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Abstract. We formally define polynomial packing methods and initi-
ate a unified study of related concepts in various contexts of cryptogra-
phy. This includes homomorphic encryption (HE) packing and reverse
multiplication-friendly embedding (RMFE) in information-theoretically
secure multi-party computation (MPC). We prove several upper bounds
and impossibility results on packing methods for Zpk or Fpk -messages
into Zpt [x]/f(x) in terms of (i) packing density, (ii) level-consistency,
and (iii) surjectivity. These results have implications on recent devel-
opment of HE-based MPC over Z2k secure against actively corrupted
majority and provide new proofs for upper bounds on RMFE.

Keywords: Packing method · Homomorphic encryption · Secure multi-
party computation · Reverse multiplication-friendly embedding · Zpk .

1 Introduction

HE Packing. Homomorphic encryption (HE), which allows computations on
ciphertexts without decryption, is such a versatile tool that it is often referred as
the holy grail of cryptography. After Gentry’s breakthrough [23], HE has under-
gone extensive study and development. HE is now considered to be exploitable
in real-life applications (e.g. privacy-preserving machine learning [28]) and re-
garded as a core building block in various cryptographic primitives (e.g. secure
multi-party computation [21]).

One drawback of contemporary lattice-based HE schemes [4, 22] is that their
plaintext space is of the form Zq[x]/ΦM (x), as their security is based on Ring
Learning with Errors (RLWE) [30]. That is, these schemes are homomorphic with
regards to the addition and multiplication of polynomial ring Zq[x]/ΦM (x). This
raises a question of how to homomorphically encode messages into the plaintexts,
as our data are usually binary bits, integers, fixed/floating point numbers, or at
least Zp and Fpk .

Among a number of works on how to encode data into HE plaintexts [11, 10,
8, 12], Smart-Vercauteren [33, 34] first introduced the idea of packing several Zp

(or Fpk) elements into the HE plaintext space Zp[x]/ΦM (x) via CRT3 ring iso-
morphism with well-chosen prime p. Their simple yet powerful technique enables
SIMD4-like optimizations and enhances amortized performance. That is, with a

3 Chinese Remainder Theorem
4 Single Instruction, Multiple Data



2 J. H. Cheon and K. Lee

polynomial packing method, we can securely compute on multiple Zp-messages
simultaneously by homomorphically computing on a single packed HE plaintext
in Zp[x]/ΦM (x). In particular, through the packing, the complex multiplicative
structure of Zp[x]/ΦM (x) embeds the more handy coordinate-wise multiplica-
tion (a.k.a. Hadamard product) of Zn

p , where n denotes the number of packed
messages. Packing has now become a standard technique in HE research, and it
is not too much to say that the performance of HE applications are determined
by how well packings are utilized.

However, this conventional packing method has a limitation: it cannot (ef-
ficiently) pack Z2k -messages.5 This limitation has recently attracted attention
due to development of secure multi-party computation (MPC) over Z2k secure
against actively corrupted majority by SPDZ2k [15]. SPDZ2k follows the frame-
work of HE-based MPC protocol SPDZ [21], while targeting Z2k -messages rather
than prime field Zp-messages, with a motivation from the fact that Z2k arith-
metic matches closely what happens on standard CPUs. In this context, Over-
drive2k [31] and MHz2k [13], whose goal are efficient constructions of HE-based
MPC over Z2k , came up with new and more involved polynomial packing meth-
ods for Z2k -messages (Section 4).

RMFE in Perfectly Secure MPC. Another context where polynomial pack-
ings appear is information-theoretically secure MPC (or perfectly secure MPC).
A main tool in this area is Shamir’s linear secret sharing scheme(LSSS). A
cumbersome fact when using LSSS is that the number of shares is restricted
by the field where computation takes place.6 Thus, it is standard to lift the
computation to a larger field which supports enough number of shares, but
this causes substantial overheads. In their seminal work [5], Cascudo-Cramer-
Xing-Yuan first defined and studied reverse multiplication-friendly embedding
(RMFE) which is, roughly speaking, an embedding of several elements of small
finite field into a larger finite field while providing somewhat homomorphism of
degree-2. Note that an RMFE can be indeed viewed as a polynomial packing
Fn
pk → Fpd

∼= Fp[x]/f(x), where p is a prime and f(x) ∈ Fp[x] is an irreducible

polynomial of degree d. Surprisingly, [5] constructed constant-rate RMFEs, lever-
aging algebraic geometry, and applied them to remove logarithmic overhead in
amortized communication complexity which appears to enable Shamir’s secret
sharing. Since [5], RMFE has become a standard tool in information-theoretically
secure MPC, to achieve linear amortized communication cost while preserving
optimal corruption tolerance: [3, 20, 7, 17, 18, 32].

In [16], the notion of RMFE was extended to over Galois rings for construc-
tion of efficient perfectly secure MPC over Zpk . Again, RMFE over Galois rings
for Zpk -messages can be viewed as a polynomial packing Zn

pk → GR(pk, d) ∼=

5 The original method of [33] does not consider packings for Zpk . Gentry-Halevi-
Smart [24] later generalized the method to support such packing. However, this
method achieves only considerably low efficiency. See Section 4.1.

6 Indeed, the number of evaluation points is bounded by the size of the field.
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Zpk [x]/f(x), where p is a prime and f(x) ∈ Zpk [x] is a degree-d irreducible
polynomial in Fp[x].

Other Contexts. Other than HE and perfectly secure MPC, there are still
more areas where polynomial packings are used for amortization: correlation
extraction for secure computation [2], zk-SNARK [6], etc. Moreover, we be-
lieve that polynomial packing will be even more prominent and universal tool
for efficiency and practicality in the future: (i) RLWE-based cryptosystems are
emerging, where plaintexts are Zq[x]/ΦM (x); (ii) Secure computation is emerg-
ing, where some parts of protocols need to be large or of certain form due to
security or mathematical properties required, whereas where we actually want
to compute in is (extremely) small and typical such as F2 or Z232 .

1.1 Our Contribution

Unified Definition and Survey. In this work, we formally define polynomial
packing methods, which can be understood as (somewhat) homomorphic encod-
ing for copies of a small ring, e.g. Zp or Fpk , into a larger ring, e.g. Zq[x]/f(x),
(Section 3.1). The notion of polynomial packing unifies forementioned concepts
in various contexts of cryptography, including HE packing and RMFE in per-
fectly secure MPC. Then, we gather existing packing methods in one place. This
includes RMFE (Section 2.3 and 3.1), classic HE packing methods (Section 3.1),
and recent development occurred in HE-based MPC over Z2k (Section 4). We
also provide decomposition lemmas which suggest that it is enough to study
packing methods for Zn

pk (or Fn
pk) into Zpt [x]/f(x) where t ≥ k and p is prime,

instead of general case of Zn
P (or Fn

P ) into ZQ[x]/f(x) where P,Q ∈ Z+ (Sec-
tion 3.2). The results also rule out the possibility of using composite modulus
for better packing.

Upper Bounds and Impossibility. We prove several upper bounds and im-
possibility results on packing methods for Zpk or Fpk -messages into Zpt [x]/f(x).

– Upper Bounds on Packing Density (Section 5): We evaluate the efficiency of
packing methods by packing density which measures how densely the mes-
sages are packed in (plaintext) polynomials (Def. 5).We prove that, when a
packing method provides somewhat homomorphism upto degree-D polyno-
mials, the packing density is roughly upper bounded by 1/D (Thm. 1 and
2). These results have several implications:

• The packing method of MHz2k [13] achieves nearly optimal density in
some sense when using their parameters (Example 6). Our results justify
the lifting of MHz2k packing (See Section 4.3).

• We provide the first upper bound on RMFE over Galois ring for Zpk -
messages (Example 7).
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• We provide a new proof for upper bound on RMFE, which can be ex-
tended to higher-degree settings unlike the previous proof (Example 10).

– Impossibility of Level-consistency (Section 6): The notion of level-consistency
captures the property whether packings are decodable in an identical way
at different multiplicative levels (Def. 6). The level-consistency is a desirable
feature as it allows homomorphic computation between different packing lev-
els. We prove sufficient and necessary conditions on parameters to allow a
level-consistent packing method. These results have the following implica-
tions:

• HELib packing [26] (a.k.a. GHS packing [24], See Section 4.1) is essen-
tially the optimal method to use in fully homomorphic encryption(FHE)
(Example 14).

• It is impossible to construct efficient level-consistent packing methods in
most cases. This justifies the use of level-dependent packings in SPDZ-
like MPC protocols over Z2k [31, 13] and highlights the usefulness of
the trick proposed by MHz2k [13], which closed the gap between the
level-consistent and level-dependent packing methods in so-called reshare
protocol. (See Section 6.1.)

