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Abstract. This work describes the Mitaka signature scheme: a new
hash-and-sign signature scheme over NTRU lattices which can be seen
as a variant of NIST finalist Falcon. It achieves comparable efficiency
but is considerably simpler, online/offline, and easier to parallelize and
protect against side-channels, thus offering significant advantages from
an implementation standpoint. It is also much more versatile in terms of
parameter selection.
We obtain this signature scheme by replacing the FFO lattice Gaussian
sampler in Falcon by the “hybrid” sampler of Ducas and Prest, for which
we carry out a detailed and corrected security analysis. In principle, such
a change can result in a substantial security loss, but we show that this
loss can be largely mitigated using new techniques in key generation that
allow us to construct much higher quality lattice trapdoors for the hybrid
sampler relatively cheaply. This new approach can also be instantiated
on a wide variety of base fields, in contrast with Falcon’s restriction to
power-of-two cyclotomics.
We also introduce a new lattice Gaussian sampler with the same quality
and efficiency, but which is moreover compatible with the integral matrix
Gram root technique of Ducas et al., allowing us to avoid floating point
arithmetic. This makes it possible to realize the same signature scheme
as Mitaka efficiently on platforms with poor support for floating point
numbers.
Finally, we describe a provably secure masking of Mitaka. More pre-
cisely, we introduce novel gadgets that allow provable masking at any
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order at much lower cost than previous masking techniques for Gaus-
sian sampling-based signature schemes, for cheap and dependable side-
channel protection.

1 Introduction

The third round finalists for signatures in the NIST postquantum standardiza-
tion process consist of just three candidates: Rainbow [9], a multivariate scheme,
Dilithium [12,29], a lattice-based scheme in the Fiat–Shamir with aborts frame-
work, and Falcon [38], a hash-and-sign signature over NTRU lattices. They
occupy fairly different positions within the design space of post-quantum signa-
ture schemes, and it is therefore important to understand, for each of them, to
what extent they could possibly be improved by exploring similar designs that
overcome some of their limitations. This paper aims at doing so for the Falcon
signature scheme.

Hash-and-sign lattice-based signatures. Falcon fits within the long and hec-
tic history of hash-and-sign signatures based on lattices. In those schemes, the
signing key is a “good” representation of a lattice, the trapdoor, which makes
it possible, given an arbitrary point in the ambient space, to find lattice points
that are relatively close to it (i.e. solve the approximate closest vector problem,
ApproxCVP7); the verification key, on the other hand, is a “bad” representation:
it allows anyone to check if a point is in the lattice, but not to solve ApproxCVP.
In order to sign a message, it is then hashed to a random point in the ambient
space, and the signature is a lattice point close to it, obtained using the trap-
door. To verify, one checks that the signature is in the lattice and sufficiently
close to the hash digest.

Early constructions along those lines, such as the GGH signature scheme [20]
and multiple iterations of NTRUSign [22,21], were later shown to be insecure
due to a common critical vulnerability: the lattice points obtained as signatures
would leak information about the trapdoor used to compute them, which could
then be recovered using more or less advanced statistical techniques [33,14]. One
of the first round NIST candidates was in fact broken using the same idea [40].

It is thus crucial for security to prove that signatures are sampled according
to a distribution that is statistically independent of the trapdoor. The first ap-
proach to do so, which remains the state of the art,8 is due to Gentry, Peikert
and Vaikuntanathan (GPV) [18]: sample the ApproxCVP solution according to a
discrete Gaussian distribution centered at the target point and supported over
the lattice, with covariance independent from the trapdoor (usually spherical).

7 Sometimes, this is also seen as a bounded distance decoding problem, BDD, but with
large enough decoding bound that there are exponentially many solutions, instead
of a unique one as is typically the case in the traditional formulation of BDD.

8 Other techniques have been proposed that avoid Gaussian distributions, as in [30],
but they tend not to be competitive.
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This type of lattice discrete Gaussian sampling can be carried out by random-
izing known deterministic algorithms for ApproxCVP, like Babai rounding and
Babai’s nearest plane algorithm.

Within the overall GPV framework, specific signature schemes vary accord-
ing to the lattices over which they are instantiated, the construction of the cor-
responding trapdoors, and the lattice Gaussian sampling algorithms they rely
on based on those trapdoors. The security level achieved by such a scheme is
then essentially determined by the quality of the trapdoor and of the Gaus-
sian sampling algorithm, defined as the minimal standard deviation achievable
in Gaussian sampling, while still preserving the statistical independence of the
output.

A complete overview of existing proposals for each of those elements is be-
yond the scope of the current work. We focus instead on the particular case of
NTRU lattices with the usual NTRU trapdoors first considered in NTRUSign, as
those lattices appear to offer the most efficient implementations by a significant
margin, thanks to their compact trapdoors.

Hash-and-sign signatures over NTRU lattices. NTRU lattices are, in essence, free
rank 2 module lattices over cyclotomic rings, and the NTRU designers showed
how to construct good trapdoors for them, even though the original signature
schemes based on them proved insecure.

They were brought within the GPV framework (and thus gained provable
security) thanks to the work of Ducas, Lyubashevsky and Prest (DLP) [13], who
combined them with the Gaussian sampling algorithm obtained by randomiz-
ing Babai’s nearest plane algorithm (this randomization is sometimes called the
Klein sampler for lattice Gaussians). They analyzed the security of the construc-
tion and provided what became the first reasonably efficient implementation of
a signature scheme in the GPV framework.

This DLP signature scheme offers relatively compact keys and signatures,
but suffers from a relatively long signing time, quadratic in the Z-rank of the
underlying lattice. This is because the nearest plane computation is carried out
after descending to Z, essentially ignoring the module structure of the lattice.

Falcon is a direct improvement of this scheme, obtained by replacing this
quadratic Gaussian sampling by a quasilinear one, derived from the quasilinear
nearest plane algorithm described in the Fast Fourier Orthogonalization paper
of Ducas and Prest [15] (and refining the parameter selection using a tighter
statistical analysis based on the Rényi divergence). The computation still ulti-
mately descends to Z, but takes advantage of the tower field structure of the
underlying number field (assumed to be a power-of-two cyclotomic) to achieve
a better complexity.

These two approaches are equivalent in terms of the quality of the resulting
Gaussian sampler, which is essentially the best possible for the given NTRU
lattice. However, DLP does so at the cost of a slow signing algorithm, whereas
Falcon, while fast, suffers from a very complex signing algorithm that is hard
to implement, poorly suited for parallelization and difficult to protect against
side-channel attacks. On the last point, both schemes have been shown to suffer
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from potential vulnerabilities with respect to side-channel leakage [17,25], and
even though the most recent implementation of Falcon appears to be protected
against timing attacks [35,23], countermeasures against stronger side-channel
attacks like DPA seem difficult to achieve. Falcon is also limited to NTRU
lattices over power-of-two cyclotomic fields, which limits its flexibility in terms
of parameter selection. That latter limitation can be overcome to some extent by
extending the construction to higher rank modules, as done in ModFalcon [7],
but the other drawbacks remain.

Another possibility is to instantiate the randomized ApproxCVP algorithm
directly over the underlying ring, instead of doing so over Z. For the random-
ized version of Babai rounding, this gives rise to (the ring version of) Peikert’s
sampler, as introduced in [34]. This can also be done for Babai’s nearest plane
algorithm, leading to what Ducas and Prest call the hybrid sampler. The re-
sulting algorithms consist of a constant number of ring multiplications, so that
quasilinear complexity is obtained “for free” as long as the underlying ring has
a fast multiplication algorithm (as certainly holds for arbitrary cyclotomics).
This makes them highly versatile in terms of parameter selection. They are also
much simpler than Falcon, easy to parallelize, and support fairly inexpensive
masking for side-channel protection.

Their downside, however, is the lower quality of the corresponding samplers
compared to Falcon and DLP. Indeed, by not descending to Z but only to the
ring itself, the ApproxCVP algorithm achieves less tight of a bound compared
to the Klein sampler, and hence the Gaussian sampling has a larger standard
deviation. This is analyzed in details in Prest’s Ph.D. thesis [37] (although certain
heuristic assumptions are incorrect), and results in a substantially lower security
level than Falcon and DLP.

Our contributions: the Mitaka signature scheme. In this work, we revisit in
particular the hybrid sampler mentioned above, and show that the security loss
compared to Falcon can be largely mitigated using a novel technique to generate
higher quality trapdoors. The resulting scheme, Mitaka,9 offers an attractive
alternative to Falcon in many settings since:

– it is considerably simpler from an algorithmic and an implementation stand-
point, while keeping the same complexity (in fact, it is likely faster at the
same dimension due to better cache locality);

– signature generation is parallel(izable);
– like Peikert’s sampler, it has an online/offline structure, with the online part

requiring only one-dimensional discrete Gaussian sampling with very small,
constant standard deviation and simple linear operations;

9 Trivia: Mitaka is a neighborhood in Tokyo, Japan whose name means “the three
falcons”. It sounded fitting considering the maskable, parallelizable nature of our
scheme and its strong points compared to Falcon.
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– it can be instantiated over arbitrary cyclotomic fields10, which makes it quite
versatile in terms of parameter selection;

– it is easier to protect against side-channels and can be cheaply masked even
at high order.

