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Abstract. We construct, under standard hardness assumptions, the first non-
malleable commitments secure against quantum attacks. Our commitments are
statistically binding and satisfy the standard notion of non-malleability with re-
spect to commitment. We obtain a log?(λ)-round classical protocol, assuming the
existence of post-quantum one-way functions.
Previously, non-malleable commitments with quantum security were only known
against a restricted class of adversaries known as synchronizing adversaries. At
the heart of our results is a new general technique that allows to modularly
obtain non-malleable commitments from any extractable commitment protocol,
obliviously of the underlying extraction strategy (black-box or non-black-box)
or round complexity. The transformation may also be of interest in the classical
setting.

1 Introduction

Commitments are one of the most basic cryptographic primitives. They enable a sender
to commit to a string to be opened at a later stage. As long as the commitment is
not opened, it is hiding — efficient receivers learn nothing about the committed value.
Furthermore, the commitment is statistically binding—with overwhelming probability,
the commitment can be opened to a single, information-theoretically determined value
in the commitment phase. While these basic security guarantees go a long way in terms
of applications, they do not always suffice. In particular, they do not prevent a man-in-
the-middle adversary from receiving a commitment to a given value v from one party
and trying to send to another party a commitment to a related value, say v − 1 (without
knowing the committed value v at all).

Such attacks are called "mauling attacks" and in some settings could be devastating.
For instance, consider the scenario where a city opens a bidding process for the construc-
tion of a new city hall. Companies are instructed to commit to their proposed bid using
a commitment scheme, and these commitments are opened at the end of the bidding
period. If the scheme is "malleable", company A may manage to underbid company B,
by covertly mauling B’s commitment to create their own commitment to a lower bid.
More generally, ensuring independence of private values is vital in many applications of
commitments, such as coin tossing, federated learning, and collaborative computation
over private data.

In their seminal work, Dolev, Dwork and Naor introduced the concept of non-
malleable commitments to protect againstmauling attacks [DDN03]. They guarantee that
the value ṽ aman-in-the-middle adversary commits to is computationally independent of
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the value v in the commitment it receives (unless theman-in-the-middle simply “copies”,
by relaying messages between the honest sender and receiver it interacts with, in which
case ṽ = v). From its onset, the study of non-malleable cryptography has put stress on
achieving solutions without any reliance on trusted parties or any form of trusted setup,
and solutions that hold when honest parties may not even be aware of the existence of a
man-in-the-middle, and the way it manipulates the messages they send over time. The
latter is particularly important in applications where the man-in-the-middle acts "in the
dark". For instance, in the aforementioned example, company A may not be aware of
the competing company B.

Since their conception, non-malleable commitments have indeed proved to be a use-
ful and versatile building block for ensuring independence of values. They have been used
in coin-tossing protocols, secure multiparty computation protocols, non-malleable proof
systems (zero-knowledge, witness indistinguishability, multi-prover interactive proofs),
and more . Techniques developed for non-malleable commitments are also useful for
building non-malleable codes, non-malleable extractors (and two source extractors),
and non-malleable time-lock puzzles. The work of [DDN03] constructed the first non-
malleable commitments against classical adversaries based on one-way functions. Since
then, a plethora of constructions have been proposed achieving different, sometimes op-
timal, tradeoffs between round-complexity, efficiency, and underlying assumptions (c.f.
[Bar02, PR05a, PPV08, LPV09, PW10, Wee10, Goy11, GLOV12, COSV16, GPR16a,
GKS16, Khu17, KS17, LPS17, BL18, KK19, GR19, GKLW20]).

Non-Malleability Against Quantum Adversaries. In contrast to the comprehensive
understanding of non-malleability in the classical setting, our understanding of non-
malleability against quantum adversaries is very much lacking. The threat of quantum
attacks has prompted the development of post-quantum cryptography, and yet despite its
important role in cryptography, post-quantumnon-malleability has yet to catch up. In this
work, we construct, under standard assumptions, the first non-malleable commitments
with post-quantum security, namely, the hiding and non-malleability properties hold
even against efficient quantum adversaries (and binding continues to be information
theoretic).

Prior to our work, post-quantum non-malleable commitments were not known under
any assumption. Partial progress was made by Agrawal, Bartusek, Goyal, Khurana, and
Malavolta [ABG+20] who, assuming super-polynomial quantum hardness of Learning
With Errors, construct post-quantum non-malleable commitments against a restricted
class of adversaries known as synchronizing adversaries. A synchronizing adversary
is limited as follows: When acting as a man-in-the-middle between a sender and a
receiver, it is bound to synchronize its interactions with the honest parties; namely,
when it receives the i-th message from the sender, it immediately sends the i-th message
to the receiver and vice versa. Such synchronicity may often not exist for example
due to network’s asynchronicity, lack of synchronized clocks, or concurrent executions
where parties are unaware of the existence of other executions. Enforcing synchronizing
behaviour in general requires a trusted setup (like a broadcast channel) and coordination
among parties to enforce message ordering.

The gold standard of non-malleability (since its introduction in [DDN03]) requires
handling general, non-synchronizing adversaries, who can arbitrarily schedule messages
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in the two interactions (without awareness of the sender and receiver). In this work, for
the first time, we achieve this gold standard non-malleability in the post-quantum setting.
As we shall explain later on, the challenge stems from the fact that classical techniques
previously used to obtain non-malleability against non-synchronizing adversaries (e.g.,
as robust extraction [LP09], simulation extractability [PR05a, PR05b] and so on) do not
generally apply in the quantum setting. This is due to basic quantum phenomena such
as unclonability [WZ82] and state disturbance [FP96].
Our Results in More DetailWe construct statistically binding non-malleable commit-
ments against quantum non-synchronizing adversaries, assuming post-quantum one-way
functions. Our main result is a modular construction of post-quantum non-malleable
commitments from post-quantum extractable commitments. The latter is a statistically
binding commitment protocol that is extractable in the following sense: There exists
an efficient quantum extractor-simulator, which given the code of any quantum sender,
can simulate the arbitrary output of the sender up to, while extracting the committed
value. The construction, in fact, only requires ε-extractability, meaning that the extractor-
simulator obtains an additional simulation accuracy parameter 11/ε, and the simulation
only guarantees ε-indistinguishability

Theorem 1 (Informal). Assuming k-round post-quantum ε-extractable commitments,
there exist kO(1) · log? λ-round post-quantum non-malleable commitments, where λ is
the security parameter.

By default, when we say "post-quantum" we mean protocols that can be executed by
classical parties, but which are secure against quantum adversaries. In particular, starting
from a post-quantum classical ε-extractable commitment, we obtain a post-quantum
classical non-malleable commitment. Constant-round ε-extractable commitments were
constructed by Chia et al. [CCLY21] based on post-quantum one-way functions. Hence,
we get the following corollary.

Corollary 1. Assuming there exist post-quantumone-way functions, there existO(log? λ)-
round post-quantum non-malleable commitments.

2 Technical Overview

We now give an overview of the main ideas behind our construction. Following the
convention in the non-malleability literature, we refer to the interaction between Sen
andA as the left interaction/commitment, and that between Rec andA the right interac-
tion/commitment. Similarly, we refer to v, tg (and ṽ, t̃g) as the left (and right) committed
values or tag.

2.1 Understanding the Challenges

Before presenting our base commitments, we explain the main challenges that arise in
the quantum setting. First, we recall a basic approach toward proving non-malleability
in the classical setting via extraction. Here the basic idea is to provide a reduction that
given a MIM adversary A, can efficiently extract the value ṽ that A commits to on the
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right. Accordingly, if the MIM A manages to maul the commitment to v on the left and
commit to a related value ṽ on the right, the reduction will gain information about v,
and be able to break the hiding of the commitment.
The Difficulty inMIMExtraction. Extractable commitments allow for efficient extrac-
tion from adversarial senders in the stand-alone setting. Such extraction is traditionally
done by either means of rewinding, or more generally using the sender’s code. In the
MIM setting, where A acts as a sender on the right, while acting as a receiver on the
left, extraction fromA is much more challenging. The problem is that the interaction of
A with the receiver Rec on the right may occur concurrently to its interaction with the
sender Sen on the left. This means that a reduction attempting to rewind A to extract
the right committed value, may effectively also need to rewind the sender Sen on the
left. (This may happen for example if, when the reduction rewindsA and sendsA a new
message, A also sends a new message in the left commitment and expects a reply from
Sen before proceeding in the right commitment.) In such a case, extraction does not
generally work — the “actual” sender of the right commitment is essentially the MIM
A combined with the sender Sen on the left. However, the reduction does not posses the
code of Sen, specifically, it does not posses its randomness. The challenge is to perform
such extraction without access to the secret randomness of the sender on the left, and
thus without compromising the hiding of the left commitment.

