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Abstract. While it is well known that the sawtooth function has a
point-wise convergent Fourier series, the rate of convergence is not the
best possible for the application of approximating the mod function in
small intervals around multiples of the modulus. We show a different
sine series, such that the sine series of order n has error O(ε2n+1) for
approximating the mod function in ε-sized intervals around multiples
of the modulus. Moreover, the resulting polynomial, after Taylor series
approximation of the sine function, has small coefficients, and the whole
polynomial can be computed at a precision that is only slightly larger
than −(2n + 1) log ε, the precision of approximation being sought. This
polynomial can then be used to approximate the mod function to almost
arbitrary precision, and hence allows practical CKKS-HE bootstrapping
with arbitrary precision. We validate our approach by an implementation
and obtain 100 bit precision bootstrapping as well as improvements over
prior work even at lower precision.

1 Introduction

The work of [9, 8] presented a new homomorphic encryption (HE) scheme for ap-
proximate arithmetic (called the CKKS-HE scheme) over real/complex numbers.
The CKKS-HE scheme was considerably more efficient than other schemes for
approximately evaluating arithmetic circuits and leveraged properties of approx-
imate arithmetic to achieve these efficiency gains. One of the key insights was to
treat the homomorphic encryption error as part of the approximate arithmetic
error, and, thus, no additional mechanism was required to round away the ho-
momorphic encryption error after decryption. The CKKS-HE scheme has found
many applications, among them privacy-preserving machine learning and secure
genome analysis (see [15, 19, 4, 17, 22, 16] for some examples).

However, the initial CKKS-HE scheme was only capable of evaluating low-
depth circuits since it lacked a bootstrapping procedure to “refresh” the cipher-
text modulus to enable further homomorphic computation. This was remedied
when [7] introduced the first bootstrapping procedure for the CKKS-HE scheme.
This involved viewing a ciphertext ct with a small modulus q as a ciphertext with
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respect to the largest modulus qL and then homomorphically computing coeffi-
cient rounding modulo q to obtain a new ciphertext ct′ that encrypts approx-
imately the same message as ct with respect to a larger modulus q`, enabling
further homomorphic computation. Thus, a challenge here is to compute the
mod function homomorphically, which is not easily representable via an arith-
metic circuit. In fact, the mod function modulo q on the interval [−Kq,Kq] for
some integer K is not even a continuous function. However, [7] made the clever
observation that in the CKKS-HE scheme, we have an upper bound m on the
size of the message, which can be made much smaller than q. In this situation,
we actually only need to be able to compute the mod function on points in
[−Kq,Kq] that are a distance at most m from a multiple of q. In this case, the
mod function is periodic with period q and is linear on each of the small intervals
around a multiple of q. Figure 1 shows the mod function along with the small
intervals for approximation.
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Fig. 1: The mod function with modulus q = 10. The solid red lines represent the
small intervals on which we need to approximate.

The work of [7] further observed that the mod function [t]q on these inter-

vals can be approximated via a scaled sine function S(t) = q
2π sin

(
2πt
q

)
. This

approximation introduces an inherent error that depends on the message upper
bound m. Let ε denote the ratio m

q . Then, it can be shown that

|[t]q − S(t)| ≤ 2π2

3
qε3.

If ε is small enough, then this error can be sufficiently small for use in boot-
strapping provided that S(t) can be well-approximated by a low degree poly-
nomial. The work of [7] along with several followup works [6, 12] proceeded to



Sine Series Approximation of the Mod Function 3

provide methods of approximating this scaled sine function (or scaled cosine
function in the case of [12]) by a low-degree polynomial, which can then be
plugged into the bootstrapping procedure of [7]. However, due to the inher-
ent error between the mod function [t]q and the scaled sine function S(t), this
approach has a “fundamental error” that will occur regardless of how S(t) is
approximated. One of the problems with this is that in order for the error to be
O(1) (and, therefore, not destroy the message), m must be O(q2/3). This means
that we must begin bootstrapping while the size of the encrypted message is
considerably smaller than q, which is a source of inefficiency in the bootstrap-
ping procedure, particularly in applications that require high precision. An even
greater problem is that when homomorphically computing the mod function, we
must treat qI+m for some integer I as the input, which we refer to as the boot-
strapping plaintext. The issue with this is that if q is significantly larger than m,
then since the number of modulus bits “consumed” by each homomorphic mul-
tiplication of the mod function is the size of the bootstrapping plaintext, these
homomorphic multiplications will consume significantly more modulus bits than
normal homomorphic operations. Thus, it is inefficient to obtain high-precision
bootstrapping by simply increasing q to decrease ε. Instead, in order to obtain
high-precision bootstrapping, it is beneficial to obtain good polynomial approx-
imations to the mod function for fixed ε. An additional challenge to obtaining
high-precision bootstrapping is that the approximation to the mod function must
be representable by a low-degree polynomial. If the degree of the polynomial is
too high, evaluating it homomorphically may consume almost all of the cipher-
text modulus, leaving the ciphertext after bootstrapping incapable of performing
many homomorphic operations. Compounding this challenge is the fact that the
coefficients of the low-degree polynomial approximation to the mod function
must additionally be small. This is because if the coefficients are large, when
evaluating the polynomial, the basis polynomials must be computed to higher
precision to ensure the stability of the computation, since errors introduced by
approximate arithmetic are amplified by large coefficients.

The reason obtaining high-precision bootstrapping for CKKS-HE is impor-
tant is that one of the main applications for CKKS-HE is privacy-preserving
machine learning. However, many ML algorithms require high precision com-
putation in order to converge. This may be especially true during the learning
phase of neural networks, which involves back propagation and integer divi-
sion by private integers. Additional nonlinear steps involve pooling functions,
threshold functions, etc. Moreover, due to their high depth, computing these
ML algorithms homomorphically without bootstrapping is infeasible. Thus, for
privacy-preserving ML applications, high-precision bootstrapping is required.

Recently, the works of [18] and [13] were able to bypass the “fundamental er-
ror” in the approximation of the mod function by a scaled sine function to obtain
higher-precision bootstrapping. [18] attempts to avoid the scaled sine function
by finding the optimal minimax polynomial of a fixed degree that approximates
the mod function via algorithmic search. They use a variant of the Remez al-
gorithm [21] to obtain an approximation to the optimal minimax polynomial of
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a given degree that approximates the modular reduction function on the union
of intervals containing points close to multiples of q. Unfortunately, as observed
by [18], the size of the coefficients of these polynomials are too large to enable
high-precision bootstrapping. They then show that by using a composition of
sine/cosine and the inverse sine function and using the Remez algorithm to al-
gorithmically search for good polynomial approximations to these functions, one
can obtain higher-precision bootstrapping, but their bootstrapping method has
only been shown to obtain 40 bit message precision in the latest version of their
work. [13] avoids the “fundamental error” by finding direct polynomial approx-
imations of the mod function on small intervals around the modulus via a new
technique called modular Lagrange interpolation. The coefficients of these poly-
nomials were small enough to enable high-precision bootstrapping. However,
the coefficients were still large enough that in order to evaluate the polyno-
mial approximations, one would need to operate at a higher precision than the
bootstrapping plaintext. Ultimately, this fact corresponded to the bootstrapping
procedure losing additional levels, since the computations during bootstrapping
were operating at a higher precision. The authors are able to obtain 67 bit pre-
cision bootstrapping in the latest version of their work.

1.1 This Work

In this work, we show how to obtain arbitrary precision bootstrapping via a
different method from that of [13] and more in line with the original sine function
approach of [7]. Instead of approximating the mod function directly, we first
approximate the mod function by a sine series and then approximate the sine
function by its Taylor series (more precisely, the Taylor series of eix). This is then
followed by a series of squarings to approximate the other terms in the sine series.
We show that the sine series converges to the mod function in small intervals
around the modulus. In particular, our sine series of order n has error O(ε2n+1)
for approximating the mod function in ε-sized intervals around multiples of the
modulus.