The main idea that allows us to achieve higher security than previously expected
is as follows. It is well-known that, given NTRU generators (f, g), it is easy
to compute the quality of the corresponding NTRU trapdoor for the hybrid
sampler (in particular, it can be done without computing the whole trapdoor).
It is thus very easy to check whether a given (f, g) reaches a certain threshold
in terms of bit security, and as a result, the costly part of key generation is
the sampling of the random ring elements f and g themselves (with discrete
Gaussian coefficients). One can therefore achieve a greatly improved security
level at the same cost in terms of randomness and not much more computation
time if one can “recycle” already sampled ring elements f and g.

We propose several ways of doing so. The simplest one is to generate lists
{fi}, {gj} of candidate elements for f and g, and test the pairs (fi, gj): this
increases the space of candidates quadratically, instead of linearly, in the amount
of generated randomness. One can also generate the fi’s, gj ’s themselves as
sums of Gaussians with smaller standard deviation (as long as it remains above
the smoothing parameters), and consider the Galois conjugates of a given gj .
By combining these techniques appropriately, we achieve a substantial security
increase, of around 15 bits for typical parameter sizes. Concretely, we achieve
the same security level as Dilithium–II [12] (which was argued to reach NIST
Level-I) in dimension d = 512, and attain roughly NIST Level–V in dimension
d = 1024, with intermediate parameter settings possible.

We also provide a detailed security analysis of our construction, and while
most of the presentation focuses on power-of-two cyclotomics for simplicity’s
sake and easier comparison with previous work, we also show that intermediate
NIST security levels can be conveniently achieved using other base fields, e.g. of
dimension 648 (same security as Falcon–512), 768 (NIST Level–II), 864 (NIST
Level–III) and 972 (NIST Level–IV).

As an additional contribution, we also introduce a novel, alternate lattice
Gaussian sampler for Mitaka that achieves the same complexity and the same
quality as the hybrid sampler, but has a different structure, closer to Peikert’s
sampler. The advantage of that alternate sampler is that it is compatible with
the integral lattice Gram root technique of Ducas et al. [11], making it possible to
instantiate it without floating point arithmetic. We call the resulting construction
MitakaZ. We stress that Mitaka and MitakaZ are two different approaches
to implement the same signature scheme (in the sense that the generated signa-
tures have statistically close distributions), and one can choose one or the other
as preferred depending on whether the target platform has fast floating point
arithmetic or not.
10 In principle, even more general number fields are possible as well, provided a good

basis is known for their canonical embedding. The corresponding security analysis
is cumbersome, however.
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Finally, we introduce a new, concrete approach to mask those signature gen-
eration algorithms efficiently. In previous work, efficiently masking signature
schemes using Gaussian sampling has proved quite challenging: even for the
case of 1-dimensional centered discrete Gaussians, as in the BLISS signature
scheme [10], this is far from straightforward [4]. Since Mitaka and MitakaZ,
like Falcon and DLP, require discrete Gaussian sampling with variable cen-
ters, a naive approach to masking is unlikely to yield fast results. Instead, we
introduce and prove a novel gadget for sampling Gaussian distribution with an
arithmetically masked center and a fixed standard deviation. This allows us to
completely avoid masking Gaussian sampling operations in the online phase:11
this works for a masked center, because picking a uniform center in [0,M) with
fixed denominator and sampling a discrete Gaussian around that center results
in a close to uniform distribution modulo M . Carrying out this share-by-share
sampling directly causes a slight decrease in the quality of the resulting sam-
pler (depending on the number of shares), but this can be overcome completely
with careful use of rejection sampling. Combining these statistical techniques
with usual provable masking methodology, we achieve very efficient side-channel
protection for both Mitaka and MitakaZ.

Organization of the paper. We start in Section 2 with preliminary material. In
Section 3, we show some Gaussian samplers over modules that are the building
blocks of Mitaka. Section 4 introduces the techniques to improve the quality of
NTRU trapdoors, which elevates the security level achievable using Mitaka’s
samplers. The security analysis and preliminary implementation results of Mi-
taka are respectively provided in Sections 5 and 6. In Section 7, we describe a
provably secure masking of Mitaka. Finally, Section 8 provides some concluding
remarks.

2 Preliminaries

For any a ∈ R and q > 0, let [a]q = baqe/q ∈ (1/q)Z.

2.1 Linear algebra and lattices

Write At for the transpose of any matrix A. Let s1(A) = maxx6=0
‖Ax‖
‖x‖ the

largest singular value of A. Let Σ ∈ Rn×n be a symmetric matrix. We write
Σ � 0 when Σ is positive definite, i.e. xtΣx > 0 for all non-zero x ∈ Rn. We
also write Σ1 � Σ2 when Σ1 − Σ2 � 0. It holds that Σ � 0 if and only if
Σ−1 � 0 and that Σ1 � Σ2 � 0 if and only if Σ−12 � Σ−11 � 0. A lattice L is a
discrete additive subgroup of a Euclidean space. When the space is Rm, and if it is
generated by (the columns of) B ∈ Rm×d, we also write L (B) = {Bx | x ∈ Zd}.
IfB has full column rank, then we callB a basis and d the rank of L . The volume
of L is Vol(L ) = det(BtB)

1
2 for any basis B.

11 The same idea can be adapted to the offline phase by masking the zero center. This
is a bit less compelling, however, as it requires more shares, and replaces centered
Gaussian sampling by variable center sampling.
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2.2 Power-of-two cyclotomic fields

For the sake of simplicity and readability, we focus in the rest of this article
on the case where the number field is a cyclotomic field of conductor a power
of 2. In any case, the content of this section generalizes straightforwardly to
other cyclotomic number fields, as well as most of our results. Besides, the use
of cyclotomic fields is nowadays pervasive in lattice-based cryptography. In this
section we therefore keep only the minimum amount of notation and definitions
to follow the article. More details can be found in the full version [16].

Let d = 2` for some integer ` > 1 and ζd to be a 2d-th primitive root of 1.
Then for a fixed d, K := Q(ζd) is the d-th power-of-two cyclotomic field, and its
ring of algebraic integers is R := Z[ζd]. The field automorphism ζd 7→ ζ−1d = ζd
corresponds to the complex conjugation, and we write the image f∗ of f under
this automorphism. We have K ' Q[x]/(xd+1) and R ' Z[x]/(xd+1), and both
are contained in KR := K ⊗R ' R[x]/(xd+1). Each f =

∑d−1
i=0 fiζ

i
d ∈ KR can be

identified12 with its coefficient vector (f0, . . . , fd−1) ∈ Rd. The adjoint operation
extends naturally to KR, and K +

R is the subspace of elements satisfying f∗ = f .
The cyclotomic field K comes with d complex field embeddings ϕi : K → C

which map f seen as a polynomial to its evaluations at the odd powers of ζd. This
defines the so-called canonical embedding ϕ(f) := (ϕ1(f), . . . , ϕd(f)). It extends
straightforwardly to KR and identifies it to the space H = {v ∈ Cd : vi =
vd/2+i, 1 6 i 6 d/2}. Note that ϕ(fg) = (ϕi(f)ϕi(g))i6d. When needed, this
embedding extends entry-wise to vectors or matrices over KR. We let K ++

R be
the subset of K +

R which have all positive coordinates in the canonical embedding.

2.3 Matrices of algebraic numbers and NTRU modules

2.3.1 2 × 2 K -valued matrices. This work deals with free R-modules of
rank 2 in K 2, or in other words, groups of the form Rx + Ry where x =
(x1, x2),y = (y1, y2) span K 2. There is a natural K -bilinear form over K 2

defined by 〈x,y〉K := x∗1y1 + x∗2y2 ∈ K . It can be checked that for all x ∈ K 2,
〈x,x〉K ∈ K ++

R . This form comes with a corresponding notion of orthogonality.
In particular, the well-known Gram-Schmidt orthogonalization procedure for a
pair of linearly independent vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 −
〈b1,b2〉K
〈b1,b1〉K

· b̃1.

One readily checks that 〈b̃1, b̃2〉K = 0. The Gram-Schmidt matrix with columns
b̃1, b̃2 is denoted by B̃ and we have det B̃ = detB.

For Σ ∈ K 2×2
R , we write Σ∗ its conjugate-transpose, where ∗ is the conju-

gation in KR. We extend the notion of positive definiteness for matrices with
entries in KR: Σ ∈ K 2×2

R is positive definite when Σ = Σ∗ and all the d matrices
induced by the field embeddings are positive definite. We then write Σ � 0. For
12 This is the so-called coefficient embedding.
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example, B∗B is a positive definite matrix for all B ∈ K 2×2
R . Positive definite

matrices admit “square roots”, that is, matrices
√
Σ such that

√
Σ
√
Σ
∗

= Σ.
This work uses fundamental quantities for matrices over K . The first is de-

fined as |B|K := max16i62 ‖ϕ(〈b̃i, b̃i〉K )‖1/2∞ . Since the eigenvalues λ1, λ2 of
B∗B are all in K ++, coordinate-wise square roots are well-defined. The largest
singular value of (the embeddings of)B is recovered as s1(B) := max16i62 ‖ϕ(

√
λi)‖∞.