Indeed, classical non-malleable commitments tend to require more than plain ex-
tractable commitments. A long array of works (c.f., [DDN03, PR05b, PR05a, LP09,
PW10, LP11, Goy11]) design various safe extraction techniques, which guarantee
extraction on the right without compromising hiding of the left committed value.
These safe-extraction techniques rely on properties of specific protocols and extrac-
tion strategies, rather than general (stand-alone) extractable commitments. For instance,
the protocols of [DDN03, LP09, LP11, Goy11, GPR16b] rely on three-message witness-
indistinguishable protocols satisfying an extraction guarantee known as special sound-
ness, whereas the protocols in [PR05b, PR05a] rely on the specific structure of Barak’s
non-black-box zero knowledge protocol.
TheQuantumBarrier. The (safe) extraction techniques used to obtain non malleability
in the classical setting fail in the quantum setting. For once, rewinding does not generally
work.We cannot record the adversary’s quantum state between rewinding attempts due to
the no-cloning theorem [WZ82]. Also, we cannot simply measure between rewindings,
as this disturbs that the adversary’s state [FP96]. In this case, even if we do extract,
we may not be able to faithfully simulate the adversary’s output state in the protocol3.
Similarly, non-black-box techniques do not generally apply. For instance, it is unclear
how to apply Barak’s non-black-box simulation technique [Bar02], due to the lack of
universal arguments [BG08] for quantum computations (this is just to mention one
difficulty in using Barak’s strategy in the quantum setting).

The difficulty of applying classical proof techniques in the setting of quantum
adversaries is indeed a well known phenomena, and in some settings, quantum proof

3Recall that non-malleability requires that the joint distribution of the output state of the
adversary and the committed value are indistinguishable regardless of the committed value on the
left. Hence the reduction needs to extract the committed value without disturbing the state of the
quantum adversary.
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techniques have been successfully developed to circumvent this difficulty. Perhaps the
most famous example of this is in the context of zero-knowledge simulation. Here
Watrous [Wat09] shows that in certain settings quantum rewinding is possible and
used it to obtain zero-knowledge protocols. Several other rewinding techniques enable
extraction, but disturb the adversary’s state in the process [Unr12, CCY20, CMSZ21].
Alternatively, several recent works [AP19, BS20, ABG+20] obtain constant round zero-
knowledge via non-black-box quantum techniques, using quantum FHE (and assuming
LWE). While post-quantum extractable commitments do exist, they do not satisfy the
specific properties that the classical safe-extraction techniques require.

Given the above state of affairs, in this work, we aim to construct post-quantum
non-malleable commitments modularly based on any post-quantum extractable (or ε-
extractable) commitment. The equivalence between extractability and non-malleability
is interesting on its own from a theoretical perspective. It turns out that doing so
is challenging, and requires designing completely new safe-extraction techniques that
work with general quantum extractable commitments, which we explain next.

For the sake of simplicity, and toward highlighting the main new ideas in this
work, we ignore the difference between fully-extractable and ε-extractable commitments
through the rest of this overview. We note that the transition from full extractable
commitments to ε-extractable ones is quite direct and is based on the common knowledge
that ε-simulation is sufficient when aiming to achieve indistinguishability-based defi.
Indeed, the definition of non-malleability is an indistinguishability-based definition, and
accordingly showing ε-indistinguishability for any inverse polynomial ε is sufficient. In
this case, the simulators invoked in the reduction are all still polynomial-time.

The Synchronizing Setting. As observed in [ABG+20], if restricted to synchronizing
adversaries, such a modular construction exists using ideas from early works [CR87,
DDN03]: When committing under a tag tg ∈ [τ ] for τ ≤ λ, in every round i 6= tg
send an empty message, and in round tg, send an extractable commitment to the value
v. Indeed, in the synchronizing setting, a commitment on the left under tag tg would
never interleave with the commitment on the right under tag t̃g 6= tg. Thus, safe-
extraction opportunities come for free, circumventing the real challenge in achieving
non-malleability. It is not hard to see, however, that in the non-synchronizing setting,
this approach would completely fail as the adversary can always align the extractable
commitment on the rightwith that on the left. Thework of [ABG+20] further constructed
constant-round non-malleable commitments for a super-constant number of tags, based
on mildly super-polynomial security of quantum FHE and LWE. The non-malleabilty
of the new protocol, however, still relies on the synchronization of the left and right
commitments.

2.2 Leveraging Extractable Com in Non-Synchronizing Setting

We design a base protocol for a constant number of tags that, using any (post-quantum)
extractable commitment scheme. The protocol guarantees extraction on the right while
preserving hiding on the left, even against a quantum non-synchronizingMIM adversary.
In this overview, we explain our base commitments in three steps:
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– First, we introduce our basic idea in the simplified one-sided non-malleability setting
where the MIM is restricted to choose a smaller tag on the right than the tag on the
left, t̃g < tg.

– Then, we extend the basic idea to the general setting where the MIM may also
choose a right tag that is larger t̃g > tg. We illustrate the main ideas here under the
simplifying assumption of a certain honest behavior of the adversary.

– Finally, we show how to remove the simplifying assumption on the adversary.

Step 1: One-sided Non-malleability Let us first consider a MIM adversary that given
a commitment on the left under tag tg, produces a commitment on the right under a
smaller tag t̃g < tg. In our commitment, the sender first secret shares the value v to be
committed into shares u1, . . . , un. It then sequentially sends extractable commitments
to each of the shares u1, . . . , un – we refer to the entire batch of these sequential
extractable commitments as a block-commitment to v. The binding and hiding of this
protocol follow directly from those of the underlying extractable commitment. We focus
on non-malleability.

To achieve non-malleability, the number of shares n is chosen as a function of the
tag tg. The goal is to guarantee that in every execution where the tag t̃g on the right is
smaller than the tag tg on the left, there will exist, on the left, a commitment to one of
the shares ui that is free in the sense that it does not interleave with the interaction on the
right; namely, during the commitment to ui on the left, no message is sent in the right
execution (see Figure 1). Before explaining how freeness is achieved, let us explain how
we use it to establish non-malleability.

MIM

free

Fig. 1: Freeness Example. Each share commitment has 4 messages and there are n = 3 shares
on the left, and ñ = 2 shares on the right. The second commitment on the left is free. Note that it
splits the second commitment on the right.

Extracting While Preserving Hiding and First-Message Binding.To argue non-malleability,
we show that we can efficiently extract all shares ũ1, . . . , ũñ on the right, while preserv-
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ing the hiding of the free share ui on the left, and by the security of secret sharing, also
the hiding of the committed value v.

Freeness guarantees that almost all commitments on the right do not interleave with
the commitment to ui on the left, more precisely, a single commitment on the right could
be “split" by the commitment to ui on the left (as in Figure 1), which prevents extraction
of that right split commitment. To deal with this, we rely on extractable commitments
that are first-message binding; namely their first sender message fixes the value of the
commitment. This gives rise to a simple extraction strategy: for any commitment on the
right, where the first sender’s message is sent before the free commitment (on the left),
we can extract the corresponding share non-uniformly; for the commitments where the
first sender’s message occurs afterwards, we use the efficient extractor. Accordingly, we
get a non-uniform reduction to the hiding of the free extractable commitment on the left.

We observe that any extractable commitment can be made first-message binding
without any additional assumptions, and while increasing round complexity by at most
a constant factor. For simplicity we describe how to achieve this assuming also non-
interactive commitments.4 We append to the original extractable commitment a first
message where the sender sends a non-interactive commitment to the committed value
and add at the end a zero-knowledge argument that this commitment is consistent with
the commitment in the original extractable commitment. Extractability follows from the
extractability of the original scheme and soundness of the argument, whereas hiding
follows from that of the original scheme and the zero knowledge property. We note
that (post-quantum) zero-knowledge arguments follow from (post-quantum) extractable
commitments with a constant round complexity overhead (see e.g. [BS20]), and the
same holds for ε-zero-knowledge and ε-extractable commitments, respectively.
Guaranteeing Freeness.To achieve the required freeness property, it suffices to guarantee
that whenever t̃g < tg, the number of shares n(tg) (and hence the number of extractable
commitments) on the left is larger than the total number of messages on the right,
which is k · n(t̃g), where k is the number of messages in each extractable commitment.
Accordingly, we choose n(tg) = (k + 1)tg.
Step 2: Dealing with General Adversaries. The above commitment does not prevent
mauling of commitments under tag tg to commitments under tags t̃g > tg. To deal
with general adversaries, we invoke the above idea again in reverse order. That is, the
sender now secret shares the value v twice independently: once to n shares u1, . . . , un,
and again to n̄ shares ū1, . . . , ūn̄. It then sequentially sends extractable commitments to
the shares u1, . . . , un, ū1, . . . , ūn̄, that is, sending two sequential block-commitments
to v. To understand the basic idea, we assume for simplicity, in this step, that the MIM
attacker always commits to shares of the same value ṽ in the two block-commitments on
the right (in Step 3, we will remove this assumption using zero-knowledge arguments).