Thus, we avoid the fundamental error of the scaled sine approach and are able
to obtain an approximation with arbitrarily small error in the desired intervals.
Furthermore, the coefficients of the sine series are small (in fact, they have norm
< 2). This, combined with the fact that the Taylor series expansion of sinx has
small coefficients, leads to a polynomial approximation of the mod function with
small coefficients. Due to these small coefficients, the whole polynomial can be
computed at a precision only slightly larger than (−2n − 1) log ε, the precision
of the approximation being sought.

We validate our approach by an implementation and obtain 100 bit precision
bootstrapping as well as improvements over prior work even at lower precision.

1.2 Problem Overview

Here, we provide a brief overview of the challenges of approximating the mod
function for use in CKKS-HE bootstrapping. We provide a thorough overview of
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the bootstrapping procedure in Section 3. The goal of CKKS-HE bootstrapping
is to take a ciphertext ct at the lowest level and bring it up to the highest level so
that homomorphic computation can continue. In other words, we wish to obtain
a ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`,

where q is the lowest level modulus and q` represents a higher level modulus.
Since errors accumulated during homomorphic computation are not eliminated
by decryption in CKKS-HE, the goal is not to reduce the error in the cipher-
text, but, rather, to increase the modulus so that more computations can be
performed. If one simply views the ciphertext ct as operating at the highest level
qL, then it follows that 〈ct, sk〉 mod qL = qI + m. The magnitude of I can be
upper bounded and m << q and, thus, the challenge then becomes to compute
mod q on small intervals near multiples of q (we defer additional complications
such as computing on slots vs. coefficients to Section 3). Since CKKS-HE can
compute homomorphic additions and multiplications, we need a polynomial ap-
proximation to the mod function. However, there are three crucial criteria that
are relevant to the bootstrapping application.

– Error: The error of the approximation contributes additional error to the
message m, which, if large, will cause a loss in plaintext precision.

– Degree: The degree of the polynomial approximation determines the mul-
tiplicative depth required to evaluate it. A larger multiplicative depth corre-
sponds to losing more modulus levels and, thus, if too large, the polynomial
will not be able to be evaluated homomorphically.

– Coefficient Magnitude: The size of the coefficients of the polynomial ap-
proximation determine the “evaluation precision” at which one must operate
during bootstrapping. Larger coefficients correspond to a larger “evaluation
precision” in order to maintain numerical stability, which, in turn, corre-
sponds to losing more modulus bits per level.

Thus, it is critical that we obtain good low-degree polynomial approxima-
tions to the mod function in small intervals around multiples of the modulus
that additionally have small coefficients. Moreover, as discussed previously, it is
important the ratio m/q = ε is not too small, since then the size of the bootstrap-
ping plaintext qI +m will be significantly larger than m, and homomorphically
evaluating the approximation to the mod function will consume a large number
of modulus bits. Thus, one can think of ε as fixed to be, say 2−10.

1.3 Sine Series

As mentioned previously, several prior approaches to CKKS-HE bootstrapping
approximated the mod function via a scaled sine function. For simplicity, we will
ignore the scaling for the moment and try to obtain a good approximation to
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the mod 2π function. Thus, prior works used sinx as an approximation of this
function and noted that, for |x| < ε, the error of approximation is O(ε3). It is
well-known that the Fourier series of the mod function (or sawtooth function)
converges everywhere except the discontinuities. Unfortunately, the rate of con-
vergence is too slow, and the Fourier series does not give a good approximation
when the number of terms is small. Instead, we will approximate the mod func-
tion by a different sine series such that it converges to the mod function near
multiples of the modulus very quickly. As a warmup, suppose we added a sin 2x
term to our approximation of the mod function. If we can determine coefficients
β1 and β2 such that the Taylor series expansion of β1 sinx+β2 sin 2x is x+x5p(x)
for some polynomial p(x), then for |x| < ε, the error of approximation will be
O(ε5), an improvement on sinx. Thus, looking at the x and x3 terms in the
Taylor series expansions of sinx and sin 2x, we wish to determine β1, β2 such
that β1 + 2β2 = 1 (so that the coefficient of x is 1) and β1 + 23β2 = 0 (so that
the coefficient of x3 is 0). This can be solved to yield β1 = 4/3, β2 = −1/6. This
intuition can then be extended to give an n-term sine series with error O(ε2n+1).
We will show that the βi’s are small and, thus, the resulting low-degree poly-
nomial approximation has small coefficients. Moreover, we will show that the
constants hiding in the big-O notation are reasonable, and the dependence on n
is minor.

1.4 On Approximating Arcsine

An alternative way to view our result is that having computed the periodic
function sinx, our sine series allows us to compute arcsin (of sinx) using an angle-
multiplication computation. In other words, since we showed above that x =
4/3sinx−1/6sin 2x+O(x5) (for small x, and hence small sinx), then equivalently
arcsin y = 4/3 y − 1/6 d(y) +O(y5), where d is a function such that d(sinx) =
sin 2x. However, d(sinx) is not a simple polynomial function of sinx (as opposed
to the easy double-angle formula for cosx), and this way of computing arcsin y
cannot use a simple polynomial of y. While good polynomial approximations
of arcsin y might exist (for small y), there seems no simple methodology to
obtain this. Instead, [18] use the Remez algorithm to obtain a best fit low degree
polynomial approximation of arcsin. This algorithmic approach has the drawback
that while the polynomial degree maybe small, the coefficients of the polynomial
output by Remez algorithm can be of arbitrary size. Fortunately, [18] report
that the coefficients are small enough to obtain 40-bit precision bootstrapping,
although it is not clear if this holds in general.

Our approach is different, as we utilize the potential of CKKS-HE to compute
on complex numbers. Thus, instead of first computing sinx and then its arcsin,
we first compute the periodic function eix (using its Taylor series approximation)
and then compute its logarithm. Thus, given that x = 4/3 sinx − 1/6 sin 2x +
O(x5), we also get that x = Im(4/3 eix − 1/6 e2ix) + O(x5) (for small x). Most
importantly, it is a polynomial in its argument (i.e. eix) with small coefficients.
Thus, this allows for an easy homomorphic computation.
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1.5 Organization

In Section 2, we formalize the above intuition and prove explicit error bounds
for the sine series approximation of the mod function. In Section 3, we overview
the bootstrapping procedure for CKKS-HE. In Section 4, we explain how to
approximate the sine series by a low-degree polynomial for bootstrapping. In
Section 5, we implement bootstrapping using our sine series approximation and
give performance metrics and comparisons with prior approaches.

2 Sine Series Approximation

In this section, we will show the following theorem and corollaries, giving a sine
series approximation to the mod function in small intervals around the modulus
that can be used for CKKS-HE bootstrapping.

Theorem 1. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 2/

√
n, for every |x| < ε,∣∣∣∣∣x−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1

Using the periodicity of the sine function, we immediately arrive at the fol-
lowing corollary.

Corollary 1. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 2/

√
n, for every integer m, for every x

such that |x− 2mπ| < ε,∣∣∣∣∣(xmod 2π)−
n∑
k=1

βk sin(kx)

∣∣∣∣∣ < e2 ∗ (n+ 1) ∗ (ε/2)2n+1

A further simple manipulation leads to the following scaled version of the
corollary.

Corollary 2. For every n ≥ 1, there exists a sequence of rational numbers
β1, ...βn such that for every ε, 0 < ε < 1

π
√
n

, for every integer q ≥ 1, for every

integer m, for every x such that |x−m ∗ q| < ε ∗ q,∣∣∣∣∣(xmod q)− q

2π
∗

n∑
k=1

βk sin(2πk ∗ x/q)

∣∣∣∣∣ < e2 ∗ q
2π

∗ (n+ 1) ∗ (επ)2n+1

Determining the βi’s: To prove Theorem 1, for each n, we will determine the
rational numbers {βi}i∈[n]. In particular, these are not the same as the Fourier
coefficients of the sawtooth function, as we are focused on x that is potentially
much smaller than the period of the sawtooth function. Recall that we wish
to determine {βi}i∈[n] such that the resulting sine series has a Taylor series
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expansion of the form x + x2n+1p(x) for some polynomial p(x). In particular,
there are no terms of degree < 2n + 1 (except for x). These constraints give a
system of equations that can be solved to determine the βi’s.

