij ,

respectively. It holds that
1. f∗ij

(i) = f∗ij′
(i) for any distinct triple i, j, j′ ∈ {1, 2, . . . ,m}. For any j 6= i,

represent f∗(i) := f∗ij
(i) .

2. There exists a unique g∗ = (g∗(1), g∗(2), . . . , g∗(m)) such that, for any 1 6 i <
j 6 m,

BES(ε′)
⊗2 v0

f∗(i)‖f∗(j), g∗(i)‖g∗(j) BES(ε)
⊗n
.
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3. Furthermore, for distinct i, j ∈ {1, . . . ,m}, the input support of f∗(i) and the
support of f∗(j) are disjoint. Consequently, mk 6 n.

5.1 Proof of Theorem 10

The following claim is crucial to the proof of the theorem.

Claim 11 Let h : {±1}n → {±1} be a k-homogeneous Boolean function such
that

∣∣∣ĥJ|z(∅)∣∣∣ = 1 for some J ⊆ [n] satisfying
∣∣J̄∣∣ = k, and for some z ∈ {±1}|J̄|.

Then h is the linear character function χJ̄ or −χJ̄ .

Remark 4. This claim still holds even if we replace the k-homogeneous constraint
by W<k[h] = 0.

Intuitively, it says that if there is a size-k restriction of a k-homogeneous Boolean
function f such that the restriction function is the constant function 1, then the
function f must be a linear function. We provide proof using the Martingale
structure of restriction function (implied by equations 1) as follows.

0

0 0

0 0 0 0

−1 +1 +1 −1 +1 −1 −1 +1

yπ(1) = −1 yπ(1) = +1

−1 +1 −1 +1

−1 +1 −1 +1 −1 +1 −1 +1

Fig. 3. The representation of a binary tree Tπ of depth n with respect to a permutation
π, and k = 3. Any edge between depth d and depth d + 1 denotes yπ(d) ∈ {±1}. We
assign the value α∅ = ĥ(∅) = E[h(X)] to the root and the value αv = ĥJv|v(∅) ∈ [−1, 1]
to the node v. The value of any node is the average of the values of its children. The
constraint W<k[h] = 0 implies that the value of any node at depth < k is 0. If some
node at depth k has a non-zero value then h must be χS or −χS where S = {π(i)}ki=1.

Proof. First, let us introduce some notation. Corresponding to each permutation
π : [n]→ [n], we define a binary tree Tπ of depth n (refer to Figure 3) such that
each edge between a node and its left child is labeled by −1 and other edges are
labeled by 1. This allows us to address each node v at depth t ∈ [n] with a string
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v = v1v2 . . . vt of length |v| = t which is the string of labels assigned to the edges
of the path from root to that node. We assign to a node v = v1v2 . . . vt, the value
αv := ĥJv|z(∅) where z = v and Jv = [n] \ J̄v where J̄v = {π(1), π(2), . . . , π(t)}.

Martingale Property. According to Claim 5, αv = E[h(X)|Y = y] where y is
the unique string for which zy = v, Jy = Jv i.e. yπ(1) = v1, . . . , yπ(t) = vt and
yj = 0 whenever j 6∈ {π(1), . . . , π(t)} (Jy, zy are defined in Claim 5). Therefore,
αv = αu+αw

2 whenever nodes u,w are children of v in the tree Tπ, i.e. the values
αv (for all v) assigned to the nodes of Tπ forms a Martingale.