Our goal now is to set the number of shares n(·), n̄(·), based on the tags, to guarantee
that there exists a block-commitment on the right with respect to which there exist two
extractable commitments to shares ui and ūī on the left (one from each left block-
commitment) that are free. This means we can extract every share from that right
block-commitment, while keeping the shares ui and ūī, and hence the left committed

4In the body, we observe that Naor commitments [Nao91], which can be obtained from
(post-quantum) one-way functions, and thus also from any commitment, are in fact sufficient.
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value, hidden. We say that the corresponding block-commitment on the right is ideally
scheduled (see Figure 2).

MIM

free
free

id
eally sch

ed
u

led

(a) Case 1

MIM id
eally sch

ed
u

led

free
free

free
free

(b) Case 2

Fig. 2: Examples of an ideally scheduled block of shares (on the right). The first block of share
commitments is colored in (light/dark) blue and the second in (light/dark) yellow. We mark the
commitments on the left that are free with respect to the ideally scheduled block.

Once we establish the existence of an ideally scheduled block, we can prove non-
malleability using a non-uniform reduction to the hiding of the extractable commitments
to ui and ūī similar to the one we used in the first step. Since we are only able to extract
from one of the two block-commitments on the right, it is important that both commit
to the same value ṽ, and thus our reduction would work, regardless of which one of the
two it is able to extract from. Before we explain how to enforce this using ZK in Step 3,
we explain how the existence of an ideally scheduled block is established.
Guaranteeing an Ideally Scheduled Block-Commitment. We prove that by setting the
parameters n, n̄ appropriately, an ideally scheduled block of shares always exists. For
this purpose we generalize the combinatorial argument from before. Concretely, we set
n, n̄ to guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment is larger
than the total number of messages k · n(t̃g) in the first right block-commitment,

2. Or, the number of shares n̄ = n̄(tg) in the second left block-commitment is larger
than the total number of messages k · n̄(t̃g) in the second right block-commitment.

In addition, we require that n, n̄ are both at least 2. These conditions can be satisfied for
example by setting n = (k + 1)tg, n̄ = (k + 1)τ−tg + 1, where τ is the total number of
tags (namely, tg ∈ [τ ]).
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To see why the above is sufficient, let us assume for instance that Condition 2 of the
two above conditions holds (at this point, both are treated symmetrically). We consider
two cases:

– Case 1 (depicted in Figure 2(a)) : the commitment to share u1 (i.e., the first share
of the first block-commitment) on the left ends before the second block-commitment
starts on the right. In this case, the commitment to u1 on the left is free with respect
to the second block-commitment on the right. Furthermore, since Condition 2 holds,
(by the argument in Step 1,) there also exists a commitment to a share ūi (in the
second block-commitment) on the left that is also free with respect to the second
block-commitment on the right. Accordingly, the second block-commitment on the
right is ideally scheduled.

– Case 2 (depicted in Figure 2(b)) : the commitment to share u1 on the left ends
after the second block of share commitments starts on the right. In this case, the
commitments to shares u2, . . . , un, ū1, . . . , ūn̄ on the left are all free with respect
to the first block-commitment on the right, and thus it is ideally scheduled. (We use
the fact that n ≥ 2, to deduce that a free share u2 indeed exists.)

Step 3: Use ZK to Ensure Consistency of Right Block-Commitments. Recall that in
the last step, we made the simplifying assumption that that the MIM adversary always
commits to the same value ṽ in the two right block-commitments. The expected approach
to removing this assumption, would be to require that the sender gives a (post-quantum)
zero-knowledge argument that such consistency indeed holds.

While the soundness of the argument guarantees the required consistency on the
right, the addition of a zero knowledge proof brings about new challenges in the reduction
of non-malleability to hiding on the left, due to non-synchronizing advesaries. Indeed, in
the proof of non-malleability, before using the hiding of the extractable commitments on
the left, we must use the zero knowledge property on the left to argue that the proof does
not compromise the hidden shares. The problem is that the zero-knowledge argument
on the left might interleave with our ideally scheduled block-commitment on the right,
and thus with our extraction procedure. For instance, if the extractor wants to rewind
the MIM, it might have to rewind the zero knowledge prover on the left, which is not
possible. More generally, there could be a circular dependency: The zero-knowledge
simulation needs to be applied to the verifier’s code which depends on the extractor’s
code; however, extraction needs to be applied to the sender’s code which depends on the
simulator’s code.

To circumvent this difficulty, we would like to guarantee that an ideally scheduled
block-commitment would also be free of the zero knowledge messages on the left,
namely, during its execution, no zero knowledge messages should be sent in the left
execution (see Figure 3). Indeed, if this is the case, then we can apply the zero knowledge
simulator to the verifier that when needed runs the extractor on the right in its head. Note
that since the the right block-commitment is free from zero knowledge messages on the
left, the code of the extractor, and induced verifier, is independent of the simulator’s
code, breaking the circularity.
Guaranteeing (the Stronger Form of) Ideal Scheduling. To achieve the stronger form of
ideal scheduling, we augment the protocol yet again. Specifically, we repeat sequentially
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MIM

id
eally sch

ed
u

led

free
free

free
free

Fig. 3: The zero knowledge argument on the left is colored in green. The ideally scheduled block
of shares on the right is required to be free of any zero knowledge messages (as well as satisfy the
same conditions as before).

for ` + 1 times the second block-commitment to shares ū1, . . . , ūn̄, where ` is the
number of rounds in the zero knowledge protocol. We now require that there is a block-
commitment I among the `+ 2 right block-commitments (one of u1, . . . , un, and `+ 1
of ū1, . . . , ūn̄) that is ideally scheduled in the following stronger sense:

1. There exist shares ui and ūī such that all commitments to these shares (one to ui
and `+ 1 ones to ūi) on the left, are free of the I’th right block-commitment.

2. The I’th right block-commitment is free of the zero knowledge argument on the left.

We provide a more involved combinatorial argument (and choice of parameters n, n̄)
showing that an ideally scheduled right block-commitment I always exists. Concretely,
we set n, n̄ to guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment as well as
the number of shares n̄ = n̄(tg) in each of the left block-commitments 2, . . . , `+ 2
are both larger than the total number of messages k · n(t̃g) in the first right block-
commitment.

2. Or, the number of shares n̄ = n̄(tg) in each of the left block-commitments 2, . . . , `+
2 is larger than the total number of messages k · n̄(t̃g) in each of the right block-
commitments 2, . . . , `+ 2.

Again, we also require that n, n̄ are both at least 2. The above conditions can be satisfied
for example by setting n = (k+ 1)tg, n̄ = (k+ 1)2τ−tg + 1, where τ is the total number
of tags. The above two conditions can no longer be treated symmetrically as before. We
explain separately, how each one of them implies the existence of an ideally scheduled
block on the right (in the stronger sense defined above).
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– Case 1 (applies for either one of the two conditions): the first block-commitment
on the right ends after the knowledge argument on the left had started. In this case,
block commitments 2, . . . , `+ 2 on the right do not interleave with any of the block
commitments on the left. Thus, we only need to establish that one of them does not
interleave with the zero knowledge argument on the left. This follows from the fact
that there are `+ 1 of them, but only ` messages in the zero knowledge argument.

– Case 2: Condition 1 holds, but Case 1 above does not hold. First, since Case
1 does not hold, the first right block commitment does not interleave the zero
knowledge argument on the left (which only starts after this block commitments
ends). Accordingly, it is left to establish that there exist share commitments ui in
left block commitment 1 and ūī in each of the left block commitments 2, . . . , `+ 2
that are free with respect to the first right block commitment. This is where we
use Condition 1 — since the number of messages in this right block is strictly
smaller than the number of shares n, n̄ in each left block, the required free share
commitments are guaranteed to exist.

– Case 3 (applies for either one of the two conditions): the commitment to share
u1 on the left ends after the second block of share commitments starts on the
right. In this case, the commitments to shares u2, . . . , un, ū1, . . . , ūn̄, as well as
the zero knowledge argument on the left are all free with respect to the first block-
commitment on the right, and thus it is ideally scheduled. (This case is similar to
the simplified case depicted in Figure 2(a).)

– Case 4: Condition 2 holds, but Case 3 above does not hold. First, since Case 3 does
not hold, all the right block commitments 2, . . . , ` + 2 do not interleave with the
commitment to share u1 in the first left block commitment. Furthermore, one of
these right blocks blk ∈ {2, . . . , `+ 2} does not interleave with the zero knowledge
argument on the left (which consists of ` messages). To deduce that blk is ideally
schedule, it is left to show that there is a free share ūī in each of the left blocks
2, . . . , ` + 2. Here we invoke Condition 2 — the number of messages in blk is
strictly smaller than the number of shares n̄ in each of the left blocks 2, . . . , `+ 2,
the required free share commitments are again guaranteed to exist.