– Impossibility of Surjectivity (Section 7): For a packing method into R, the
notion of surjectivity captures the condition whether every element of R
is decodable (Def. 8). This distiction is essential when designing a cryp-
tographic protocol with the packing method in a malicious setting, where
an adversary might freely deviate from the protocol. If there is an element
in R which fails to decode, a malicious adversary might make use of the
element to illegitimately learn information of other parties, if such invalid
packings are not properly handled. We prove sufficient and necessary con-
ditions on parameters to allow a surjective packing method. Our results
suggest that it is impossible to construct a meaningful surjective packing
method in most cases. This justifies the use of non-surjective packings and
the need of ZKPoMK7, which ensures an HE ciphertext encrypts a validly
packed plaintext, in SPDZ-like MPC protocols over Z2k [31, 13].

2 Preliminaries

2.1 Notations and Terminologies

In this paper, we only consider finite commutative rings with unity. Thus, we
omit the long description and simply refer them as rings. Readers must under-
stand the term ring as finite commutative rings with unity, even if not explicitly
stated. In addition, we only consider monic polynomials when defining quotient
rings. Thus, we omit description on monic property throughout the paper for
readability. Readers must understand any polynomials defining quotient rings as
monic polynomials, even if not explicitly stated.

7 Zero-knowledge proof of message knowledge



Limits of Polynomial Packings for Zpk and Fpk 5

This paper carefully distinguishes between the use of the terms message and
plaintext. Messages are those we really want to compute with. On the other
hand, plaintexts are defined by encryption scheme (particularly, HE schemes)
we are using. In this paper, messages are in Zpk or Fpk and plaintexts are in
Zq[x]/f(x).

For prime fields, we use both notations Fp and Zp, depending on whether we
want to emphasize that it is a field or that it is the ring of integer modulo p. The
multiplicative order of bmodulo a is denoted as orda(b). We use Inva(b) to denote
the smallest positive integer which is a multiplicative inverse of b modulo a. We
use ⊙ to denote the coordinate-wise multiplication (a.k.a. Hadamard product)
in products of rings. In a product of rings Rn, the element ei denotes a standard
unit vector whose i-th coordinate is 1 and the other coordinates are 0. We denote
the M -th cyclotomic polynomial as ΦM (x) and the Euler’s totient function as
ϕ(·). We use GR(pk, d) to denote the Galois ring, a degree-d extension of Zpk .
We use notations [n] := {1, 2, · · · , n} and [0, n] := {0, 1, · · · , n}.

2.2 Polynomial Factorizations

Here, we briefly review some basic facts on polynomial factorizations in Zpk [x].
First, recall Hensel lifting (or Hensel’s lemma).

Lemma 1 (Hensel Lifting). Let f(x) ∈ Zpk [x] be a monic polynomial which
factors into

∏r
i=1 gi(x)

ℓi in Fp[x], where gi(x) are distinct irreducible polyno-
mials. Then there exist pairwise coprime monic polynomials f1(x), · · · , fr(x) ∈
Zpk [x] such that f(x) =

∏r
i=1 fi(x) in Zpk [x] and fi(x) = gi(x)

ℓi (mod p), for
all i ∈ [r].

When gcd(M,p) = 1, ΦM (x) factors into
∏r

i=1 gi(x) in Fp[x], where gi(x)
are distinct irreducible polynomials of degree d := ordM (p). Thus, ϕ(M) = r · d
holds. To see this, consider a primitive M -th root of unity in a sufficiently large
extension field of Fp. Then, it is easy to see that the number of its conjugates is
d which coincides with the degree of its minimal polynomial. Applying Hensel’s
lemma, we have a factorization ΦM (x) =

∏r
i=1 fi(x) in Zpk [x], where deg(fi) =

d and fi(x) = gi(x) (mod p). Accordingly, we have a CRT ring isomorphism
Zpk [x]/ΦM (x) ∼=

∏r
i=1 Zpk [x]/fi(x). Each Zpk [x]/fi(x) is often referred to as a

CRT slot of Zpk [x]/ΦM (x).

2.3 RMFE

Reverse multiplication-friendly embeddings (RMFE) were first defined and stud-
ied in-depth by [5].8 At a high level, RMFEs are embeddings of several elements
of small finite field into a larger finite field, while providing somewhat homomor-
phism of degree-2.

8 Nonetheless, this object was also previously studied in [2] to amortize oblivious linear
evaluations (OLE) into a larger extension field for correlation extraction problem in
MPC. However, their construction achieved only sublinear density.



6 J. H. Cheon and K. Lee

Definition 1 (RMFE). A pair of maps (φ,ψ) is called an (n, d)pk -reverse
multiplication-friendly embedding (RMFE) if it satisfies the following.

– The map φ : Fn
pk → Fpkd is Fpk -linear.

– The map ψ : Fpkd → Fn
pk is Fpk -linear.

– For all a, b ∈ Fn
pk , it holds ψ(φ(a) · φ(b)) = a⊙ b

Surprisingly, [5] constructed families of (n, d)pk -RMFE where the density n/d
converges to some constant, for arbitrary prime power pk, leveraging algebraic
geometry. That is, [5] constructed constant-rate RMFEs. For instance, we have
a family of (n, d)2-RMFE with n/d → 0.203 from [5]. Since this seminal work,
RMFE has become a standard tool in information-theoretically secure MPC, to
achieve linear amortized communication cost while preserving optimal corrup-
tion tolerance: [5, 3, 20, 7, 17, 18, 32]. RMFE was also leveraged in zk-SNARK
context recently [6].

Recently in [16], RMFE over Galois rings was first defined and studied. It is
a natural generalization of RMFE over fields to Galois rings.

Definition 2 (RMFE over Galois Ring). A pair of maps (φ,ψ) is called an
(n, d)pr -RMFE over modulus pk if it satisfies the following.

– The map φ : GR(pk, r)n → GR(pk, d) is GR(pk, r)-linear.

– The map ψ : GR(pk, d) → GR(pk, r)n is GR(pk, r)-linear.

– For all a, b ∈ GR(pk, r)n, it holds ψ(φ(a) · φ(b)) = a⊙ b

The authors also showed that any (n, d)pr -RMFE over fields can be naturally
lifted upto an (n, d)pr -RMFE over modulus pk. That is, there are asymptotically
good RMFE also in the Galois ring setting.

Their goal was to construct efficient (n, d)p-RMFEs over modulus pk for Zpk -
messages as a building block for more efficient information-theoretically secure
MPC over Zpk . More generally, it seems there are very limited applications
where messages in Galois ring (except Zpk or Fpk) play important roles. Thus,
in our work, we focus on (n, d)p-RMFE over modulus pk for Zpk -messages. Note
that this case can be interpreted as packing Zpk -messages into GR(pk, d) ∼=
Zpk [x]/f(x) for some degree-d f(x) ∈ Zpk [x] which is irreducible modulo p.

3 Packing: Definitions and Basic Facts

In this section, we formally define packings and related concepts which are our
main interests in this work. Some basic examples of packing methods are intro-
duced for illustrative purpose. We also present some propositions which allow us
to modularize our study of packing methods. We begin with a formal definition
of packing.
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3.1 Definitions and Basic Examples

Definition 3 (Packing). Let R and R be rings. We call a pair of algorithms
(Pack,Unpack) a packing method for n R-messages into R, if it satisfies the
following.

– Pack is an algorithm (possibly probabilistic) which, given a ∈ Rn as an input,
outputs an element of R.

– Unpack is a deterministic algorithm which, given a(x) ∈ R as an input,
outputs an element of Rn or ⊥ denoting a failure.

– Unpack(Pack(a)) = a holds for all a ∈ Rn with probability 1.

For simplicity, the definition is presented a bit generally. In this paper, we
are mostly interested in the cases where R is Zp with p ∈ Z+ (or a finite field
Fpk) and R is a polynomial ring Zq[x]/f(x) with q ∈ Z+ and monic f(x).

Notice that in Def. 3 the ring structure is not considered. Packing methods are
interesting only when algebraic structures of the rings come in, since otherwise
a packing is nothing more than a vanilla data encoding. The following definition
of degree captures quality of (somewhat) homomorphic correspondence between
packed messages and a packing. In this work, we are interested in packings of at
least degree-2.

Definition 4 (Degree-D Packing). Let P = (Packi,Unpacki)
D
i=1 be a collec-

tion of packing methods for Rn into R. We call P a degree-D packing method,
if it satisfies the following for all 1 ≤ i ≤ D:

– If a(x), b(x) satisfy Unpacki(a(x)) = a, Unpacki(b(x)) = b for a, b ∈ Rn,
then Unpacki(a(x)± b(x)) = a± b holds;

– If a(x), b(x) satisfy Unpacks(a(x)) = a, Unpackt(b(x)) = b for a, b ∈ Rn and
s, t ∈ Z+ such that s+ t = i, then Unpacki(a(x) · b(x)) = a⊙ b holds.

Notice that the definition is heavy on the use of Unpack rather than Pack.
Some readers might find it unnatural to define a property of packing methods
with their unpacking structures. However, this is how things are. For instance,
given that a collection of unpacking algorithms (Unpacki)

D
i=1 allows a degree-D

packing method, it is trivial to find an appropriate collection of packing algo-
rithms (Packi)

D
i=1: we can just define Packi as an algorithm which randomly

outputs an preimage of the input regarding Unpacki. On the other hand, if a
collection of packing algorithms (Packi)

D
i=1 is given, it requires non-trivial com-

putations to find an appropriate collection of packing algorithms (Unpacki)
D
i=1

in this case. In this regard, definitions and proofs coming up are also aligned to
Unpack rather than Pack.