NTRU Modules. Given f, g ∈ R such that f is invertible modulo some prime
q ∈ Z, we let h = f−1g mod q. The NTRU module determined by h is LNTRU =
{(u, v) ∈ R2 : uh−v = 0 mod q}. Two bases of this free module are of particular
interest for cryptography:

Bh =

[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG − gF = q. This module is usually seen as a
lattice of volume qd in R2d thanks to the coefficient embedding. Lemma 1 shows
the formulas for the associated quality parameters of Bf,g.

Lemma 1 ([37], adapted). Let Bf,g be a basis of an NTRU module. We have√
q 6 |Bf,g|K 6 s1(Bf,g) and :

|Bf,g|2K = max

(
‖ϕ(ff∗ + gg∗)‖∞,

∥∥∥∥ q2

ϕ(ff∗ + gg∗)

∥∥∥∥
∞

)
,

s1(Bf,g)
2 =

1

2
‖ϕ
(
T +

√
T 2 − 4q2

)
‖∞,

where T := ff∗+ gg∗+FF ∗+GG∗. We have |Bf,g|K = s1(B̃), where B̃ is the
Gram-Schmidt orthogonalization (over K ) of Bf,g.

2.4 Gaussians over rings

The Gaussian function on Rd centered at c and with covariance matrix Σ � 0
is defined as ρc,Σ(x) = exp(− 1

2 (x − c)tΣ−1(x − c)). If Σ = s2Id, we write also
ρc,s = exp(−‖x − c‖2/(2s2)) and call the associated Gaussian spherical. We
omit c if it is 0. The normal distribution NΣ of covariance Σ then has density
probability function ((2π)d ·detΣ)−1/2ρΣ . When we write NKR,s, we mean that
(z1, . . . , zd)← (Ns/√d)

d is sampled and (z1 + iz2, . . . , zd−1 + izd) is outputted.
The discrete Gaussian distribution over a full rank lattice L , centered at c

and with covariance matrix Σ � 0 has density function given by

∀x ∈ L , DL ,c,Σ(x) =
ρc,Σ(x)

ρc,Σ(L )
.

For c ∈ KR and s > 0, we also use the notation bces to denote the distribution
Dϕ(R),ϕ(c),s. It extends coordinate-wise to vectors in K 2

R . For ε > 0, the smooth-
ing parameter of a lattice L is ηε(L ) = min{s > 0 : ρ1/s(L

∨) 6 1 + ε}, where



Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon 9

Algorithm 1: RingPeikert sampler

Input: A matrix B ∈ K 2×2 such that L = ϕ(BR2) and a target center
c ∈ K 2

R .
Result: z ∈ L with distribution negligibly far from DL ,c,Σ .

1 Precomputed: a parameter r > ηε(R
2), and Σ0 ∈ K 2×2

R such that
Σ0Σ

∗
0 = Σ − r2BB∗

2 x← Σ0 · (NKR,1)2

3 z← dB−1(c− x)cr
4 return Bz

L ∨ is the dual lattice. The exact definition of the lattice dual is not needed in
this work, and when L = L (B) ⊂ Rd, it is enough to know the matrix B−t

encodes it. We say that
√
Σ > ηε(L ) when ρ1(

√
Σ
∗
L ∨) = ρΣ−1(L ∨) 6 1 + ε.

In particular, one checks that rB � ηε(ϕ(BR2)) when r > ηε(R2). We use the
following bound.

Lemma 2 (Adapted from [18]). Let BR2 be free R-module, and let L =
M(B)Z2d be the associated rank d lattice in R2d. For all ε > 0,

ηε(L ) 6 |B|K ·
1

π

√
log(2d(1 + 1/ε))

2
.

3 Sampling discrete Gaussians in R-modules

We present three approaches to sample discrete Gaussian over rings. The first
two are respectively Peikert’s perturbative approach adapted from [34], and the
hybrid sampler of Ducas and Prest [37], which is core to Mitaka and uses the
first as a subroutine. Then we describe a new sampler based on [11] which can
involve integer arithmetic only and combines the ideas of the other two others.

3.1 Peikert’s sampler

In [34], Peikert presented an efficient algorithm to sample discrete Gaussians in a
target lattice, using small continuous Gaussian perturbation. On a high level, it
can be thought of as a randomized version of Babai’s round-off algorithm, using
random (normal) perturbations to hide the lattice structure, and can be for-
mulated directly over the algebra KR. The pseudo-code in Algorithm 1 outputs
discrete Gaussians in a free rank 2 R-module L described by a basis B ∈ K 2×2,
with an arbitrary center in K 2

R . When Σ � r2BB∗, the existence of Σ0 below
is guaranteed.

Theorem 1 ([34], adapted). Let D be the output distribution of Algorithm 1.
If ε 6 1/2 and

√
Σ > s1(B) ·ηε(R2), then the statistical distance between D and
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Algorithm 2: RingPeikert, one-dimensional version

Input: A target center c ∈ KR.
Result: z ∈ R with distribution negligibly far from DR,c,Σ .

1 Precomputed: a parameter r > ηε(R), and σ0 ∈ KR such that
σ∗0σ0 = Σ − r2

2 x← σ0 · NKR,1

3 returndc− xcr

DL ,c,Σ is bounded by 2ε. Moreover, we have

sup
x∈BR2

∣∣∣∣ D(x)

DL (B),c,Σ(x)
− 1

∣∣∣∣ 6 4ε.

From Lemma 1 and Lemma 2, note that the condition in the statement
ensures that we are above the smoothing parameter of the target lattice. In
practice, the covariance parameter is a scalar multiple of the identity matrix, or
a positive real “constant” if seen in K ++

R . We highlight in Algorithm 2 the one-
dimensional version of Peikert’s sampler, that is, outputting discrete Gaussians
in R, because it appears as a subroutine of the hybrid sampler in the next
section.

3.2 Ducas & Prest’s hybrid sampler

In [37], a so-called hybrid sampler is presented that outputs discrete Gaussians in
free R modules of finite rank. On a high level, this hybrid sampler follows Klein’s
approach, which is a randomized version of the Nearest Plane algorithm. In the
ring context, the randomization subroutine happens “at the ring level” thanks to
a ring Gaussian sampler, instead of “at the integer level”. To again hide the lattice
structure, perturbations are also involved but their distribution now depends on
the target center. The hybrid sampler is described in Algorithm 3, which makes
use of floating-point arithmetic, and is core to the Mitaka scheme.

It relies on a ring sampler which can be instantiated by Algorithm 2. For the
sake of clarity, these “Peikert sampling” steps are made explicit in lines 4–6 and
9–11. We restrict to “totally spherical” standard deviation parameters (that is,
scalar matrices) as they are the main use-case of this work.

Theorem 2 ([37], Theorem 5.10, adapted). Let D be the output distribu-
tion of Algorithm 3. If ε 6 2−5 and

√
Σ > |B|K · ηε(R2), then the statistical

distance between D and DL ,c,Σ is bounded by 7ε. Moreover, we have

sup
x∈BR2

∣∣∣∣ D(x)

DL ,c,Σ(x)
− 1

∣∣∣∣ 6 14ε.
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Algorithm 3: Hybrid Gaussian sampler

Input: A target center c ∈ K 2
R , a matrix B = [b1,b2] such that

L = ϕ(BR2) and its gso [b̃1, b̃2] over K , a parameter σ > 0
(corresponding to (σ, . . . , σ) ∈ KR).

Result: z with distribution negligibly far from DL ,c,σ2I2d
.

1 Precomputed: σi :=
√

σ2

〈b̃i,b̃i〉
− r2 ∈ K ++

R .

2 c2 ← c,v2 ← 0

3 d2 ← 〈b̃2,c2〉K
〈b̃2,b̃2〉K

4 u2 ← NKR,1

5 y2 ← σ2 · u2

6 x2 ← bd2 − y2er
7 c1 ← c2 − x2b2,v1 ← x2b2

8 d1 ← 〈b̃1,c1〉K
〈b̃1,b̃1〉K

9 u1 ← NKR,1

10 y1 ← σ1 · u1

11 x1 ← bd1 − y1er
12 v0 ← v1 + x1b1

13 return v0

In our integer arithmetic friendly sampler presented in the next section, we
rely on a specific variant where the target lattice is described by an upper tri-
angular matrix U, or equivalently, when the Gram-Schmidt orthogonalization
is the identity matrix. It is presented in Algorithm 4, and is core to MitakaZ.
In particular, in MitakaZ, the ring sampler becomes a discrete Gaussian sam-
pler that can be emulated in integer arithmetic. This is emphasized below by
RingSamplerZ.

3.3 An integer arithmetic friendly sampler

To clarify the presentation, in this section we identify matrices over K to their
structured version over Q. Fundamentally, our new sampler for DL (B),c,s com-
bines Peikert’s approach of Algorithm 1 and hybrid sampling in the case where
the Gram-Schmidt is the identity. What allows us to restrict to integer arith-
metic is to rely on the work of [11]. There, the authors showed how to generate
small integral perturbation vectors, relying on a generalization of the Cholesky
decomposition that can be also computed purely in integer arithmetic.

