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Abstract. This paper investigates anonymity of all NIST PQC Round 3
KEMs: Classic McEliece, Kyber, NTRU, Saber, BIKE, FrodoKEM, HQC,
NTRU Prime (Streamlined NTRU Prime and NTRU LPRime), and
SIKE. We show the following results:
– NTRU is anonymous in the quantum random oracle model (QROM)

if the underlying deterministic PKE is strongly disjoint-simulatable.
NTRU is collision-free in the QROM. A hybrid PKE scheme con-
structed from NTRU as KEM and appropriate DEM is anonymous
and robust. (Similar results for BIKE, FrodoKEM, HQC, NTRU
LPRime, and SIKE hold except one of three parameter sets of HQC.)

– Classic McEliece is anonymous in the QROM if the underlying PKE
is strongly disjoint-simulatable and a hybrid PKE scheme constructed
from it as KEM and appropriate DEM is anonymous.

– Grubbs, Maram, and Paterson pointed out that Kyber and Saber
have a gap in the current IND-CCA security proof in the QROM
(EUROCRYPT 2022). We found that Streamlined NTRU Prime has
another technical obstacle for the IND-CCA security proof in the
QROM.

Those answer the open problem to investigate the anonymity and ro-
bustness of NIST PQC Round 3 KEMs posed by Grubbs, Maram, and
Paterson (EUROCRYPT 2022).
We use strong disjoint-simulatability of the underlying PKE of KEM
and strong pseudorandomness and smoothness/sparseness of KEM as
the main tools, which will be of independent interest.

Keywords: anonymity, robustness, post-quantum cryptography, NIST
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1 Introduction

Public-key encryption (PKE) allows us to send a message to a receiver
confidentially if the receiver’s public key is available. However, a cipher-
text of PKE may reveal the receiver’s public key, and the recipient of
the ciphertext will be identified. This causes trouble in some applications,
and researchers study the anonymity of PKE. Roughly speaking, PKE is
said to be anonymous [7] if a ciphertext hides the receiver’s information.
Anonymous primitive is often used in the context of privacy-enhancing
technologies.
A ciphertext of anonymous PKE indicates (computationally) no informa-
tion of a receiver. Thus, when a receiver receives a ciphertext, it should



decrypt the ciphertext into a message and verify the message in order
to check if the ciphertext is sent to the receiver or not. There may be a
ciphertext from which two (or more) recipients can obtain messages in
this situation, and this causes trouble in some applications, e.g., auction
protocols [40]. Intuitively speaking, PKE is said to be robust [2] if only
the intended receiver can obtain a meaningful message from a ciphertext.
Both anonymity and robustness are important and useful properties be-
yond the standard IND-CCA security. Anonymous PKE is an important
building primitive for anonymous credential systems [13], auction proto-
cols [40], (weakly) anonymous authenticated key exchange [12, 20, 21, 43],
and so on. Robust PKE has an application for searchable encryption [1]
and auction [40].

Previous works on anonymity and robustness of KEM and hybrid
PKE: Mohassel [36] studied the anonymity and robustness of a special
KEM/DEM framework, a hybrid PKE with KEM that is implemented
by a PKE with random plaintext. He showed that even if anonymous
KEM and DEM sometimes fail to lead to an anonymous hybrid PKE by
constructing a counterexample.
Grubbs, Maram, and Paterson [24] discussed anonymity and robustness
of post-quantum KEM schemes and KEM/DEM framework in the quan-
tum random oracle model (QROM). They also studied the anonymity
and robustness of the hybrid PKE based on KEM with implicit rejection.
On the variants of the Fujisaki-Okamoto (FO) transform [22, 23], they
showed that anonymity and collision-freeness of KEMs obtained by the
FO transform with implicit rejection and its variant1, and they lead to
anonymous, robust hybrid PKEs from appropriate assumptions. They
also show anonymity and robustness of KEM obtained by a variant of
the FO transform with explicit rejection and key-confirmation hash2 and
show that it leads to anonymous, robust hybrid PKE from appropriate
assumptions.
They examined NIST PQC Standardization finalists (Classic McEliece [5],
Kyber [42], NTRU [14], and Saber [18]). They showed the following re-
sults:

– Classic McEliece: They found that Classic McEliece is not collision-
free. Since their anonymity proof in [24, Theorem 5] strongly depends
on the collision-freeness of the underlying PKE, we cannot apply
their anonymity proof to Classic McEliece. They also show that the
hybrid PKE fails to achieve robustness since Classic McEliece is not
collision-free.

– Kyber: They found that Kyber’s anonymity (and even IND-CCA se-
curity) has two technical obstacles (‘pre-key’ and ‘nested random
oracles’) in the QROM.

– NTRU: NTRU’s anonymity has another technical obstacle: Their
proof technique requires the computation of a key of KEM involving
a message and a ciphertext, but, in NTRU, the computation of a

1 A variant of the FO transform with implicit rejection using ‘pre-key’ technique. They
wrote “a variant of the FO̸⊥ transform” in their paper.

2 They modify ‘key-confirmation hash’ to involve a ciphertext on input.
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key of NTRU involves only a message. The robustness of the hybrid
PKE with NTRU is unclear.

– Saber: They insisted they show Saber’s anonymity and IND-CCA se-
curity and the robustness of the hybrid PKE with Saber in the
QROM, because they considered that Saber employs the FO trans-
form with ‘pre-key’. Unfortunately, Saber in [18] also uses both ‘pre-
key’ and ‘nested random oracles’ as Kyber, and their proofs cannot
be applied to Saber. See their slides [25]. (Fortunately, FrodoKEM
can be shown anonymous and lead to anonymous, robust hybrid
PKE, because FrodoKEM employs the FO transform with ‘pre-key’.)

Unfortunately, we do not know whether all four finalists are anonymous
or not, although the much effort of Grubbs et al. and their clean and
modular framework. Grubbs et al. left several open problems: One of
them is the anonymity and robustness of NTRU; the other important
one is the anonymity of Classic McEliece.

1.1 Our Contribution

We investigate anonymity and robustness of all NIST PQC Round 3
KEM candidates and obtain Table 1. This answers the open problems
posed by Grubbs et al.
In order to investigate anonymity, we first study strong pseudorandom-
ness of PKE/KEM instead of studying anonymity directly. To show
strong pseudorandomness of the hybird PKE, we study strong pseudo-
randomness and introduce smoothness and sparseness of KEM. We then
show such properties of KEM obtained by the variants of the FO trans-
form if the underlying deterministic PKE is strongly disjoint-simulatable.
We finally study the properties of NIST PQC Round 3 KEM candidates.
See the details in the following.

Anonymity through strong pseudorandomness, sparseness, and smooth-
ness: Our starting point is strong pseudorandomness instead of anonymity.
We say PKE/KEM/DEM is strongly pseudorandom if its ciphertext is
indistinguishable from a random string chosen by a simulator on input
the security parameter.3 It is easy to show that strong pseudorandomness
implies anonymity.
Using this notion, we attempt to follow the IND-CCA security proof of
the KEM/DEM framework [16], that is, we try to show that the hybrid
PKE from strongly pseudorandom KEM/DEM is also strongly pseudo-
random, which implies that the hybrid PKE is anonymous. If we directly
try to prove the ANON-CCA security of the hybrid PKE, then we will
need to simulate two decryption oracles as Grubbs et al. Considering
pseudorandomness allows us to treat a single key and oracle and sim-
plifies the security proof. Unfortunately, we face another obstacle in the
security proof when considering pseudorandomness.
To resolve the obstacle, we define sparseness of KEM with explicit re-
jection and smoothness of KEM with implicit rejection: We say KEM
with explicit rejection is sparse if a ciphertext c chosen by a simulator is

3 If the simulator can depend on an encryption key, then we just say pseudorandom.
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Table 1. Summary of anonymity and robustness of NIST PQC Round 3 KEM candi-
dates (finalists and alternate candidates) and the hybrid PKEs using them. In the
first row, IND = Indistinguishability, SPR = Strong Pseudorandomness, ANO =
Anonymity, CF = Collision Freeness, and ROB = Robustness under chosen-ciphertext
attacks in the QROM. Y = Yes, N = No, ? = Unknown. The underline implies our
new findings.

KEM Hybrid PKE

Name IND SPR ANO CF ROB ANO ROB

Classic McEliece [5] Y Y Y N N Y N
Kyber [42] ? ? ? ? N ? ?
NTRU [14] Y Y Y Y N Y Y
Saber [18] ? ? ? ? N ? ?

BIKE [6] Y Y Y Y N Y Y
FrodoKEM [37] Y Y Y Y N Y Y
HQC-128/192 [4] Y Y Y Y Y Y Y
HQC-256 [4] Y N N Y Y N Y
Streamlined NTRU Prime [10] ? ? ? ? N ? ?
NTRU LPRime [10] Y Y Y Y N Y Y
SIKE [30] Y Y Y Y N Y Y

decapsulated into ⊥ with overwhelming probability. We say KEM with
implicit rejection is smooth if, given a ciphertext c chosen by a simulator,
any efficient adversary cannot distinguish a random key from a decap-
sulated key. This definition imitates the smoothness of the hash proof
system [16]. Those notions help us to prove the pseudorandomness of the
hybrid PKE.