2.3 Tag Amplification

We now briefly overview the tag amplification process, which takes a non-malleable
commitment 〈Sen,Rec〉 for t ∈ [3, O(log λ)] bit tags and transforms it into 〈Ŝen, R̂ec〉 for
T = 2t−1 bit tags. The amplification procedure is an adaptation of existing procedures
from the literature mostly similar to [KS17, ABG+20] which in turn is based on that
of [DDN03]; however, unlike the first of the two, it relies on polynomial hardness
assumptions, and avoids complexity leveraging, and unlike the second, it works against
non-synchronizing adversaries and not only synchronizing ones.

The basic way that previous amplification schemes work is as follows: to commit to
a value v, under a tag t̂g ∈ {0, 1}T for T = 2t−1, we consider t − 1 tags of the form
tgi = (i, t̂g[i]) ∈ {0, 1}t corresponding to the base scheme (here t̂g[i] is the i-th bit of
t̂g). The committer then sends t− 1 commitments to the value v in parallel under each
one of the tags tgi, using the base protocol 〈Sen,Rec〉. Finally, a proof that all t − 1
commitments are consistent is added.
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The basic idea behind the transformation is that if all the commitments are consistent,
then in order to maul a commitment to value v under tag t̂g to a commitment to a related
value ṽ under tag t̂g

′ 6= t̂g, the MIM must create a commitment to ṽ using the base
protocol under tag tg′i = (i, t̂g

′
[i]) for every i ∈ [t−1], by potentiallymauling from some

of the left commitments to v under tags {tgi = (i, t̂g[i])}i∈[t−1]. However, the fact that
t̂g 6= t̂g

′ means that they differ on at least one bit, that is, t̂g[j] 6= t̂g
′
[j] for some j. Thus,

tag tg′j = (j, t̂g
′
[j]) on the right is different from all the tags {tgi = (i, t̂g[i])}j∈[t−1]

on the left. By the non-malleability of the base protocol, the value committed to under
tag tg′j = (j, t̂g

′
[j]) on the right must be independent of the value v committed under

tags {tgi = (i, t̂g[i])} on the left. Given additionally that the values committed to in all
base commitments on the right are the same, the non-malleability of 〈Ŝen, R̂ec〉 with
respect to t̂g, t̂g′ then follows.

In the setting of synchronizing MIM adversaries the above intuition can be formal-
ized as expected, when the proof of consistency is instantiated with a zero-knowledge
argument. In the more general setting of non-synchronizing adversaries, things become
more subtle. Specifically, if the zero knowledge argument on the left interleaves with
the non-malleable commitments on the right, then it is not clear how to leverage the
non-malleability of the base protocol 〈Sen,Rec〉. (More specifically, we need to apply
zero-knowlege simulation on the code of the verifier, which however might depend on
the honest receiver Rec’s code. Then, we can no longer reduce to the non-malleability
of the base protocol.)

To overcome this difficulty, we rely on the Feige-Lapidot-Shamir trapdoor paradigm
[FLS99]. The first receiver message in our protocol sets up a trapdoor (a solution to a
hard problem), and the final proof of consistency is a witness indistinguishable (WI)
proof that either: (1) the t − 1 commitments are consistent, or (2) the sender “knows”
the trapdoor (where formally knowledge is enforced using an extractable commitment).
The idea behind the FLS paradigm is that the trapdoor cannot be obtained by a sender
running the protocol, and thus the validity of assertion (1) is guaranteed on right. In
contrast, we would like to ensure that the reduction of non-malleability to hiding on the
left would be able to obtain the trapdoor and use it in order to simulate the WI proof.

We can show that the reduction can indeed do this, but only provided certain schedul-
ing conditions. Specifically, the trapdoor on the left should be set up before the non-
malleable commitment on the right occurs. In this case, we can non-uniformly obtain
the witness. To deal with the other case, we augment the protocol yet again, adding a
plain non-interactive commitment to the committed value v between the trapdoor set
up phase and the non-malleable commitment phase. In case the non-malleable commit-
ment on the right starts before the trapdoor set up on the left, then in particular the plain
commitment on the right occurs before any commitment was made on the left. In this
case, we have a direct reduction from non-malleability to hiding, which non-uniformly
obtains the value of the plain commitment on the right (this is akin to our earlier use of
"first-message binding"). We refer the reader to Figure 5 for the amplification scheme
and Section 5 for the proof.
Robustness. One challenge in the proof above is that even in the case that we can obtain
the trapdoor witness on the left, it is not immediate that non-malleability holds when the
commitments on the right interleave with the proof. For this, we require that the base
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non-malleable commitment satisfies an extra property known as r-robustness [LP12].
This property essentially says that the committed value on the right can be extracted
without rewinding an arbitrary r-message protocol (the WI proof in our case) executed
concurrently. This allows to switch the witness used in the WI on the left, and argue that
the right committed value stays the same after the switch.

We show that our base protocol (described in Section 2.2) is indeed robust for an
appropriate choice of parameters. We further show that the tag amplification transfor-
mation described here, preserves r-robustness.

Two-SidedExtraction viaWatrous’RewindingLemma.One challenge in our analysis
of both the base protocol and the tag amplification procedure is that the adversary’s
scheduling of messages is adaptive. In particular, even though the protocol’s design
guarantees that executions always contain certain extraction opportunities, we do not
know ahead of time when they will occur. This is not a problem in the classical setting,
where one can typically run first the so called main thread to identify the extraction
oppertunities and then rewind back to extract. However, such rewinding in the quantum
setting might disturb the adversary’s state.

The analysis of our base scheme circumvents this difficulty by showing a reduction
to adversaries that commit ahead of time to the timing of the so called extraction
opportunities. This reduction strongly relies on the fact that the definition of non-
malleability is an indistinguishability-based definition. In contrast, r-robustness is a
simulation based definition — it requires a simulator that given the code of the MIM
adversary can extract on the right, while interacting with an r-message protocol on the
left. Let us briefly explain the difficulty in this setting.

To achieve r-robustness, wemake sure there are more than r extraction opportunities
on the right. Consider a simplified scenario where the MIM gives r+1 extractable com-
mitments, and we want to extract from the "free" extractable commitment that does not
interleave with any of the r left messages — we refer to this as non-interleaving extrac-
tion. The difficulty is that the simulator does not know which extractable commitment
would be "free". If the simulator starts an extractable commitment without applying the
extractor, it might miss the sole extraction opportunity. On the other hand, if it always
applies the extractor, extraction may halt when the adversary expects a message on the
left, and the simulator should give up extraction but still faithfully simulate the left and
right interactions from here. To resolve this conundrum, we need the extractor of an
extractable commitment protocol to be able to interchangeably simulate two types of
interactions, ones that will eventually constitute an extraction opportunity and ones that
will turn out not to be extractable due to the adversary’s scheduling.

Toward this, we prove a two-sided simulation lemma for extractable commitments.
This lemma shows that we can always enhance the extractor so that in case the sender
in the commitment prematurely aborts, not only can we simulate the sender’s state at
that point, but also the state of the receiver (in case of abort, extraction is not required);
otherwise, the extractor simulates the sender’s state and extracts the committed value as
usual (without simulating the state of the receiver). Using this two-sided extractor we
can deal with cases where a commitment on the right turns out not to be extractable due
to scheduled messages on the left by viewing this event as a premature abort, and then
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using the simulated state of the receiver to faithfully continue the interaction (without
extracting).

The proof of the lemma is inspired by [BS20] and uses the fact that up to the point of
abort a real execution and an execution simulated by the extractor are indistinguishable.
Our two-sided extractor first tosses a random coin to decide whether to simulate with
extraction or to honestly simulate the receiver anticipating an abort; if the guess failed,
it tries again (the expected number of trials is negligibly close to two). While this works
smoothly in the classical setting, in the quantum setting it should be done with care,
as rewinding without state disturbance is typically a problem. In this specific setting,
however, we meet the conditions of Watrous’ quantum rewinding lemma [Wat09] —
our extractor is guaranteed to succeed with probability close to 1/2, obliviously of the
quantum internal state of the adversarial sender.

3 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

– A PPT algorithm is a probabilistic polynomial-time Turing machine.
– For a PPT algorithm M , we denote by M(x; r) the output of M on input x and
random coins r. For such an algorithm and any input x, we write m ∈ M(x) to
denote the fact thatm is in the support ofM(x; ·).

We follow standard notions from quantum computation.