On the “hybrid side”, as observed in the previous section, it is enough for us
to have access to a discrete Gaussian sampler in integer arithmetic. Multiplying
the output of Algorithm 4 by the Gram-Schmidt orthogonalization B̃ = BU−1

of the target lattice basis, one would obtain vector with the correct support. The
Gram-Schmidt basis may however contain entries in K that may have very large
denominators. We avoid this thanks to an approximation B̂ ∈ (1/(pq))R2×2 of
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Algorithm 4: Hybrid Gaussian sampler, U version

Input: A target center c = (c1, c2) ∈ K 2, an upper triangular matrix
U = [(1, 0), (u, 1)] with u ∈ K , a parameter r > 0 (corresponding
to (r, . . . , r) ∈ KR).

Result: z with distribution negligibly far from DL (U),c,r.

1 z2 ← RingSamplerZ(c2, r)
2 c′1 ← c1 − z2u
3 z1 ← RingSamplerZ(c′1, r)
4 return z = U(z1, z2).

Algorithm 5: Integer arithmetic ring Gaussian sampler

Input: a matrix B̂ ∈ R2×2 such that B̂Uû = B = B̃Uu, where
û = [u]p ∈ 1

p
R, a center c ∈ R2, and parameters r, s > 0.

Result: z with distribution negligibly far from DL (B),c,rs.

1 Precomputed: Σp = s2I− B̂B̂t and A← IntGram(p2(Σp − I))
/* AAt = p2(Σp − I) */

2 p← Algorithm 6(p,A) /* p ∼ DR2,r2Σp
*/

3 ĉ← B̂−1(c− p)
4 z′ ← Algorithm 4(û, ĉ, s) /* z′ ∼ DL (Uû),ĉ,s */
5 return z = B̂z′

B̃, obtained by p-rounding of the upper right coefficient of U. The quality of
this approach is essentially driven by |Bf,g|K = s1(B̃).

Algorithm 5 describes this approach. The notation Uû denotes that the
upper-right coefficient of the matrix is û. The procedure IntGram is fully de-
scribed in [11], and impacts the choice of parameters for the algorithm to be actu-
ally correct. On a high level, given in input a positive definite matrix Σ ∈ R2×2,
it outputs a matrix A ∈ R2×m such that AAt = Σ, and where m > 2. In our
context, the input is a small perturbation covariance matrix Σp = s2I − B̂B̂t,
where s is a large enough integer.

The offline sampler in Algorithm 6 is adapted from [11] and outputs from
the expected distribution as long as A has been suitably computed. In terms of
notation, recall that Λ(A)⊥ ⊂ Rm is the lattice of integer solutions of Ax = 0.

We now state the correctness of Algorithm 5, stressing that the statement
is correct as long as the integral root decomposition could be carried out and
p > d.

Theorem 3. Keep the notation of Algorithm 5, assuming also that IntGram
correctly computes A. For ε ∈ (0, 1), let s > |Bf,g|K (1 +

√
2d/p) + 1 be an

integer and r > ηε(Z2d). Then the distribution D of the output of Algorithm 5
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Algorithm 6: Offline sampler

Input: An integer p > 0, a matrix A ∈ R2×m.
Result: p ∈ R2 with distribution negligibly far from DR2,r2Σ , where

Σ = 1
p2
AAt + I.

1 Precomputed: integers r > ηε(R
2) and L such that Lr > ηε(Λ(A)⊥).

2 x← (b0eLr)m
3 p′ ← 1

pL
Ax

4 p← bp′er
5 return p.

is at statistical distance at most 15ε from DL (B),c,sr. Moreover, we have

sup
z∈L (B)

∣∣∣∣ D(z)

DL (B),c,sr(z)
− 1

∣∣∣∣ 6 30ε.

3.4 Asymptotic security of the samplers

Hash-and-sign signatures over lattices are constructed, following the GPV frame-
work [18], by hashing a message to the ambient space of the lattice, and return-
ing as a signature a lattice point close to that hash digest. This is done using a
“good” representation of the lattice, called the trapdoor, that enables the signer
to solve the ApproxCVP problem with a relatively small approximation factor.
Moreover, to prevent signatures from leaking information about the secret trap-
door, the close lattice points need to be sampled according to a distribution that
is statistically independent of the trapdoor: usually a spherical discrete Gaussian
distribution supported over the lattice and centered at the hash digest. This is
where the algorithms from the previous sections come into play.

The security of the resulting signature scheme depends on the standard de-
viation of the discrete Gaussian distribution output by the sampler: the smaller
the standard deviation, the closer the distance to the hash digest, the harder
the corresponding ApproxCVP problem, and hence the higher the security level.
As we have seen, however, there is a lower bound (depending on the trapdoor)
to how small of a standard deviation the sampler can achieve while remaining
statistically close to the desired spherical Gaussian: lower than that, and the
distribution may start to deviate from that Gaussians in ways that could expose
information about the secret trapdoor, and thus compromise the security of the
signing key.

In the case of NTRU lattices, the trapdoor is the secret basis: Bf,g =

[
f F
g G

]
,

and the standard deviation of the discrete Gaussian obtained from this trapdoor
varies depending on the sampling algorithm, as discussed in particular in [37,
§6]. It can be written as:

σ = α · ηε(R2) · √q (1)
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Table 1. Comparison of the best achievable trapdoor quality α for the various Gaussian
samplers over NTRU lattices.

Sampler α
√
q Best achievable α

Peikert s1(Bf,g) O(d1/4
√

log d) [37, §6.5.2]
Hybrid (Mitaka) |Bf,g|K O(d1/8 log1/4 d) [ full version of this paper [16]]
Klein (Falcon) ‖Bf,g‖GS O(1) [37, §6.5.1]

where the factor α > 1, which we call the quality, depends on the sampler for a
given trapdoor.

For the so-called Klein sampler used in DLP and Falcon, α√q is the Gram–
Schmidt norm ‖Bf,g‖GS := max16i62d ‖b̃Z

i ‖2 of Bf,g over the integers. For the
Peikert sampler over K , Theorem 1 shows that α√q = s1(Bf,g). Finally, for the
hybrid sampler, Theorem 2 shows that α√q = |Bf,g|K .

For a given sampler, the generators f, g should be sampled appropriately
to minimize the corresponding α. In his thesis [37], Prest analyzed the optimal
choices both theoretically (under suitable heuristics) and experimentally. The
resulting optimal choices for α are as follows (after correcting the flawed heuristic
analysis of Prest in the case of the hybrid sampler; detailed discussion is in the
full version [16]):

– heuristically, the quality of the Peikert sampler satisfies α = O(d1/4
√

log d) [37,
§6.5.2];

– for the hybrid sampler, we show α = O(d1/8 log1/4 d) (and not O(
√

log d)
contrary to what was claimed in [37, §6.5.2] based on flawed heuristics);

– for the Klein sampler (used in DLP, and in modified form, Falcon), the
heuristic analysis in [37, §6.5.1] show that it can be taken as low as

√
e/2 ≈

1.17 independently of the dimension, and in particular α = O(1).

These properties are summarized in Table 1.

3.5 The Mitaka signature scheme

The previous samplers can be plugged directly into the GPV framework [18] to
construct secure hash-and-sign signature schemes in the random oracle model.
The idea is to sign a message by first hashing it as a point in the ambient space
of the lattice, and then using the sampler to construct a lattice point close to
that target. The signature is then the difference between the target and the
lattice point (a small vector in the lattice coset defined by the target). The
signing procedure is described more precisely in Algorithm 8. Both Mitaka
and MitakaZ are specific instantiations of this paradigm, using the samplers
of Algorithms 3 and 5 respectively. Mitaka generates the key pair in a similar
manner to Falcon, but some techniques are introduced to improve the quality
of the trapdoor (see Section 4 for details). In particular, as done in Falcon,
it is also possible to trade secret-key size for efficiency by giving only 3 of the
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Algorithm 7: Key generation

Input: Global parameter Ψ = (R, q, σ, r), quality parameter α.
Result: A key pair (pk, sk).

1 (f, g)← FirstVec(Ψ, α) satisfying |Bf,g|2K 6 α2q /* Algorithm 10 */
2 if f is not invertible mod q then restart
3 (F,G)← NTRUSolve(Ψ, (f, g)) satisfying fG− gF = q
4 [b1,b2]← [(f, g), (F,G)]

5 b̃2 ← b2 − 〈b1,b2〉K
〈b1,b1〉K

b1 ∈ K 2

6 ni ← 〈b̃i, b̃i〉K ∈ K ++
R for i = 1, 2

7 σi ←
√

σ2

ni
− r2 ∈ K ++

R for i = 1, 2

8 pk← f−1g mod q, sk = (b1,b2, n
−1
1 b1, n

−1
2 b̃2, σ1, σ2)

9 return (pk, sk)

4 polynomials in the basis and enough information to recover Gram-Schmidt
data by on-the-fly computations, all in Fast Fourier format. The verification
algorithms of Mitaka and Falcon are exactly the same. For completeness, we
describe the key generation and verification in Algorithms 7 and 9.