We begin by formalizing this intuition. For every n > 0, for every sequence of
n distinct integers a = (a1, ..., an), let V (n)(a) denote the Vandermonde matrix
of a, i.e. it is the n× n matrix with the (i, j)-th element aj−1i (for i, j ∈ [1..n]).

Define S(n)(a) to be the n× n matrix with the (i, j)-th element a2j−1i , i.e. each
row is the odd powers of the elements of a. Note that the first column of this
matrix is just a. Also, define a related matrix Ŝ(n)(a) to be the n × n matrix
which is same as S(n)(a) except that the first column (i.e. a) is replaced by
(2n + 1)-th powers of a. In other words, the (i, 1)-th element of this matrix is

a
(2n+1)
i .

Let β = (β1, β2, . . . , βn) be an n-vector of rational numbers. For the sine
series approximation, we would like to determine β so that the transpose of the
matrix S(n)(a) multiplied by β is a vector with all entries zero except the first,
which is one. Since βi refers to the coefficient of the sin(aix) term in the sine
series, the above requirement ensures that when we Taylor expand each sine
term in the sine series about the origin (or a multiple of 2π) and sum the terms,
the resulting polynomial will be x+ x2n+1p(x) for some polynomial p(x). Thus,
the x3, x5, . . . , x2n−1 terms in the Taylor series expansions of the sin(ix)’s cancel
out. We note that since our sine series will include sinx, sin 2x, sin 3x, . . . terms,
we will later instantiate a with (1, 2, . . . , n). The required condition is drawn
below. 

a1 a2 ... an
a31 a32 ... a3n

...
a2n−11 a2n−12 ... a2n−1n

 ·

β1
β2
...
βn

 =


1
0
...
0

 (1)

Let di denote the (i, 1)-th minor of S(n)(a). In other words, the list {di}i is
the list of minors of the first column of S(n)(a).

Lemma 1.

βi = (−1)i+1 ∗ di
det(S(n)(a))

.

Proof. From the above equation, β is just the first column of the inverse of
(S(n)(a))T . Note that the (i, 1)-th element of the inverse of the transpose of
S(n)(a) is (−1)i+1 ∗ di divided by the determinant of S(n)(a).

We now give an explicit formula for the determinant of S(n)(a). We will
also give an explicit formula for the determinant of Ŝ(n)(a), which will be of use
later. We will use the well-known fact that the determinant of the Vandermonde
matrix is given by the following formula.

det(V (n)(a)) =

n∏
i=1

∏
1≤j<i

(ai − aj).
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Lemma 2. The determinant of the matrix S(n)(a) is(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j ).

The determinant of the matrix Ŝ(n)(a) is

(−1)n−1 ∗ det(S(n)(a)) ∗
n∏
i=1

a2i .

Proof. We will first focus on the matrix S(n)(a). For computing the determinant,
for each row i, we get a contribution of a factor ai towards the determinant, and
the remaining matrix is then just a Vandermonde matrix with all powers of a2i .
Thus,

det(S(n)(a)) =

(
n∏
i=1

ai

)
∗ det(V (n)(a′)),

where a′ = (a21, . . . , a
2
n). The result then follows from the well-known determi-

nant of Vandermonde matrices.

As for the claim for the matrix Ŝ(n)(a), first consider a modified matrix that
is obtained by moving the first column to the last. Since this can be accomplished
by (n−1) column exchanges, the determinant of the modified matrix is (−1)n−1

times the determinant of Ŝ(n)(a). Furthermore, the determinant of the modified
matrix is easily related to determinant of S(n)(a) by noting that i-th row in the
modified matrix is a2i times the i-th row in S(n)(a).

We observe from the formula for the determinant of S(n)(a) that if the se-
quence of integers a are in increasing order and lower bounded by one, then the
determinant of S(n)(a) is positive. We now show the following lemma, charac-
terizing the βi’s.

Lemma 3. For the matrix S(n)(a) with a set to the sequence of integers from
one to n,

β1 =
2n

n+ 1
< 2

and, for i ≥ 2

|βi| < 1.

Moreover, the βi’s alternate in sign and decrease in magnitude as i increases.
That is,

|βi+1| < |βi|

for all i ∈ [n], β2j+1 > 0, and β2j < 0.
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Proof. We will show this using the formula for βi from Lemma 1. By definition,

di = det



a31 a51 ... a2n−11

a32 a52 ... a2n−12
...

a3i−1 a
5
i−1 ... a

2n−1
i−1

a3i+1 a
5
i+1 ... a

2n−1
i+1

...
a3n a5n ... a2n−1n


Thus,

di =

 n∏
j=1,j 6=i

a2j

 ∗ det(S(n−1)(a′)),

where a′ is a with ai removed. Thus,

βi = (−1)i+1 ∗

(∏n
j=1,j 6=i a

2
j

)
ai ∗

(∏i−1
j=1(a2i − a2j )

)
∗
(∏n

j=i+1(a2j − a2i )
) .

We observe that every term in the above expression is positive except for (−1)i+1

and, thus, the βi’s alternate sign with β2j+1 > 0 and β2j < 0. It follows that

β1 =
2(n!)2

(n+ 1)!(n− 1)!
=

2n

n+ 1
< 2.

Moreover, for i ≥ 2,

|βi| =
1

i
∗ 2(n!)2

(2n)!
∗
(

2n

n+ i

)
Observe that |βi+1| < |βi|. Moreover, since

(
2n
n+i

)
<
(
2n
n

)
for i ≥ 2, it follows that

|βi| <
2

i
≤ 1

for i ≥ 2.

Bounding the Error: A First Attempt Having characterized the βi’s, we
now turn our focus to bounding the error between f(x) =

∑n
k=1 βk sin(kx) and

x for |x| < ε. We note that f(x) is an analytic function since it is the sum
of analytic functions and, therefore, its Taylor series converges to f(x). Thus,
taking the Taylor series expansion of f(x) around 0,

f(x) = x+

∞∑
m=2n+1

f (m)(0)

m!
xm.
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We can bound |x − f(x)| for |x| < ε using the Lagrange remainder term of the
2n-th Taylor polynomial of f(x). Thus,

|x− f(x)| =
∣∣∣∣f (2n+1)(ξ)

(2n+ 1)!
x2n+1

∣∣∣∣
for some real number ξ between 0 and x. We have that

f (2n+1)(x) = ±
n∑
k=1

βkk
2n+1 cos(kx).

Upper bounding f (2n+1)(ξ) gives

|x− f(x)| <
n∑
k=1

|βk|k2n+1 |x2n+1|
(2n+ 1)!

.

By Lemma 3, βk < 2/k, which gives

|x− f(x)| < |x2n+1| ∗ 2

(2n+ 1)!
∗

n∑
k=1

k2n.

This then gives an upper bound of ε2n+1 ∗ 2∗n∗n2n

(2n+1)! , and no better than ε2n+1 ∗
2∗n2n

(2n+1)! ≈ (ε/2)2n+1 ∗ e2n/(
√
π(n+ 1) ∗ n) However, we will now show that a

more sophisticated, yet elementary, approach that improves upon this bound by
approximately a factor of e2n, essentially giving us an upper bound of (ε/2)2n+1.

A Better Bound via the Alternating Series Test To obtain a better error
bound, we will show that the Taylor series expansion of our sine series satisfies
Leibniz’s alternating series test. This will enable us to bound the error of the
sine series f(x) from the mod function by the (2n + 1)−th term in the Taylor
series expansion (the first nonzero term after x). We can write the Taylor series
expansion of f(x) as x−

∑∞
m=n+1(−1)m ∗ bm, where

bm =

n∑
j=1

βj ∗
(jx)2m−1

(2m− 1)!
. (2)

To bound the error, we will show, for any x in the domain of approxima-
tion, that the series

∑∞
m=n+1(−1)m ∗ bm satisfies the alternating series test. The

alternating series test requires that the bm satisfy the following three conditions.

1. limm→∞ bm = 0
2. All bm are positive (or all bm are negative)
3. |bm| ≥ |bm+1| for all natural numbers m ≥ n+ 1.