– A QPT algorithm is a quantum polynomial-time Turing machine.
– An interactive algorithm M , in a two-party setting, has input divided into two

registers and output divided into two registers. For the input, one register Im is
for an input message from the other party, and a second register Ia is an auxiliary
input that acts as an inner state of the party. For the output, one register Om is for a
message to be sent to the other party, and another register Oa is again for auxiliary
output that acts again as an inner state. For a quantum interactive algorithmM , both
input and output registers are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum
circuits with non-uniform quantum advice (i.e. quantum auxiliary input). Formally,
a polynomial-size adversary A = {Aλ, ρλ}λ∈N, consists of a polynomial-size non-
uniform sequence of quantum circuits {Aλ}λ∈N, and a sequence of polynomial-size
mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed
without loss of generality that its output message register is always measured in the
computational basis at the end of computation. This assumption is indeed without the
loss of generality, because whenever a quantum state is sent through a classical channel
then qubits decohere and are effectively measured in the computational basis.
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3.1 Indistinguishability in the Quantum Setting.

– Let f : N→ [0, 1] be a function.
• f is negligible if for every constant c ∈ N there exists N ∈ N such that for all
n > N , f(n) < n−c.

• f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N ,
f(n) ≥ n−c.

• f is overwhelming if it is of the form 1− µ(n), for a negligible function µ.
– Wemay consider random variables over bit strings or over quantum states. This will
be clear from the context.

– For two random variables X and Y supported on quantum states, quantum dis-
tinguisher circuit D with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write
X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

– Twoensembles of randomvariablesX = {Xi}λ∈N,i∈Iλ ,Y = {Yi}λ∈N,i∈Iλ over the
same set of indices I = ·∪λ∈NIλ are said to be computationally indistinguishable,
denoted by X ≈c Y , if for every polynomial-size quantum distinguisher D =
{Dλ, ρλ}λ∈N there exists a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .

For a (non-negligible) function ε(λ) ∈ [0, 1], the ensemblesX ,Y are ε-indistinguishable
if the the above requirement is replaced with

Xi ≈Dλ,ρλ,ε(λ)+µ(λ) Yi .

– The trace distance between two distributions X,Y supported over quantum states,
denoted TD(X,Y ), is a generalization of statistical distance to the quantum setting
and represents the maximal distinguishing advantage between two distributions
supported over quantum states, by unbounded quantum algorithms. We thus say
that ensembles X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ , supported over quantum
states, are statistically indistinguishable (and write X ≈s Y), if there exists a
negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ µ(λ) .

Standard Tools. Due to the lack of space, some of the basic definitions such as Witness
Indistinguishability, Zero Knowledge, and Commitments, are omitted and can be found
in the full version of the paper.

3.2 Non-Malleable Commitments

Standard commitment schemes are defined in in the full version of the paperLet
〈Sen,Rec〉 be a commitment scheme. In an interaction between a malicious sender
Sen∗ and honest receiver Rec, we say that Sen∗ is non-aborting if the Rec accepts (i.e.,
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outputs 1) at the end of the commitment stage. Let open〈Sen,Rec〉(c, v, d) be the function
for verifying decommitments of 〈Sen,Rec〉. Define the following value function:

val(c) =

{
v if ∃ unique v s.t. ∃d, open〈Sen,Rec〉(c, v, d) = 1

⊥ otherwise

A commitment c is valid if val(c) 6= ⊥, and otherwise invalid.
Tag-based Commitment Scheme. Following [DDN03, PR05b], we consider tag-based
commitment schemes where, in addition to the security parameter, the sender and the
receiver also receive a “tag”—a.k.a. the identity—tg as common input.

We recall the definition of non-malleability from [LPV08], adapted to quantum
polynomial-size man-in-the-middle adversaries.

Let 〈Sen,Rec〉 be a tag-based commitment scheme, and let λ ∈ N be a security
parameter. Consider a man-in-the-middle (MIM) adversary A that participates in one
left and one right interactions simultaneously. In the left interactions the MIM adversary
A, on auxiliary quantum state ρ, interacts with Sen, receiving commitments to value
v, using a tag tg ∈ [T ] of its choice. In the right interactions A interacts with Rec
attempting to commit to a related value ṽ, again using a tag t̃g of length t of its choice.
If the right commitment is invalid, or t̃g = tg, set ṽi = ⊥—i.e., choosing the same tags
in the left and right interactions is considered invalid. Let mim〈Sen,Rec〉(A, ρ, v) denote
a random variable that describes the value ṽ along with the quantum output of A(ρ) at
the end of the interaction where Sen commits to v on the left.

Definition 1. A commitment scheme 〈Sen,Rec〉 is said to be non-malleable if for ev-
ery quantum polynomial-size man-in-the-middle adversary A = {Aλ, ρλ}λ∈N and a
polynomial ` : N→ N,{

mim〈Sen,Rec〉(Aλ, ρλ, v)
}
λ,v,v′

≈c
{
mim〈Sen,Rec〉(Aλ, ρλ, v

′)
}
λ,v,v′

,

where λ ∈ N is the security parameter and v, v′ ∈ {0, 1}`(λ) are two committed values
by the honest sender.

Generally, the distributions in theMIMexperiment include a quantumalgorithmwith
a quantum auxiliary state. A standard strengthening of indistinguishability definitions for
distributions of the above-mentioned type is to let the distinguisher prepare an entangled
register, which is entangled with the register that contains the auxiliary state of the
quantum algorithm in the distribution. In our specific case of MIM distributions the
stronger definition (defined below) is equivalent as we prove next.

Definition 2 (StrongerDefinition ofNon-Malleability). Acommitment scheme 〈Sen,Rec〉
is said to benon-malleable (with respect to entanglement) if for every quantumpolynomial-
size man-in-the-middle adversary A = {Aλ}λ∈N that can obtain a quantum auxiliary
state, a polynomial-size quantum state σ = {σλ}λ∈N of size at least what A obtains,
and a polynomial ` : N→ N,{
mim〈Sen,Rec〉(Aλ, σ1,λ, v), σ2,λ

}
λ,v,v′

≈c
{
mim〈Sen,Rec〉(Aλ, σ1,λ, v

′), σ2,λ

}
λ,v,v′

,
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where λ ∈ N is the security parameter, v, v′ ∈ {0, 1}`(λ) are two committed values by
the honest sender and σ1 is the first register of the state σ such that it is in the size of the
auxiliary state for A and σ2 is the rest of the state.

Claim. Any commitment scheme 〈Sen,Rec〉 satisfying security definition 1 also satisfy
security definition 2.

Proof. Assume 〈Sen,Rec〉 is secure with respect to Definition 1 and assume toward
contradiction that it is not secure with respect to Definition 2. LetA = {Aλ}λ∈N a MIM
adversary and let D = {Dλ, σλ} a distinguisher that distinguishes between,{
mim〈Sen,Rec〉(Aλ, σ1,λ, v), σ2,λ

}
λ,v,v′

,
{
mim〈Sen,Rec〉(Aλ, σ1,λ, v

′), σ2,λ

}
λ,v,v′

,

for some v, v′. Consider A′ a new MIM adversary: A′ has quantum auxiliary state σ.
The MIM execution of A′ is to run A with auxiliary state σ1, and keep the rest of σ,
which we denote by σ2, untouched on the side. D can thus distinguish between the
distributions{

mim〈Sen,Rec〉(A
′
λ, σλ, v)

}
λ,v,v′

,
{
mim〈Sen,Rec〉(A

′
λ, σλ, v

′)
}
λ,v,v′

,

in contradiction to the security of 〈Sen,Rec〉 with respect to Definition 1.

3.3 Committed Value Oracle

Let 〈Sen,Rec〉 be a (possibly tag-based) commitment scheme. A sequential committed-
value oracle O∞[〈Sen,Rec〉] of 〈Sen,Rec〉 acts as follows in interaction with a sender
Sen∗: it interacts with Sen∗ in many sequential sessions; in each session,

– it participates with Sen∗ in the commit phase of 〈Sen,Rec〉 as the honest receiver
Rec (using a tag chosen adaptively by Sen∗), obtaining a commitment c, and

– if Sen∗ is non-aborting in the commit phase and sends request break, it returns
val(c).

The single-session oracle O1[〈Sen,Rec〉] is similar to O∞, except that it interacts with
the adversary in a single session.

Throughout, when the commitment scheme is clear from the context, we writeO∞,
O1 for simplicity.

3.4 Extractable Commitments

Wedefine the standard notion of post-quantumextractable commitments (and ε-extractable)
alongwith several enhancements of this notion. These enhancements of extractable com-
mitments are for both the ε-extractable and (fully) extractable versions.