In Algorithm 8, the acceptance bound γ for signatures is chosen slightly
larger than σ

√
d, for σ the standard deviation of the sampler given by Eq. (1)

above, in order to ensure a low repetition rate for signature generation. (In the
concrete security evaluation of Section 5, γ is selected so as to ensure < 10%
rejection; this gives e.g. γ = 1.042σ

√
2d for d = 512). Signature verification

simply recovers the second component s2 = s1 · h+ c mod q and checks that the
vector s = (s1, s2) is of length at most γ.

The security argument of Gentry, Peikert, and Vaikuntanathan reduces the
security of the signature scheme to the hardness of SIS in the underlying lattice
up to bound 2γ. It is therefore invalidated if an attacker can obtain two distinct
outputs of the sampler with the same center (since their difference would be a
solution to this SIS problem) [18, Section 6.1]. This is avoided in the signature
scheme by randomizing the hash value associated with the message using a
sufficiently long random salt r ∈ {0, 1}k. To avoid collisions, it suffices to pick
k > λ + log2 qs for λ bits of security and qs signature queries. The choice of
k = 320 as in [38,7] suffices for up to 256 bits of security.

4 Improved Trapdoor Generation

The Peikert, hybrid and Falcon samplers for an NTRU basis Bf,g all have
essentially the same complexity, and the first two are significantly simpler, easier
to implement, slightly faster in the same dimension, and offer better avenues for
parallelization and side-channel resistance (see Section 7). It would therefore be
desirable to adopt one of the first two for practical implementations.
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Algorithm 8: Signing

Input: A message m, a secret key sk, a bound γ.
Result: A signature sig of m.

1 do
2 r

$← {0, 1}k, c← H(r‖m)
3 z← Sampler(sk, (0, c)) /* Algorithm 3 or 5 */
4 s← (s1, s2) = (0, c)− z /* s1 · h− s2 ≡ −c mod q */
5 while ‖s‖2 > γ2

6 return sig = (r, s1).

Algorithm 9: Verification

Input: A signature sig = (r, s1) of m, a public key pk = h, a bound γ.
Result: Accept or reject.

1 c← H(r‖m)
2 s2 ← c+ s1 · h mod q
3 if ‖(s1, s2)‖2 > γ2 then return Reject.
4 return Accept.

However, as seen in Section 3.4, the Falcon sampler has a substantial advan-
tage in terms of security, since its Gaussian standard deviation is proportional to
‖Bf,g‖GS, whereas the Peikert and hybrid samplers are proportional to s1(Bf,g)
and |Bf,g|K respectively, which are both larger. This results in a significant dif-
ference in asymptotic terms, as shown in Table 1, and also in bit security terms
as will become apparent in the next section.

To increase the security level achievable using the first two samplers, and
in particular the hybrid sampler, we propose a new technique to significantly
improve the quality of NTRU trapdoors. We note in passing that it also applies
to Falcon: while it cannot yield significant improvements in terms of security,
since the standard deviation it achieves is already a very small factor away from
the theoretical optimum, it can be used to speed up key generation substantially.
The idea is as follows.

Recall that NTRU trapdoor generation for Falcon, say, works by sampling
f, g with discrete Gaussian coefficient, computing the ‖Bf,g‖GS of the resulting
NTRU basis, and checking if this value is below the desired quality threshold. If
not, we try again, and if so, the NTRU basis is completed and kept as the secret
key. Trapdoor sampling for the hybrid sampler is similar. (On the other hand,
for Peikert, completion has to be recomputed at each step to evaluate s1(Bf,g)).

In this process, the costly operations are, on the one hand, the generation of
the discrete Gaussian randomness, which has to be repeated several dozen times
over in order to reach the desired threshold (this is not explicitly quantified
by the authors of Falcon, but experiments suggest that, in many instances,
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upwards of 50 iterations are necessary), and, on the other hand, the completion
of the basis (still costly despite recent optimizations [36]), which is only carried
out once at the end and not for each iteration13.

To optimize the process, our idea is to amortize the cost of discrete Gaussian
sampling, by constructing several candidate trapdoors from the same random-
ness. We propose three main ideas to do so.

Lists of candidates for f and g. The usual key generation algorithm for Falcon,
as already mentioned, normally ends up generating many pairs (fi, gi), and tests
each of them as a candidate first vector for the NTRU lattice.

Since we are generating Gaussian vectors fi and gi anyway, we can easily
recycle this generated randomness by testing all the mixed pairs (fi, gj) instead:
this results in a set of possible candidates which increases quadratically with the
number of random vectors we generate, instead of just linearly.

Generating the Gaussian vectors as linear combinations. Independently, one can
generate each candidate vector f as a linear combination

∑`
k=1 f

(k) where each
f (k) is sampled from a discrete Gaussian of standard deviation σ0/

√
`, for σ0 the

desired standard deviation of f . It is well-known that this results in the correct
distribution provided that σ0/

√
` remains above the smoothing parameter of

Z [32]. In fact, the Falcon implementation already does so for d = 512, where
the candidate vectors are sums of two Gaussians vectors of standard deviation√

2 times lower.
Now, when generating several fi’s, one obtains ` lists Lk = {f (k)i }i of Gaus-

sian vectors. It is again possible to recycle this generated randomness by mixing
and matching among those lists, and constructing candidates f of the form∑
f
(k)
ik

for varying indices ik, so that the total set of candidates is in bijection
with

∏
k Lk. Its size increases like the `-th power of the size of the lists.

Using the Galois action. Finally, one can expand the set of candidates for g, say,
by applying the action of the Galois group. In principle, other unitary transfor-
mations of g, even less structured ones like randomly permuting the coefficients
in the power basis, could also be considered, but the Galois action in particular is
convenient as it is expressed as a circular permutation on the embeddings ϕi(g)
of g (i.e., the Fourier coefficients), and for the hybrid sampler, the computation
of the quality is entirely carried out in the Fourier domain.

Concretely, recall from Lemma 1 that the quality parameter α of the hybrid
sampler associated with Bf,g satisfies:

α2 =
|Bf,g|2K

q
= max

(maxi zi
q

,
q

mini zi

)
where zi = ϕi(ff

∗ + gg∗) = |ϕi(f)|2 + |ϕi(g)|2 ∈ R+.

13 This is the case at least for Falcon and for the hybrid sampler, as for both of them,
one can compute the quality of the trapdoor given only (f, g). This is especially
fast for the hybrid sampler. For the Peikert sampler, however, doing so without also
obtaining (F,G) seems difficult, and is left as an open problem.
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It is easy to compute the embeddings zτi associated to Bf,τ(g) for some Galois
automorphism τ of K simply by applying the corresponding permutation on
the components of ϕ(g). Moreover, we see from this representation that the con-
jugation τ∗ : g 7→ g∗ leaves this quality invariant, so the relevant Galois elements
to consider are a set of representatives of Gal(K /Q)/〈τ∗〉. For power-of-two cy-
clotomics, one can for example use τk5 for k = 0, . . . , d/2− 1, where τ5(ζd) = ζ5d .

Security considerations. The techniques above can potentially skew the distri-
bution of f and g somewhat compared to the case when each tested (f, g) that
fails to pass the security threshold is thrown away. However, this is not really
cause for concern: the precise distribution of f and g is not known to affect the
security of the signature scheme other than in two ways:

– the extent to which it affects the geometry of the trapdoor, as encoded in
the quality parameter α already; and

– the length of (f, g) itself as it affects key recovery security, but this length is
always at least as large in our setting as in Falcon.

This indicates that our optimized secret keys do not weaken the scheme.

Concrete example. In Algorithm 10, we describe an example key generation
procedure that combines all three techniques presented above: we construct lists
of candidates for f and g and test all possible pairs. Moreover, each f and g itself
is sampled as a sum of ` = 2 narrower Gaussians, and the list of g’s is expanded
using the Galois action. Of course, different combinations of the techniques are
also possible, but this particular one offers a good balance between efficiency
and achievable security.

Using this approach, as shown in Fig. 1, we are able to efficiently generate
trapdoors with α 6 2.04 for d = 512, and α 6 2.33 for d = 1024 by m ≈ 16
(corresponding to generating 64 narrow Gaussian vectors to select one candidate
(f, g), largely in line with Falcon).
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Fig. 1. Quality α reached by the optimized sampler of Algorithm 10 for various choices
of m (50 trials each, σ0 = 1.17

√
q/2d, G coset representatives of Gal(K /Q)/〈τ∗〉).

Reachable α in dimension 512 (left) and 1024 (right).
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Algorithm 10: Mitaka optimized key generation

Input: Desired standard deviation σ0 of f and g, target quality α of the
Gaussian, number of samples m to generate, set G of Galois
automorphisms to apply. The total search space is of size #G ·m4

for 4m generated discrete Gaussian vectors.
Result: NTRU first trapdoor vector (f, g) with quality better than α.