Pseudorandomness, smoothness, and collision-freeness of the FO
variants: In order to treat the case for Classic McEliece and NTRU, in
which the underlying PKE is deterministic, we treat SXY [39], variants of
U [26], and variants of HU [32]. Modifying the IND-CCA security proofs
of them, we show that the obtained KEM is strongly pseudorandom
and smooth if the underlying PKE is strongly disjoint-simulatable [39].
We also show that the obtained KEM is collision-free if the underlying
deterministic PKE is collision-free. We finally note that our reductions
are tight as a bonus.

Grubbs et al. [24] discussed a barrier to show anonymity of NTRU (and
Classic McEliece implicitly), which stems from the design choice K =
H(µ) instead of K = H(µ, c). In addition, their proof technique requires
the underlying PKE to be collision-free. Since the underlying PKE of
Classic McEliece lacks collision freeness, they left the proof of anonymity
of Classic McEliece as an open problem. Both barriers stem from the
fact that we need to simulate two decapsulation oracles in the proof
of ANON-CCA-security. We avoid those technical barriers by using a
stronger notion, SPR-CCA security; in the proof of SPR-CCA-security,
we only need to simulate a single decapsulation oracle.
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Application to NIST PQC Round-3 KEM candidates: Using the
above techniques, we solve open problems posed by Grubbs et al. and
extend the study of finalists and alternative candidates of NIST PQC
Round 3 KEMs as depicted in Table 1.

We found the following properties (we omit the detail of the assump-
tions):

– Classic McEliece is anonymous and the hybrid PKE using it is anony-
mous, which is in the full version.

– NTRU is anonymous and collision-free. The hybrid PKE using it
is anonymous and robust. See Section 5. Similar results for BIKE,
HQC (HQC-128 and HQC-196)4, NTRU LPRime, and SIKE hold,
which are in the full version.

– We found that Streamlined NTRU Prime has another technical ob-
stacle for anonymity: the key and key-confirmation hash involves
‘pre-key’ problem.5 While this is not a big problem for the IND-CCA
security in the ROM, we fail to show the IND-CCA security in the
QROM. We will discuss it in detail in the full version.

Remark 1. Bernstein [9] suggests to use quantum indifferentiability of
the domain extension of quantum random oracles in [49, Section 5].
While we did not check the detail, this quantum indifferentiability would
solve the problems on ‘pre-key’ of Kyber, Saber, and Streamlined NTRU
Prime.

Open Problems: We leave showing anonymity and the IND-CCA se-
curity of Kyber, Saber, and Streamlined NTRU Prime in the QROM as
an important open problem as Grubbs et al. posed.

Organization: Section 2 reviews the QROM, definitions of primitives,
and the results of Grubbs et al. [24]. In addition, it also shows strong
pseudorandomness implies anonymity. Section 3 studies the strong pseu-
dorandomness of the KEM/DEM framework. Section 4 studies SXY’s
security properties. Section 5 examines the anonymity and robustness
of NTRU. Due to the space limit, we omit a lot of contents from the
conference version.

Appendix Highlights: The full version contains the missing proofs. More-
over, its appendices contain the properties of the variants of the FO
transform (T, variants of U, and variants of HU) and examine the other
NIST PQC Round-3 KEM candidates, Classic McEliece, Kyber, Saber,
BIKE, FrodoKEM, HQC, NTRU Prime (Streamlined NTRU Prime and
NTRU LPRime), and SIKE, as summarized in Table 1.

4 HQC-256 is not anonymous because the parity of the ciphertext leaks the parity of
the encapsulation key. See the full version for the detail.

5 The key and key-confirmation value on a plaintext µ and an encapsulation key ek is
computed as K = H(k, c0, c1) and h = F(k,Hash(ek)), where k = H3(µ) and (c0, c1)
is a main body of a ciphertext.
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2 Preliminaries

Notations: A security parameter is denoted by κ. We use the standard
O-notations. DPT, PPT, and QPT stand for a deterministic polynomial
time, probabilistic polynomial time, and quantum polynomial time, re-
spectively. A function f(κ) is said to be negligible if f(κ) = κ−ω(1). We
denote a set of negligible functions by negl(κ). For a distribution χ, we
often write “x← χ,” which indicates that we take a sample x according
to χ. For a finite set S, U(S) denotes the uniform distribution over S.
We often write “x ← S” instead of “x ← U(S).” For a set S and a de-
terministic algorithm A, A(S) denotes the set {A(x) | x ∈ S}. If inp is a
string, then “out← A(inp)” denotes the output of algorithm A when run
on input inp. If A is deterministic, then out is a fixed value and we write
“out := A(inp).” We also use the notation “out := A(inp; r)” to make the
randomness r explicit.

For a statement P (e.g., r ∈ [0, 1]), we define boole(P ) = 1 if P is satisfied
and 0 otherwise.

For two finite sets X and Y, F(X ,Y) denotes a set of all mapping from
X to Y.

Lemma 1 (Generic distinguishing problem with bounded prob-
abilities [29, Lemma 2.9], adapted). Let X be a finite set. Let
δ ∈ [0, 1]. Let F : X → {0, 1} be the following function: for each x ∈ X ,
F(x) = 1 with probability δx ≤ δ and F(x) = 0 else. Let Z : X → {0, 1}
be the zero function, that is, Z(x) = 0 for all x. If an unbounded-time
quantum adversary A makes a query to F or Z at most Q times, then we
have∣∣∣Pr[b← AF(·)() : b = 1]− Pr[b← AZ(·)() : b = 1]

∣∣∣ ≤ 8(Q+ 1)2δ.

where all oracle accesses of A can be quantum.

Quantum Random Oracle Model: Roughly speaking, the quantum ran-
dom oracle model (QROM) is an idealized model where a hash func-
tion is modeled as a publicly and quantumly accessible random oracle.
In this paper, we model a quantum oracle O as a mapping |x⟩ |y⟩ 7→
|x⟩ |y ⊕O(x)⟩, where x ∈ {0, 1}n, y ∈ {0, 1}m, andO : {0, 1}n → {0, 1}m.
See [11] for a more detailed description of the model.

Lemma 2 (QRO is PRF). Let ℓ be a positive integer. Let X and Y be
finite sets. Let Hprf : {0, 1}ℓ×X → Y and Hq : X → Y be two independent
random oracles. If an unbounded-time quantum adversary A makes a
query to the random oracles at most Q times, then we have∣∣∣∣Pr[s←M, b← AHprf (·,·),Hprf (s,·)() : b = 1]

−Pr[b← AHprf (·,·),Hq(·)() : b = 1]

∣∣∣∣ ≤ 2Q · 2−ℓ/2

where all oracle accesses of A can be quantum.

See [39] and [31] for the proof.
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Lemma 3 (QRO is collision-resistant [48, Theorem 3.1]). There
is a universal constant C such that the following holds: Let X and Y
be finite sets. Let H : X → Y be a random oracle. If an unbounded time
quantum adversary A makes a query to H at most Q times, then we have

Pr
H,A

[(x, x′)← AH(·) : x ̸= x′ ∧ H(x) = H(x′)] ≤ C(Q+ 1)3/|Y|,

where all oracle accesses of A can be quantum.

Remark 2. We implicitly assume that |X | = Ω(|Y|), because of the birth-
day bound.

Lemma 4 (QRO is claw-free). There is a universal constant C such
that the following holds: Let X0 and X1 and Y be finite sets. Let N0 = |X0|
and N1 = |X1|. Without loss of generality, we assume N0 ≤ N1. Let
H0 : X0 → Y and H1 : X1 → Y be two random oracles. If an unbounded
time quantum adversary A makes a query to H0 and H1 at most Q0 and
Q1 times, then we have

Pr[(x0, x1)← AH0(·),H1(·) : H0(x0) = H1(x1)] ≤ C(Q0 +Q1 + 1)3/|Y|,

where all oracle accesses of A can be quantum.

We omit the security proof, which is due to Hosoyamada [28]. See the
full version.

2.1 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:

Definition 1. A PKE scheme PKE consists of the following triple of
PPT algorithms (Gen,Enc,Dec).
– Gen(1κ; rg)→ (ek , dk): a key-generation algorithm that on input 1κ,

where κ is the security parameter, and randomness rg ∈ RGen, out-
puts a pair of keys (ek , dk). ek and dk are called the encryption key
and decryption key, respectively.

– Enc(ek , µ; re) → c: an encryption algorithm that takes as input en-
cryption key ek, message µ ∈ M, and randomness re ∈ REnc, and
outputs ciphertext c ∈ C.

– Dec(dk , c) → µ/⊥: a decryption algorithm that takes as input de-
cryption key dk and ciphertext c and outputs message µ ∈ M or a
rejection symbol ⊥ ̸∈ M.

We review δ-correctness in Hofheinz, Hövelmanns, and Kiltz [26].

Definition 2 (δ-Correctness). Let δ = δ(κ). We say PKE = (Gen,
Enc,Dec) is δ-correct if

Exp(ek,dk)←Gen(1κ)

[
max
µ∈M

Pr[c← Enc(ek , µ) : Dec(dk , c) ̸= µ]

]
≤ δ.

In particular, we say that PKE is perfectly correct if δ = 0.

We also define a key pair’s accuracy.