Theorem 2. Alternating Series Test [Leibniz]. If the series above satisfies the
alternating series test then

∑∞
m=n+1(−1)m ∗ bm converges. Moreover, for all

k ≥ 0, ∣∣∣∣∣
∞∑

m=n+1

(−1)m ∗ bm −
n+1+k−1∑
m=n+1

(−1)m ∗ bm

∣∣∣∣∣ ≤ |bn+1+k|.



12 Charanjit S. Jutla and Nathan Manohar

We will show the following lemma.

Lemma 4. (Main Lemma) For every |x| < 2/
√
n, the above series given by

bm satisfies the Leibniz alternating series test.

A Naive Proof Attempt We briefly explain why the following naive approach
to proving this lemma fails. For simplicity, assume that n is odd, so that βn is
positive and βn−1 is negative by Lemma 3. Then, the naive approach would be
to prove that

βn ∗
(n ∗ x)2m−1

(2m− 1)!
+ βn−1 ∗

((n− 1) ∗ x)2m−1

(2m− 1)!

(and similarly paired other terms) decreases as m increases, starting from m =
n + 1. Since powers of n ∗ x are larger than powers of (n − 1) ∗ x, this would
eventually be true for some m > n + 1. However, since |βn| < |βn−1| and βn−1
is negative (see Lemma 3), this is not necessarily true at m = n + 1. In fact,
calculations show that this indeed fails for a few terms beyond m = n+1. Thus, a
more advanced approach is required to prove that the Leibniz test holds starting
at m = n+ 1. We will show that the test holds for |x| < 2/

√
n.

Preparing for the Proof We prove Lemma 4 in the next subsection, but first
we show several additional lemmas which will assist us in the proof of Lemma 4.

Define V (n,k)(a) to be an n× n matrix, which is same as the Vandermonde
matrix V (n)(a) except the last column is replaced by the (n− 1 + k)-th powers
(instead of the (n− 1)-th powers).

Let hk(a) be the complete homogeneous symmetric polynomial of degree k in
a given by

hk(a) =
∑

1≤i1≤...≤ik≤n

ai1 ∗ · · · ∗ aik .

The base polynomial h0(a) is taken to be one. Note that the polynomials hk(a)
differ from the elementary symmetric polynomials ek(a), since in the latter the
summation is taken over 1 ≤ i1 < ... < ik ≤ n. The following lemma is a
consequence of the well known generating series of the complete homogeneous
symmetric polynomials, but we give a simple proof for completeness in Supple-
mentary Material A.

Lemma 5. For any k ≥ 0, any a of length n > 0, and an independent formal
variable t,

k∑
j=0

hj(a)tj =

n∏
i=1

k∑
j=0

(tai)
j mod tk+1.

Lemma 6. For k ≥ 1, the determinant of the matrix V (n,k)(a) is

det(V (n)(a)) ∗ hk(a)
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Proof. Fix any k ≥ 1. Consider an n × n matrix M which is same as V (n,k)(a)
except that the last row is powers of an indeterminate x. In other words the last
row is (x0, x1, ..., xn−2, xn−1+k). Let a′ stand for the (n − 1) length truncation
of a. Treating the elements of a′ as scalars, the determinant of the matrix M
is a polynomial in x of degree n − 1 + k. Call this polynomial f(x). Since the
determinant of a matrix with two equal (or even scaled by a constant) rows is
zero, the polynomial f(x) has roots a′. Thus,

f(x) = g(x) ∗
n−1∏
i=1

(x− ai), (3)

where g(x) is a polynomial (to be determined) of degree k . However, f(x), the
degree n− 1 + k polynomial, has zero coefficients for all monomials xj with j in
[n − 1..n − 1 + k − 1]. If we introduce a new formal variable t = 1/x, then the
above equation (3) can be written as

f̃(t) = g̃(t) ∗
n−1∏
i=1

(1− tai). (4)

where f̃ (resp. g̃) is the polynomial f (resp. g) with coefficients reversed. Note, all
the zero coefficients of f(x) described above imply that coefficient of monomial
tj in f̃(t) is zero for every j in [1..k], and the constant term in f̃(t) is fn−1+k,
where fn−1+k denotes the coefficient of xn−1+k in f(x). Thus, f̃(t) = fn−1+k
mod tk+1. Considering equation (4) modulo tk+1, we get

fn−1+k ∗
n−1∏
i=1

(1− tai)−1 = g̃(t) mod tk+1. (5)

The above equation is well-formed as inverse of (1 − tai) modulo tk+1 is well-

defined. Indeed, it is easy to check that (1 − tai) ∗
∑k
j=0(tai)

j is 1 mod tk+1.
Hence, we also get,

fn−1+k ∗
n−1∏
i=1

k∑
j=0

(tai)
j = g̃(t) mod tk+1. (6)

Since g(x) is of degree k, g̃(t) has degree at most k as well. Denote by g̃j the
coefficient of tj in g̃j , which is same as gk−j . Then, by comparing coefficients of
tj on both sides, by Lemma 5 we get that for each j ∈ [0..k],

gk−j = g̃j = fn−1+k ∗ hj(a′).
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Thus, having determined g(x), we also have f(x) by (3). Letting x = an, then
we get

det (V (n,k)(a)) = f(an)

=

n−1∏
i=1

(an − ai) ∗ g(an)

=

n−1∏
i=1

(an − ai) ∗ fn−1+k ∗
k∑
j=0

ak−jn hj(a
′)

=

n−1∏
i=1

(an − ai) ∗ fn−1+k ∗ hk(a)

= det(V (n)(a)) ∗ hk(a),

where the last equality follows by noting that the top coefficient of f(x), i.e.
fn−1+k is the (n, n)-minor of V (n,k)(a), which is same as the (n, n)-minor of
Vandermonde matrix V (n)(a), which, in turn, is (−1)n+n ∗ det V (n−1)(a′).

Lemma 7. For a = (12, 22, 32, . . . , n2), for all k ≥ 0,

hk+1(a)

hk(a)
≤ n3.

Proof. First note that hk+1(a) =
∑n
i=1 ai ∗hk(a(i)), where a(i) is a restricted to

first i entries. Since ai are monotonically increasing, it follows that hk+1(a) ≤
n ∗ an ∗ hk(a), from which the claim follows.

Lemma 8. For the matrix S(n)(a) with a set to the sequence of integers from
one to n, let βi be given by the formula in Lemma 1. Then,

n∑
i=1

βi ∗ i2n+1 = (−1)n−1 ∗ (n!)2.

Proof. With a set to the sequence of integers from one to n,
∑n
i=1 βi ∗ i2n+1 is

the inner product of the first column of Ŝ(n)(a) and β. In the following, the i-th
column of a matrix M will be denoted by Mi, and the (i, j)-th entry of M will



Sine Series Approximation of the Mod Function 15

be denoted by Mi,j . Thus, using Lemma 1, we have

n∑
i=1

βi ∗ i2n+1 = β > · (Ŝ(n)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n)(a))i,1

=
det(Ŝ(n)(a))

det(S(n)(a))

= (−1)n−1 ∗
n∏
i=1

a2i

= (−1)n−1 ∗ (n!)2,

where we have used Lemma 2 in the second-to-last equality.

2.1 Alternating Series Test (Proof of Main Lemma)

Having shown Lemmas 6, 7, and 8, we are now ready to prove the main lemma
(Lemma 4).

Proof. (of Lemma 4) In this proof, we will fix a to be the sequence of integers

from 1 to n. Note, each bm can be written as bm = cm ∗ x2m−1

(2m−1)! , where cm =∑n
j=1 βj ∗ j2m−1. We now prove the three properties required of bm so that the

series
∑∞
m=n+1(−1)m ∗ bm satisfies the alternating series test.

1. We show that bm goes to zero, as m goes to infinity. Since n is fixed and all βi
are bounded by Lemma 3, we just need to show that for every x in the domain

of approximation, for every j ∈ [n], (jx)2m−1

(2m−1)! goes to zero asm goes to infinity.