Definition 3. Let 〈ExCom.Sen,ExCom.Rec〉 be a (possibly tag-based) commitment
schemeandO1 its (single-session) committed value oracle.We say that 〈ExCom.Sen,ExCom.Rec〉
is ε-extractable if there exists a QPT simulator Sim1, such that, for every quantum
polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N and function ε(λ) ∈ [0, 1],
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– For every quantum polynomial-time distinguisher D∗ = {D∗λ, ρλ}λ∈N,{
OUTSen∗λ

(
Sen∗λ

O1

(ρλ)
)}

λ∈N
≈ε
{
Sim1(Sen∗λ, ρλ, 1

1/ε)
}
λ∈N

.

We say the scheme is (fully) extractable if there is a QPT simulator Sim1, such that, for
every quantum polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N,{

OUTSen∗λ

(
Sen∗λ

O1

(ρλ)
)}

λ∈N
≈c
{
Sim1(Sen∗λ, ρλ)

}
λ∈N .

Sequential Extraction. We analogously define sequential extractability.

Definition 4. Let 〈ExCom.Sen,ExCom.Rec〉 be a (possibly tag-based) commitment
schemeandO∞ its sequential committed value oracle.We say that 〈ExCom.Sen,ExCom.Rec〉
is sequentially extractable if there exists a QPT simulator Sim∞, such that, for every
quantum polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N,{

OUTSen∗λ

(
Sen∗λ

O∞
(ρλ)

)}
λ∈N
≈c {Sim∞(Sen∗λ, ρλ)}λ∈N .

Sequential ε-extractability is defined analogouslywhen considering ε-indistinguishability
instead of (plain) computational indistinguishability.

Constructions of post-quantum extractable commitments with have been known for
a while either in polynomially many rounds assuming post-quantum oblivious transfer
[HSS15, LN11] or in constant rounds assuming Learning with Errors in quantum fully
homomorphic encryption [BS20]. More recently Chia et al. [CCLY21] constructed post-
quantum ε-extractable commitments with in constant rounds, assuming the existence of
post-quantum one-way functions. (Lombardi, Ma, and Spooner [LMS21] also construct
such commitments, but relying super-polynomial hardness of the one-way functions.)

These constructions address the single-session oracle. However, a standard proof
shows that sequential extraction follows.

Lemma 1. Any extractable commitment is sequentially extractable. This applies also
for ε-extractability.

r-Robustness. Thework of [LP12] introduced the notion of r-robustness w.r.t. commit-
ted value oracle, following similar notions of r-robustness introduced in [CLP16, LP09].
We here recall their definition, adapted to working with quantum polynomial-size adver-
saries. Let 〈Sen,Rec〉 be a (possibly tag-based) commitment scheme. Consider a man-
in-the-middle adversary that participates in an arbitrary left interaction with a limited
number r of rounds, while having access to the committed value oracleO∞[〈Sen,Rec〉].
Roughly speaking, 〈Sen,Rec〉 is r-robust if the output of A in any r-round interaction,
with access to the oracle O∞[〈Sen,Rec〉], can be simulated without the oracle. In other
words, having access to the oracle does not help the adversary in breaking the security
in any r-round protocol much.
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Definition 5 (r-robust extraction). Let 〈Sen,Rec〉 be a (possibly tag-based) commit-
ment scheme.We say that 〈Sen,Rec〉 is r-robustw.r.t. the committed-value oracle, if there
exists a QPT simulator Simr, such that, for every QPT adversary A = {Aλ, ρλ}λ∈N,
the following holds:

– Simulation: For every PPT r-round machine B,{
OUTAλ

〈B(z, 1λ), A
O∞[〈Sen,Rec〉]
λ (ρλ)〉

}
λ∈N,z∈{0,1}∗

≈c
{
OUTSim〈B(z, 1λ),Simr(Aλ, ρλ)〉

}
λ∈N,z∈{0,1}∗ .

(ε, r)-robustness is defined analogously when considering ε-indistinguishability instead
of (plain) computational indistinguishability.

First-message binding. We define an additional property of extractable commitments
which will come in handy later in the construction of post-quantum non-malleable
commitments. The property, which we call first-message binding, asserts that the first
message of the sender determines the committed value. Additionally, if the first message
in the extractable commitment protocol is a receivermessage, then the extractor simulates
it honestly, in particular, independently of the malicious sender’s circuit.

Definition 6. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme.We
say that the scheme has first-message binding if:

1. With overwhelming probability over the choice of the honest receiver randomness,
the first sender message in the protocol fixes the committed value.

2. If the first message in the protocol is a receiver message, in a simulated session,
the extractor ExCom.Ext samples this message by invoking the honest receiver
(independently of the malicious sender circuit).

We observe that every extractable commitment can easily be turned into an ex-
tractable commitment with first-message binding. A proof sketch is provided in supple-
mental material.

Lemma 2. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme. Then
there exists an extractable commitment scheme 〈Sen,Rec〉 with first-message binding.
Furthermore, the sequential extractor Sim∞ for the scheme also satisfies Property 2 in
the above definition. The same also holds for ε-extractability.

3.5 Two-sided Extraction

In this section, we state a two-sided extraction lemma for any extractable commitment.
We then use it to prove a non-interleaving extraction lemma, which we later rely on.
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Two-sidedExtractor Wedefine the following variantO1
⊥ of the committed value oracle

O1. Recall thatO1 participates in a session of the commit phase of 〈ExCom.Sen,ExCom.Rec〉
with Sen∗, acting as the honest receiver ExCom.Rec. If Sen∗ is non-aborting in the com-
mit phase and requests break, O1 returns the value val(c) committed in the produced
commitment c.
O1
⊥ does the same, except that in the case that Sen∗ aborts, it sends back the internal

state of the honest receiver ExCom.Rec in that session. That is,

O1
⊥ returns


internal state of ExCom.Rec if Sen∗ aborts
val(c) if Sen∗ is non-aborting in c and requests break
nothing otherwise

In the full version of this work, we prove that every extractable commitment satisfies
such two-sided extractability:

Claim. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme and O1
⊥

its enhanced committed value oracle. There exists a QPT simulator Sim1
⊥, such that,

for every quantum polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N, the following two
ensembles are computationally indistinguishable,{

OUTSen∗λ

(
Sen∗λ

O1
⊥(ρλ)

)}
λ∈N
≈c
{
Sim1
⊥(Sen∗λ, ρλ)

}
λ∈N .

The same also holds for ε-extractability.

ε-Extractability vs Full Extractability. To simplify notation, the technical sections
in this extended abstract are based on fully extractability (and corresponding indis-
tinguishability) rather than full extractability. As mentioned in the introduction, the
transition between the two is quite direct. In more detail, our final goal is to achieve an
indistinguishability-based definition of non-malleability. The proof toward that is based
on a fixed polynomial number h(λ) = poly(λ) of hybrid distributions that depends only
on the security parameter. Thus when relying on indistinguishability between a sim-
ulated execution and a real execution, the corresponding indistinguishability between
hybrids is only ε indistinguishability. Accordingly, for any polynomial p(λ), to overall
obtain 1/p(λ) indistinguishability, we can set ε = 1/(h(λ) · p(λ)). All corresponding
simulators still run in polynomial time, and hence all intermediate reductions still hold.

4 Post-quantum Non-malleable Commitment For Few Tags

In this section, we present our construction of a classical post-quantum non-malleable
commitment protocol with at most a logarithmic number of tags τ . It makes use of A
quantumly-extractable classical commitment scheme (ExCom.Sen,ExCom.Rec) with
first-message binding, and a post-quantum classical zero-knowledge argument (P,V).
We describe the protocol in Figure 4.

Using post-quantum ε-extractable commitments with k rounds one can obtain post-
quantum ε-zero-knowledge arguments with k +O(1) rounds [Ros04, BS20]. It follows
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Protocol 4

Parameters: λ is the security parameter. r is the robustness parameter. k is the total number
of messages in the extractable commitment protocol. τ ≤ O(logk(λ)) is the number of
tags. ` is the maximum between (1) the robustness parameter r, and (2) the total number of
messages in the zero knowledge argument system.
Common input: Security parameter λ ∈ N, robustness parameter r ≤ poly(λ), an identifi-
cation tag tg ∈ [τ ] for the sender.
Sender private input: A value v ∈ {0, 1}∗ to commit to.

Phase 1: Commitments to Secret Shares of Value:

– Let n := (k + 1)tg and n̄ := (k + 1)2τ−tg.
– Sen secret-shares the value v twice, first into n shares and second into n̄ shares: u =

(u1, . . . , un) and ū = (ū1, . . . , ūn̄), respectively.
– Sen provides extractable commitments to the two sequences of shares:

1. An extractable commitment to ui, for every i ∈ [n], sequentially, one after the
other.

2. An extractable commitment to ūi, for every i ∈ [n̄], sequentially, one after the
other. This sequential commitment to ū is repeated `+ 1 times, sequentially.