Definition 3 (Accuracy [47]). We say that a key pair (ek , dk) is ac-
curate if for any µ ∈ M, Prc←Enc(ek,µ)[Dec(dk , c) = µ] = 1. If a key
pair is not accurate, then we call it inaccurate. We note that if PKE is
deterministic, then Pr(ek,dk)←Gen(1κ)[(ek , dk) is accurate] ≤ δ.
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Security Notions: We define pseudorandomness under chosen-ciphertext
attacks (PR-CCA) and its strong version (SPR-CCA) with simulator
S as a generalization of IND$-CCA-security in [46, 27]. We also review
anonymity (ANON-CCA) [7] and robustness (SROB-CCA) [36]. We
additionally define extended collision-freeness (XCFR), in which any ef-
ficient adversary cannot find a colliding ciphertext even if the adversary
is given two decryption keys. Due to the space limit, we omit the defini-
tions of the standard security notions (OW-CPA, IND-CPA,OW-CCA,
and IND-CCA) [38, 8], weak robustness (WROB-CCA) and collision-
freeness (WCFR-CCA and SCFR-CCA) [36].

Definition 4 (Security notions for PKE). Let PKE = (Gen,Enc,Dec)
be a PKE scheme. Let DM be a distribution over the message spaceM.
For any A and goal-atk ∈ {pr-cca, anon-cca}, we define its goal-atk ad-
vantage against PKE as follows:

Advgoal-atkPKE[,S],A(κ) :=
∣∣∣2Pr[Exptgoal-atkPKE[,S],A(κ) = 1]− 1

∣∣∣,
where Exptgoal-atkPKE[,S],A(κ) is an experiment described in Figure 1 and S is a
PPT simulator.
For any A and goal-atk ∈ {srob-cca, xcfr}, we define its goal-atk advan-
tage against PKE as follows:

Advgoal-atkPKE[,DM],A(κ) := Pr[Exptgoal-atkPKE[,DM],A(κ) = 1],

where Exptgoal-atkPKE[,DM],A(κ) is an experiment described in Figure 1.

For GOAL-ATK ∈ {PR-CCA,ANON-CCA,SROB-CCA,XCFR}, we
say that PKE is GOAL-ATK-secure if Advgoal-atkPKE[,DM,S],A(κ) is negligible
for any QPT adversary A. We also say that PKE is SPR-CCA-secure
if it is PR-CCA-secure, and its simulator ignores ek. We also say that
PKE is GOAL-CPA-secure if it is GOAL-CCA-secure even without the
decryption oracle.

We observe that strong pseudorandomness of PKE/KEM immediately
implies anonymity of PKE/KEM, which may be folklore. We give the
proof in the full version for completeness.

Theorem 1. If PKE/KEM is SPR-CCA-secure, then it is ANON-CCA-
secure.

Disjoint simulatability: We review disjoint simulatability defined in [39].

Definition 5 (Disjoint simulatability [39]). Let DM denote an effi-
ciently sampleable distribution on a setM. A deterministic PKE scheme
PKE = (Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is
DM-disjoint-simulatable if there exists a PPT algorithm S that satisfies
the followings:
– (Statistical disjointness:)

DisjPKE,S(κ) := max
(ek,dk)∈Gen(1κ;RGen)

Pr[c← S(1κ, ek) : c ∈ Enc(ek ,M)]

is negligible.
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Exptpr-ccaPKE,S,A(κ)

b← {0, 1}

(ek , dk)← Gen(1κ)

(µ, state)← ADec⊥(·)
1 (ek)

c
∗
0 ← Enc(ek , µ)

c
∗
1 ← S(1

κ
, ek)

b
′ ← A

Decc∗
b
(·)

2 (c
∗
b , state)

return boole(b = b
′
)

Exptanon-ccaPKE,A (κ)

b← {0, 1}

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

(µ, state)← ADec⊥(·,·)
1 (ek0, ek1)

c
∗ ← Enc(ekb, µ)

b
′ ← ADecc∗ (·,·)

2 (c
∗
, state)

return boole(b = b
′
)

Deca(c)

if c = a, return ⊥
µ := Dec(dk , c)

return µ

Deca(id, c)

if c = a, return ⊥
µ := Dec(dk id , c)

return µ

Exptsrob-ccaPKE,A (κ)

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

c← ADec⊥(·,·)
(ek0, ek1)

µ0 ← Dec(dk0, c)

µ1 ← Dec(dk1, c)

return boole(µ0 ̸= ⊥ ∧ µ1 ̸= ⊥)

ExptxcfrPKE,A(κ)

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

c← A(ek0, dk0, ek1, dk1)

µ0 ← Dec(dk0, c)

µ1 ← Dec(dk1, c)

return boole(µ0 = µ1 ̸= ⊥)

Exptds-indPKE,DM,S,A(κ)

(ek , dk)← Gen(1κ)

µ∗ ← DM

c
∗
0 := Enc(ek , µ∗

)

c
∗
1 ← S(1

κ
, ek)

b
′ ← A(ek , c

∗
b )

return boole(b = b
′
)

Fig. 1. Games for PKE schemes

– (Ciphertext-indistinguishability:) For any QPT adversary A, its ds-ind
advantage Advds-indPKE,DM,S,A(κ) is negligible: The advantage is defined
as

Advds-indPKE,DM,S,A(κ) :=
∣∣∣2Pr[Exptds-indPKE,DM,S,A(κ) = 1]− 1

∣∣∣,
where Exptds-indPKE,DM,S,A(κ) is an experiment described in Figure 1 and
S is a PPT simulator.

Liu and Wang gave a slightly modified version of statistical disjointness
in [33]. As they noted, their definition below is enough to show the se-
curity proof:

DisjPKE,S(κ) := Pr[(ek , dk)← Gen(1κ), c← S(1κ, ek) : c ∈ Enc(ek ,M)]

Definition 6 (strong disjoint-simulatability). We call PKE has strong
disjoint-simulatability if S ignores ek.

Remark 3. We note that a deterministic PKE scheme produced by TPunc [39]
or Punc [29] is not strongly disjoint-simulatable, because their simulator
outputs a random ciphertext Enc(ek , µ̂) of a special plaintext µ̂.

2.2 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:

Definition 7. A KEM scheme KEM consists of the following triple of
polynomial-time algorithms (Gen,Enc,Dec):
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– Gen(1κ) → (ek , dk): a key-generation algorithm that on input 1κ,
where κ is the security parameter, outputs a pair of keys (ek , dk).
ek and dk are called the encapsulation key and decapsulation key,
respectively.

– Enc(ek) → (c,K): an encapsulation algorithm that takes as input
encapsulation key ek and outputs ciphertext c ∈ C and key K ∈ K.

– Dec(dk , c)→ K/⊥: a decapsulation algorithm that takes as input de-
capsulation key dk and ciphertext c and outputs key K or a rejection
symbol ⊥ ̸∈ K.

Definition 8 (δ-Correctness). Let δ = δ(κ). We say that KEM =
(Gen,Enc,Dec) is δ-correct if

Pr[(ek , dk)← Gen(1κ), (c,K)← Enc(ek) : Dec(dk , c) ̸= K] ≤ δ(κ).

In particular, we say that KEM is perfectly correct if δ = 0.

Security: We define pseudorandomness under chosen-ciphertext attacks
(PR-CCA) and its strong version (SPR-CCA) with simulator S as a
generalization of IND$-CCA-security in [46, 27]. We also review anonymity
(ANON-CCA), robustness (SROB-CCA), and collision-freeness (SCFR-CCA) [24].
We also define smoothness under chosen-ciphertext attacks (denoted by
SMT-CCA) by following smoothness of hash proof system [16]. Due to
the space limit, we omit the definitions of the standard security notions
(OW-CPA, IND-CPA, OW-CCA, and IND-CCA) and weak robust-
ness (WROB-CCA) and weak collision-freeness (WCFR-CCA) [24].

Definition 9 (Security notions for KEM). Let KEM = (Gen,Enc,Dec)
be a KEM scheme.
For any A and goal-atk ∈ {pr-cca, anon-cca, smt-cca}, we define its
goal-atk advantage against KEM as follows:

Advgoal-atkKEM[,S],A(κ) :=
∣∣∣2Pr[Exptgoal-atkKEM[,S],A(κ) = 1]− 1

∣∣∣,
where Exptgoal-atkKEM[,S],A(κ) is an experiment described in Figure 1 and S is
a PPT simulator.
For any A and goal-atk ∈ {srob-cca, scfr-cca}, we define its goal-atk
advantage against KEM as follows:

Advgoal-atkKEM,A (κ) := Pr[Exptgoal-atkKEM,A (κ) = 1],

where Exptgoal-atkKEM,A (κ) is an experiment described in Figure 1.
For GOAL-ATK ∈ {PR-CCA,ANON-CCA,SMT-CCA,SROB-CCA,
SCFR-CCA}, we say that KEM is GOAL-ATK-secure if Advgoal-atkKEM[,S],A(κ)
is negligible for any QPT adversary A. We say that KEM is SPR-CCA-
secure or SSMT-CCA-secure if it is PR-CCA-secure or SMT-CCA-
secure and its simulator ignores ek, respectively. We say that KEM is
wANON-CCA-secure if it is ANON-CCA-secure where the input to the
adversary is (ek0, ek1, c

∗). We also say that KEM is GOAL-CPA-secure
if it is GOAL-CCA-secure even without the decapsulation oracle.