1 for i ∈ [1,m] do
2 f ′i ← DR,σ0/

√
2, f

′′
i ← DR,σ0/

√
2

3 g′i ← DR,σ0/
√
2, g
′′
i ← DR,σ0/

√
2

4 end for
5 Lf ← {f ′i + f ′′j | i, j ∈ [1,m]}
6 Lg ← {τ(g′k + g′′` ) | k, ` ∈ [1,m], τ ∈ G}
7 Lu ← {(f, ϕ(ff∗)) | f ∈ Lf}
8 Lv ← {(g, ϕ(gg∗)) | g ∈ Lg}
9 for (f, u) ∈ Lu, (g, v) ∈ Lv do

10 z ← u+ v
11 if q/α2 6 zi 6 α2q for all i then return (f, g)

12 end for
13 restart

Improved search via early aborts and filtering. Key generation using the tech-
nique above involves an exhaustive search in a relatively large set of candidates
Lu × Lv, and testing each candidate involves O(d) comparisons:

q/α2 6 ui + vi 6 α2q for 1 6 i 6 d/2,

as done in Step 11 of Algorithm 10. One can of course reject a candidate imme-
diately as soon as one of the comparison fails, but this can happen arbitrarily
late in the loop through the indices.

However, the lower bound condition is much more likely to fail than the
upper bound for a given candidate (see the full version [16] for detailed analysis).
Moreover, if we fix u, then it is more likely to fail on any given v for the indices i
such that ui is small. One can therefore improve the algorithm by a wide margin
by carrying out a simple precomputation on u: extract the list of indices Su(w)
of the w smallest elements of u for some w � d/2 (this can be done without
sorting, in time O(d)). Then, for each corresponding candidate v, first check in
time O(w) whether the lower bound condition holds on the indices in Su(w): if
so, the comparison is carried out normally, and otherwise v is rejected early.

Picking for example w = 25, we find that around 99.8% of candidates are
rejected early in that way for our parameters, greatly reducing the number of
full-fledged comparisons. All in all, this lets us achieve a speed-up of more than
5- to 10-fold as d ranges from 512 to 1024.

An additional, very simple optimization is to filter out values u, v such that
‖u‖∞ > α2q (and similarly for v) from the lists Lu and Lv, since such candidates
clearly cannot satisfy the comparison.
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5 Security analysis of Mitaka

Concrete security. In order to assess the concrete security of our signature
scheme, we proceed using the usual cryptanalytic methodology of estimating
the complexity of the best attacks against key recovery attacks on the one hand,
and signature forgery on the other. For the parameter choices relevant to our
scheme (in which the vectors of the trapdoor basis are not unusually small), key
recovery is always harder than signature forgery, and therefore the cost of sig-
nature forgery is what determines the security level. The security of the forgery
is a function of the standard deviation of the lattice Gaussian sampler used in
the signature function, which itself depends on the quality α of the trapdoor, as
discussed in Section 3.4. This analysis translates into concrete bit-security esti-
mates following the methodology of NewHope [1], sometimes called “core-SVP
methodology”. In this model [5,26], the bit complexity of lattice sieving (which
is asymptotically the best SVP oracle) is taken as b0.292βc in the classical set-
ting and b0.265βc in the quantum setting in dimension β. The resulting security
in terms of α is given in Fig. 2 in dimensions 512 and 1024. This allows us to
compare Mitaka with Falcon as well as with a “naive” version of the hybrid
sampler that would omit the optimizations of Section 4; the results are presented
in Table 2. Detailed and comprehensive analysis is given in the full version [16].

In addition, as mentioned earlier, our construction can be instantiated over
more general base fields than power-of-two cyclotomics, which enables us to
choose security level in a much more flexible way than Falcon. Example security
levels which can be reached in this way are presented in Table 4. For such fields,
we can choose the modulus q to be the first prime which is congurant to 1 modulo
the conductor. Again, detailed analysis is given in the full version [16].

Asymptotic security. As for all signature schemes in the GPV framework, the
EUF–CMA security of our scheme in an asymptotic sense reduces, both in the
classical [18] and quantum random oracle models [6], to the SIS problem in the
underlying lattice (in this case, an instance of Module–SIS [27]). However, as
is the case for Falcon (and as holds, similarly, for Dilithium), the SIS bound
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Fig. 2. Security (classical and quantum) against forgery as a function of the quality
1 6 α 6 3 of the lattice sampler (left: dimension 512 and right: dimension 1024).
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Table 2. Concrete values for sampler quality and associated bit security level.

d = 512 d = 1024

Quality α Classical Quantum NIST Level Quality α Classical Quantum NIST Level

Falcon 1.17 124 112 I 1.17 285 258 V
Naive Hybrida 3.03 90 82 below I 3.58 207 188 IV

Mitaka 2.04 102 92 Ib 2.33 233 211 V
a Key generation with the same median amount of randomness as Mitaka Algorithm 10 with m = 16, but without the
optimizations of Section 4.

b Taking into account the heavy memory cost of sieving. This is the same level as Dilithium–II; see [28, §5.3].

Table 3. Intermediate parameters and security levels for Mitaka.

d = 512 d = 648 d = 768 d = 864 d = 972 d = 1024

Conductor 210 23 · 35 28 · 32 25 · 34 22 · 36 211

Security (C/Q) 102/92 136/123 167/151 192/174 220/199 233/211
NIST level I−(a) I(b) II III IV V
Modulus q 12289 3889 18433 10369 17497 12289
Quality α 2.04 2.13 2.20 2.25 2.30 2.33

Sig. size (bytes) 713 827 1080 1176 1359 1405
a Above round 2 Dilithium–II. b Above Falcon–512; arguably NIST level II.

in Euclidean norm for the standard parameter choice (q = 12289) makes the
underlying assumption vacuous. This is not known to lead to any attack, and
can be addressed by increasing q if so desired, or reducing to the SIS problem in
infinity norm instead.

6 Implementation Results

In order to assess the practicality of Mitaka, we carried out a preliminary,
pure C implementation of the scheme (using the sampler described in Algorithm
3). For easier and fairer comparison, we reused the polynomial arithmetic and
FFT of the reference implementation of Falcon, as well as its pseudorandom
generator (an implementation of ChaCha20). Our implementation is available
at https://github.com/espitau/Mitaka-EC22.

An important caveat is that the current version of our code includes direct
calls to floating point transcendental functions, and therefore cannot be guaran-
teed to run in constant time as is. It is well-known that this can be addressed
using the polynomial approximation techniques used e.g. in [41,4,23], but full
precision estimates for the required functions are left as future work.

The result of those tests run on a single core of an Intel Core i7–1065G7 @
1.30GHz laptop can be found in Table 4. We can see that Mitaka is approx-
imately twice as fast as the other lattice-based candidates. However, it should
be noted that all those tests were performed using reference implementations.
While the comparison with Falcon can be seen as fair due to the shared code,
the comparison with a non-optimized implementation of Dilithium is somewhat

https://github.com/espitau/Mitaka-EC22
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Table 4. Performance comparisons of Mitaka with Falcon and Dilithium at the
lowest and highest security levels. The private key size corresponds to the expanded
key for all schemes (including the Falcon tree for Falcon, the expanded public matrix
for Dilithium, and the precomputed sampling data for Mitaka).

Lowest security level Highest security level

Falcon–512 Dilithium–2 Mitaka–512 Falcon–1024 Dilithium–5 Mitaka–1024

Security (C/Q) 124/112 121/110 102/92 285/258 230/210 233/209
Claimed NIST level I II I− V V V

Sig. size (bytes) 666 2420 713 1280 4595 1405
Pub. key size (bytes) 896 1312 896 1792 2592 1792
Priv. key size (kB) 56 18 16 120 82 32

Sig. time (kcycles) 502 466 248 1191 931 514

less relevant. Still, we believe that these preliminary results are quite promising
for Mitaka.

Furthermore, performance is mainly driven by the cost of the continuous and
discrete one-dimensional Gaussian samplers. Since signature generation can be
split in an offline part and an online part, Mitaka can offer even better speed
results if some computations can be performed between signatures. While these
results are favorable to Mitaka, optimized implementations on specific archi-
tectures would be needed for a definitive comparison to Falcon and Dilithium.

7 Side-channel Countermeasure

First, our signature scheme can be easily made isochronous. According to [23],
isochrony ensures independence between the running time of the algorithm and
the secret values. For our signature, the absence of conditional branches implies
that one can implement our signature isochronously using standard techniques.

In a second step, we turn our signature scheme into an equivalent one which
is protected against more powerful side-channel attacks that exploit the leakage
of several executions. More precisely, following the seminal work due to Ishai, Sa-
hai, and Wagner [24], we aim to protect our samplers for Mitaka and MitakaZ
alternative described in Section 3 from the so-called t-probing side-channel ad-
versary, who is able to peek at up to t intermediate variables per each invocation
of an algorithm. The masking countermeasure is a technique to mitigate such at-
tacks, by additively secret-sharing every sensitive variables into t+1 values in R.
The integer t is often referred to as masking order. Essentially, we will provide
two functionally equivalent alternative algorithms for Mitaka and MitakaZ
where any set of at most t intermediate variables is independent from the secret.
In this paper, we consider the masking order as a—potentially large—arbitrary
variable t. Clearly, high masking order allows a side-channel protected imple-
mentation to tolerate stronger probing attacks with larger number of probes.
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For a ring element a ∈ R, we say that a vector (ai)06i6t ∈ Rt+1 is an arithmetic
masking of a if a =

∑
i∈[0,t] ai. For readability, we often write JaK := (ai)06i6t.