Here are some direct but noteworthy consequences of the definition.

Remark 1. Note that the definition implies that Unpacki(c · a(x)) = c · a holds
for all c ∈ Z with probability 1. In particular, Unpacki(0) = 0.
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Remark 2. A packing method P = (Packi,Unpacki)
D
i=1 is of degree-D, only if

P ′ = (Packi,Unpacki)
D′

i=1 is a degree-D′ packing method for all D′ < D.

The following are some basic examples of packing methods. More sophisti-
cated examples are introduced in Section 4.

Example 1 (Coefficient Packing). Let f(x) be a degree-d monic polynomial in

Zp[x]. Define Pack as a bijection which maps (a0, · · · , ad−1) ∈ Zd
p to

∑d−1
i=0 ai·xi ∈

Zp[x]/f(x). Define Unpack as the inverse of Pack. Then, (Pack,Unpack) is a
degree-1 packing method for Zd

p into Zp[x]/f(x). We often refer this method as
coefficient packing. As coefficient packing is already too good, we do not further
examine degree-1 packing methods in this paper. Note that this method also
applies to Fpk -messages if degree-1 is sufficient, since Fn

pk is isomorphic to Zkn
p

as Zp-modules.

Example 2 (Conventional HE Packing). When making use of lattice-based HE
schemes, where the plaintext space is of the form Zp[x]/ΦM (x), it is standard to
choose prime p such that p = 1 (mod M) (and M as a power-of-two to enable
efficient implementations). Then, ΦM (x) fully splits in Zp[x], and Zp[x]/ΦM (x) ∼=
Zϕ(M)
p holds. The isomorphism induces a natural packing method, which is of

degree-∞, i.e. degree-D for any D ∈ Z+. This packing is more than good in
several aspects, but has quite heavy restrictions on parameters. In particular,
the method does not allow packing Z2k -messages.

Example 3 (HE Packing for Fpd). If one want to pack Fpd -messages when mak-
ing use of lattice-based HE schemes, we often choose M so that ΦM (x) fac-
torizes into r distinct degree-d irreducible polynomials in Zp[x]. Then, we have
Zp[x]/ΦM (x) ∼= Fr

pd . As Example 2, this isomorphism induces a natural packing
method which is of degree-∞, but has even heavier restriction on parameters.

Example 4 (RMFE). Essentially, an RMFE is nothing more than a degree-2
packing method for copies of a finite field Fpk into a larger finite field Fpd

∼=
Zp[x]/f(x), where p is a prime and f(x) is a monic degree-d irreducible polyno-
mial in Zp[x]. The only additional requirement is that the packing algorithm at
level-1 and unpacking algorithm at level-2 must be Zp-linear functions. However,
any degree-2 packing method can be easily transformed to satisfy the require-
ment.

Example 5 (RMFE over Galois Ring). Essentially, an RMFE over Galois ring
for Zpk -messages is nothing more than a degree-2 packing method for copies of
Zpk into a larger Galois ring GR(pk, d) ∼= Zpk [x]/f(x), where p is a prime and
f(x) is a degree-d irreducible polynomial in Zp[x].

Lastly, we define packing density which measures efficiency of packing meth-
ods. It measures how dense messages are packed in a single packing.

Definition 5 (Packing Density). For a packing method for Rn into R, we
define its packing density as log(|R|n)/ log(|R|).
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Example 1, 2, and 3 have perfect packing density of 1. However, we will see
that these are very special cases. In most cases such perfect packing density is
not achievable, and even moderate packing density is hard to achieve.

3.2 Decomposition Lemmas

In this subsection, we state and prove several necessary conditions on existence
of certain packing methods. The following propositions allow us to modularize
our study and focus on the case of packings into Zpt [x]/f(x).

Proposition 1. Let R be a ring with characteristic p and R be a ring with
characteristic q. There exists a degree-0 packing method (Pack,Unpack) for Rn

into R only if p divides q.

Proof. Let a(x) be an output of Pack(1). Then, Unpack(q · a(x)) = q · 1 by
Remark 1. Meanwhile, q ·a(x) = 0 in R. Thus, q ·1 = 0 in Rn, by Remark 1. ⊓⊔

Proposition 2. Let R be a ring with characteristic p. Let q = q1 · q2, where
p|q1 and gcd(q1, q2) = 1. There exists a degree-D packing method P for Rn into
Zq[x]/f(x), if and only if there exists a degree-D packing method P ′ for Rn into
Zq1 [x]/f(x).

Proof (Sketch). Suppose (Packi,Unpacki)
D
i=1 is a degree-D packing method P for

Rn into Zq[x]/f(x). Let a(x) satisfy Unpacki(a(x)) = a for some a ∈ Rn and 1 ≤
i ≤ D. We can identify a(x) with (a1(x), a2(x)) ∈ Zq1 [x]/f(x)×Zq2 [x]/f(x) via
CRT isomorphism. Now, consider multiplying a constant Invq1(q2) · q2. Observe
the following.

– (Invq1(q2) · q2) · a = (Invp(q2) · q2) · a = a ∈ Rn

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ Zq1 [x]/f(x)
– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ Zq2 [x]/f(x)

Thus, if Unpacki(a(x)) = Unpacki(a1(x), a2(x)) = a then Unpacki(a1(x), 0) = a.
Then, we can construct P ′ with appropriate projections and injections. The
other direction is more direct. For the full proof, see the full version [14]. ⊓⊔

Proposition 3. Let p = p1 · p2 and q = q1 · q2, satisfying p1|q1, p2|q2, and
gcd(q1, q2) = 1. There exists a degree-D packing method P for Zn

p into R :=

Zq[x]/f(x), if and only if there exist degree-D packing methods P(j) for Zn
pj

into
Rj := Zqj [x]/f(x) for j = 1, 2.

Proof (Sketch). Suppose (Packi,Unpacki)
D
i=1 is a degree-D packing method P

for Zn
p into R. Let a(x) ∈ R satisfy Unpacki(a(x)) = a for some a ∈ Zn

p and 1 ≤
i ≤ D. We can identify a(x) with (a1(x), a2(x)) ∈ R1×R2 and a with (a1,a2) ∈
Zn
p1
×Zn

p2
via CRT isomorphisms. Now, consider multiplying a constant Invq1(q2)·

q2. Observe the following.

– (Invq1(q2) · q2) · a1 = (Invp1
(q2) · q2) · a1 = a1 ∈ Zn

p1
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– (Invq1(q2) · q2) · a2 = Invq1(q2) · 0 = 0 ∈ Zn
p2

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ R1

– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ R2

That is, if Unpacki(a1(x), a2(x)) = (a1,a2) then Unpacki(a1(x), 0) = (a1,0).
The similar holds for j = 2. Then, we can construct P(1) and P(2) with appro-
priate projections and injections. The other direction is more direct. For the full
proof, see the full version of this paper [14]. ⊓⊔

According to Prop. 1 and 2, to study degree-D packing methods for copies of
a finite field Fpk into Zq[x]/f(x), it is enough to study degree-D packing methods
into Zpt [x]/f(x) for some t ≥ 1. The similar holds for packing methods for copies
of Zp according to Prop. 1, 2, and 3. That is, to study degree-D packing methods
for copies of Zp into Zq[x]/f(x) where p is an arbitrary integer, it is enough to
study degree-D packing methods for Zn

pk into Zpt [x]/f(x) for some t ≥ k where
p is a prime.

Therefore, from now on, we focus on packing methods for Zn
pk or Fn

pk into

Zpt [x]/f(x) where p is a prime. (Afterwards, p is a fixed prime, even if it is not
explicitly stated.) This is not only because they are the most interesting case
containing Z2k and F2k , but also because they play roles as building blocks when
constructing general packing methods (Prop. 2, 3). We note that the properties of
packing methods, which we examine in the following sections (level-consistency
in Section 6 and surjectivity in Section 7), are preserved by the constructions in
Prop. 2 and 3.

4 More Examples

In continuation of Section 3.1, we give more examples on packing methods. The
following examples are degree-2 packing methods for Z2k -messages, which are
(or can be) used to construct HE-based MPC protocol over Z2k following the
approach of SPDZ [21]. Most of definitions and statements in this paper are
motivated from these examples.

4.1 HELib Packing

In Example 2, we introduced the conventional HE packing method for Zq-
messages into Zq[x]/ΦM (x), where M is a power-of-two and q = 1 (mod M).
However, it is not always applicable, e.g. if we consider Z2k -messages. The prob-
lem here is that ΦM (X) never fully splits in Z2k . One way to detour this problem
is the following. It was first proposed by Gentry-Halevi-Smart [24] and general-
ized by Halevi-Shoup [26] to optimize bootstrapping procedure for fully homo-
morphic encryption (particularly, for HELib [25]). In this paper, we will refer
this method as HELib packing.