We additionally define ϵ-sparseness for KEM with explicit rejection.
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Exptpr-ccaKEM,S,A(κ)

b← {0, 1}

(ek , dk)← Gen(1κ)

(c
∗
0 , K

∗
0 )← Enc(ek);

(c
∗
1 , K

∗
1 )← S(1

κ
, ek)×K

b
′ ← A

Decc∗
b
(·)

(ek , c
∗
b , K

∗
b )

return boole(b = b
′
)

Exptanon-ccaKEM,A (κ)

b← {0, 1}

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

(c
∗
, K

∗
)← Enc(ek);

b
′ ← ADecc∗ (·,·)

(ek0, ek1, c
∗
, K

∗
)

return boole(b = b
′
)

Deca(c)

if c = a, return ⊥

K := Dec(dk , c)

return K

Deca(id, c)

if c = a, return ⊥

K := Dec(dk id, c)

return K

Exptsmt-cca
KEM,S,A(κ)

b← {0, 1}

(ek , dk)← Gen(1κ)

(c
∗
, K

∗
0 )← S(1

κ
, ek)×K

K
∗
1 ← Dec(dk , c∗)

b
′ ← ADecc∗ (·)

(ek , c
∗
, K

∗
b )

return boole(b = b
′
)

Exptscfr-ccaKEM,A (κ)

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

c← ADec⊥(·,·)
(ek0, ek1)

K0 ← Dec(dk0, c)

K1 ← Dec(dk1, c)

return boole(K0 = K1 ̸= ⊥)

Exptsrob-ccaKEM,A (κ)

(ek0, dk0)← Gen(1κ)

(ek1, dk1)← Gen(1κ)

c← ADec⊥(·,·)
(ek0, ek1)

K0 ← Dec(dk0, c)

K1 ← Dec(dk1, c)

return boole(K0 ̸= ⊥ ∧K1 ̸= ⊥)

Fig. 2. Games for KEM schemes

Definition 10. Let S be a simulator for the PR-CCA security. We say
that KEM is ϵ-sparse if

Pr[(ek , dk)← Gen(1κ), c∗ ← S(1κ, ek) : Dec(dk , c) ̸= ⊥] ≤ ϵ.

2.3 Data Encapsulation Mechanism (DEM)

The model for DEM schemes is summarized as follows:

Definition 11. A DEM scheme DEM consists of the following triple of
polynomial-time algorithms (E,D) with key space K and message space
M:
– E(K,µ) → d: an encapsulation algorithm that takes as input key K

and data µ and outputs ciphertext d.
– D(K, d) → m/⊥: a decapsulation algorithm that takes as input key

K and ciphertext d and outputs data µ or a rejection symbol ⊥ ̸∈ M.

Definition 12 (Correctness). We say DEM = (E,D) has perfect cor-
rectness if for any K ∈ K and any µ ∈M, we have

Pr[D(K, d) = µ : d← E(K,µ)] = 1.

Security: We review pseudorandomness under chosen-ciphertext attacks
(PR-CCA) and pseudorandomness under one-time chosen-ciphertext at-
tacks (PR-otCCA). We also review integrity of ciphertext (INT-CTXT).
Robustness of DEM (FROB) are taken from Farshim, Orlandi, and
Roşi [19]. Due to the space limit, we omit the definitions of the stan-
dard security notion IND-CCA and robustness (XROB) [19].
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Exptpr-ccaDEM,A(κ)

b← {0, 1}
K ← K

(µ, state)← AEnc(·),Dec⊥(·)
(1

κ
)

d
∗
0 ← E(K,µ)

d
∗
1 ← U(C|µ|)

b
′ ← A

Enc(·),Decd∗
b
(·)

(d
∗
b , state)

return boole(b = b
′
)

Exptpr-otccaDEM,A (κ)

b← {0, 1}
K ← K

(µ, state)← A(1
κ
)

d
∗
0 ← E(K,µ)

d
∗
1 ← U(C|µ|)

b
′ ← A

Decd∗
b
(·)

(d
∗
b , state)

return boole(b = b
′
)

Enc(µ)

d← E(K,µ)

return d

Deca(d)

if d = a

then return ⊥
µ← D(K, d)

return µ

Exptint-ctxtDEM,A (κ)

K ← K
w ← ⊥
L← ∅

AEnc2(·),Dec2(·)
(1

κ
)

return w

Enc2(µ)

d← E(K,µ)

L← L ∪ {d}
return d

Dec2(d)

µ← D(K, d)

if µ ̸= ⊥ and d ̸∈ L

then w := ⊤
return µ

ExptfrobDEM,A(κ)

(d, k0, k1)← A(1
κ
)

µ0 ← D(k0, d)

µ1 ← D(k1, d)

b← boole(µ0 ̸= ⊥ ∧ µ1 ̸= ⊥)
bk ← boole(k0 ̸= k1)

return boole(b ∧ bk)

Fig. 3. Games for DEM schemes

Definition 13 (Security notions for DEM). Let DEM = (E,D) be a
DEM scheme whose key space is K. For µ ∈ M, let C|µ| be a ciphertext
space defined by the length of message µ.
For any A and goal-atk ∈ {pr-cca, pr-otcca}, we define its goal-atk ad-
vantage against DEM as follows:

Advgoal-atkDEM,A (κ) :=
∣∣∣2Pr[Exptgoal-atkDEM,A (κ) = 1]− 1

∣∣∣,
where Exptgoal-atkDEM,A (κ) is an experiment described in Figure 1.
For any A and goal-atk ∈ {int-ctxt, frob}, we define its goal-atk advan-
tage against DEM as follows:

Advgoal-atkDEM,A (κ) := Pr[Exptgoal-atkDEM,A (κ) = 1],

where Exptgoal-atkDEM,A (κ) is an experiment described in Figure 1.
For GOAL-ATK ∈ {PR-CCA,PR-otCCA, INT-CTXT,FROB}, we
say that DEM is GOAL-ATK-secure if Advgoal-atkDEM,A (κ) is negligible for
any QPT adversary A.

2.4 Review of Grubbs, Maram, and Paterson [24]

Grubbs et al. studied KEM’s anonymity and hybrid PKE’s anonymity
and robustness by extending the results of Mohassel [36]. We use KEM⊥
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and KEM̸⊥ to indicate KEM with explicit rejection and implicit rejection,
respectively. For KEM with explicit rejection, they showed the following
theorem which generalizes Mohassel’s theorem [36]:

Theorem 2 ([24, Theorem 1]). Let PKEhy = Hyb[KEM⊥,DEM], a
hybrid PKE scheme obtained by composing KEM⊥ and DEM. (See Fig-
ure 4.)
1. If KEM⊥ is wANON-CPA-secure, IND-CCA-secure, WROB-CCA-

secure, and δ-correct and DEM is INT-CTXT-secure, then PKEhy is
ANON-CCA-secure.

2. If KEM⊥ is SROB-CCA-secure (and WROB-CCA-secure), then
PKEhy is SROB-CCA-secure (and WROB-CCA-secure), respectively.

Grubbs et al. [24] then treat KEM with implicit rejection, which is used in
all NIST PQC Round 3 KEM candidates except HQC. Their results are
related to the FO transform with implicit rejection, which is decomposed
into two transforms, T and U ̸⊥: T transforms a probabilistic PKE scheme
PKE into a deterministic PKE scheme PKE1 with a random oracle G;
U̸⊥ transforms a deterministic PKE scheme PKE1 into a probabilistic
KEM KEM with a random oracle H. Roughly speaking, they showed
the following two theorems on robustness and anonymity of hybrid PKE
from KEM with implicit rejection:

Theorem 3 (Robustness of PKEhy [24, Theorem 2]). Let PKEhy =
Hyb[KEM̸⊥,DEM]. If KEM̸⊥ is SCFR-CCA-secure (and WCFR-CCA-
secure) and DEM is FROB-secure (and XROB-secure), then PKEhy is
SROB-CCA-secure (and WROB-CCA-secure), respectively.

Theorem 4 (Anonymity of PKEhy using FO ̸⊥ [24, Theorem 7]).
Let PKEhy = Hyb[KEM̸⊥,DEM]. If PKE is δ-correct, and γ-spreading,
PKE1 = T[PKE,G] is WCFR-CPA-secure, KEM̸⊥ = FO ̸⊥[PKE,G,H] is
ANON-CCA-secure and IND-CCA-secure, DEM is INT-CTXT-secure,
then PKEhy is ANON-CCA-secure.

They also showed that the following theorem:

Theorem 5 (Anonymity of KEM̸⊥ using FO̸⊥ [24, Theorem 5]).
If PKE is wANON-CPA-secure, OW-CPA-secure, and δ-correct, and
PKE1 = T[PKE,G] is SCFR-CPA-secure, then a KEM scheme KEM =
FO ̸⊥[PKE,G,H] is ANON-CCA-secure.