Since the domain of approximation is bounded, |x| itself is bounded. Since,
k! ≥ e(k/e)k, the above is upper bounded by e−1 ∗ (jx ∗ e/(2m − 1))2m−1,
which goes to zero as m goes to infinity.

2. To show that all bm are positive (or all are negative), it suffices to show
that all cm are positive (or all cm are negative). As a warmup, we first
focus on cn+1 (i.e. m set to n + 1). By Lemma 8, this quantity is simply
(−1)(n−1) ∗ (n!)2 and hence is positive if n is odd, and negative when n is
even.

Let Ŝ(n,k)(a) be the matrix that is the same as Ŝ(n)(a) except that the first
column is replaced by the (2n− 1 + 2k) powers of a. Thus, Ŝ(n,1)(a) is same
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as Ŝ(n)(a). As in the proof of Lemma 8,

cn+k =

n∑
i=1

βi ∗ i2n−1+2k

= β > · (Ŝ(n,k)(a))1

=
1

det(S(n)(a))
∗

n∑
i=1

(−1)i+1di ∗ (Ŝ(n,k)(a))i,1

=
det(Ŝ(n,k)(a))

det(S(n)(a))

To give an expression for det(Ŝ(n,k)(a)), we will use Lemma 6. To use
this lemma, we first relate Ŝ(n,k)(a) to V n,k(a). Recall, the first column
of Ŝ(n,k)(a) is (2n−1+2k) powers of a. Also, for other columns, the (i, j)-th
entry is a2j−1i (2 ≤ j ≤ n). Since k ≥ 1, each entry in the i-th row has

at least one power of ai, and hence the determinant of Ŝ(n,k)(a) is
∏n
i=1 ai

times the determinant of a new matrix M , which has as its first column
(2n+ 2(k− 1)) powers of a, and all other columns as 2(j− 1)-th powers of a
(2 ≤ j ≤ n). Let a(2) be the sequence a, but with each entry squared. Then
this matrix M is same as the matrix V n,k−1(a(2)) but with the first and last
column exchanged. Thus, using Lemma 6, it follows that det(Ŝ(n,k)(a)) is

(−1)n−1 ∗ hk−1(a(2)) ∗
n∏
i=1

∏
1≤j<i

(a2i − a2j ) ∗
n∏
i=1

a3i ,

From Lemma 2, we also have that the determinant of S(n)(a) is(
n∏
i=1

ai

)
∗

n∏
i=1

∏
1≤j<i

(a2i − a2j ).

Recalling that ai is just i, we thus have that for k ≥ 1, all cn+k are positive
if n is odd, and all cn+k are negative if n is even.

3. We now show that |bm| ≥ |bm+1| for all m ≥ n+ 1. We have,

|bm+1|
|bm|

=
(−1)n−1 ∗ hm+1−(n+1)(a

(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j ) ∗

∏n
i=1 a

3
i ∗ x2m+1

(2m+1)!

(−1)n−1 ∗ hm−(n+1)(a(2)) ∗
∏n
i=1

∏
1≤j<i(a

2
i − a2j ) ∗

∏n
i=1 a

3
i ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2)) ∗ x2m+1

(2m+1)!

hm−(n+1)(a(2)) ∗ x2m−1

(2m−1)!

=
hm+1−(n+1)(a

(2))

hm−(n+1)(a(2))
∗ x2

2m(2m+ 1)

≤ n3 ∗ x2

2m(2m+ 1)
(by Lemma 7)

≤ 1 (for |x| < 2/
√
n).
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We are now ready to prove Theorem 1.

Proof. (of Theorem 1) Let βk, for k ∈ [1..n], be defined as in equation (1) with
a set to the sequence of numbers from 1 to n. From the Taylor series expansion
of the sine series, which converges since the sine series is analytic, it follows that

n∑
k=1

βk sin(kx) = x−
∞∑

m=n+1

(−1)m ∗ bm,

where bm are defined in equation (2), i.e. bm =
∑n
k=1 βk ∗

(kx)2m−1

(2m−1)! . Thus, by

Lemma 4 and Leibniz’s alternating series test (Theorem 2), we have for |x| <
2/
√
n, ∣∣∣∣∣x−

n∑
k=1

βk sin(kx)

∣∣∣∣∣ ≤ |bn+1|

=

∣∣∣∣∣
n∑
k=1

βk ∗
(kx)2n+1

(2n+ 1)!

∣∣∣∣∣
=
|x2n+1|

(2n+ 1)!
∗

∣∣∣∣∣
n∑
k=1

βk ∗ k2n+1

∣∣∣∣∣
=

(n!)2

(2n+ 1)!
∗ |x2n+1|,

where we used Lemma 8 in the last equality.
Restricting |x| < ε, Theorem 1 follows from the fact that

(n!)2

(2n+ 1)!
ε2n+1 <

((n+ 1)/e)2n+2e2

((2n+ 1)/e)2n+1
ε2n+1

= e ∗ (n+ 1) ∗
(
n+ 1

2n+ 1

)2n+1

∗ ε2n+1

= e ∗ (n+ 1) ∗
(

2n+ 2

2n+ 1

)2n+1

∗
( ε

2

)2n+1

< e2 ∗ (n+ 1) ∗
( ε

2

)2n+1

,

where we have used the fact that(n
e

)n
< n! <

(
n+ 1

e

)n+1

e

for all n ≥ 1 and that (1 + 1/n)n < e for all n ≥ 1.

3 Application to Bootstrapping for Approximate HE

In Section 1, we explained that approximating the mod function on small inter-
vals around the modulus is a necessary step in bootstrapping for approximate
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homomorphic encryption (CKKS). In this section, we will briefly overview the
bootstrapping procedure for the CKKS-HE scheme introduced in [7].

Notation and Necessary Preliminaries: Let M be a power of 2 and ΦM (X) =
XN + 1 be the Mth cyclotomic polynomial of degree N = M/2. Let R =
Z[X]/ΦM (X). For an integer q, let Rq = Zq[X]/ΦM (X). Using the canonical
embedding σ, it is possible to map an element m(X) ∈ R into CN by eval-
uating m(X) at the Mth primitive roots of unity. Using the same canonical
embedding, it is also possible to define an isometric ring isomorphism between
S = R[X]/ΦM (X) and CN/2, where for an element m(X) ∈ S, it has the canon-
ical embedding norm ||m||can∞ = ||σ(m)||∞.

Overview of the CKKS-HE Scheme: The CKKS-HE scheme [9] is an HE scheme
for approximate arithmetic over real/complex numbers. Its security is based on
the ring-LWE (RLWE) assumption. The message space of the scheme is polyno-
mials m(X) in R with ||m||can∞ < q/2 for a prime q. Using the canonical embed-
ding and appropriate scaling, one can map a vector in CN/2 of fixed precision into
R. The fact that canonical embedding induces an isometric ring isomorphism
between S and CN/2 implies that operations on the message space R map to
the same operations performed coordinate-wise on CN/2. Thus, the CKKS-HE
scheme supports packing N/2 complex numbers into a single plaintext and op-
erating on them in single instruction multiple data (SIMD) manner. Please refer
to [9] for more details on this encoding procedure. We will refer to m(X) ∈ R
as the plaintext/message and the corresponding vector in CN/2 as the plaintext
“slots.”

A ciphertext ct encrypting a message m ∈ R is an element of R2
q`

for some

` ∈ {0, . . . , L}. ` refers to the “level” of the ciphertext. In [9], q` = p` ∗ q for
primes p and q. However, q` can be set in other ways (such as via an RNS
basis [8]). The decryption structure is 〈ct, sk〉 mod q` = m + e for some small
error e ∈ R. Observe that there is no way to remove e and some of the least
significant bits of m are unrecoverable. A fresh ciphertext is generated at the
highest level L. Homomorphic operations increase the magnitude of the error and
the message and one must apply a rescaling procedure or modular reduction
to bring a ciphertext to a lower level to continue homomorphic computation.
Eventually, a ciphertext is at the lowest level (an element of R2

q), and no further
operations can be performed.