To construct a packing method for Zpk -messages into Zpk [x]/ΦM (x), choose
M to satisfy gcd(M,p) = 1. Let ΦM (x) factor into r distinct degree-d irreducible
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polynomials in Zp[x], where d := ordM (p). Then, we have the factorization
ΦM (x) =

∏r
i=1 fi(x) in Zpk [x] via Hensel lifting and the CRT ring isomorphism

Zpk [x]/ΦM (x) ∼=
∏r

i=1 Zpk [x]/fi(x). The packing algorithm Pack puts i-th Zpk -
message at the constant term of Z2k [x]/fi(x) and puts zeroes at the other coeffi-
cients. Define Unpack as the inverse of Pack. It is easy to see that (Pack,Unpack)
defines a degree-∞ packing method. However, the HELib packing achieves very
low packing density 1/d.

4.2 Overdrive2k Packing

To design an efficient HE-based MPC protocol over Z2k , Overdrive2k [31] con-
structed a degree-2 packing method for Zn

2k into Z2k [x]/ΦM (x), where M is odd
(so yielding a CRT ring isomorphism Z2k [x]/ΦM (x) ∼=

∏r
i=1 Z2k [x]/fi(x) with

deg(fi) = d). For construction, they considered the following problem. Consider
a subset A of [0, d − 1] with A = {a1, · · · , am} so that 2ai ̸= aj + ak for all
(i, i) ̸= (j, k) and ai + aj < d for all i, j. The problem is to find the maximum
value of m = |A| with A for given d.9 Given a solution m and A for given d,
the packing algorithm of Overdrive2k at level-1 put i-th m messages in Z2k at
the coefficients of xai of an element in Z2k [x]/fi(x) for ai ∈ A and put zeroes
at the other coefficients. Then, via the ring homomorphism, we can pack r ·m
messages into a plaintext achieving the packing density of m/d. The authors
Overdrive2k noted that the packing density of their method seems to follow the
trend of approximately d0.6/d.

Since the set A is carefully designed, if we multiply two packed plaintexts, the
(2 ·ai)-th coefficient of the result equals the multiplied value of ai-th coefficients
of the original plaintexts. That is, Overdrive2k packing is of degree-2. Note that
Overdrive2k packing naturally extends to arbitrary degree-2 packing methods
for Zn

pk into Zpk [x]/f(x).

4.3 MHz2k Packing

To further improve the packing density of Overdrive2k, MHz2k [13] construct a
degree-2 packing method for Z2k -messages into Z2t [x]/ΦM (x), where t is slightly
larger than k. Their core idea is to pack messages at evaluation points via inter-
polation unlike Overdrive2k which rather pack at coefficients. The caveat here
is, however, that the polynomial interpolation on Z2k is not always possible,
e.g. there is no f(x) ∈ Z2k satisfying f(0) = 1 and f(2) = 0 simultaneously. In
this context, they propose the tweaked interpolation, where they lift the target
points of Z2k upto a larger ring Z2k+δ , multiplying an appropriate power-of-two
to eliminate the effect of non-invertible elements.

Let t = k + 2δ and Z2t [x]/ΦM (x) factors into
∏r

i=1 Z2t [x]/fi(x) via CRT,
where fi(x) are all of degree-d. The packing algorithm at level-1 perform tweaked
interpolation on i-th ⌊d+1

2 ⌋ Z2k -messages {µij}, so that we have Li(x) ∈ Z2t [x]

9 Similar problems were also considered in other cryptography literature [29, 2, 18].
For more detailed discussions, see the full version [14].
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which satisfies (i) deg(Li) ≤ ⌊d−1
2 ⌋ and (ii) Li(j) = µij · 2δ. Then, put Li(x)

in the i-th CRT slot of Z2t [x]/ΦM (x), i.e. Z2t [x]/fi(x). This gives us a packing
density of roughly k/(2k + 2d). Since the degree condition on Li(x) and extra
δ in the modulus are designed to avoid degree overflow and modulus overflow,
when the product of two packings is given, we can decode the homomorphically
multiplied messages without any loss of information. That is, we can unpack at
level-2 by evaluating points on each CRT slot and observing the upper k bits of
outputs.

Note that MHz2k packing can be naturally extended to a degree-D pack-
ing method for Zpk -messages into Zpt [x]/ΦM (x) with gcd(M,p) = 1 of density
roughly

k

D · (k + d
p−1 )

.

4.4 Comparison

In this subsection, we compare some properties of the examples previously given
in this section. These features are motivations of the definitions and results in
later sections. This subsection is summarized in Table 1.

Table 1: Comparisons on degree-2 packing methods for Z2k -messages

Method HELib Overdrive2k MHz2k

Level-consistency consistent dependent dependent

t
?
= k t = k t = k t > k

Density 1/d ≈ d0.6/d ≈ k/(2k + 2d)

Notice that, in HELib packing which is of degree-∞, packing algorithms and
unpacking algorithms are identical for all level. We will later refer these kind of
packings as level-consistent packings (Section 6). However, in Overdrive2k and
MHz2k packing, the packing algorithm differs for each level. For example, in
Overdrive2k packing, messages are coefficients of xai ’s at level-1, and coefficients
of x2·ai ’s at level-2. We will later refer these kind of packings as level-dependent
packings (Section 6).

One big difference of MHz2k packing from the previous packings is that
it uses larger modulus for polynomial ring than that of messages. The other
packing methods are sort of coefficient packing, making it no use of increasing
the modulus for polynomial ring. This difference will serve as one of the topics
in Section 5 (e.g. Example 6).

Note that degree-2 MHz2k packing reaches density of nearly 1/2 when k is
sufficiently larger than d. This is true for typical parameters used in HE-based
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MPC over Z2k : k = 64, 128, 196 and d ≤ 20. In Section 5, we will show that
MHz2k packing achieves a certain form of near-optimality (Example 6).

We now examine common features of these methods. Note that there are
invalid packings regarding to these packing methods. For example, in HELib
packing, a(x) ∈ Z2k [x]/ΦM (x) is not a valid packing, i.e. Unpack(a(x)) =⊥, if
a(x) modulo fi(x) is not a constant. We will later refer these kind of packings
as non-surjective packings (Section 7).

Also notice that all these packings leverage CRT ring isomorphism, which is a
natural and convenient way to achieve parallelism. They pack messages into each
CRT slot in an identical and independent manner. We refer packing methods
following this approach as CRT packings.

5 Bounds on Packing Density

In this section, we examine upper bounds on packing density of degree-D packing
methods for Zpk and Fpk , where p is a prime (See Section 3.2).

5.1 Algebraic Background

We first remark some algebraic facts, which enable proofs in the following sub-
sections.

Proposition 4. When R is a principal ideal ring (PIR), every submodule of a
free R-module of rank n can be finitely generated with n generators.

Proof. See the full version of this paper [14]. ⊓⊔

Remark 3. Note that Zpt is a local PIR. Consider R := Zpt [x]/f(x) as a free
Zpt -module with the rank deg(f). Then by Nakayama’s lemma, the cardinality
of minimal generating sets is a well-defined invariant for submodules of R.

Let A be a linearly independent subset of R. Then, since the span ⟨A⟩ is a
submodule of R with a minimal generating set A, inequality deg(f) ≥ |A| holds
by Prop. 4.

5.2 Packing Density of Zpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Zpk -
message packings. We begin with an upper bound for degree-1 packing methods:
we cannot pack copies of Zpk more than the degree of the quotient polynomial.
Unlike the simple and plausible statement, the proof is quite involved. In par-
ticular, it depends on Remark 3. The following proposition says that we cannot
reduce the degree of quotient polynomial significantly and tower the packings
along a large modulus. Notice that there are no restriction on t and f(x).

Proposition 5. There exists a degree-1 packing method for Zn
pk into R :=

Zpt [x]/f(x) with k ≤ t, only if n ≤ deg(f).
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Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Zn
pk into R. For

each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. View R as a
free Zpt-module of rank deg(f), and consider the submodule ⟨a1(x), · · · , an(x)⟩.
By linear homomorphic property (Remark 1), when

∑n
i=1 ci · ai(x) = 0 for some

ci ∈ Zpt , then ci = 0 (mod pk) must hold. Thus, {a1(x), · · · , an(x)} is a minimal
generating set of ⟨a1(x), · · · , an(x)⟩, and therefore n ≤ deg(f) holds (Remark 3).

⊓⊔

In the rest of this subsection, we narrow our scope to packing methods for
Zn
pk into Zpk [x]/f(x) with the same modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 6 - 9).
The following is a small remark on packings of non-zero elements modulo p in
this setting.

Remark 4. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Zn

pk into

R := Zpk [x]/f(x). For any i ∈ [D], if Unpacki(a(x)) = a for some a ∈ Zn
pk

which is non-zero modulo p, then a(x) is also non-zero modulo p. Otherwise,
Unpacki(p

k−1 · a(x)) = Unpacki(0) = 0 ̸= pk−1 · a, contradicting the linear
homomorphic property (Remark 1). In particular, when f(x) is an irreducible
polynomial in Zp[x], such a(x) is a unit in R.