Grubbs et al. reduced from the wANON-CPA-security of PKE to the
ANON-CCA-security of KEM. We note that there are two decapsula-
tion oracles in the security game of the ANON-CCA-security of KEM.
Thus, they need to simulate both decapsulation oracles without secrets.
Jiang et al. [31] used the simulation trick that replaces H(µ, c) with
Hq(Enc(ek , µ)) if c = Enc(ek , µ) and H′q(µ, c) else, which helps the simula-
tion of the decapsulation oracle without secrets in the QROM. Grubbs et al. ex-
tended this trick to simulate two decapsulation oracles by replacing
H(µ, c) with Hq,i(Enc(ek i, µ)) if c = Enc(ek i, µ) and H′q(µ, c) else. Notice
that this extended simulation heavily depends on the fact that H takes µ
and c and the SCFR-CCA-security of PKE1. If the random oracle takes
µ only, their trick fails the simulation.
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3 Strong Pseudorandomness of Hybrid PKE

The hybrid PKE PKEhy = (Genhy,Enchy,Dechy) constructed from KEM =
(Gen,Enc,Dec) and DEM = (E,D) is summarized as in Figure 4

Genhy(1
κ)

(ek , dk)← Gen(1κ)

return (ek , dk)

Enchy(ek , µ)

(c,K)← Enc(ek)

d← E(K,µ)

return ct := (c, d)

Dechy(dk , ct = (c, d))

K
′ ← Dec(dk , c)

if K
′
= ⊥ then return ⊥

µ
′ ← D(K

′
, d)

if µ
′
= ⊥ then return ⊥

return µ
′

Fig. 4. PKEhy = Hyb[KEM,DEM]

We show the following two theorems on strong pseudorandomness and
anonymity of a hybrid PKE:

Theorem 6 (Case for KEM with Explicit Rejection). Let PKEhy =
(Genhy,Enchy,Dechy) be a hybrid encryption scheme obtained by com-
posing a KEM scheme KEM⊥ = (Gen,Enc,Dec) and a DEM scheme
DEM = (E,D) that share key space K. If KEM⊥ is SPR-CCA-secure,
δ-correct with negligible δ, and ϵ-sparse and DEM is PR-otCCA-secure
and INT-CTXT-secure, then PKEhy is SPR-CCA-secure (and ANON-CCA-
secure).

Theorem 7 (Case for KEM with Implicit Rejection). Let PKEhy =
(Genhy,Enchy,Dechy) be a hybrid encryption scheme obtained by com-
posing a KEM scheme KEM̸⊥ = (Gen,Enc,Dec) and a DEM scheme
DEM = (E,D) that share key space K. If KEM̸⊥ is SPR-CCA-secure,
SSMT-CCA-secure, and δ-correct with negligible δ and DEM is PR-otCCA-
secure, then PKEhy is SPR-CCA-secure (and ANON-CCA-secure).

We here prove Theorem 7 and give the proof of Theorem 6 in the full
version.

3.1 Proof of Theorem 7

Let us consider Gamei for i = 0, . . . , 6. We summarize the games in
Table 2. Let Si denote the event that the adversary outputs b′ = 1 in
Gamei.
Let S be the simulator for the SPR-CCA security of KEM̸⊥. We define
Shy(1κ, |µ∗|) := S(1κ)× U(C|µ∗|) be the simulator for the SPR-CCA se-
curity of PKEhy.
The security proof is similar to the security proof of the IND-CCA se-
curity of KEM/DEM [17] for Game0, . . . ,Game4. We need to take care
of pseudorandom ciphertexts when moving from Game4 to Game5 and
require the SSMT-CCA security of KEM̸⊥.
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Table 2. Summary of Games for the Proof of Theorem 7

Game c∗ and K∗ d∗ Decryption Justification

Game0 Enc(ek) E(K∗, µ∗)

Game1 Enc(ek) at first E(K∗, µ∗) conceptual change

Game2 Enc(ek) at first E(K∗, µ∗) use K∗ if c = c∗ δ-correctness of KEM̸⊥

Game3 S(1κ)× U(K) at first E(K∗, µ∗) use K∗ if c = c∗ SPR-CCA security of KEM̸⊥

Game4 S(1κ)× U(K) at first U(C|µ∗|) use K∗ if c = c∗ SPR-otCCA security of DEM

Game5 S(1κ)× U(K) at first U(C|µ∗|) SSMT-CCA security of KEM̸⊥

Game6 S(1κ)× U(K) U(C|µ∗|) conceptual change

Game0: This is the original game Exptspr-ccaPKEhy,Shy,A(κ) with b = 0. Given

µ∗, the challenge ciphertext is computed as follows:

(c∗,K∗)← Enc(ek); d∗ ← E(K∗, µ∗); return ct∗ = (c∗, d∗).

We have

Pr[S0] = 1− Pr[Exptspr-ccaPKEhy,Shy,A(κ) = 1 | b = 0].

Game1: In this game, c∗0 and K∗0 are generated before invoking A with
ek . This change is just conceptual, and we have

Pr[S0] = Pr[S1].

Game2: In this game, the decryption oracle uses K∗ if c = c∗ instead
of K = Dec(dk , c∗). Game1 and Game2 differ if correctly generated ci-
phertext c∗ with K∗ is decapsulated into different K ̸= K∗ or ⊥, which
violates the correctness and occurs with probability at most δ. Hence,
the difference of Game1 and Game2 is bounded by δ, and we have

|Pr[S1]− Pr[S2]| ≤ δ.

We note that this corresponds to the event BadKeyPair in [17].

Game3: In this game, the challenger uses random (c∗,K∗) and uses K∗

in DEM. The challenge ciphertext is generated as follows:

(c∗,K∗)← S(1κ)× U(K); d+ ← E(K∗, µ∗); return ct∗ = (c∗, d+).

The difference is bounded by SPR-CCA security of KEM̸⊥: There is an
adversary A23 whose running time is approximately the same as that of
A satisfying

|Pr[S2]− Pr[S3]| ≤ Advspr-cca
KEM ̸⊥,S,A23

(κ).

We omit the detail of A23 since it is straightforward.

Game4: In this game, the challenger uses random d∗. The challenge
ciphertext is generated as follows:

(c∗,K∗)← S(1κ)×K; d∗ ← U(C|µ∗|); return ct∗ = (c∗, d∗).

The difference is bounded by SPR-otCCA security of DEM: There is an
adversary A34 whose running time is approximately the same as that of
A satisfying

|Pr[S3]− Pr[S4]| ≤ Advspr-otccaDEM,A34
(κ).

We omit the detail of A34 since it is straightforward.
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Game5: We replace the decryption oracle defined as follows: If given
ct = (c∗, d), the decryption oracle uses K = Dec(dk , c∗) instead of K∗.
The difference is bounded by SSMT-CCA security of KEM ̸⊥: There is
an adversary A45 whose running time is approximately the same as that
of A satisfying

|Pr[S4]− Pr[S5]| ≤ Advssmt-cca
KEM ̸⊥,S,A45

(κ).

We omit the detail of A45 since it is straightforward.

Game6: We finally change the timing of the generation of (c∗,K∗). This
change is just conceptual, and we have

Pr[S5] = Pr[S6].

Notice that this is the original game Exptspr-ccaPKEhy,Shy,A(κ) with b = 1, thus,

we have
Pr[S6] = Pr[Exptspr-ccaPKEhy,Shy,A(κ) = 1 | b = 1].

Summing the (in)equalities, we obtain the bound in the statement as
follows:

Advspr-ccaPKEhy,ShyA(κ) = |Pr[S0]− Pr[S6]| ≤
∑
i

|Pr[Si]− Pr[Si+1]|

≤ δ + Advspr-cca
KEM̸⊥,S,A23

(κ) + Advspr-otccaDEM,A34
(κ) + Advssmt-cca

KEM̸⊥,S,A45
(κ).

⊓⊔

4 Properties of SXY

Let us review SXY [39] as known as U̸⊥m with explicit re-encryption
check [26].
Let PKE = (Gen,Enc,Dec) be a deterministic PKE scheme. Let M, C,
and K be a plaintext, ciphertext, and key space of PKE, respectively. Let
H : M → K and Hprf : {0, 1}ℓ × C → K be hash functions modeled by
random oracles. KEM = (Gen,Enc,Dec) = SXY[PKE,H,Hprf ] is defined
as in Figure 5.

Gen(1κ)

(ek , dk)← Gen(1κ)

s← {0, 1}ℓ

dk := (dk , ek , s)

return (ek , dk)

Enc(ek)

µ← DM

c := Enc(ek , µ)

K := H(µ)

return (c,K)

Dec(dk , c), where dk = (dk , ek , s)

µ
′ ← Dec(dk , c)

if µ
′
= ⊥ or c ̸= Enc(ek , µ′

)

then return K := Hprf(s, c)

else return K := H(µ′
)

Fig. 5. KEM = SXY[PKE,H,Hprf ]
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Table 3. Summary of games for the proof of Theorem 8

Decapsulation
Game H c∗ K∗ valid c invalid c Justification

Game0 H(·) Enc(ek , µ∗) H(µ∗) H(µ) Hprf(s, c)
Game1 H(·) Enc(ek , µ∗) H(µ∗) H(µ) Hq(c) Lemma 2
Game1.5 H′

q(Enc(ek , ·)) Enc(ek , µ∗) H(µ∗) H(µ) Hq(c) key’s accuracy
Game2 Hq(Enc(ek , ·)) Enc(ek , µ∗) H(µ∗) H(µ) Hq(c) key’s accuracy
Game3 Hq(Enc(ek , ·)) Enc(ek , µ∗) Hq(c

∗) Hq(c) Hq(c) key’s accuracy
Game4 Hq(Enc(ek , ·)) S(1κ) Hq(c

∗) Hq(c) Hq(c) ciphertext indistinguishability
Game5 Hq(Enc(ek , ·)) S(1κ) U(K) Hq(c) Hq(c) statistical disjointness
Game6 Hq(Enc(ek , ·)) S(1κ) U(K) H(µ) Hq(c) key’s accuracy
Game6.5 H′

q(Enc(ek , ·)) S(1κ) U(K) H(µ) Hq(c) key’s accuracy
Game7 H(·) S(1κ) U(K) H(µ) Hq(c) key’s accuracy
Game8 H(·) S(1κ) U(K) H(µ) Hprf(s, c) Lemma 2

4.1 SPR-CCA Security

We first show that KEM is strongly pseudorandom if the underlying PKE
is strongly disjoint-simulatable.