Bootstrapping Procedure for CKKS-HE: [7] introduced the first bootstrapping
procedure for the CKKS-HE scheme. Subsequent works [6, 11, 12, 5] improved
various aspects of bootstrapping, but the overall procedure remains the same.
The goal is to take a ciphertext at the lowest level and bring it up to a higher
level so that homomorphic computation can continue. Thus, given a ciphertext
ct at the lowest level, we want to obtain another ciphertext ct′ such that

〈ct, sk〉 mod q ≈ 〈ct′, sk〉 mod q`
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for some ` > 1. For simplicity in the following, we will include the starting
decryption error in the message m. That is, we will assume that 〈ct, sk〉 mod q =
m.

Bootstrapping is done via the following sequence of steps:

1. Modulus Raising: By simply considering ct as a ciphertext at the highest
level, it follows that 〈ct, sk〉 mod qL = qI +m for some I ∈ R.

2. Coefficients to Slots: We need to perform the modular reduction on the
polynomial coefficients of t = qI + m. However, recall that homomorphic
computations evaluate coordinate-wise on the plaintext “slots,” not the poly-
nomial coefficients. Thus, we need to transform our ciphertext so that the
polynomial coefficients are in the “slots.” This can be done by evaluating a
linear transformation homomorphically.

3. Compute the Mod Function: We need a procedure to compute/approximate
the mod function homomorphically. This is a significant challenge since we
can only compute arithmetic operations homomorphically.

4. Slots to Coefficients: Finally, we need to undo the coefficients to slots
step. This can be done by homomorphically evaluating the inverse of the
previous linear transform.

Observe that if we can approximate the mod function, then the above pro-
cedure will give us a ct′ at some higher level ` that decrypts to m+ e for some
small error e. Since we are dealing with approximate arithmetic, this error from
bootstrapping can be absorbed into the other errors that occur during approxi-
mate arithmetic and homomorphic evaluation. We can upper bound |I| < K for
some integer K so that we only need to approximate the mod function on the
interval [−Kq −m,Kq +m], where we have overloaded notation to make m an
upper bound on the size of the message.

4 Evaluating the Sine Series Approximation of the Mod
Function

In order to use the sine series approximation of the mod function given by
Corollary 2 for bootstrapping, we must approximate the sine series by a low-
degree polynomial, since the CKKS-HE scheme cannot compute sine directly.
In this section, using our sine series approximation of the mod function and the
well-known Taylor series expansion of the sine function, we will give explicit
low-degree polynomial approximations of the mod function on small intervals
around multiples of the modulus to (almost) arbitrary precision. The resulting
polynomials have small coefficients, as the Taylor series of the sine function has
small coefficients, and the sine series itself has small coefficients by Lemma 3.
Recall that small coefficients are beneficial in contrast to large coefficients, as in
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the latter case one is forced to compute the different power monomials to much
higher precision in order to obtain an accurate polynomial evaluation. This,
in turn, causes the computational precision that we must operate at during
bootstrapping to be higher, which causes each “level” to consume more bits of
the modulus. We next explain how we evaluate the sine series and then determine
the degree and evaluation precision required for the Taylor series approximation
of sine.

Evaluating the Sine Series: To evaluate the sine series, we first compute a Taylor
series approximation of eix (recall that CKKS-HE allows us to compute over
complex numbers). We can obtain an approximation to sinx by extracting the
imaginary part. The other higher order sin kx terms can be obtained conveniently
by computing eikx from eix and extracting the imaginary part. As for computing
the Taylor series approximation of the sine function, note that the domain of
approximation is small intervals around `q, where ` ∈ [−K..K] and q is the
modulus. The bound K comes from the bound on the Hamming-weight of the
secret key and is typically 12 to 32. If our input is X = x + `q for some small
offset x and ` ∈ [−K..K], our goal is to compute ei(2π(x+`q)/q). This then requires
a Taylor series that has powers of 2π(x + `q)/q, which can be more than one.
Earlier works noted that one can instead first compute ei(2π(x+`q)/(q2

r)) using a
Taylor series expansion (for some r > 0) and then compute ei(2π(x+`q)/q) using
r squarings.

Determining the Degree of the Taylor Series Approximation: Next, we must de-
termine the degree to which we compute the Taylor series expansion of e2πi(x+`q)/(q2

r).
The Taylor series expansion is

∞∑
m=0

(2πi(x+ `q)/(q2r))m/m!.

We now determine for which range of values of (x+`q) the above restricted to the
sine terms, i.e. the imaginary terms or odd powers of x, satisfies the alternating
series test (so that the partial series error can be bound by the absolute value of
the next missing term). Thus, we need to determine the conditions under which

1 >
(2π|(x+ `q)|/(q2r))(2m+1)/(2m+ 1)!

(2π|(x+ `q)|/(q2r))(2m−1)/(2m− 1)!

=
(2π|(x+ `q)|/(q2r))2

(2m+ 1)(2m)

Assuming x << q and 2r ≈ K + 1, the above holds when m > π. Thus, if the
Taylor series is computed partially up to any degree 2m − 1, then the error in
the approximation of sine is at most

(2π)2m+1/(2m+ 1)! < (2πe/(2m+ 1))2m+1,

which is at most 2−(2m+1) if we require that m > 2πe.
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Thus, having computed sin(2π(x+`q)/(q2r)) partially up to m terms, we now
investigate the error for the higher order terms in the sine series, i.e. sin(2πk(x+
`q)/q) for k ≥ 1. If the error in the approximation of the original term is small,
say δ << 1, then the error for this k-th term is approximately k2r ∗ δ (as it
requires r + log k squarings). Thus, the total error in the sine series due to the
Taylor series approximation of

∑n
k=1 βk sin(2πk(x+ `q)/q) is upper bounded in

absolute value by
∑n
k=1 |βk|∗k2rδ, which is approximately (K+1)δ

∑n
k=1 |βk|∗k,

which is at most n2(K + 1)δ by Lemma 3, which, in turn, is at most n2(K +
1)2−(2m+1).

Finally, using Corollary 2, the total error in the mod function approximation,
for an input X = x+ `q with ` ∈ [−K..K] and |x| < ε ∗ q for any ε < 1/π

√
n is

(q/2π) ∗ n2(K + 1)2−(2m+1) +
e2 ∗ q

2π
∗ (n+ 1) ∗ (ε ∗ π)2n+1.

Thus, it makes sense to have m about −n log2 (ε ∗ π) (which is typically greater
than 2πe for n > 1; if this value is less than 2πe, then the above analysis must
be redone for potentially a larger r).

Determining the Evaluation Precision: We must also determine the precision to
which to evaluate the polynomials. Setting Y = 2π(x + `q)/(q2r), we observe
that the degree m Taylor expansion of e2πi(x+`q)/(q2

r) is simply the polynomial

m∑
j=0

(iY )j/j!.

Recall that we have chosen r so that |Y | < 1. Moreover, setting cj = ij/j!,
the polynomial becomes

∑m
j=0 cjY

j , where |cj | ≤ 1. We need to determine the

precision to which we evaluate the powers Y j (we will first evaluate the Y 2j ’s
by repeated squaring and then use these powers to evaluate all intermediate
powers). Let Y j denote the exact values and let Ỹ j denote the approximated
values (to some precision to be determined). Suppose we evaluate the powers Y j

up to w bits (and simply chop off the additional bits). Then, |Ỹ − Y | < 2−w.
Computing Ỹ 2 by squaring Ỹ and rounding, we have that Ỹ 2 differs from Y 2

by at most ≈ 2 ∗ 2−w. To see this, note that Ỹ = Y ± δ, where δ < 2−w. Then,
Ỹ 2 = Y 2± 2Y δ+ δ2 < Y 2± 2δ+ δ2 ≈ Y 2± 2 ∗ 2−w. By an analogous argument,
it follows that Ỹ j differs from Y j by at most approximately j ∗ 2−w. Thus, the
error of

∑m
j=0 cj Ỹ

j is bounded by

m∑
j=0

j ∗ 2−w ∗ 1

j!
=

m∑
j=1

2−w

(j − 1)!
< e ∗ 2−w.