Since W<k[h] = 0, for each T ⊆ [n] of size |T | < k, ĥ(T ) = 0. Therefore, it
follows from (2) that for each J̄1 of size k−1, and for any π that J̄1 = {π(j)}k−1

j=1

the following holds

E
v∈Tπ :|v|=k−1

[α2
v] = E

v
[ĥJ1|v(∅)

2] =
∑
T⊆J̄1

ĥ(T )2 = 0

=⇒ αv = 0 ∀v ∈ Tπ : |v| 6 k − 1 (Due to Martingale property)

Without of loss of generality, we assume that ĥJ|z(∅) = 1. This means that
for some π and some node u of length |u| = k, we have αu = 1. Let v represent
the parent of u in Tπ, then since |v| = k−1, αv = 0, and by applying Martingale
property, αw = −1 where w is the sibling of v. Similarly, we can show that the
sibling of w in any other tree is 1. By applying this argument iteratively, one
can argue that for any permutation π such that J̄ = {π(i)}ki=1, any v ∈ Tπ that
|v| = k, we have α2

v = 1. Therefore, it follows from (2) that:

1 = E
v∈Tπ :|v|=k

[α2
v] = E

v
[ĥJ|v(∅)2] =

∑
T⊆J̄

ĥ(T )2 = ĥ(J̄)2 +
∑
T⊆J̄
|T |<k

ĥ(T )2 = ĥ(J̄)2

which implies that ĥ(J̄) = ±1. So it must be the case that h = χJ̄ or h = −χJ̄ .

Now we are ready to prove the main theorem.

Proof (of Theorem 10). It follows from Claim 5 and Claim 6 that (Th)(y) =

ĥJy|zy (∅) = 0 for any y ∈ {±1, 0}n such that
∣∣J̄y∣∣ < k. Let y∗ be the fil-

tration corresponding to the largest Fourier coefficient in level k, i.e., y∗ =

argmax
y : |J̄y|=k

∣∣∣ĥJy|zy (∅)
∣∣∣. First, observe that ĥJy∗ |zy∗ (∅) must be non-zero because oth-

erwise h is the constant function 0.
Next, we claim that

∣∣∣ĥJy∗ |zy∗ (∅)
∣∣∣ = 1 if c is sufficiently small, which is chosen

later. For the sake of contradiction, suppose it is not. We will show that∣∣(Th)(y∗)− g(y∗)
∣∣ =

∣∣∣ĥJy∗ |zy∗ (∅)− g(y∗)
∣∣∣ > 1/2k−1. (3)

Observe that the Boolean function hJy|zy has degree at most k since it is a
restriction of a degree-k Boolean function. According to Lemma 1, ĥJy∗ |zy∗ (∅)
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is an integer multiple of 1/2k−1. Since it is not equal to 0 or ±1, it holds that
1/2k−1 6

∣∣∣ĥJy∗ |zy∗ (∅)
∣∣∣ 6 1− 1/2k−1. Note that g(y∗) ∈ {±1, 0}. Therefore, the

inequality (3) must hold. Using the same idea as in the proof of Theorem 7
yields ∥∥Th− g∥∥

1
>

1

2k−1
·min

((
1− ε

2

)D
, εD

)
.

Now, choose c < 1
2k−1 ·min

((
1−ε

2

)D
, εD

)
, then we have reach a contradiction.

Thus, it must be the case that
∣∣∣ĥJy∗ |zy∗ (∅)

∣∣∣ = 1. Applying Claim 11 for the
k-homogeneous Boolean function h implies that h is a linear function.

5.2 Proof of the Rate Result

This section provides a proof of Theorem 4. It suffices to prove Claim 10. The
following results are needed for the proof.

Claim 12 Let f (1), f (2), h(1), h(2) : {±1}n → {±1} be Boolean functions such
that

∥∥f (1) − h(1)
∥∥

1
6 δ1 and

∥∥f (2) − h(2)
∥∥

1
6 δ2. Then, it holds that∥∥∥f (1) · f (2) − h(1) · h(2)
∥∥∥

1
6 δ1 + δ2.

Proposition 5. BES(ε′) v0
f,g BES(ε)⊗n if and only if (1) (1 − ε′) = (1 − ε)k,

for some k ∈ N, (2) f is a linear Boolean function σ · χS for some size-k subset
S of [n], and (3) g(y) = σ ·

∏
i∈S yi, where σ ∈ {±1}.