The masking of our signature presents three unprecedented difficulties in
masked lattice-based schemes:

1. Compared to Fiat-Shamir with aborts, masking the Gaussian sampling is
unavoidable. We here present a novel technique to efficiently mask Gaus-
sian sampling in Section 7.2.1. Notably, our approach only requires arith-
metic masking, allowing us to avoid any conversion between arithmetic and
Boolean shares during the online phase.

2. The computations are performed in Z instead of a modular ring. This feature
does not appear in any other lattice-based scheme. Thus, we need to fix a
bound on the size of the masks and make sure that the computations will
never pass this bound. Let Qmask be the bound on the largest manipulated
integer, the shares of JaK are implicitly reduced modulo Qmask. Sometimes we
refine the notation J·K into J·KM to explicitly specify a modulus M < Qmask

for secret-sharing.
3. Some polynomial multiplications need both inputs to be masked. This un-

usual operation does not appear in LWE-based schemes where the multipli-
cations are performed between a public matrix of polynomial and a masked
vector. We handle this problem with a function in Section 7.2.2.

7.1 Preliminaries on masking countermeasure

The most basic security notion for a masking countermeasure is the t-privacy of
a gadget G [24]. This notion guarantees that any set of at most t intermediate
variables observed during the computation is independent of the secret input.
While the idea behind the notion is relatively simple, t-private gadgets are unfor-
tunately not composable, meaning that a gadget consisting of multiple t-private
sub-gadgets may not be necessarily secure. Hence in this work we rely on the
following more handy security notions introduced by Barthe et al. [2].

Definition 1 (t-NI, t-SNI). Let G be a gadget with inputs (xi)06i6t ∈ Rt+1 and
outputs (yi)06i6t ∈ Rt+1. Suppose that for any set of t1 intermediate variables
and any subset of O ⊆ [1, t] of output indices with t1 + |O| 6 t, there exists a
subset of indices I ⊆ [1, t] such that the output distribution of the t1 intermediate
variables and the output variables (yi)i∈O can be simulated from (xi)i∈I . Then

– if |I| 6 t1 + |O| we say G is t-non-interfering (t-NI); and
– if |I| 6 t1 we say G is t-strong-non-interfering (t-SNI).

It is easy to check that t-SNI implies t-NI which implies t-probing security. The
above notion can be naturally extended for a gadget with multiple input and
output sharings. Note that linear operations performed share-wise (such as ad-
dition of two sharings, or multiplication by a constant) are trivially t-NI, as
each computation on share i can be simulated from the input share xi. Build-
ing blocks satisfying either NI or SNI can be easily composed with each other,
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Table 5. Masking properties of known and new gadgets

Gadget name Security property Reference

SecMult t-SNI [24,39,2]
Refresh t-SNI [8,2]
Unmask t-NIo [3]
MaskedCDT t-NI [4,19]
SecNTTMult t-SNI This work, Lemma 4
GaussShareByShare t-NIo This work, Lemma 3

by inserting the Refresh gadgets at suitable locations to re-randomize shares [2,
Proposition 4]. It is also internally used in the Unmask gadget before taking the
sum of shares, so that a probe on any partial sum doesn’t leak more information
than one input share [3].

Typically, the non-interference notions only deal with gadgets where all of
the inputs and outputs are sensitive. To also handle public, non-sensitive values,
a weaker notion called NI with public output (t-NIo) was proposed in [3]. As
stated in [3, Lemma 1], if a gadget G is t-NI secure it is also t-NIo secure for any
public outputs.

In the sequel, we use the SecMult gadget that computes the multiplication of
two masked inputs. It is one of the key building blocks of masking theory and
has been introduced in [24,39] and proved t-SNI in [2].

We also use the MaskedCDT gadget that generates a masked sample that
follows a tabulated Gaussian distribution of a fixed center c and a fixed standard
deviation r. The table values are not sensitive so they are the same as for the
unmasked implementation. This masked CDT algorithm was introduced in [4,19]
and proved t-NI.

7.2 Two new gadgets

In Table 5, we introduce the known and new gadgets necessary for our sampler
along with their properties. These properties will be proved in the following
subsections.

7.2.1 Share-by-share Gaussian sampling In this section, we present a
novel technique for generating a masked Gaussian sampling with an arbitrary
masked center JcK of c ∈ 1/C · Z for some fixed integer C. Note that 1/C · Z is
not a ring, and thus the multiplication is not well-defined for shares in 1/C · Z.
This is not an issue in our application, since we never carry out multiplication
of two sharings in this form.

We aim at considering a share by share generation. A direct and fast approach
is to generate zi ← DZ,ci,r/

√
t+1 for each share of c and to output (z0, · · · , zt) as

JzK. To ensure z ∼ DZ,c,r, it requires r ≥
√

2(t+ 1)ηε(Z) according to [31], which
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Algorithm 11: GaussShareByShare

Input: An unmasked standard deviation r. An arithmetic masking JcK of
the center c ∈ 1/C · Z. Let B := d

√
2(t+ 1)e.

Result: An arithmetic masking JzK with z’s distribution negligibly far from
DZ,c,r.

1 for i ∈ [0, t] do
2 zi ← D1/B·Z,ci,r/

√
t+1

3 end for
/* Extracting the fractional part of z */

4 Jz̄K1 ← (z0 mod 1, . . . , zt mod 1) /* secret-sharing in ( 1
B
· Z)/Z */

5 if Unmask(Jz̄K1) 6= 0 then
6 restart to step 1
7 end if
8 return (z0, . . . , zt)

yields a considerable security loss. To overcome this issue, we propose a different
approach sampling shares over 1/B · Z with B := d

√
2(t+ 1)e and utilizing

rejection sampling to keep the masked output over Z. Our masked Gaussian
sampling algorithm is presented in Algorithm 11.

Correctness We now show that Algorithm 11 is correct for r ≥ ηε(Z). Since

r ≥ ηε(Z) ≥
√

2(t+1)

B ηε(Z), by [31, Theorem 3], in step 4, z =
∑t
i=0 zi follows

D1/B·Z,c,r. Thanks to the rejection sampling, the support of the final output z is
Z and noticing that the probability of each output z is proportional to ρr,c(z), it
follows that the distribution of z is DZ,c,r. The rejection rate is ρr,c(Z)

ρr,c(1/B·Z) ≈ 1/B

as r ≥ ηε(Z) ≥ ηε(1/B ·Z). All in all, we have shown that Algorithm 11 provides
JzK ∼ DZ,c,r at the cost of about

√
2(t+ 1) average rejections.

Masking security Let z̄ =
∑
i z̄i mod 1. As the Unmask gadget is only NIo secure

with public output z̄, we need to show that z̄ does not leak sensitive information,
i.e. the output z and the center c. Indeed, the output only occurs when z̄ = 0,
hence z̄ is independent of the output. The support of z̄ is 1

B {0, 1, · · · , B − 1}
and Pr[z̄ = i

B ] ∝ ρc,r(Z+ i
B ) = ρc− i

B ,r
(Z) ∈ [ 1−ε1+ε , 1]ρr(Z) due to the smoothness

condition r ≥ ηε(Z). Therefore the distribution of z̄ is negligibly close to uniform
independent of c. Consequently, z̄ can be securely unmasked. As all the opera-
tions are performed share by share and assuming uniformly distributed shares
of the input center c, we can deduce the following lemma.

Lemma 3. The gadget GaussShareByShare is t-NIo secure with public output z̄.

In the implementation, one needs to instantiate an unmasked Gaussian sampling
with arbitrary center and fixed standard deviation (line 2 of Algorithm 11). We
chose a table based approach and follow the technique of [32] to use a reduced
number of tables.
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7.2.2 Polynomial multiplication In some lattice-based schemes such as
Kyber or Dilithium, polynomial multiplication is always performed between a
sensitive and a public polynomial. This means that, using polynomials protected
with arithmetic masking, one can multiply each share independently by the
public unmasked polynomial and obtain an arithmetic sharing of the result of
the multiplication. In this work, we have polynomials multiplications with both
operand in arithmetic masked form. Given JaK and JbK ∈ Rt+1, we want to com-
pute JcK ∈ Rt+1 such that

∑t
i=0 ci =

(∑t
i=0 ai

)
·
(∑t

i=0 bi

)
. To perform this

masked polynomial multiplication, we propose to rely on an NTT-based multi-
plication. Using NTT, the product of two polynomials a, b ∈ ZQmask [x]/(xd + 1)
is given by

NTT−1(NTT(a) ◦ NTT(b))

with ◦ the coefficient-wise product between two vectors in ZQmask . Since the
NTT is linear, it can be applied on each share independently and we only have
to mask the coefficient-wise multiplication between elements of ZQmask using
the technique of [24]. While a naive multiplication algorithm would require d2
ISW multiplications, we only need d of them. Since we want to multiply the
polynomials in Z and not in ZQmask , we need to work with a modulus large
enough to avoid any reduction in the result. Recall that it is also possible to use
several Qmask with CRT techniques to reduce the size.