Thus, to obtain error 2−d, it suffices to compute the powers Ỹ j to precision w
for w > d + log2 e, only slightly higher than the minimum precision d required
to obtain this approximation.
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In the above, we saw that having small coefficients cj (and coefficients that
decrease in magnitude as j increases) enabled the approximation of the polyno-
mial

∑m
j=0 cjY

j by evaluating the powers of Y to precision only a couple bits
larger than the minimum precision required for the desired error. This is crucial
during bootstrapping as a higher evaluation precision directly corresponds to
losing more bits of the modulus during the polynomial evaluation. In contrast,
suppose that the cj ’s were large and bounded in magnitude |cj | < 2k for some k.
Then, if the powers of Y are evaluated to precision w, the error of the polynomial
evaluation is bounded by

m∑
j=0

j ∗ 2−w ∗ 2k <
m(m+ 1)

2
∗ 2k−w.

Thus, to obtain error 2−d, the powers of Y would need to be evaluated to pre-
cision w > d + k + 2 logm − 1. Note the additional dependence on both k and
the number of terms m.

5 Implementation

To demonstrate the applicability of our polynomial approximation to high pre-
cision bootstrapping for approximate homomorphic encryption, we updated the
bootstrapping procedure of the HEAAN library [1] to utilize our sine series during
the “Compute the Mod Function” step (see Section 3). Additionally, we updated
HEAAN to use the quadmath library, since we wanted to achieve bootstrapping
error smaller than the precision of a double. We ran our implementation1 using
a PC with an AMD Ryzen 5 3600 3.6 GHz 6-Core CPU.

Table 1 gives our bootstrapping results for sine series of various orders. As
before, ε represents the ratio p/q, where p is an upper bound on the size of
the message (including any errors associated from the approximate arithmetic
and prior homomorphic operations) and q is the size of the modulus prior to
bootstrapping. In Table 1, ε is set to 2−10. The Hamming weight of the secret
key is set to h = 256, so that on average K is about

√
h = 16. However, our

implementation can handle K as large as 31. qL denotes the modulus of the
largest level, which is the modulus of a fresh ciphertext prior to any homomorphic
operations. N denotes the ring dimension, which we increase as qL increases to
maintain 128-bit security [10, 2, 3]. Results in this table were obtained using 8
slots, and the dependence on a larger number of slots is reported below. q`′

denotes the modulus of the ciphertext after bootstrapping. The reported error
is the decryption error after performing bootstrapping. In other words, if the
decryption before bootstrapping would have resulted in message slot value M ,
then the decryption after bootstrapping would result in a message slot value M ′

such that |M ′ −M | ≤ βbs|M |. As can be seen from Table 1, for log2 p = 80
and log2 p = 100, the bootstrapping error is essentially zero. This is because the

1 The source code is available upon request.
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Table 1: High-Precision Bootstrapping Results for ε = 2−10. The Hamming weight
of the secret key is set to h = 256. The errors reported are for K up to 31.

Input Sine Modulus Ring Boot. Modulus Error Runtime††

Precision† Series (Fresh) Dim. prec. (After) (Boot.) (secs)
log2 p Order log2 qL N log2 q`′ βbs = err/p

30 2 1200 216 55 344 2−25 22
50 3 1600 216 75 531 2−45 32
60 4 2400 217 85 1008 2−54 119
80 5 2400 217 105 583 < 2−80 129
100 6 3000 217 125 843 < 2−100 167

† The modulus q` of the ciphertext prior to bootstrapping is p/ε. The number of bits
of q` is p− log ε = p+ 10, and bootstrapping (computational) precision is set to
(p− log ε+ log2K) + 10.

†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps.
Number of slots fixed to be 8 so that the “Compute the Mod Function” step
dominates runtime. Results reported are from an AMD Ryzen 5 3600 3.6 GHz
6-Core CPU using quadmath, NTL and GMP software libraries.

bootstrapping procedure is performed at a precision that is ten bits more than
the number of bits required to represent M +Kq (i.e. the value which needs to
be reduced mod q).

Recall that the sine series approach begins by approximating eix using a
Taylor series approximation, since CKKS-HE allows computation on complex
numbers. In this particular implementation, we approximated eix/K to degree
63 using the Paterson-Stockmeyer polynomial evaluation optimization [20] and
then performed logK squarings to obtain an approximation of eix. Below, we
report results for other variants for approximating eix.

We see that our methodology is capable of achieving high precision boot-
strapping, with the resulting message precision as large as 100 bits. Prior to our
work, the highest precision bootstrapping of CKKS was the recent work of [13]
which could achieve a resulting message precision of up to 67 bits. However, that
result was only for K = 12 and secret key Hamming weight h = 64, whereas
our 100 bit precision bootstrapping is for h = 256 and can handle K up to 31.
Observe that using a sparser key (in addition to weakening security) reduces
the number of intervals required for approximation, making the approximation
easier. Thus, we view our result as a substantial improvement for bootstrap-
ping in settings where high precision is required, such as the inference step of
a convolution neural network or even the learning stage of the neural network.
As mentioned earlier, since CKKS is for approximate arithmetic, it is only pos-
sible to have unlimited computation for stable computations that do not lose
precision. However, even such stable computations lose precision in early stages
prior to convergence. Thus, it is important to begin such computations with
high precision and, later, one can switch to smaller precision during the stable
regime.
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Table 2: Timing and Error Dependence on Number of Slots. In this table ε = 2−10,
log2 p = 80, and the sine series order is fixed to n = 5.
Num Input Sine Modulus Ring Boot. Modulus Error Runtime††

Slots Precision Series (Fresh) Dim. prec. (After) (Boot.) (secs)
log2 p Order log2 qL N log2 q`′ βbs = err/p

8 80 5 2400 217 105 583 < 2−80 129
16 80 5 2400 217 105 583 < 2−80 151
32 80 5 2400 217 105 583 2−72 178
64 80 5 2400 217 105 583 2−71 208
128 80 5 2400 217 105 583 2−69 269
256 80 5 2400 217 105 583 2−69 308
512 80 5 2400 217 105 583 2−68 484
1024 80 5 2400 217 105 583 2−66.5 847
2048 80 5 2400 217 105 583 2−65.5 1477
†† Includes runtime of “Coefficients to Slots” and “Slots to Coefficients” steps. For all

rows, the mod function evaluation time is almost the same at 82 secs.

5.1 Time and Error Dependence on the Number of Slots

As the number of slots is increased, the time of the mod function evaluation step
during bootstrapping remains the same (assuming we use at most N/4 slots, so
that all the polynomial coefficients can be packed into a single ciphertext during
the “Coefficients To Slots” step). However, the linear transforms that send the
coefficients to slots and vice versa take a substantial hit since their runtime scales
with the number of slots. Since the linear transforms also involve more rotations,
key-switchings, multiplications by constants, and additions, for every doubling
of the number of slots, the bootstrapping error also increases proportionately.
However, since our error is so low, the error for a high number of slots still
remains low enough to be termed high-precision. This dependence of runtime and
bootstrapping error is reported in Table 2 for one particular parameter, where
the sine series is of order five. Observe that for 8 and 16 slots, our bootstrapping
method gives essentially no error. However, for a larger number of slots, the
error slowly increases as it is dominated by the error introduced during the
linear transform steps. We note that the runtime increases quite substantially as
the number of slots increases. This poor performance is due to the fact that the
implementation of the linear transform step used in the HEAAN library [1] scales
poorly as the number of slots increases. The work [6] showed how to improve the
runtime of the linear transform step at the cost of losing more ciphertext modulus
bits, but their implementation is not public. The work [5] also recently improved
the performance of the linear transform step further. It would be interesting to
have an implementation that combined our sine series approximation of the mod
function with the linear transform evaluation algorithms of [5].
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5.2 Comparison with Basic Sine and Other Variants

While the implementation results reported in Table 1 used a Taylor series ap-
proximation of degree 63 of eix/K , the implementation in [1] instead used a degree

7 approximation of eix/K∗2
4

followed by 4 additional squarings. We investigated
if we could use a similar approach for the sine series, as the different order sine
terms are obtained by squarings of eix anyways. We found that for small pre-
cision, i.e. log2 p ≤ 40, this approach can lead to a faster implementation while
yielding effectively the same error. However, for log2 p ≥ 50, this approach led to
substantially worse error. For example, at log2 p = 50, the error increased from
2−45 to 2−30. But, as mentioned, for smaller log2 p we get the following improve-
ments. First of all, the basic sine approach (i.e. n = 1) with r = 4 and degree 7
Taylor series yields an error of 2−19 for log2 p = 30. If the fresh modulus used is
1600 bits, then the modulus after bootstrapping has 795 bits. The time taken is
10.5 secs. Interestingly, with sine series of order two, i.e. n = 2, using the same
approach we get an error of 2−26, with modulus after bootstrapping having 685
bits. Moreover, the time taken is 10.7 secs. Yet another implementation, with
a degree 31 Taylor series approximation, and r = 0, also yields error 2−25, but
takes time 16.5 secs. However, the modulus after bootstrapping has more bits
at 744 bits. Regardless, it seems that the sine series of order two with a degree
7 Taylor series and r = 4 seems to be beneficial at low precision.