Roughly speaking, our main result is that we cannot pack more than d/D
Zpk -messages into Zpk [x]/f(x) while satisfying degree-D homomorphic property,
where d = deg(f). Intuitively, the statement can be understood as that we
must pack the inputs into lower d/D coefficients since reduction by the quotient
polynomial act as randomization and will ruin the structure of packing. However,
the proof is much more involved since we have to handle all possible packing
methods. Notice that the following theorem subsumes Prop. 5 as the D = 1 case
in the t = k setting. The essence of the proof is a generic construction of a large
set which is required to be linearly independent regardless of specific structures
of packing methods.

Theorem 1. There exists a degree-D packing method for Zn
pk into R := Zpk [x]/f(x)

where f(x) ∈ Zpk [x] is a degree-d irreducible polynomial modulo p, only if
d ≥ D · (n− 1) + 1.

Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Zn

pk into R.

For each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. Let us denote
A(r,s) := {a1(x)r · aj(x)s}1<j≤n. For example, A(0,D) = {a2(x)D, · · · , an(x)D},
A(D,0) = {a1(x)D}, and A(1,D−1) = {a1(x)a2(x)D−1, · · · , a1(x)an(x)D−1}.
Step 1: Consider the following set of level-t packings.

At :=
⋃

r+s=t
0<s

A(r,s)

We will show that At is linearly independent in R for all t ≤ D by induction on
t. The case where t = 1 is true by the linear homomorphic property at level-1
(Remark 1): A1 = {a2(x), · · · , an(x)} (See also Prop. 5).
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Suppose At is linearly independent for some t < D. View At+1 as A(0,t+1) ∪
a1(x) · At. Suppose

∑
aα(x)∈At+1

(cα · aα(x)) = 0, for some cα ∈ Zpk . Then,

by linear homomorphic property at level-(t + 1), cα = 0 must hold for all
aα(x) ∈ A(0,t+1), since elements of a1(x) · At unpack to 0 and A(0,t+1) unpacks
to a linearly independent set by construction. Subsequently, we have again the
following equality: ∑

aα(x)∈a1(x)·At

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit in R (Remark 4) and At is linearly independent
by induction hypothesis, cα = 0 must also hold for all aα(x) ∈ a1(x) · At. Thus,
At is linearly independent in R for all t ≤ D.

Step 2: Now consider the set A := AD ∪ {a1(x)D}, which coincides with
{a1(x)D, · · · , an(x)D} ∪ a1(x) · AD−1. Suppose

∑
aα(x)∈A(cα · aα(x)) = 0, for

some cα ∈ Zpk . Then, by linear homomorphic property at level-D, cα = 0 must
hold for all aα(x) ∈ {a1(x)D, · · · , an(x)D}, since elements of a1(x) · AD−1 un-
pack to 0 and {a1(x)D, · · · , an(x)D} unpacks to a linearly independent set by
construction. Subsequently, we have again the following equality:∑

aα(x)∈a1(x)·AD−1

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit in R and AD−1 is linearly independent by
Step 1, cα = 0 must also hold for all aα(x) ∈ a1(x) · AD−1. Thus, A is linearly
independent, and therefore d ≥ |A| = D(n− 1) + 1 must hold (Remark 3). ⊓⊔

The following are direct consequences of our theorem.

Example 6. Degree-D packing methods for Zpk -messages into Zpk [x]/f(x), where
f(x) is a degree-d irreducible polynomial modulo p, have packing density of no
larger than 1

D + 1
d · (1 − 1

D ). Consequently, degree-D CRT packing methods
for Zpk -messages into Zpk [x]/f(x), where f(x) factors into r distinct irreducible
factors modulo p, have packing density of no larger than 1

D + r
deg(f) · (1 − 1

D )

(Section 4.4). In particular, degree-D CRT packing methods for Z2k -messages
into Z2t [x]/ΦM (x), where M is odd and ΦM (x) factors into distinct degree-d ir-
reducible factors modulo p, have packing density of no larger than 1

D+ 1
d ·(1−

1
D ).

That is, when parameters are carefully chosen, the MHz2k packing already
nearly reach the optimal packing density for packing methods for Zpk -messages
into Zpk [x]/f(x) (Section 4.3). Thus, if one wants to construct a degree-D pack-
ing method for Z2k -messages into Z2t [x]/ΦM (x) with substantially better density
than the MHz2k packing, the only possibility is choosing t > k or not employing
the CRT approach.

Example 7 (RMFE over Galois Ring). Consider RMFE over Galois rings for
copies of Zpk into a larger Galois ring isomorphic to Zpk [x]/f(x), which is exactly
the setting of Thm. 1. The theorem states that such RMFE cannot have packing
density larger than 1

2 + 1
2 deg(f) . To the best of our knowledge, this is the first
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upper bound result on packing density of RMFE over Galois rings. Our theorem
also yields upper bounds on packing density of degree-D generalization of RMFE
over Galois rings.

Example 8. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is irreducible modulo p. By Prop. 5, when t > k,
we cannot achieve a perfect packing density 1. When t = k, we cannot achieve
a perfect packing density 1 unless deg(f) = 1, by Thm. 1. That is, there is no
perfect degree-D packing method for Zpk -messages into Zpt [x]/f(x), when f(x)
is irreducible modulo p and deg(f) > 1.

Example 9. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is square-free modulo p. By Example 8, there is no
perfect degree-D CRT packing method for Zpk -messages into Zpt [x]/f(x), unless
f(x) splits into distinct linear factors. In particular, there is no perfect degree-D
CRT packing method for Z2k -messages into Z2t [x]/ΦM (x) when M is odd.

5.3 Packing Density of Fpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Fpk -
message packings. We begin with an upper bound for degree-1 packing methods,
which is an analogue of Prop. 5. Unlike the simple and plausible statement, the
proof is quite involved. In particular, it depends on Remark 3. The following
proposition says that we cannot reduce the degree of quotient polynomial sig-
nificantly and tower the packings along a large modulus. Notice that there are
no restriction on t and f(x).

Proposition 6. There exists a degree-1 packing method for Fn
pk into R :=

Zpt [x]/f(x), only if n · k ≤ deg(f).

Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Fn
pk into R. Fix

a basis of Fpk as {β1, · · · , βk}. For each i ∈ [n] and j ∈ [k], choose aij(x) ∈ R
such that Unpack1(aij(x)) = βj ·ei. View R as a free Zpt-module of rank deg(f),
and consider the submodule ⟨aij(x)⟩i∈[n],j∈[k]. By linear homomorphic property
(Remark 1), when

∑n
i=1 cij · aij(x) = 0 for ci ∈ Zpt , then ci = 0 (mod p) must

hold. Thus, {aij(x)}i∈[n],j∈[k] is a minimal generating set of ⟨aij(x)⟩i∈[n],j∈[k],
and therefore n · k ≤ deg(f) holds (Remark 3). ⊓⊔

In the rest of this subsection, we narrow our scope to packing methods for
Fn
pk into Zp[x]/f(x) with the prime modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 10 -
13).

Our main result in this subsection is the following theorem, which is a finite
field analogue of Thm. 1. However, it is much more involved since we must also
handle the multiplicative structure inside Fpk . Notice that our theorem subsumes
Prop. 6 as the D = 1 case in the t = 1 setting. The essence of the proof is again
a generic construction of a large set which is required to be linearly independent
regardless of specific structures of packing methods.
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Theorem 2. Let B := {β1, · · · , βk} be a basis of Fpk as a Fp-vector space.
There exists a degree-D packing method for Fn

pk into R := Zp[x]/f(x) where

f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p, only if the following
inequality holds.

d ≥ dim⟨βD
1 , · · · , βD

k ⟩+ (n− 1)

D∑
t=1

dim⟨βt
1, · · · , βt

k⟩

Proof (Sketch). Similar to the proof of Thm. 1. See the full version [14]. ⊓⊔

To have a more concrete bound, we prove the following proposition. Let σ
(t)

pk

denote the multiplicative order of p modulo pk−1
gcd(pk−1,t)

.

Proposition 7. Let β be a primitive element of Fpk . Regarding the primitive
element basis {1, β, β2, · · · , βk−1}, the following equality holds.

dim⟨1t, βt, β2t, · · · , β(k−1)t⟩ = σ
(t)

pk

Proof. Observe that dim⟨1t, βt, β2t, · · · , β(k−1)t⟩ is equal to the degree of the
minimal polynomial of βt in Fp[x]. The degree of the minimal polynomial of βt

is again equal to the length of the orbit of βt regarding Frobenius map x 7→ xp.
Since β is a primitive element, we are finding the smallest s ∈ Z+ satisfying

t = t · ps (mod pk − 1), which is σ
(t)

pk by definition. ⊓⊔

Corollary 1. There exists a degree-D packing method for Fn
pk into R := Zp[x]/f(x)

where f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p, only if the fol-
lowing inequality holds.

d ≥ σ
(D)

pk + (n− 1)

D∑
t=1

σ
(t)

pk

Proof. Choose a primitive element β of Fpk and apply Thm. 2 on the basis
{1, β, β2, · · · , βk−1} with the help of Prop. 7. ⊓⊔

The following are some consequences of our main result.