Phase 2: Zero-knowledge Argument of Consistency: The protocol ends with Sen giving
a ZK argument that its generated transcript is consistent; namely, there exists private input
and randomness for the honest sender inducing the transcript.
Decommitment. If the interaction ends in an accepting proof, the decommitment information
includes the shares u1, . . . , un along with the decommitment information for each of their
corresponding extractable commitments. The decommitment verification algorithm checks
that the shares yield the value v and then runs the decommitment verification algorithm of
the extractable commitment on each of the shares and its decommitment information. If the
ZK argument is not accepting, or the sender prematurely aborts, the verification algorithm
rejects, regardless of the decommitment information given.

Fig. 4: A τ -tag post-quantum non-malleable commitment (Sen,Rec).

that the number of rounds in Protocol 4 is kO(τ). Statistical binding of the commit-
ment scheme follows readily from the statistical binding of the extractable commitment
scheme. Hiding of any commitment scheme follows directly from non-malleability, so
it remains for us to show that our commitment protocol is non-malleable. Later, we also
show that our commitment scheme satisfies r-robustness, a property of the commitment
protocol which we use in our tag amplification scheme in Section 5.

Proposition 1. The protocol in Figure 4 is non malleable.
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4.1 Ideally-Scheduled Block Commitments

Before turning to prove Proposition 1, we state and prove a combinatorial claim regarding
the structure of executions.Wefirst fix relevant terminology for addressing different parts
of the protocol.
Block Commitments. Form,N ∈ N, a block commitment of length N and sub-block
length m for a string s = s1, s2, . . . , sN ∈ {0, 1}m×N (such that ∀i ∈ si ∈ {0, 1}m)
consists of N sequential extractable commitment to each of the strings s1, . . . , sN in
their respective order. In particular, note that in Phase 1 of our Protocol 4, the sender
gives one block commitment of length n with sub-block length |v| to u = (u1, . . . , un)
and ` + 1 block commitments to ū = (ū1, . . . , ūn̄), each of length n̄ and sub-block
length |v|.
Ideally Scheduled Block Commitments. Consider a two-sided MIM execution of
Protocol 4; that is, the MIM adversary A interacts with Sen on the left and Rec on the
right.

We call an execution of a block commitment on the left free on index i with respect
to a given block commitment on the right, if interaction during the i-th extractable
commitment in that block commitment does not interleave with the interaction during
the given right block commitment. We call an execution of a block commitment on the
right free if it does not interleave with the interaction during Phase 2 of the protocol on
the left.

An execution I of a block commitment on the right is ideally scheduled if all of the
above hold:

– It is free (with respect to the second phase on the left).
– There is some index i ∈ [n] such that the block commitment to u on the left is free
on index i with respect to I .

– There is some index j ∈ [n̄] such that all `+ 1 block commitments to ū on the left
are free on the same index j with respect to I .

In case, the MIM adversary aborts, we assume w.l.o.g it keeps sending messages ⊥
according to some schedule, so that the above notion is always defined. The proof of the
following claim is provided in the full version of this work.
Claim. In every MIM execution of Protocol 4 with tag tg on the left and tag t̃g on the
right, if tg 6= t̃g, there is an ideally scheduled execution of a block commitment on the
right.

4.2 Adversaries with Predetermined Ideal Schedule

Before proving Proposition 1, we prove a lemma that basically says that we can restrict
attention to MIM adversaries that always announce ahead of time the structure of the
ideal schedule. This lemma will later simplify our proof of Proposition 1.

In what follows, letN be a bound on the size of n := (k+ 1)tg, n̄ := (k+ 1)2τ−tg,
for every possible tg. We consider configurations of the form

C = (i, c, c̄, w) ∈ [`+ 2]× [N ]× [N ]× {IP2, P2I} .

We say that a given MIM execution is consistent with such a configuration C if:
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– The i-th block commitment on the right is the first ideally scheduled block.
– The commitment to uc (in the first block) on the left is free with respect to the
ideally scheduled block i.

– The commitment to ūc̄ in every one of the blocks 2, . . . , ` + 2 on the left is free
with respect to the ideally scheduled block i.

– If the first ideally scheduled block i on the right ends before Phase 2 on the left
begins, w = IP2. Otherwise (Phase 2 on the left begins before the first ideally
scheduled block i has ended), w = P2I. Note that in case w = P2I, due to the fact
that block i on the right is ideally scheduled and in particular is continuous with
respect to Phase 2 on the left, we can also say that block i on the right begins after
Phase 2 on the left has started (rather than say that it only ends after the beginning
of Phase 2 on the left).

Note that the number of possible configurations is bounded by ∆ := (` + 2) × N ×
N × 2 = poly(λ) .

Definition 7 (MIMwith predetermined ideal schedule). AMIMQPT adversaryA =
{Aλ, ρλ}λ has a predetermined ideal schedule C = {Cλ}λ, if any execution in which
Aλ participates is consistent with configuration Cλ.

Lemma 3. If the protocol in Figure 4 is secure against MIM QPT adversaries with
predetermined ideal schedule, then it is also secure against arbitrary MIM QPT adver-
saries.

Proof. Given an arbitrary MIM QPT A and QPT distinguisher D that break non-
malleability for some values v, v′ with advantage δ, we construct anMIMQPT adversary
with predetermined schedule, which breaks the scheme with probability δ/∆.

Consider an adversary A′ that first samples uniformly at random a configuration
C ← [` + 2] × [N ] × [N ] × {IP2, P2I}. It then emulates A, and if at any point the
execution is about to become inconsistent with C, A′ stops emulating A, completes
the execution consistently with C, and eventually outputs ⊥. If the emulation of A is
completed consistently with C, A′ outputs the same as A.

Then, since every execution has an ideally scheduled block (Claim 4.1), A′ breaks
non-malleability with probability exactly δ/∆ (with respect to the same distinguisher D
and v, v′). Finally, by an averaging argument, we fix the choice ofA′ for a configuration
to be the configuration C that maximizes D’s distinguishing advantage. We obtain a
corresponding MIM with predetermined ideal schedule with the same advantage δ/∆.

4.3 Proof of Proposition 1

We prove the Proposition by a hybrid argument, specifically, we show that the MIM
experiment output distribution for any value v on the left is indistinguishable from
an experiment independent of v. Following Lemma 3, we restrict attention to a MIM
adversary with a predetermined ideal schedule C = (i, c, c̄, w).
H0 : The original MIM experiment output. This includes the output of the MIM
adversary in the experiment and the committed value on the right.
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H1 : Inefficient extraction from ideally-scheduled block. In this hybrid, instead of the
committed value ṽ on the right, we consider the value ṽ1 reconstructed from the shares
of the ideally scheduled block i on the right. If the value of any of the commitments
to these shares is ⊥, we set ṽ1 = ⊥. H0 and H1 are statistically indistinguishable
following the from the soundness of the ZK argument that A gives to the receiver on
the right in Phase 2.
H2: Alternative description via oracle extraction. In this hybrid we consider an
augmented adversary AO∞2 , which is given access to the sequential committed-value
oracle O∞ = O∞[ExCom.Sen,ExCom.Rec] and acts as follows:

– A2 emulates A. On the left, A2 relays all messages between A and the sender. On
the right,
• During the ideally scheduled block i, A2 interacts with its oracle O∞, in

every extractable commitment. Recall that O∞ acts as the honest receiver, and
answers break requests with the corresponding committed value. A2 submits
such a break request after each of the commitments and stores the received
share value.

• In any other (than i) block in Phase 1, A2 internally emulates the the receiver
on the right.

• In Phase 2,A2 internally emulates the the zero knowledge verifier on the right.
– Eventually, A2 outputs the output of A as well as the value ṽ1 reconstructed from
the ideal block shares obtained from the oracle O∞.

The output of this hybrid is the output of A2. It follows directly from the construction
of AO∞2 and the definition of O∞ that H1 ≡H2.
H3 : Efficient extraction on the right when w = P2I. This hybrid, differs from the
previous hybrid only if w = P2I; namely, Phase 2 on the left begins before the ideally
scheduled block commitment i on the right had started. In such executions, for the
ideally scheduled block commitment i, we perform sequential extraction to obtain the
corresponding shares.

In more detail, let ψ be the (quantum) state of A2 when it initiates the ideally
scheduled block i on the right, and let ĀO∞2 be the adversary that starting from ψ,
emulates AO∞2 during block i and outputs its state at the end (Note that since block i
is ideally scheduled and also starts after Phase 2 on the left, it follows that Ā2 does not
perform any interaction on the left during the right block i).

In H3, we consider another augmented adversary A3 that acts like A2, only that
instead of executing ĀO∞2 during block i, it invokes the sequentially-extracting simulator
Sim∞(Ā2, ψ), given by Lemma 1, which eliminates the use of the commitment oracle
O∞. Computational indistinguishability of H2 and H3 follows directly from the
sequential extraction guarantee (Lemma 1).
H4 : Simulating the ZK argument on the left. In this hybrid, the ZK argument on the
left is generated by the zero knowledge simulator.

