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Abstract. Non-interactive publicly verifiable secret sharing (PVSS) schemes
enables (re-)sharing of secrets in a decentralized setting in the presence
of malicious parties. A recently proposed application of PVSS schemes
is to enable permissionless proof-of-stake blockchains to “keep a secret”
via a sequence of committees that share that secret. These committees
can use the secret to produce signatures on the blockchain’s behalf, or
to disclose hidden data conditioned on consensus that some event has
occurred. That application needs very large committees with thousands
of parties, so the PVSS scheme in use must be efficient enough to support
such large committees, in terms of both computation and communica-
tion. Yet, previous PVSS schemes have large proofs and/or require many
exponentiations over large groups.
We present a non-interactive PVSS scheme in which the underlying en-
cryption scheme is based on the learning with errors (LWE) problem.
While lattice-based encryption schemes are very fast, they often have
long ciphertexts and public keys. We use the following two techniques to
conserve bandwidth: First, we adapt the Peikert-Vaikuntanathan-Waters
(PVW) encryption scheme to the multi-receiver setting, so that the bulk
of the parties’ keys is a common random string. The resulting scheme
yields Ω(1) amortized plaintext/ciphertext rate, where concretely the
rate is ≈ 1/60 for 100 parties, ≈ 1/8 for 1000 parties, and approaching
1/2 as the number of parties grows. Second, we use bulletproofs over
a DL-group of order about 256 bits to get compact proofs of correct
encryption/decryption of shares.
Alternating between the lattice and DL settings is relatively painless, as
we equate the LWE modulus with the order of the group. We also show
how to reduce the the number of exponentiations in the bulletproofs by
applying Johnson-Lindenstrauss-like compression to reduce the dimen-
sion of the vectors whose properties must be verified.
An implementation of our PVSS with 1000 parties showed that it is
feasible even at that size, and should remain so even with one or two
order of magnitude increase in the committee size.

1 Introduction

A publicly-verifiable secret-sharing scheme (PVSS) lets a dealer share a secret
among a committee of shareholders, in such a way that everyone (not just the
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shareholders) can verify that the secret was shared properly and be assured
that it is recoverable. A noninteractive PVSS scheme lets the sender broadcast
just a single message to the entire universe, from which the shareholders can
get their shares and everyone else can check that sharing was properly done.3 A
proactive PVSS scheme further enables passing the secret from one committee of
shareholders to the next, so that (a) the secret remains hidden from an adversary
that only controls a minority in each committee, and (b) everyone can check that
the secret is passed properly between consecutive committees.

Such protocols play crucial role in distributed cryptography, and were studied
extensively in the literature [16, 28, 54, 22, 52, 11, 56, 20, 14, 51, 32, 33, 23, 37, 50,
31]. They were also recently proposed as enablers of secure computation on
large-scale distributed networks such as public blockchains [7, 31]. Unfortunately,
existing PVSS schemes in the literature fall short of what is needed for general-
purpose secure computation in large-scale systems, where committees may scale
to hundreds or even thousands of parties [7, 26]. See related work in Section 1.1.

In this work we propose a new system for (proactive, noninteractive) PVSS,
that remains feasible even with huge committees. In asymptotic terms, with se-
curity parameter λ and k-party committees, the PVSS protocol that we propose
has the dealer and each committee member perform only O(λ+ k) exponentia-
tions and broadcast O(λ + k) scalars in Zp and O(log(λ + k)) group elements.
(In addition, each party needs to perform O(λ2 + λk) scalar multiplications in
Zp, which comes to dominate the running time.)

In terms of actual numbers, we wrote a preliminary, single-threaded, imple-
mentation of our system and tested it on committees of up to 1000 members.4

With a 1000-member committee, the dealer runs in about 40 seconds (single-
threaded) and broadcasts a single message of size less than 300KB, while each
committee member requires about 20 seconds to obtain its share and verify the
proofs. As we explain in the sequel, this system can be extended to a proactive
PVSS protocol for very large-scale systems, where the wall-clock time to refresh
a secret is measured in just a few minutes.

We also point out that while our goal of using LWE encryption was motivated
by practical consideration, a side effect is that the secrecy of the PVSS scheme
is preserved even against quantum attackers. This protects the PVSS scheme
from potential “harvest-and-decrypt” attacks using future quantum computers.
This feature may be especially important for blockchain applications, where all
the data is “harvested” by design.

1.1 The PVSS Problem and Related Work

Verifiable secret sharing (VSS) was introduced by Chor et al. [16], with the
objective of making secret sharing robust against malicious parties – i.e., a ma-
licious dealer distributing incorrect shares, or malicious shareholders submitting
incorrect shares in the reconstruction protocol.