Example 10 (RMFE). Note that σ
(1)

pk and σ
(2)

pk are always k. Then, by Cor. 1,

degree-2 packing methods for Fpk -messages into Zp[x]/f(x), where f(x) is a

degree-d irreducible polynomial, have packing density of no larger than 1
2 + k

2d .

That is, packing density of RMFE is upper bounded by 1
2 +

k
2d . This is a known

result (See [17]). However, previous proofs do not extend to higher-degree cases
(See Example 12) or to the Galois ring case (See Example 7).
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Example 11 (Degree-2 Packing). By Example 10, degree-2 CRT packing meth-
ods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r distinct irre-

ducible factors, have packing density of no larger than 1
2+

r·k
2 deg(f) (Section 4.4). In

particular, degree-2 CRT packing methods for F2k -messages into Z2[x]/ΦM (x),
where M is odd and ΦM (x) factors into distinct degree-d irreducible factors
modulo 2, have packing density of no larger than 1

2 + k
2d .

Suppose one wants to design a degree-2 packing method for Fpk -messages
into Zpt [x]/f(x) which has a packing density substantially larger than 1/2. Note
that choosing t ≥ 2 already yields packing density no larger than 1/2 by Prop. 6.
Thus, only possibility is not employing the CRT approach.

Example 12 (Degree-3 Packing). Note that σ
(3)

pk is always k, except the case

of pk = 4. Then, by Cor. 1, degree-3 packing methods for Fpk -messages into
Zp[x]/f(x), where f(x) is a degree-d irreducible polynomial, have packing den-
sity of no larger than 1

3+
2k
3d , unless p

k = 4. Consequently, degree-3 CRT packing
methods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r distinct irre-

ducible factors, have packing density of no larger than 1
3 +

2r·k
3 deg(f) . In particular,

degree-3 CRT packing methods for F2k -messages into Z2[x]/ΦM (x), where M is
odd and ΦM (x) factors into distinct degree-d irreducible factors modulo 2, have
packing density of no larger than 1

3 + 2k
3d , given k ̸= 2.

Suppose one wants to design a degree-3 packing method for Fpk -messages
into Zpt [x]/f(x) which has a packing density substantially larger than 1/3. Note
that choosing t ≥ 3 already yields packing density no larger than 1/3 by Prop. 6.
Thus, only possibility is choosing t = 2 or not employing the CRT approach.

Example 13. By the same arguments as in Example 8 and 9, we have the follow-
ing: For D > 1, there is no perfect degree-D packing method for Fpk -messages
into Zpt [x]/f(x), when f(x) is irreducible modulo p and deg(f) > 1. Thus, there
is no perfect degree-D CRT packing method for Fpk -messages into Zpt [x]/f(x),
unless f(x) splits into distinct linear factors. In particular, there is no perfect
degree-D CRT packing method for F2k -messages into Z2t [x]/ΦM (x) when M is
odd.

6 Level-consistency

In this section, we define and examine the concept of level-consistency, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a level-consistent packing
method for Zpk and Fpk , where p is a prime (See Section 3.2). They limit the
achievable efficiency of level-consistent packing methods, yielding the impossib-
lity of designing an efficient packing methods while satisfying level-consistency.
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6.1 Definition and Basic Facts

Definition 6. For D > 1, a degree-D packing method (Packi,Unpacki)
D
i=1 is

called level-consistent if Unpacki is all identical for 1 ≤ i ≤ D. Otherwise, we
say a packing method is level-dependent.

The notion of level-consistency captures the property whether packings are
decodable in an identical way at different levels (Prop. 8). In an algebraic view-
point, a level-consistent packing has a single Unpack for all levels, which is a
ring homomorphism defined on where it does not abort. The level-consistency
is a desirable feature, as it allows homomorphic computation between different
packing levels. On the other hand, when working with level-dependent packing
methods, we must be careful about whether the operands are packed in the same
packing level as we perform homomorphic computation on packed messages.

For instance, Overdrive2k [31] and MHz2k [13] design and utilize Z2k -message
packing methods, which are level-dependent, to construct HE-based MPC pro-
tocols over Z2k following the approach of SPDZ [21]. Their level-dependency
complicates the so-called reshare protocol which re-encrypts a level-zero HE ci-
phertext to a fresh ciphertext allowing two-level HE to be sufficient for their
purpose. The problem here is that a masking HE ciphertext is used twice in the
reshare protocol: once to mask the input ciphertext of level-zero and once to re-
construct the fresh ciphertext of level-one by subtracting it. While the difference
of HE levels can be managed easily with modulus-switching, that of the packing
levels seems to be problematic.

In order to remedy this issue caused by level-dependency, Overdrive2k and
MHz2k had to come up with their own solutions. Overdrive2k provides two
masking ciphertexts having the same messages but in different packing : one with
level-zero packing and the other with level-one packing. However, this solution
substantially degrades the efficiency of the protocol. MHz2k resolves this issue
by a technical trick which does not cause any extra cost, closing the gap between
the level-consistent and level-dependent packing methods in this case.

This issue does not arise in SPDZ-family [21, 19, 27, 1] over a finite field
Zp, where the conventional packing method is already level-consistent (See Ex-
ample 2). For detailed discussion, refer to [13]. In a later subsection, we prove
the impossibility of designing an efficient Z2k -message packings while satisfying
level-consistency. This justifies the use of level-dependent packings in SPDZ-like
MPC protocols over Z2k and highlights the usefulness of the trick proposed by
MHz2k [13].

The following proposition says that a level-consistent packing method can be
trivially extended to an arbitrary degree.

Proposition 8. A level-consistent degree-D packing method P can be extended
to a level-consistent degree-D′ packing method P ′ for arbitrary D′ > D.

Proof. When P is (Packi,Unpack)
D
i=1, just define P ′ as (Pack1,Unpack)

D′

i=1. ⊓⊔

A crucial tool when dealing with a level-consistent packing method is idem-
potents. We extensively leverage the concept of idempotents and their properties
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when proving our main results on level-consistency. Here, we list properties of
idempotents which are used afterwards.

Proposition 9. Let R be a finite ring. For all a ∈ R, there exists a positive
integer s such that as is idempotent, i.e. a2s = as.

Proof. See the full version of this paper [14]. ⊓⊔

Proposition 10. Let R and R be rings. Let P be a level-consistent packing
method for Rn into R with identical unpacking algorithms Unpack. For any idem-
potent a ∈ Rn, there exists an idempotent a(x) ∈ R such that Unpack(a(x)) = a.

Proof. First, extend P to a degree-D packing method for a sufficiently large D
(Prop. 8). Let a ∈ Rn be idempotent. Choose an element ã(x) ∈ R such that
Unpack(ã(x)) = a. By Prop. 9, there exists s ∈ Z+ such that a(x) := ã(x)s is
idempotent in R. Then, Unpack(a(x)) = Unpack(ã(x)s) = as = a holds. ⊓⊔

Proposition 11. For a prime p, let R := Zpt [x]/f(x) and f(x) = g(x)ℓ (mod p),
where g(x) is an irreducible polynomial in Fp[x]. Then, an idempotent element
of R is either 0 or 1.

Proof. See the full version of this paper [14]. ⊓⊔

Another tool which is useful when dealing with level-consistent packing meth-
ods is nilpotents. The following proposition says any nilpotent must unpack to
a nilpotent, given it is a valid packing regarding to a level-consistent method.

Proposition 12. Let R and R be rings, and let P be a level-consistent pack-
ing method for Rn into R with identical unpacking algorithms Unpack. For any
nilpotent a(x) ∈ R, Unpack(a(x)) outputs a nilpotent a ∈ Rn or a failure ⊥.

Proof. Suppose Unpack(a(x)) outputs a ∈ Rn. Let s be a positive integer such
that a(x)s = 0 in R. Extend P to a degree-s packing method (Prop. 8). Then,
as = Unpack(a(x)s) = Unpack(0) = 0 holds. ⊓⊔

Lastly, we introduce the notion of one-to-one packing which plays an impor-
tant role in the proof of our main result.

Definition 7 (One-to-one Packing). Let R and R be rings. We say a packing
method (Packi,Unpacki)

D
i=1 for Rn into R is one-to-one, if there is unique a(x) ∈

R such that Unpacki(a(x)) = a for all a ∈ Rn and i ∈ [D].

6.2 Level-consistency in Zpk-Message Packings

Our main result on level-consistency in Zpk -message packings is the following
theorem. Our theorem illustrates a necessary condition for a surjective packing
method for Zpk -messages to exist. As mentioned, the proof regards the notion
of idempotents (Prop. 10, 11).
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Theorem 3. For a prime p, let f(x) ∈ Zpt [x] have exactly r distinct irreducible
factors in Zp[x]. There exists a level-consistent packing method for Zn

pk into

Zpt [x]/f(x) only if n ≤ r.