Specifically, let ψ be the state of A3 when the zero-knowledge argument is initiated
on the left. We consider the zero-knowledge verifier V∗ that starting from ψ emulates
A3 in the rest of the interaction while forwarding its messages on the left to the zero-
knowledge prover, and eventually outputs the same. In particular, if w = P2I then the



Non-malleable Commitments Against Quantum Attacks 25

code of V∗ includes the code of the simulator Sim∞, which is applied to (Ā2, ψ) as
part of the execution of A3. Note that in both cases w = IP2 and w = P2I, once Phase
2 on the left starts, A3 no longer makes oracle calls to O∞, so the code of V∗ is fully
specified and executes in polynomial time.

In H4, we consider an augmented adversary A4 that acts as A3, only that when
Phase 2 starts on the left, instead of executing V∗ and interacting on the left with the
zero knowledge prover, A4 runs the zero knowledge simulator Sim(V∗, ψ), and outputs
the same.

H3 ≈c H4. This is because by construction, the output of V∗ is identically dis-
tributed to the output of H3. Computational indistinguishability of H3 and H4 now
follows from the zero knowledge simulation guarantee (we note that any use of the
inefficient oracle O∞, in case w = IP2, occurs before Phase 2 on the left, and can thus
be non-uniformly fixed).
H5 andH6 : Interchangeably, changing left committed values and efficient extrac-
tion threshold. As a preliminary high-level explanation to the next step, at this point in
our hybrid distributions, we consider the 1 + (` + 1) block commitments given to the
MIM adversary on the left, and in each block, we’ll switch a commitment for a secret
share (of v), to a commitment for a string of zeros. For this, we will need to use the
computational hiding property of the extractable commitments. The point, however, is
to be able to use the hiding of the extractable commitments while still being able to
efficiently extract the value ṽ1 from the right interaction with the MIM adversary5.

Formally, we next define two sequences of hybrids H5,j and H6,j (for j ∈ [`+ 3])
that augment one another interchangeably:

H4 = H5,`+3 →H6,`+2 →H5,`+2 → · · · →H5,2 →H6,1 →H5,1 .

In what follows, recall that A4 in H4 is following a predetermined ideal schedule
C = (i, c, c̄, w).
H5,j , for j = ` + 3, . . . , 1: Swapping one more free commitment to zeros. In this
hybrid, we simulate the most bottom free commitment on the left. Formally:

– H5,`+3 is defined asH4.
– For j ≤ ` + 2, H5,j is defined exactly as H6,j , except that the left extractable
commitment cj (to share uc or ūc̄) in the left block j is replaced with a commitment
to 0|v|.

H6,j , for j = `+ 2, . . . , 1: Raising the threshold for efficient extraction. Recall A4

inH4 interacts with the sender in Phase 1 on the left and in case w = IP2, namely, the
ideally scheduled block on the right ends before Phase 2 on the left begins,A4 interacts
with the sequential commitment oracle O∞ on the right during block i. For a left block
index j ∈ [` + 2], we denote by cj the corresponding free extractable commitment;
namely, cj = c if j = 1, and cj = c̄ if j ≥ 2.

5Recall that currently, if w = IP2, we extract ṽ1 inefficiently using the sequential committed-
value oracle O∞ = O∞[ExCom.Sen,ExCom.Rec]. If w = P2I we don’t have this problem, as
the ideally scheduled right block commitment i starts after the beginning of Phase 2 on the left.
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Informally, in hybrid H6,j , we move to simulating the oracle O∞ in any right
extractable commitment that starts after the free left commitment cj . Formally, H6,j

is different from H5,j+1 only if w = IP2. In this case, we consider an augmented
adversary A6,j defined as follows for j ∈ [`+ 2]:

– A6,j acts as AO∞6,j+1 until the first right extractable commitment (in the ideally
scheduled right block i) in which the first sender message is sent after the free left
commitment cj .

– A6,j simulates the remaining calls to O∞ as follows:
• Let ψ be the state of AO∞6,j+1 at the abovementioned point, just before the right
extractable commitment begins.

• Let ĀO∞6,j+1 be the adversary that starting from ψ emulates AO∞6,j+1 in the fol-
lowing right extractable commitments, up to those that are already simulated,
while internally emulating the sender in any left commitment.

• A6,j invokes the sequentially-extracting simulator Sim∞(Ā6,j+1, ψ) to remove
the use O∞.

– A6,j then completes the execution as A6,j+1 and outputs the same.

In the full version of this work, we prove the following claim, which concludes Propo-
sition 1,

Claim. 1) The output ofH5,1 is independent of the committed value v. 2) ∀j ∈ [`+2] :
H5,j+1 ≈c H6,j . 3) ∀j ∈ [`+ 2] : H6,j ≈c H5,j .

Due to space limits, we prove that our protocol is robust in the full version of this
work.

5 Tag Amplification

In this section, we present a tag amplification transformation that converts a non-
malleable commitment scheme 〈Sen,Rec〉 for t ∈ [3, O(log(λ))] bit tags into a non-
malleable commitment scheme 〈Ŝen, R̂ec〉 for T = 2t−1 bit tags. The transformation
can be applied iteratively to amplify the number of tags from constant to exponential in
the security parameter λ,

The transformation uses the following ingredients: 1) A post-quantum secure one-
way function f . 2) Naor’s 2-message statistically binding commitment [Nao91] in-
stantiated with a post-quantum secure pseudo-random generator, which in turn can be
based on post-quantum one-way functions. The receiver of Naor’s protocol is public
coin and sends a random string a as the first message, the sender then responds with
c = Coma(m; d) depending on a; the decommitment is simply sender’s private random
coins. The receiver can reuse a across many commitments sent to it, and we can effec-
tively use the second message of Naor’s commitments as a non-interactive commitment.
3) A post-quantum secure ε-extractable commitment scheme ECom. Let k1 be the num-
ber of rounds in this commitment scheme. 4) A post-quantum secure WI protocol which
can be based on any post-quantum one-way functions. Let k2 be the number of rounds
of WI. 5) A non-malleable commitment scheme 〈Sen,Rec〉 for t ≥ 3 bit tags that is also
r-robust for r = k1 + k2. Let n be the length of messages the scheme can commit to.
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Protocol 5

Common Input: Security parameter λ ∈ N and a tag t̂g ∈ {0, 1}T for the sender, where
T = 2t−1.

Ŝen’s private input: A messagem ∈ {0, 1}n to commit to.

1. Trapdoor Setup: R̂ec sends two random images y1 = f(u1) and y2 = f(u2) of the
one-way function f , where u1 ← {0, 1}λ, u2 ← {0, 1}λ. R̂ec proves using WI that
either y1 or y2 is in the image of f for λ-bit inputs.We refer to u1 and u2 as the trapdoors.

2. InitialCommitment: R̂ec sends the firstmessagea ofNaor’s commitment. Ŝen commits
to m using Naor’s commitment c = Coma(m; d) w.r.t. receiver’s message a, using
random coins d.

3. 〈Sen,Rec〉 commitments: For every bit t̂gi in the T = 2t−1 bit tag t̂g, define tag
tgi = (i, t̂gi), which has exactly t bits.
For every i ∈ [T ], Ŝen commits to m using 〈Sen,Rec〉 and tag tgi; let ci denote the
produced commitment and di the decommitment. All commitments are sent in parallel.

4. Proof ofConsistency: Ŝenfirst commits to 0λ using the extractable commitment scheme
ECom. Let ce denote the produced commitment.
Ŝen proves using WI that either c, c1 · · · , cT are all valid commitments to m,
or ce commits to a preimage of y1 or y2. Formally, it proves that the statement
X = (a, c, c1, · · · , cT , ce, y1, y2) belongs to the language L defined by the follow-
ing witness relation:

RL(X,W = (m, d, d1, · · · , dT , de, u)) = 1 iff
Either c = Coma(m; d) ∧ ∀i ∈ [T ], open〈Sen,Rec〉(ci,m, di) = 1 ,

Or openECom(ce, u, de) = 1 and (y1 = f(u) or y2 = f(u))

5. Receiver’s Decision: R̂ec accepts the commitment iff the proof of consistency is ac-
cepting.

6. Decommitment: Ŝen outputs decommitment d. The decommitment is accepted if c =
Coma(m; d).

Fig. 5: Post-quantum tag amplification.

The transformed non-malleable commitment 〈Ŝen, R̂ec〉 for T = 2t−1 tags is presented
in Figure 5.

In the full version of this work, we show that 〈Ŝen, R̂ec〉 is statistically binding, r-
robust and post-quantum non-malleable as well as the detailed analysis of the complexity
growth and security loss.
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