Theorem 8. Suppose that a ciphertext space C of PKE depends on the
public parameter only. If PKE is strongly disjoint-simulatable and δ-
correct with negligible δ, then KEM = SXY[PKE,H,Hprf ] is SPR-CCA-
secure.

Correctly speaking, the bound of the advantage differ if PKE is deran-
domized by T. See the full version for the detail.

Proof of Theorem 8: We use the game-hopping proof. We consider
Gamei for i = 0, . . . , 8. We summarize the games in Table 3. Let Si

denote the event that the adversary outputs b′ = 1 in game Gamei. Let
Acc be an event that a key pair (ek , dk) is accurate. Let Acc denote
the event that a key pair (ek , dk) is inaccurate. We note that we have
Pr[Acc] ≤ δ since PKE is deterministic. We extend the security proof for
IND-CCA security of SXY in [39, 47, 33].

Game0: This game is the original game Exptspr-ccaKEM,A(κ) with b = 0. Thus,
we have

Pr[S0] = 1− Pr[Exptspr-ccaKEM,A(κ) = 1 | b = 0].

Game1: This game is the same as Game0 except that Hprf(s, c) in the
decapsulation oracle is replace with Hq(c) where Hq : C → K is another
random oracle. We remark that A cannot access Hq directly.
As in [47, Lemmas 4.1], from Lemma 2 we have the bound

|Pr[S0]− Pr[S1]| ≤ 2(qHprf + qDec) · 2−ℓ/2,

where qHprf and qDec denote the number of queries to Hprf and Dec the
adversary makes, respectively.
In addition, according to Lemma 8, for any p ≥ 0, we have

|Pr[S1]− p| ≤ |Pr[S1 ∧ Acc]− p|+ δ.
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Game1.5: This game is the same as Game1 except that the random oracle
H(·) is simulated by H′q(Enc(ek , ·)) where H′q : C → K is yet another ran-
dom oracle. We remark that the decapsulation oracle and the generation
of K∗ also use H′q(Enc(ek , ·)) as H(·).
If the key pair (ek , dk) is accurate, then g(µ) := Enc(ek , µ) is injective.
Thus, if the key pair is accurate, then H′q ◦ g : M → K is a random
function and the two games Game1 and Game1.5 are equivalent Thus, we
have

Pr[S1 ∧ Acc] = Pr[S1.5 ∧ Acc].

Game2: This game is the same as Game1.5 except that the random oracle
H is simulated by Hq ◦ g instead of H′q ◦ g.
A ciphertext c is said to be valid if we have Enc(ek ,Dec(dk , c)) = c and
invalid otherwise.
Notice that, in Game1.5, Hq is used for invalid ciphertext, and an adver-
sary cannot access a value of Hq for a valid ciphertext. In addition, in
Game1.5, an adversary can access a value of H′q on input a valid cipher-
text and cannot access a value of H′q on input an invalid ciphertext if the
key pair is accurate. Thus, there is no difference between Game1.5 and
Game2 if the key pair is accurate and we have

Pr[S1.5 ∧ Acc] = Pr[S2 ∧ Acc].

Game3: This game is the same as Game2 except that K∗ is set as Hq(c
∗)

and the decapsulation oracle always returns H′q(c) as long as c ̸= c∗. This
decapsulation oracle will denoted by Dec’.
If the key pair is accurate, for a valid ciphertext c and its decrypted
result µ, we have H(µ) = Hq(Enc(ek , µ)) = Hq(c). Thus, the two games
Game2 and Game3 are equivalent and we have

Pr[S2 ∧ Acc] = Pr[S3 ∧ Acc].

According to Lemma 8, for any p ≥ 0, we have

|Pr[S3 ∧ Acc]− p| ≤ |Pr[S3]− p|+ δ.

Game4: This game is the same as Game3 except that c∗ is generated by
S(1κ).
The difference between two games Game3 and Game4 is bounded by
the advantage of ciphertext indistinguishability in disjoint simulatability
as in [47, Lemma 4.7]. The reduction algorithm is obtained straightfor-
wardly, and we omit it. We have

|Pr[S3]− Pr[S4]| ≤ Advds-indPKE,DM,S,A34
(κ).

Game5: This game is the same as Game4 except that K∗ ← K instead
of K∗ ← Hq(c

∗).
In Game4, if c

∗ ← S(1κ) is not in Enc(ek ,M), then the adversary has
no information about K∗ = Hq(c

∗) and thus, K∗ looks uniformly at
random. Hence, the difference between two games Game4 and Game5 is
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bounded by the statistical disjointness in disjoint simulatability as in [47,
Lemma 4.8]. We have

|Pr[S4]− Pr[S5]| ≤ DisjPKE,S(κ).

According to Lemma 8, for any p ≥ 0, we have

|Pr[S5]− p| ≤ |Pr[S5 ∧ Acc]− p|+ δ.

Game6: This game is the same as Game5 except that the decapsulation
oracle is reset as Dec. Similar to the case for Game2 and Game3, if a key
pair is accurate, the two games Game5 and Game6 are equivalent as in
the proof of [47, Lemma 4.5]. We have

Pr[S5 ∧ Acc] = Pr[S6 ∧ Acc].

Game6.5: This game is the same as Game6 except that the random oracle
H is simulated by H′q ◦ g where H′q : C → K is yet another random oracle
as in Game1.2 instead of Hq ◦ g. If a key pair is accurate, then two games
Game6 and Game6.5 are equal to each other as the two games Game1.5
and Game2 are equal to each other. We have

Pr[S6 ∧ Acc] = Pr[S6.5 ∧ Acc].

Game7: This game is the same as Game6.5 except that the random oracle
H(·) is set as the original. If a key pair is accurate, then the two games
Game6.5 and Game7 are equal to each other as the two games Game1.5
and Game1 are equal to each other. We have

Pr[S6.5 ∧ Acc] = Pr[S7 ∧ Acc].

According to Lemma 8, for any p ≥ 0, we have

|Pr[S7 ∧ Acc]− p| ≤ |Pr[S7]− p|+ δ.

Game8: This game is the same as Game7 except that Hq(c) in the de-
capsulation oracle is replaced by Hprf(s, c).
As we discussed the difference between the two games Game0 and Game1,
from Lemma 2 we have the bound

|Pr[S7]− Pr[S8]| ≤ 2(qHprf + qDec) · 2−ℓ/2.

We note that this game is the original game Exptspr-ccaKEM,A(κ) with b = 1.
Thus, we have

Pr[S8] = Pr[Exptspr-ccaKEM,A(κ) = 1 | b = 1].

Summing those (in)equalities, we obtain the following bound:

Advspr-ccaKEM,A(κ) = |Pr[S0]− Pr[S8]| ≤
7∑

i=0

|Pr[Si]− Pr[Si+1]|

≤ Advds-indPKE,DM,S,A34
(κ) + DisjPKE,S(κ)

+ 4(qHprf + qDec) · 2−ℓ/2 + 4δ.
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Table 4. Summary of games for the proof of Theorem 9: ‘S(1κ) \ Enc(ek ,M)’ implies
that the challenger generates c∗ ← S(1κ) and returns ⊥ if c∗ ∈ Enc(ek ,M).

Decapsulation
Game c∗ K∗ valid c invalid c Justification

Game0 S(1κ) random H(µ) Hprf(s, c)
Game1 S(1κ) \ Enc(ek ,M) random H(µ) Hprf(s, c) statistical disjointness
Game2 S(1κ) \ Enc(ek ,M) random H(µ) Hq(c) Lemma 2
Game3 S(1κ) \ Enc(ek ,M) Hq(c

∗) H(µ) Hq(c) Hq(c
∗) is hidden

Game4 S(1κ) \ Enc(ek ,M) Hprf(s, c
∗) H(µ) Hprf(s, c) Lemma 2

Game5 S(1κ) \ Enc(ek ,M) Dec(dk , c∗) H(µ) Hprf(s, c) re-encryption check

Game6 S(1κ) Dec(dk , c∗) H(µ) Hprf(s, c) statistical disjointness

4.2 SSMT-CCA Security

Theorem 9. Suppose that a ciphertext space C of PKE depends on the
public parameter only. If PKE is strongly disjoint-simulatable, then KEM =
SXY[PKE,H,Hprf ] is SSMT-CCA-secure.
Formally speaking, for any adversary A against SSMT-CCA security of
KEM issuing at most qHprf and qDec queries to Hprf and Dec, we have

Advssmt-cca
KEM,S,A(κ) ≤ 2DisjPKE,S(κ) + 4(qHprf + qDec) · 2−ℓ/2.

We note that this security proof is unrelated to PKE is deterministic
PKE or one derandomized by T.