Proof (of Claim 10). The notation f ≈ f̃ means that f and f̃ are close in which
the closeness is always poly(ν). The notation poly(ν) is always means that the
constant in the polynomial is zero and all other coefficients depend only on
ε, ε′. Let 1 6 i < j 6 m. Recall that f̃ (i)

ij ‖f̃
(j)
ij and g̃

(i)
ij ‖g̃

(j)
ij is the determinis-

tic functions obtained by derandomizing the SNIS BES(ε′)
⊗2 vν

f(i)‖f(j),g(i)‖g(j)

BES(ε)
⊗n. By Theorem 1, f̃ (i)

ij is close to f (j) and f̃ (j)
ij is close to f (j). By the fea-

sibility result, f̃ (i)
ij is close to some k-linear function f∗ij

(i). The relation between
these function can be summarized as f∗ij

(i) ≈ f̃ (i)
ij ≈ f (i).

Next, for any j′ 6= j, a similar argument also yields f∗ij′
(i) ≈ f̃

(i)
ij′ ≈ f (i). By

a simple application of triangle inequalities, it holds that f∗ij
(i) ≈ f∗ij′

(i). Now,
using the fact that both f∗ij

(i) and f∗ij′
(i) are k-linear functions, we can conclude

that they must be the same when ν is chosen sufficiently small because if they
are different they are constant far apart (the constant is at least 1). Therefore,
it holds that f∗ij

(i) = f∗ij′
(i) for every distinct triple i, j, j′ ∈ [m]. According to

Proposition 5, there is a unique g∗ij
(i) such that BES(ε′) v0

f∗ij
(i),g∗ij

(i) BES(ε)
⊗n.

By Claim 9, g∗ij
(i) is close to g̃

(i)
ij , which is also close to g(i). With a similar

argument, one conclude that g∗ij
(i) = g∗ij′

(i) for every distinct triple i, j, j′ ∈ [m].
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Represent f∗(i) := f∗ij
(i) and g∗(i) := g∗ij

(i) for any j 6= i. By sequential com-
position, we have BES(ε′′) vν

f̃
(i)
ij ·f̃

(j)
ij , g̃

(i)
ij ·g̃

(i)
ij

BES(ε)
⊗n where (1−ε′′) = (1−ε′)2 =

(1 − ε)2k. Note that f∗(i) ≈ f̃
(i)
ij and f∗(j) ≈ f̃

(j)
ij . Therefore, it follows from

Claim 12 that f∗(i) · f∗(j) ≈ f̃ (i)
ij · f̃

(j)
ij . Similarly, g∗(i) · g∗(j) ≈ g̃(i)

ij · g̃
(j)
ij . By tri-

angle inequality, we have BES(ε′′) vpoly(ν)

f∗(i)·f∗(j), g∗(i)·g∗(j) BES(ε)
⊗n
. This implies

that f∗(i) ·f∗(j) is poly(λ)(ν)-close to a 2k-homogeneous function. Next, we argue
that, in fact, BES(ε′′) v0

f∗(i)·f∗(j), g∗(i)·g∗(j) BES(ε)
⊗n
, and the input supports of

f∗(i) and f∗(j) are disjoint. For the sake of contradiction suppose that the input
supports of f∗(i) intersects the input supports of f∗(j). Then f∗(i) · f∗(j) is a
<2k-linear function that is a contradiction with the requirement that it is close
to a 2k-homogeneous function. Therefore, it must hold that the input supports
of f∗(i) and f∗(j) are disjoint for every distinct i, j. Note that the domain of
f∗(i) is still {±1}n for every i ∈ [m]. Consequently, we have mk 6 n.

6 Technical Overview: BSS from BSS Samples

We outline the proof of Theorem 5 and Theorem 6 below.