Proof. Let f(x) be factorized into
∏r

i=1 f̄i(x) in Zp[x], where each f̄i(x) is a
power of a distinct irreducible polynomial in Zp[x]. The factorization can be
lifted upto Zpt [x] via Hensel lifting. Let f(x) =

∏r
i=1 fi(x), where fi(x) ∈ Zpt [x]

is the Hensel lift of f̄i(x) satisfying f̄i(x) = fi(x) (mod p). By Prop. 11, there are
2r idempotents in Zpt [x]/f(x) ≈

∏r
i=1 Zpt [x]/fi(x), namely {0, 1}r. Also note

that there are 2n idempotents in Zn
pk , namely {0, 1}n.

By Prop. 10, for each idempotent a of Zn
pk , there is a distinct idempotent a(x)

of Zpt [x]/f(x) such that Unpack(a(x)) = a. Thus, the number of idempotents in
Zn
pk cannot be larger than that of Zpt [x]/f(x), and n ≤ r holds. ⊓⊔

The following are some consequences of Thm. 3. We begin with an optimality
result for HELib packing (Section 4.1).

Example 14. Essentially, Thm. 3 asserts that HELib packing offers the optimal
packing density if level-consistency is required. As level-consistency is more than
a favorable feature for fully homomorphic encryption(FHE), our result reassures
that HELib packing is an excellent packing method to use for FHE, and it
strongly justifies long line of researches based on such packing method [24, 26, 9].

The following examples illustrate the hardness of designing an efficient HE
packing method for Z2k -messages while satisfying level-consistency. We have
similar results for Zpk -messages with p ̸= 2.

Example 15. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can pack
at most one copy of Z2k into Z2t [x]/ΦM (x) while satisfying level-consistency.

Example 16. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can pack at most r copies of Z2k into Z2t [x]/ΦM (x) while satisfying level-
consistency. Note that, since d > logM by definition, r < ϕ(M)/ logM .

Example 17. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of Z2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Thm. 3 also yields the impossibility of level-consistent RMFEs over Galois
ring for Zpk -messages.

Example 18. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we can pack at most one copy of Zpk while satisfying level-
consistency. That is, there is no meaningful level-consistent RMFE over Galois
ring for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 3 is also a sufficient one.
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Theorem 4. If there are r distinct irreducible factors of f(x) ∈ Zpt [x] in Fp[x],
then there is a level-consistent packing method for Zr

pk into Zpt [x]/f(x).

Proof. Let f(x) be factorized into
∏s

i=1 gi(x)
ℓi in Fp[x], where s ≥ r and each

gi(x) is distinct irreducible polynomial in Fp[x]. The factorization can be lifted
upto Zpk [x] via Hensel lifting. Let f(x) =

∏s
i=1 fi(x), where fi(x) ∈ Zpk [x] is the

Hensel lift of gi(x)
ℓi satisfying fi(x) = gi(x)

ℓi (mod p). Then, we can identify
Zpk [x]/f(x) with

∏s
i=1 Zpk [x]/fi(x) via the CRT ring isomorphism.

There is a trivial ring monomorphism ψ : Zr
pk → Zpk [x]/f(x) defined as the

following.

ψ(a1, · · · , ar) = (a1, · · · , ar, 0, · · · , 0) ∈
s∏

i=1

Zpk [x]/fi(x)

Define the function ψ−1 : Zpk [x]/f(x) → Zr
pk ∪ {⊥} as the following.

ψ−1(a(x)) =

{
a, if there is a ∈ Zr

pk such that ψ(a) = a(x)

⊥, otherwise

Let πk and ιk denote the projection and injection between Zpt [x]/f(x) and
Zpk [x]/f(x) respectively. Define Pack := ιk ◦ψ and Unpack := ψ−1 ◦ πk (Fig. 1).
Then, it is straightforward that (Pack,Unpack) is a level-consistent packing
method. ⊓⊔

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Pack

ψ
ιk

(a) Pack

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Unpack

πk
ψ−1

(b) Unpack

Fig. 1: Definitions of Pack and Unpack in Thm. 4

6.3 Level-consistency in Fpk-Message Packings

Our main result on level-consistency in Fpk -message packings is the following
theorem. It is a finite field analogue of Thm. 3 which is on Zpk -message pack-
ings. Our theorem illustrates a necessary condition for a level-consistent packing
method for Fpk -messages to exist.

Theorem 5. Let r be the number of distinct irreducible factors of f(x) ∈ Zpt [x]
in Fp[x] whose degrees are multiples of k. There exists a level-consistent packing
method Fn

pk into Zpt [x]/f(x) only if n ≤ r.
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Proof (Sketch). Then, using Prop. 12 with the fact that 0 is the only nilpotent
element in Fn

pk , we can modify given (Pack,Unpack) to a level-consistent packing

method (Pack′,Unpack′) for Fn
pk into Fp[x]/ĝ(x), where ĝ(x) is the largest square-

free factor of f(x).
Moreover, we can find g(x), a divisor of ĝ(x), such that for any a(x) ∈

Fp[x]/ĝ(x) satisfying Unpack′(a(x)) = 0, it holds that a(x) = 0 (mod g(x)).
That is, we can again modify (Pack′,Unpack′) into a level-consistent one-to-one
packing method (Pack′′,Unpack′′) for Fn

pk into Fp[x]/g(x). Then, by arguments
on multiplicative orders with help of Prop. 10 and 11, we can eventually prove
that g(x) must have n distinct irreducible factors in Fp[x] whose degrees are
multiples of k, in order to such (Pack′′,Unpack′′) to exist. For the full proof, see
the full version of this paper [14]. ⊓⊔

The following are some consequences of Thm. 5. They illustrate the hardness
of designing an efficient HE packing method for F2k -messages while satisfying
level-consistency. We have similar results for Fpk -messages with p ̸= 2.

Example 19. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying level-consistency. Even in
that case, we can pack at most one copy of F2.

Example 20. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can only pack copies of F2k such that k|d into Z2t [x]/ΦM (x) while satisfying
level-consistency. In that case, we can pack at most r copies of F2k . Note that,
since d > logM by definition, r < ϕ(M)/ logM . For instance, if one wants to
pack F28 into Z2t [x]/ΦM (x) with an odd M while satisfying level-consistency,
then one must choose M such that ordM (2) is a multiple of 8.

Example 21. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Thm. 5 also yields the impossibility of level-consistent RMFEs.

Example 22. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we can pack

at most one copy of Fpk while satisfying level-consistency. Furthermore, if k ∤
d, we cannot pack even a single copy of Fpk into Fpd while satisfying level-
consistency. That is, there is no meaningful level-consistent RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 5 is also a sufficient one.

Theorem 6. Suppose there are r distinct irreducible factors of f(x) ∈ Zpt [x]
in Fp[x] whose degrees are multiples of k. Then, there exists a level-consistent
packing method Fr

pk into Zpt [x]/f(x).

Proof (Sketch). Similar to the proof of Thm. 4. See the full version [14]. ⊓⊔
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7 Surjectivity

In this section, we define and examine the concept of surjectivity, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a surjective packing
method for Zpk and Fpk , where p is a prime (See Section 3.2). They limit the
achievable efficiency of surjective packing methods, yielding the impossiblity of
designing an efficient packing methods while satisfying surjectivity.

7.1 Definition and Basic Facts

Definition 8 (Surjective Packing). Let R be a ring. We say a degree-D pack-
ing method (Packi,Unpacki)

D
i=1 into R is surjective10 if there is no a(x) ∈ R such

that Unpack1(a(x)) =⊥.

For a packing method for Rn into R, the notion of surjectivity captures the
condition whether every element of R is decodable. This distiction is essential
when designing a cryptographic protocol with the packing method in a malicious
setting, where an adversary might freely deviate from the protocol. If there is
a(x) ∈ R such that Unpack1(a(x)) =⊥, a malicious adversary might make use of
a(x), when one is supposed to use a valid packing according to the protocol. The
deviation may not only harm the correctness of the protocol, but also may leak
information of honest parties, if such invalid packings are not properly handled.

For instance, Overdrive2k [31] and MHz2k [13] design and utilize Z2k -message
packings which are not surjective to construct HE-based MPC protocols over Z2k

following the approach of SPDZ [21]. In order to mitigate the invalid packings,
they perform ZKPoMK (Zero-Knowledge Proof of Message Knowledge) to en-
sure an HE ciphertext encrypts a validly packed plaintext.11 ZKPoMK do not
appear in SPDZ-family [21, 19, 27, 1] over a finite field Zp, where the conven-
tional packing method is already surjective with perfect packing density (See
Example 2). In a later subsection, we prove the impossibility of designing an ef-
ficient Z2k -message packings while satisfying surjectivity. This justifies the use of
non-surjective packings and the need of ZKPoMK in SPDZ-like MPC protocols
over Z2k .

The following proposition says that the definition of surjectivity trivially
extends to all levels. The fact is used throughout this section.