Proof: We use the game-hopping proof. We consider Gamei for i =
0, . . . , 6. We summarize those games in Table 4. Let Si denote the event
that the adversary outputs b′ = 1 in game Gamei.

Game0: This game is the original game Exptssmt-cca
KEM,S,A(κ) with b = 0. The

challenge is generated as c∗ ← S(1κ) and K∗0 ← K. We have

Pr[S0] = 1− Pr[Exptssmt-cca
KEM,S,A(κ) = 1 | b = 0].

Game1: In this game, the challenge ciphertext is set as ⊥ if c∗ is in
Enc(ek ,M). Since the difference between two games Game0 and Game1
is bounded by statistical disjointness, we have

|Pr[S0]− Pr[S1]| ≤ DisjPKE,S(κ).

Game2: This game is the same as Game1 except that Hprf(s, c) in the
decapsulation oracle is replace with Hq(c) where Hq : C → K is another
random oracle.
As in [47, Lemmas 4.1], from Lemma 2 we have the bound

|Pr[S1]− Pr[S2]| ≤ 2(qHprf + qDec) · 2−ℓ/2.

Game3: This game is the same as Game2 except that K∗ is set as Hq(c
∗)

instead of chosen randomly. Since c∗ is always outside of Enc(ek ,M),
A cannot obtain any information about Hq(c

∗). Hence, the two games
Game2 and Game3 are equivalent and we have

Pr[S2] = Pr[S3].
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Game4: This game is the same as Game3 except that Hq(·) is replaced
by Hprf(s, ·). As in [47, Lemmas 4.1], from Lemma 2 we have the bound

|Pr[S3]− Pr[S4]| ≤ 2(qHprf + qDec) · 2−ℓ/2.

Game5: This game is the same as Game4 except that K∗ is set as
Dec(dk , c∗) instead of Hprf(s, c

∗). Recall that c∗ is always in outside of
Enc(ek ,M). Thus, we always have Dec(c∗) = ⊥ or Enc(ek ,Dec(c∗)) ̸= c∗

and, thus, K∗ = Hprf(s, c
∗) in Game5. Hence, the two games are equiva-

lent and we have
Pr[S4] = Pr[S5].

Game6: We finally replace the way to compute c∗: In this game, the
ciphertext is chosen by S(1κ) as in Game0. Again, since the difference
between two games Game5 and Game6 is bounded by statistical disjoint-
ness, we have

|Pr[S5]− Pr[S6]| ≤ DisjPKE,S(κ).

Moreover, this game Game6 is the original game Exptssmt-cca
KEM,S,A(κ) with

b = 1 and we have

Pr[S6] = Pr[Exptssmt-cca
KEM,S,A(κ) = 1 | b = 1].

Summing those (in)equalities, we obtain Theorem 9:

Advssmt-cca
KEM,S,A(κ) = |Pr[S0]− Pr[S6]|

≤ 2DisjPKE,S(κ) + 4(qHprf + qDec) · 2−ℓ/2.

4.3 SCFR-CCA Security

Theorem 10. If PKE is XCFR-secure or SCFR-CCA-secure, then KEM =
SXY[PKE,H,Hprf ] is SCFR-CCA-secure in the QROM.

Proof. Suppose that an adversary against KEM’s SCFR-CCA security
outputs a ciphertext c which is decapsulated into K ̸= ⊥ by both dk0 and
dk1, that is, K = Dec(dk0, c) = Dec(dk1, c) ̸= ⊥. For i ∈ {0, 1}, we define
µ′i as an internal decryption result under dk i, that is, µ′i = Dec(dk i, c).
For i ∈ {0, 1}, we also define µi := µ′i if c = Enc(ek i, µ

′
i) and µi := ⊥

otherwise.
We have five cases classified as follows:

– Case 1 (µ0 = µ1 ̸= ⊥): This µ0 = µ1 ̸= ⊥ violates the XCFR
security (or the SCFR-CCA security) of the underlying PKE and it
is easy to make a reduction.

– Case 2 (⊥ ≠ µ0 ̸= µ1 ̸= ⊥): In this case, the decapsulation algorithm
outputs K = H(µ0) = H(µ1). Thus, we succeed to find a collision for
H, which is negligible for any QPT adversary (Lemma 3).

– Case 3 (µ0 = ⊥ and µ1 ̸= ⊥): In this case, the decapsulation algo-
rithm outputsK = Hprf(s0, c) = H(µ1) and we find a claw ((s0, c), µ1)
of Hprf and H. The probability that we find such claw is negligible
for any QPT adversary (Lemma 4).
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– Case 4 (µ0 ̸= ⊥ and µ1 = ⊥): In this case, the decapsulation algo-
rithm outputsK = H(µ0) = Hprf(s1, c) and we find a claw (µ0, (s1, c))
of H and Hprf . The probability that we find such claw is negligible
for any QPT adversary (Lemma 4).

– Case 5 (The other cases): In this case, we find a collision ((s0, c), (s1, c))
of Hprf , which is indeed collision if s0 ̸= s1 which occurs with prob-
ability at lease 1− 1/2ℓ. The probability that we find such collision
is negligible for any QPT adversary (Lemma 3).

We conclude that the advantage of the adversary is negligible in any
case. ⊓⊔

5 NTRU

We briefly review NTRU [14] in subsection 5.1, discuss the security prop-
erties of the underlying PKE, NTRU-DPKE, in subsection 5.2, and dis-
cuss the security properties of NTRU in subsection 5.3. We want to show
that, under appropriate assumptions, NTRU is ANON-CCA-secure in
the QROM, and NTRU leads to ANON-CCA-secure and SROB-CCA-
secure hybrid PKE in the QROM. In order to do so, we show that the
underlying NTRU-DPKE of NTRU is strongly disjoint-simulatable under
the modified DSPR and PLWE assumptions and XCFR-secure in sub-
section 5.2. Since NTRU is obtained by applying SXY to NTRU-DPKE,
the former implies that NTRU is SPR-CCA-secure and SSMT-CCA-
secure in the QROM under those assumptions and the latter implies that
NTRU is SCFR-CCA-secure in the QROM. Those three properties lead
to the anonymity of NTRU and hybrid PKE in the QROM as we wanted.

5.1 Review of NTRU

Preliminaries: Φ1 denotes the polynomial x− 1 and Φn denotes (xn −
1)/(x−1) = xn−1+xn−2+ · · ·+1. We have xn−1 = Φ1Φn. R, R/3, and
R/q denotes Z[x]/(Φ1Φn), Z[x]/(3, Φ1Φn), and Z[x]/(q, Φ1Φn), respec-
tively. S, S/3, and S/q denotes Z[x]/(Φn), Z[x]/(3, Φn), and Z[x]/(q, Φn),
respectively.

We say a polynomial ternary if its coefficients are in {−1, 0,+1}. S3(a)
returns a canonical S/3-representative of z ∈ Z[x], that is, b ∈ Z[x] of
degree at most n − 2 with ternary coefficients in {−1, 0,+1} such that
a ≡ b (mod (3, Φn)). Let T be a set of non-zero ternary polynomials
of degree at most n − 2, that is, T = {a =

∑n−2
i=0 aix

i : a ̸= 0 ∧ ai ∈
{−1, 0,+1}}. We say a ternary polynomial v =

∑
i vix

i has the non-
negative correlation property if

∑
i vivi+1 ≥ 0. T+ is a set of non-zero

ternary polynomials of degree at most n−2 with non-negative correlation
property. T (d) is a set of non-zero balanced ternary polynomials of degree
at most n−2 with Hamming weight d, that is,

{
a ∈ T : |{ai : ai = 1}| =

|{ai : ai = −1}| = d/2
}
.

The following lemma is due to Schanck [41]. (See, e.g., [14] for this design
choice.)
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Gen(1κ)

(f, g)← Sample fg()

fq := (1/f) ∈ S/q

h := (3 · g · fq) ∈ R/q

hq := (1/h) ∈ S/q

fp := (1/f) ∈ S/3

ek := h, dk := (f, fp, hq)

return (ek , dk)

Enc(h, (r,m) ∈ Lr × Lm)

µ
′ := Lift(m)

c := (h · r + µ
′
) ∈ R/q

return c

Dec((f, fp, hq), c)

if c ̸≡ 0 mod (q, Φ1)

then return (0, 0, 1)

a := (c · f) ∈ R/q

m := (a · fp) ∈ S/3

µ
′ := Lift(m)

r := ((c− µ
′
) · hq) ∈ S/q

if (r,m) ∈ Lr × Lm

then return (r,m, 0)

else return (0, 0, 1)

Fig. 6. NTRU-DPKE

Lemma 5. Suppose that (n, q) = (509, 2048), (677, 2048), (821, 4096),
or (701, 8192), which are the parameter sets in NTRU. If r ∈ T , then r
has an inverse in S/q.

Proof. Φn is irreducible over F2 if and only if n is prime and 2 is primitive
element in F×n (See e.g., Cohen et al. [15]). The conditions are satisfied
for all n = 509, 677, 701, and 821. Hence, Z[x]/(2, Φn) is a finite field
and every polynomial r in T has an inverse in Z[x]/(2, Φn). Such r is
also invertible in S/q = Z[x]/(q, Φn) with q = 2k for some k and, indeed,
one can find it using the Newton method or the Hensel lifting. ⊓⊔

NTRU: NTRU involves four subsets Lf , Lg, Lr, Lm of R. It uses
Lift(m) : Lm → R. NTRU has two types of parameter sets, NTRU-HPS
and NTRU-HRSS, specified as later.