We also experimented with different values of ε, in particular ε set to 2−5, 2−10,
2−15, 2−20. The errors at each input precision were not much different, and, in
fact, ε = 2−10 seems to be the best option.

Table 3: Comparison with [18]. Note, [18] cites results for K = 25, whereas our results are
for K up to 31.

[18] This Work
Key Hamming Ciphertext Bootstrapping Key Hamming Ciphertext Bootstrapping

Weight (h) Bits Lost Precision (bits) Weight (h) Bits Lost Precision (bits)

192 1080 40.5 256 1069 44
N/A N/A N/A 256 1392 53
N/A N/A N/A 256 1817 80
N/A N/A N/A 256 2157 100

5.3 Comparison with Other Prior Works

The work [6] followed an interesting approach of obtaining Chebyshev inter-
polants of the scaled sine function. In particular, using the Taylor series of
sin(2πK cosx), they obtained approximations of sin(2πKx) in terms of Cheby-
shev polynomials. Furthermore, this approach also leads to an almost optimal
minmax polynomial approximation, as well as yielding small coefficients. Since
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Table 4: Comparison with Modular Lagrange Interpolation [13]. Note, [13] cites results
for K = 12, whereas our results are for K up to 31.

[13] This Work
Input Key Hamming Ciphertext Error Key Hamming Ciphertext Error

Precision Weight (h) Bits Lost (Boot.) Weight (h) Bits Lost (Boot.)

30 64 935 2−24 256 856 2−25

50 64 1725 2−46 256 1069 2−45

60 64 1800 2−54 256 1392 2−54

80 64 2150 2−63 256 1817 < 2−80

100 N/A N/A N/A 256 2157 < 2−100

the scaling K is already incorporated in the function, it removes the logK squar-
ings required in [7] and in this work. However, Chebyshev interpolants do not
readily submit to the Paterson-Stockmeyer evaluation optimization and while [6]
did show a variant of this method, it leads to coefficients increasing in size. Thus,
as explained in Section 3, this then requires a larger computational precision that
leads to loss of many more (ciphertext modulus) bits per multiplication depth in
the bootstrapping circuit. For a direct comparison of our approach to [6], we take
data from Tables 2-4 from that work, as their implementation is unfortunately
not public, and note that the best approximation they obtain has error 2−21

for data set IV∗. A look at our Table 1 shows that the worst error we obtain
is 2−25 for log2 p = 30. The number of ciphertext (modulus) bits lost for that
error is 1200− 344 = 856, whereas [6] loses 1240− 43 ∗ 6 = 982 bits. Moreover,
our implementation can handle K up to 31 since we set the secret key Hamming
weight h = 256, whereas [6] gives results for K = 12 and use h = 64. Thus, our
approach is clearly better at even this low precision.

In [12], the authors obtain better approximation error than [6] by leveraging
the fact the approximation is only needed in small intervals around multiples of
the modulus. However, their approach also uses a baby-step giant-step, or alter-
nately the Paterson-Stockmeyer variant applied to Chebyshev polynomials that
can lead to a blowup in the size of coefficients. The authors do not give details
on the number of ciphertext (modulus) bits lost in the bootstrapping procedure,
nor is their implementation public. The maximum bootstrapping precision they
achieve is 18.5 bits.

In [18], the authors report high-precision bootstrapping using a composition
of sine/cosine and arcsine. The polynomials to approximate these functions are
found via algorithmic search using the Remez algorithm (which gives no guar-
antee on the size of the coefficients), and the authors do not provide any details
on the size of these coefficients apart from noting that they “are small enough
not to distort the messages.” Moreover, their implementation is not public. The
authors report a practical implementation of up to 40-bits precision bootstrap-
ping. In Table 3, we compare our results with theirs using the relevant available
information in their paper. We note that [18] gives an implementation of RNS-
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CKKS [8], which improves performance over the original CKKS implementation
by utilizing an RNS basis. This introduces an additional challenge of having to
ensure that rescaling errors are small, but this can be done without significantly
increasing error, and, in fact, the recent work [14] shows a method of managing
the scaling factor so that homomorphic multiplication error in RNS-CKKS is
about the same as that of the original CKKS scheme.

The work [13] gives a direct approximation of the mod function, i.e. without
going through the sine function, and hence bypasses the fundamental error of
the sine function approach. Thus, they can get arbitrarily high precision, and
they also show that the coefficients of their polynomial approximation are not too
large. Nevertheless, the coefficients are large enough that our approach beats [13].
Moreover, they only give implementation numbers for K = 12, and for K =
31, the number of ciphertext modulus bits lost during bootstrapping would be
higher. In Table 4, we compare their results with ours for ε = 2−10 and various
plaintext precisions.

The recent work [5] optimized the performance of bootstrapping for RNS-
CKKS. They introduce a scale-invariant polynomial evaluation method as well as
a “double hoisting” technique for evaluating the homomorphic linear transforms.
These techniques improve the performance of bootstrapping considerably and are
compatible with our sine series approximation of the mod function. Moreover, to
the best of our knowledge, [5] gives the first public implementation of full RNS-
CKKS with bootstrapping. We note that they do not focus on obtaining better
approximations to the mod function and utilize previous techniques and variants
thereof to perform the “Compute the Mod Function” step in bootstrapping.
Their maximum bootstrapping precision achieved is 32.6 bits, but we stress that
this was not the focus of their work. An interesting direction would be to combine
both their bootstrapping optimizations with our sine series approximation of the
mod function.
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A Proof of Lemma 5

Lemma 5 (restated) For any k ≥ 0, any a of length n > 0, and an independent
formal variable t,

k∑
j=0

hj(a)tj =

n∏
i=1

k∑
j=0

(tai)
j mod tk+1.

Proof. We prove this lemma by induction over n. The base case for n = 1 follows
as hj(a) = aj for every j in [0..k]. Suppose the lemma holds for n− 1. Then, let
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a′ be truncation of a to its first n− 1 components. We have, modulo tk+1,

n∏
i=1

k∑
j=0

(tai)
j =

k∑
z=0

(tan)z ∗
n−1∏
i=1

k∑
j=0

(tai)
j

=

k∑
z=0

tzazn ∗
k∑
j=0

hj(a
′)tj

=

k∑
j=0

k∑
z=0

azn ∗ hj(a′)tj+z

=

k∑
z=0

k∑
j=0

azn ∗ hj(a′)tj+z

=

k∑
z=0

k−z∑
j=0

azn ∗ hj(a′)tj+z

=

k∑
z=0

k∑
j′=z

azn ∗ hj′−z(a′)tj
′

=

k∑
z=0

∑
k≥j′; j′≥z

azn ∗ hj′−z(a′)tj
′

=
∑

z≤k; j′≤k; z≥0; z≤j′
azn ∗ hj′−z(a′)tj

′

=

k∑
j′=0

j′∑
z=0

azn ∗ hj′−z(a′)tj
′

=

k∑
j′=0

hj′(a)tj
′