Let us define SecNTTMult, the masked product of two polynomials JaK, JbK
arithmetically masked in ZQmask [x]/(xd + 1) by

NTT−1((SecMult(NTT(JaK)j ,NTT(JbK)j)0≤j≤d−1).

The algorithm for this product is detailed in the full version of our paper [16].

Lemma 4. SecNTTMult is t-SNI secure.

Note that here the shares are entire polynomials containing d coefficients. So, t
probes actually provide t× d coefficients to the attacker.

Proof. Let δ ≤ t be the number of observations made by the attacker. Assume
the following distribution of the attacker δ observations of intermediate shared
polynomials: δ1 observations on the first NTT computation on â, δ2 observations
on the first NTT computation on b̂, δ3 observations on the SecMult part (which
provides the knowledge of the d× δ3 coefficients of the probed polynomials), δ4
observations on the last NTT−1 computation, and δ5 observations of the returned
values. Finally, we have

∑5
i=1 δi ≤ δ. The algorithm NTT−1 is linear, thus it is

t-NI and all the observations on steps 6 and 7 can be perfectly simulated with at
most δ4 + δ5 shares of ĉ. The algorithm SecMult is applied coefficient-wise, thus
each i-th execution has δ3 observations of intermediate values (here coefficients)
and δ4 + δ5 observations on the outputs (here coefficients too). By applying
d times the t-SNI property for each SecMult operation, we can conclude that
every observation from steps 3 to 7 can be perfectly simulated with at most
δ3 shared (polynomials) of â and b̂. The linearity of the NTT with arithmetic
masking allows to finish proving that every set of size at most t observations
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Algorithm 12: MaskedMitakaZSampler

Input: A masked secret key in the following form:
(JB̃∗K, JB̃∗

−1
K, JṽK, JAK) and a masked vector JcK for a center

c ∈ R2, both arithmetically masked mod Qmask.
Result: An unmasked sample z ∼ DL (B),s,c.

1 Offline
2 JpK← MaskedOfflineSampling(JAK)
3 Online
4 JcpertK← JcK− JpK

5 JcpertK← SecNTTMult(JB̃∗
−1

K, JcpertK)
6 JvK← MaskedOnlineSampling(JṽK, JcpertK)
7 JzK← SecNTTMult(JB̃∗K, JvK)
8 return

∑t
i=0 zi mod Qmask

containing
∑4
i=1 δi (resp. δ5) intermediate (resp. returned) polynomial shares

can be perfectly simulated with at most
∑4
i=1 δi polynomial shares of each input.

In the following, we extrapolate this polynomial multiplication technique
to matrices of polynomials and keep the same notation SecNTTMult. We also
remark that although SecNTTMult are sometimes called back-to-back in the
masked samplers, this can be further optimized in practice: to minimize the
number of NTT/NTT−1 invocations in an implementation, one could keep the
NTT representation as much as possible, and then bring it back to the coefficient
domain whenever it encounters GaussShareByShare, as explicitly described in the
full version of our paper [16].

7.3 Masking the MitakaZ sampler

The detailed overall structure of the sampler is presented in Algorithm 12; the
algorithms for the online and offline samplings are detailed in the full version of
this paper [16]. We remark that Algorithm 12 consists in a linear succession of
gadgets with no dependency cycle, i.e. each line depends on freshly computed
masked inputs. Thus, one can show that this algorithm is t-NI, as proved in
Theorem 4 below. The proof is detailed in the full version of our paper [16].

Theorem 4. The masked MitakaZ sampler (Alg. 12) is t-NIo with public out-
put z.

7.4 Masking the Mitaka samplers

Our masked version of the RingPeikert sampler of Algorithm 1 and of the Hybrid
sampler of Algorithm 3 are provided in the full version [16]. Although masked
Mitaka is instantiated with theMaskedHybrid sampler, we also includeMaskedRingPeikert
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for completeness because the former can be essentially obtained by extending
the basic masking paradigm outlined in the latter.

Contrary to MitakaZ, one can remark that we here need to mask floating-
point arithmetic. However, we can avoid it by representing each sensitive variable
from KR as a fixed-point number. Concretely, an element x ∈ KR is approxi-
mated by x̃ ∈ KR such that every coefficient of qkx̃ is an integer, where k is
a parameter determining the precision. Then we can secret-share qkx̃ in ZdQmask

for Qmask � qk. Since we do not perform many multiplication operations, an
accumulated scaling factor does not break the correctness of sampler if we choose
sufficiently large Qmask.

We also remark that a secret-shared center in fixed-point representation
must be divided by a scaling factor qk for the following 1-dimensional discrete
Gaussian sampling to work share-by-share . This division can be performed in
floating-point arithmetic in practice. For the sum of shares to represent the
correct center in the MaskedRingPeikert sampler, we further set Qmask = qk+`

for some ` > 0. The resulting shares after division form a sharing of v =
[(v1,j)j∈[0,d−1], (v2,j)j∈[0,d−1]] over (Q/q`Z)2d. Thanks to our GaussShareByShare
introduced earlier, we are able to perform the discrete Gaussian sampling in-
dependently w.r.t each share of the center, while avoiding a factor of

√
t+ 1

overhead incurred in the standard deviation. As a result we obtain shares of dis-
crete Gaussian samples Jzi,jKq` such that the distribution of zi,j is statistically
close to DZ,vi,j ,r mod q` for every i = 1, 2 and j ∈ [0, d − 1]. Since the output
values of the signature are defined mod q we can further map the shares to J·Kq
and the remaining computations can be performed mod q.

Since we invoke the above routine twice in the MaskedHybrid sampler, the
initial masking modulus needs to be increased so that no wrap-around occurs
during the masked computation of the second nearest plane. Concretely, the first
nearest plane operations are computed with modulus Qmask = q2k+`; the second
nearest plane operations are performed on J·Kqk+` , with corresponding arithmetic
shares of sensitive inputs; the output values can be represented in J·Kq as in the
MaskedRingPeikert.

Although a naive implementation of the Mitaka sampler should rely on
floating-point arithmetic and thus naturally carry out FFT-based polynomial
multiplications, we instead make use of NTT in our masked algorithms. Notice
that the masked instances only deal with a multiplication between polynomials
mapped to ZQmask [x]/(xd + 1) (or Zq`+k [x]/(xd + 1) during the second nearest
plane of the Hybrid sampler) thanks to the fixed-point representation. This allows
us to exploit SecNTTMult as in MaskedMitakaZSampler. One caveat is that in
the current setting Qmask is restricted to a power of q, but we are able to show
such a choice is indeed NTT-friendly. Recall that the prime q is usually chosen
such that q = 1 mod 2d, so that xd+1 has exactly d roots (ζ, ζ3, . . . , ζ2d−1) over
Zq. Now thanks to the Hensel lifting, one can construct another set of d roots
(ω, ω3, . . . , ω2d−1) over Zq2 , such that ω = ζ mod q. By iterating this procedure
until the roots for a sufficiently large modulus Qmask are obtained, we can indeed
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utilize the NTT for evaluating f(x) ∈ ZQmask [x]/(xd + 1) on the primitive 2d-th
roots of unity.

We are able to prove that both masked samplers meet the standard security
notion (t-NIo) for masked signature schemes. The proof is detailed in the full
version [16].

Theorem 5. The masked Mitaka sampler is t-NIo secure with public output
v0.

8 Conclusion

The Falcon signature scheme, one of the NIST round 3 finalists, is a very
attractive postquantum scheme for real-world deployment: it has fast signing
and verification, the best bandwidth requirements (as measured in combined
verification key and signature size) of all round 2 signatures, as well as a solid,
well-understood security. However, it suffers from a number of short-comings:
it has a complex structure that makes it hard to implement correctly; it is not
flexible in terms of parameter selection (only supporting NIST security levels
I and V, and no intermediate level); it is inefficient on architectures without
fast native floating point arithmetic; and it is difficult to protect against side-
channels.

In this paper, we introduced Mitaka, a simpler variant based on similar
design principles, which manages to maintain the advantages of Falcon while
largely mitigating those shortcomings: as we have seen, it has performance on
par or superior to Falcon, its bandwidth requirements are similar (not quite
as good as Falcon, but still far better than all other NIST candidates), and
its security relies on the same assumptions. However, unlike Falcon, it is also
relatively simple to implement; it supports a wide range of parameter settings
covering all NIST security levels; it can be implemented using the MitakaZ
sampler in a way that avoids floating-point arithmetic; and it can be efficiently
protected against side-channel attacks, for example with our proposed masking
countermeasure. It also has nice additional properties such as its online/offline
structure.

Thus, we showed that NTRU-based hash-and-sign signatures have even more
potential than previously expected to replace, e.g., elliptic curve-based schemes
in a postquantum world. Some questions remain for future work, such as:

– to what extent can signature size be reduced? (while smaller than other
lattice schemes, it is substantially larger than classical elliptic curve-based
signatures, or postquantum candidates based on multivariate cryptography
and isogenies);

– can security for the hybrid sampler be improved further with better trapdoor
generation? (there is still a substantial gap between the hybrid sampler and
Klein–GPV);

– how fast can Mitaka perform with a fully optimized, constant-time imple-
mentation on, e.g., Intel CPUs with AVX2? What about embedded micro-
controllers with and without masking?
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