– NTRU-HPS: The parameters are defined as follows: Lf = T ,Lg =
T (q/8− 2),Lr = T ,Lm = T (q/8− 2), and Lift(m) = m.

– NTRU-HRSS: The parameters are defined as follows: Lf = T+,Lg =
{Φ1 · v | v ∈ T+},Lr = T ,Lm = T , and Lift(m) = Φ1 · S3(m/Φ1).

It uses Sample fg() to sample f and g from Lf and Lg. NTRU also uses
Sample rm() to sample r and m from Lr and Lm.

The underlying DPKE of NTRU, which we call NTRU-DPKE, is defined
as Figure 6. We note that, for an encryption key h, we have h ≡ 0
(mod (q, Φ1)), h is invertible in S/q, and hr + m ≡ 0 (mod (q, Φ1)).
(See [14, Section2.3].)

NTRU then apply SXY to NTRU-DPKE in order to obtain IND-CCA-
secure KEM as in Figure 7, where H = SHA3-256 and Hprf = SHA3-256.
Since the lengths of their input space differ, we can treat them as different
random oracles.

Rigidity: NTRU uses SXY, while its KEM version (Figure 7) seems
to lack the re-encryption check. We note that NTRU implicitly checks
hr + Lift(m) = c by checking if (r,m) ∈ Lr × Lm in NTRU-DPKE
(Figure 6). See [14] for the details.
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Gen(1κ)

(ek , dk)← Gen(1κ)

s← {0, 1}256

dk := (dk , s)

return (ek , dk)

Enc(ek = h)

coins← {0, 1}256

(r,m)← Sample rm(coins)

c := Enc(h, (r,m))

K := H(r,m)

return (c,K)

Dec(dk = (dk , s), c)

(r,m, fail) := Dec(dk , c)

k1 := H(r,m)

k2 := Hprf(s, c)

if fail = 0 then return k1

else return k2

Fig. 7. NTRU

5.2 Properties of NTRU-DPKE

We show that NTRU-DPKE is strongly disjoint-simulatable and XCFR-
secure.
We have known that the generalized NTRU PKE is pseudorandom [44]
and disjointly simulatable [39] if the decisional small polynomial ra-
tio (DSPR) assumption [34] and the polynomial learning with errors
(PLWE) assumption [45, 35] hold. See [39, Section 3.3 of the ePrint ver-
sion.].
Let us adapt their arguments to NTRU-DPKE. We modify the DSPR
and the PLWE assumptions as follows:

Definition 14. Fix the parameter set. Define R′ := {c ∈ R/q : c ≡ 0
(mod (q, Φ1))}, which is efficiently sampleable.
– The modified DSPR assumption: It is computationally hard to distin-

guish h := 3·g·fq (mod q, Φ1Φn) from h′, where (f, g)← Sample fg(),
fq ← (1/f) mod (q, Φn), and h′ ← R′.

– The modified PLWE assumption: It is computationally hard to dis-
tinguish (h, hr+Lift(m) (mod q, Φ1Φn)) from (h, c′) with h, c′ ← R′

and (r,m)← Sample rm().

We can show NTRU-DPKE is strongly disjoint-simulatable under those
two assumptions:

Lemma 6. Suppose that the modified DSPR and PLWE assumptions
hold. Then, NTRU-DPKE is strongly disjoint-simulatable with a simu-
lator S that outputs a random polynomial chosen from R′.

Proof. The proof for ciphertext-indistinguishability is obtained by mod-
ifying the proof in [39]. We want to show that (h, c = hr + Lift(m) mod
(q, Φ1Φn)) ≈c (h, c′), where h = 3gfq mod (q, Φ1Φn) and fq = (1/f) mod
(q, Φn) with (f, g)← Sample fg(), (r,m)← Sample rm(), and c′ ← R′.
– We first replace h with h′ ← R′, which is justified by the modified

DSPR assumption.
– We next replace c = h′r+Lift(m) mod (q, Φ1Φn) with c′ ← R′, which

is justified by the modified PLWE assumption.
– We then go backward by replacing random h′ with h, which is is

justified by the modified DSPR assumption again.
Statistical disjointness follows from the fact that |R′| = qn−1 ≫ 32n =
|T × T | ≥ |Lm ×Lr| ≥ |Enc(h,Lm ×Lr)|. Since R′ is independent of an
encryption key h, NTRU-DPKE is strong disjoint-simulatability. ⊓⊔
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We next show the XCFR security of NTRU-DPKE.

Lemma 7. NTRU-DPKE is XCFR-secure.

Proof. Suppose that the adversary wins with its output c on input ek0,
dk0, ek1, and dk1, where ek i = hi for i ∈ {0, 1}. Let us define µ0 =
Dec(dk0, c) and µ1 = Dec(dk1, c).
If the adversary wins, we can assume µ0 = µ1 = (r,m, 0) ∈ Lr × Lm ×
{0, 1}. Otherwise, that is, if µ0 = µ1 = (0, 0, 1), then the output is treated
as ⊥ and the adversary loses.
Moreover, because of the check in the decryption, we have c ≡ h0 · r +
Lift(m) ≡ h1 · r + Lift(m) (mod q, Φ1Φn), which implies r(h0 − h1) ≡ 0
(mod (q, Φn)). On the other hand, according to Lemma 5, for any r ∈
Lr = T , we have r ̸= 0 ∈ S/q In addition, we have h0 ≡ h1 ∈ S/q with
negligible probability. Thus, all but negligible choices of h0 and h1, any
r ∈ Lr = T results in r(h0−h1) ̸≡ 0 (mod (q, Φn)) and h0 ·r+Lift(m) ̸≡
h1 ·r+Lift(m) (mod q, Φ1Φn). Hence, the probability that the adversary
wins is negligible, concluding the proof. ⊓⊔

5.3 Properties of NTRU

Combining NTRU-DPKE’s strong disjoint-simulatability and XCFR se-
curity with previous theorems on SXY, we obtain the following theorems.

Theorem 11. Suppose that the modified DSPR and PLWE assumptions
hold. Then, NTRU is SPR-CCA-secure and SSMT-CCA-secure in the
QROM.

Proof. Under the modified DSPR and PLWE assumptions, NTRU-DPKE
is strongly disjoint-simulatable (Lemma 6). In addition, NTRU-DPKE
is perfectly correct. Applying Theorem 8 and Theorem 9, we obtain the
theorem. ⊓⊔
Theorem 12. NTRU is SCFR-CCA-secure in the QROM.

Proof. NTRU-DPKE isXCFR-secure (Lemma 7). Applying Theorem 10,
we have that NTRU is SCFR-CCA-secure in the QROM. ⊓⊔
Theorem 13. Under the modified DSPR and PLWE assumptions, NTRU
is ANON-CCA-secure in the QROM.

Proof. Due to Theorem 11, under the modified DSPR and PLWE as-
sumptions, NTRU is SPR-CCA-secure in the QROM. Thus, applying
Theorem 1, we have that, under those assumptions, NTRU isANON-CCA-
secure in the QROM. ⊓⊔
Theorem 14. Under the modified DSPR and PLWE assumptions, NTRU
leads to ANON-CCA-secure and SROB-CCA-secure hybrid PKE in the
QROM, combined with SPR-otCCA-secure and FROB-secure DEM.

Proof. Due to Theorem 11, under the modified DSPR and PLWE as-
sumptions, NTRU is SPR-CCA-secure and SSMT-CCA-secure in the
QROM. Moreover, NTRU is perfectly correct. Thus, combining NTRU
with SPR-otCCA-secure DEM, we obtain a SPR-CCA-secure hybrid
PKE in the QROM (Theorem 7). Moreover, NTRU is SCFR-CCA-
secure in the QROM (Theorem 12). Thus, if DEM is FROB-secure,
then the hybrid PKE is SROB-CCA-secure (Theorem 3). ⊓⊔
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CRYSTALS-KYBER. Tech. rep., National Institute of Standards
and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

43. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without
handshake signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020. pp. 1461–1480. ACM Press (Nov 2020).
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A Missing Lemma

Lemma 8. Let A and B denote events. Suppose that we have Pr[A] ≤ δ.
For any p ≥ 0, we have

|Pr[B]− p| ≤ |Pr[B ∧ ¬A]− p|+δ and |Pr[B ∧ ¬A]− p| ≤ |Pr[B]− p|+δ.

Proof. Those bounds are obtained by using the triangle inequality. We
have

|Pr[B]− p| = |Pr[B ∧ A] + Pr[B ∧ ¬A]− p| ≤ Pr[B ∧ A] + |Pr[B ∧ ¬A]− p|
≤ Pr[A] + |Pr[B ∧ ¬A]− p| ≤ |Pr[B ∧ ¬A]− p|+ δ

and

|Pr[B ∧ ¬A]− p| = |Pr[B ∧ ¬A] + Pr[B ∧ A]− Pr[B ∧ A]− p|
= |Pr[B]− p− Pr[B ∧ A]| ≤ |Pr[B]− p|+ Pr[B ∧ A]

≤ |Pr[B]− p|+ Pr[A] ≤ |Pr[B]− p|+ δ

as we wanted. ⊓⊔
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