Feasibility Outline. Consider a randomized SNIS BSS(ε′) vνf,g BSS(ε)⊗n,
where ε, ε′ ∈ (0, 1). Using Proposition 1, we can, without loss of generality, as-
sume that f and g are deterministic functions. Therefore, we have f : {±1}n →
{±1} and g : {±1}n → {±1}. Define ρ = (1− 2ε) and ρ′ = (1− 2ε′).

Step 1: Algebraization of security. We show that simulation-based SNIS defini-
tion is qualitatively equivalent to the algebraized definition of SNIS.

Claim 13 (BSS-BSS Algebraization of Security) For any ε, ε′ ∈ (0, 1/2),
the following statements hold.

1. If BSS(ε′) vνf,g BSS(ε)
⊗n, then E[f ] 6 ν, E[g] 6 ν, ‖Tρf − ρ′g‖1 6 4ν, and

‖Tρg − ρ′f‖1 6 4ν.
2. If E[f ] 6 ν, E[g] 6 ν, ‖Tρf − ρ′g‖1 6 ν, and ‖Tρg − ρ′f‖1 6 ν, then

BSS(ε′) v2ν
f,g BSS(ε)

⊗n.

We remark that the Markov and the adjoint Markov operators associated with
BSS(ε)

⊗n are both identical to the noise operator Tρ.

Step 2: Approximate eigenvector problem. Focusing on the reduction function
and the guarantees (a)

∥∥Tf − g∥∥
1
6 4ν, and (b) ‖Tg − ρ′f‖1 6 4ν, we obtain

the following result.

Claim 14 (“Noisy Close-to-Scaling” Constraint) If BSS(ε′) vνf,g BSS(ε)
⊗n,

then it holds that
∥∥∥TρTρf − ρ′2f∥∥∥

1
=
∥∥∥Tρ2f − ρ′2f∥∥∥

1
6 8ν.
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Step 3: Homogeneous property. There are two cases to consider. If ρ′ 6∈ {ρ, ρ2, . . . },
then the reduction is constant insecure. However, if ρ′ = ρk, then the reduction
function must be close to a k-homogeneous D-junta Boolean function f∗ (using
Claim 3). Observe that when ν = 0, then f = g is a k-homogeneous function. In
fact, any k-homogeneous Boolean function f = g satisfies the algebraic security
definition of SNIS perfectly when ρ′ = ρk. Section 2.6 shows that such functions
are related to special types of distance-invariant codes. Once we conclude that
f is close to a k-homogeneous f∗, we can argue that g is also close to g∗ := f∗

and that f∗, g∗ witness a perfect SNIS of BSS(ε′) from BSS(ε) samples. The
following claim formalizes the argument.

Claim 15 Suppose BSS(ε′) vνf,g BSS(ε)
⊗n, where (1−2ε′) = (1−2ε)k for some

k ∈ N, and h : {±1}n → {±1} is a k-homogeneous Boolean function satisfying
‖f − h‖1 6 δ. Then, it holds that BSS(ε′) v0

h,h BSS(ε)
⊗n and ‖g − h‖1 6 4ν+δ.

Rate Outline. For reduction among BSS samples, we only prove a rate re-
sult for perfect SNIS. Consider a randomized SNIS BSS(ε′)⊗m v0

~f,~g
BSS(ε)⊗n,

where (1− 2ε′) = (1− 2ε)k and k ∈ N. By Proposition 2 (the sample-preserving
derandomization for perfect SNIS), we can assume, without loss of generality,
that ~f,~g are deterministic. For (1− 2ε′′) = (1− 2ε′)m, there is a (deterministic)
linear construction realizing BSS(ε′′) v0

f ′,g′ BSS(ε′)⊗m. By the sequential com-
position of these two SNIS, we get a new SNIS BSS(ε′′) v0 BSS(ε)⊗n, where
(1− 2ε′′) = (1− 2ε′)m = (1− 2ε)mk. The reduction functions of this new SNIS
must be mk-homogeneous; consequently, mk 6 n.
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