Proposition 13. Suppose (Packi,Unpacki)
D
i=1 is a degree-D surjective packing

method for Rn into R. Then, there is no a(x) ∈ R such that Unpacki(a(x)) =⊥,
for all i ∈ [D].

Proof. By surjectivity and multiplicative homomorphic property, it holds that
Unpack2(a(x)) = Unpack1(1)⊙ Unpack1(a(x)) ∈ Rn, for all a(x) ∈ R. Likewise,
we can proceed inductively upto UnpackD(·). ⊓⊔
10 In a sense that any element of R could be an image of Pack1(·).
11 ZKPoMK was first conceptualized in MHZ2k [13], but it is also performed in Over-

drive2k [31] implicitly. For detailed discussion, refer to [13].
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A crucial fact when dealing with a surjective packing method is the following
proposition on zero-sets. We extensively use the proposition when proving our
main results on surjectivity.

Proposition 14 (Zero-set Ideal). Let R and R be rings. For D > 1, let
(Packi,Unpacki)

D
i=1 be a degree-D surjective packing method for Rn into R. Let

Zi be the set consisting of elements a(x) ∈ R such that Unpacki(a(x)) = 0.
Then, Z = Z1 = · · · = ZD for some ideal Z of R. Moreover, |Z| = |R|/|R|n.

Proof. By Prop. 13 and multiplicative homomorphic property, R · Zi ⊂ Zi+1

holds for i < D. Since 1 ∈ R, Zi ⊂ R · Zi holds, and therefore Zi ⊂ R · Zi ⊂
Zi+1. By Prop. 13 and additive homomorphic property, Zi’s have the same size,
namely |Zi| = |R|/|R|n. Thus, Zi = R · Zi = Zi+1 holds. We can now put
Z := Z1 = · · · = ZD. Moreover, since R · Z = Z holds, Z is an ideal of R. ⊓⊔

7.2 Surjectivity in Zpk-Message Packings

Our main result on surjectivity in Zpk -message packings is the following theorem.
Our theorem illustrates a necessary condition for a surjective packing method
for Zpk -messages to exist.

Theorem 7. Let ř be the number of linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. For D > 1, there exists a degree-D sur-
jective packing method Zn

pk into Zpt [x]/f(x) only if n ≤ ř.

Proof (Sketch). Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method

for Zn
pk into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for

some b ∈ Zn
pk by surjectivity(Prop. 13), Unpacki(p

k · b(x)) = 0 holds. Thus, we

can construct a degree-D surjective packing method (Pack′i,Unpack
′
i)

D
i=1 for Zn

pk

into Zpk [x]/f(x) with appropriate projections and injections. Then, we repeat-
edly apply Prop. 14 to show that, for each unit vector ei ∈ Zn

pk , there exists

ai(x) ∈ Zpk [x]/f(x) such that (i) Unpack′1(ai(x)) = ei (ii) ai(x) is non-zero at
exactly one CRT slot. Eventually, again with Prop. 14, we can couple each ai(x)
with distinct linear factors of f(x) ∈ Zpk [x]. For a full proof, see the full version
of this paper [14]. ⊓⊔

Before we proceed, we state a simple fact on irreducibility of Φ2m(x) over a
power-of-two modulus.

Proposition 15 (Irreducibility of Φ2m(x)). For M = 2m, cyclotomic poly-
nomial ΦM (x) is irreducible modulo 4, i.e. there are no f(x), g(x) ∈ Z4[x] such
that f(x) · g(x) = ΦM (x) (mod 4) and deg(f),deg(g) ≥ 1.

Proof. See the full version of this paper [14]. ⊓⊔

The following are some consequences of Thm. 7. They illustrate the im-
possibility of designing a surjective HE packing method for Z2k -messages with
cyclotomic polynomials. We have similar results for Zpk -messages with p ̸= 2.
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Example 23. When M = 2m, by Prop. 15, we cannot pack any copies of Z2k

into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2 homomorphism.

Example 24. When M is an odd, ΦM (x) factors into a product of distinct ir-
reducible polynomials of degree d = ordM (2) in F2[x]. Thus, we cannot pack
any copies of Z2k into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2
homomorphism.

Example 25. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) in
Z[x]. Thus, by Example 24, we cannot pack any copies of Z2k into Z2t [x]/ΦM (x)
while satisfying surjectivity and degree-2 homomorphism.

Thm. 7 also yields the impossibility of surjective RMFEs over Galois ring for
Zpk -messages.

Example 26. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we cannot pack any copy of Zpk while satisfying surjectivity,
unless d = 1. That is, there is no meaningful surjective RMFE over Galois ring
for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 7 is also a sufficient one.

Theorem 8. Suppose there are r linear factors of f(x) ∈ Zpt [x] in Zpk [x] which
are mutually distinct modulo p. Then, there exists a surjective packing method
Zr
pk into Zpt [x]/f(x).

Proof. Let g(x) ∈ Zpk [x] be the product of such r linear factors of f(x) in Zpk [x].

Then, there is a CRT ring isomophism ψ : Zr
pk

∼=−→ Zpk [x]/g(x). Let πk and ιk
denote the projection and injection between Zpt [x]/f(x) and Zpk [x]/f(x), and
let πg and ιg denote those of Zpk [x]/f(x) and Zpk [x]/g(x) respectively.

Define Pack := ιk ◦ ιg ◦ ψ and Unpack := ψ−1 ◦ πh ◦ πk (Fig. 2). Then, it is
straightforward that (Pack,Unpack) is a surjective packing method. ⊓⊔

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Zpk [x]/g(x)

Pack

ψ

ιk

ιg

(a) Pack

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Zpk [x]/g(x)

Unpack

πk

πg

ψ−1

(b) Unpack

Fig. 2: Definitions of Pack and Unpack in Thm. 8
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7.3 Surjectivity in Fpk-Message Packings

Our main result on surjectivity in Fpk -message packings is the following theorem.
It is a finite field analogue of Thm. 7 which is on Zpk -message packings. Our
theorem illustrates a necessary condition for a surjective packing method for
Fpk -messages to exist.

Theorem 9. Let r be the number of distinct degree-k irreducible factors of
f(x) ∈ Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective packing
method Fn

pk into Zpt [x]/f(x) only if n ≤ r.

Proof (Sketch). Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method

for Fn
pk into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for

some b ∈ Fn
pk by surjectivity(Prop. 13), Unpacki(p · b(x)) = 0 holds. Thus, we

can construct a degree-D surjective packing method (Pack′i,Unpack
′
i)

D
i=1 for Fn

pk

into Fp[x]/f(x) with appropriate projections and injections.
By Prop. 14 and the fact that R := Fp[x]/f(x) is a principal ideal ring,

the zero-set ideal can be set as Z = ǧ(x) · R for some ǧ(x) ∈ Fp[x] which
divides f(x). Let g(x) := f(x)/ǧ(x). Then, using R/Z ∼= Fp[x]/g(x), we can
construct a degree-D surjective packing method (Pack′′i ,Unpack

′′
i )

D
i=1 for Fn

pk into

Fp[x]/g(x) with appropriate projections and injections. Note that deg(g) = k ·n
since |R/Z| = pkn by Prop. 14. Then by a counting argument on zero-divisors, we
can show that g(x) must factor into n distinct degree-k irreducible polynomials
to allow such packing. For the full proof, see the full version [14]. ⊓⊔

The following are some consequences of Thm. 9. They illustrate the hardness
of designing an efficient HE packing method for F2k -messages while satisfying
surjectivity. We have similar results for Fpk -messages with p ̸= 2.

Example 27. When M = 2m, since ΦM (x) = (x + 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2
homomorphism. Even in that case, we can pack at most one copy of F2.

Example 28. When M is an odd, ΦM (x) factors into a product of distinct irre-
ducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can only pack copies of F2d into Z2t [x]/ΦM (x) while satisfying surjectivity
and degree-2 homomorphism. In that case, we can pack at most r copies of F2d .
Note that, since d > logM by definition, r < ϕ(M)/ logM .

For instance, if one wants to pack F28 into Z2t [x]/ΦM (x) with an odd M
while satisfying the conditions, then one must choose M such that ordM (2) = 8.
However, such M cannot be larger than (28 − 1) and might be too small for a
secure parameter of HE.

Example 29. When M = 2s ·M ′, where M ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying surjectivity and degree-2 homomorphism.

Meanwhile, using such M can be useful when packing copies of a small field:
it enables to meet certain level of HE security by enlarging the degree of the
ring. See Example 28.
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Thm. 9 also yields the impossibility of surjective RMFEs.

Example 30. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we cannot

pack even a single copy of Fpk while satisfying surjectivity and degree-2 homo-
morphism, if k ̸= d. That is, there is no meaningful surjective RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 9 is also a sufficient one.

Theorem 10. If there are r distinct degree-k irreducible factors of f(x) ∈ Zpt [x]
in Fp[x], then there exists a surjective packing method Fr

pk into Zpt [x]/f(x).

Proof (Sketch). Similar to the proof of Thm. 8. See the full version [14]. ⊓⊔
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