3 Clearly such schemes must rely on some form of PKI.
4 The implementation should also support committees that are one or two orders of
magnitude larger, with only a mild increase in runtime.
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Stadler [54] introduced publicly verifiable secret sharing (PVSS), in which the
correctness of shares is verifiable by everyone (not just shareholders). As Stadler
notes, the idea appears implicitly in earlier works. Chor et al.’s VSS protocol
[16] happened to be publicly verifiable. GMW [28] also includes a PVSS protocol
(section 3.3), in which shareholders generate public keys independently, and the
encrypter sends encryptions of shares of the secret to the shareholders, together
with NIZK proofs that the ciphertexts are well-formed and indeed encrypt shares.
These early schemes can be made non-interactive, by using NIZKs with the PVSS
protocol in [28], or by applying the Fiat-Shamir heuristic to the Σ-protocols in
[54].

Later PVSS works focused primarily on improving the efficiency of non-
interactive ZK proofs for the ciphertexts, and minimizing the assumptions un-
derlying those proofs [22, 52, 11, 56, 20, 14, 51, 32, 33, 23, 37, 50, 31]. Below, we will
focus on PVSS schemes that follow the GMW approach to PVSS, where share-
holders receive shares encrypted under their own independently generated pub-
lic keys. In [48], this approach to PVSS is called “threshold encryption with
transparent setup”. We can categorize these PVSS schemes according to what
underlying encryption scheme they use to encrypt shares. For the most part,
these schemes all use 1) Paillier encryption, 2) ElGamal encryption of scalars
“in the exponent”, 3) pairing-based encryption of elements of the source group
of the bilinear map, or 4) lattice-based encryption.

Paillier encryption [45] might at first appear ill-suited to PVSS in the “thresh-
old encryption with transparent setup” setting, as shareholders have different
Paillier public keys, and therefore have incompatible plaintext spaces that make
it awkward to prove relationships among shares. However, this problem can be
overcome by using a common interval that is inside the plaintext spaces of all
of the Paillier keys, and using a proof system that proves (among other things)
that the encrypted message is indeed within this interval. Camenisch and Shoup
[14] build an encryption scheme with verifiable encryption and decryption, based
on Paillier’s decision composite residuosity assumption, that uses such an “in-
terval” approach; the Σ-protocols for verifiable encryption and decryption each
require only O(1) exponentiations.5 Recently, Lindell et al. [37] used essentially
a version of Camenisch-Shoup to construct a PVSS scheme with O(k) expo-
nentiations per committee member (during re-sharing), for committees of size
k (see Section 6.2).6 Later schemes using variants of Paillier to encrypt PVSS
shares include [51, 33, 23]. All of these PVSS schemes have the usual disadvan-
tage of schemes related to Paillier, namely that exponentiations are expensive,
as the exponentiations are over a group whose size should in principle be about
exp(O(λ3)) for security parameter λ to maintain sufficient security against the
number field sieve, and which in practice is much larger than, say, an elliptic
curve group with comparable security (against classical computers). Also, the
size of the proofs is linear in the size of the ciphertexts.

5 In earlier work, Fouque and Stern [20] informally present a somewhat similar scheme.
6 Lindell et al. also constructed a scheme that avoids Paillier, but with much higher
bandwidth.
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PVSS schemes that encrypt shares “in the exponent” include [52, 37, 31]. In
those schemes, recovering the secret itself requires solving DL, which is only
possible when the secret is small. For example, Groth’s PVSS scheme [31, 30],
affiliated with the Dfinity blockchain, shares the secret for BLS signing [9] by
dividing it “into small chunks, which can be encrypted in the exponent and
later extracted using the Baby-step Giant-step method”. That scheme employs
a weak range proof to demonstrate that the chucks in the exponent are small
enough to be recovered. The scheme has numerous optimizations, such as using
the same randomness for ciphertexts in the multi-receiver setting. The paper
[31] mentions an implementation, but does not provide details.

Bilinear-map-based PVSS schemes can verifiably encrypt source group el-
ements, as opposed to scalars [19, 55]. An advantage of these schemes is that
proofs of smallness – such as those needed in Camenisch-Shoup and Groth’s
PVSS scheme – are unnecessary, as the bilinear map makes verifiable encryption
very natural [8, 21]. A disadvantage is that these schemes are limited to settings
where one is content to have the secret be a source group element – e.g., as
when the secret is being used as a signing or decryption key in a pairing-based
cryptosystem.

Lattice-based encryption schemes can encrypt large scalars, and have encryp-
tion and decryption procedures that are much faster than group-based schemes.7

The main disadvantage of lattice-based schemes is high bandwidth, as lattice-
based ciphertexts and public keys are in the order of kilobytes. The high band-
width issue, however, can often be amortized away, since many plaintexts can be
packed into a single ciphertext, as in the Peikert-Vaikuntanathan-Waters encryp-
tion scheme [47]. In principle, ciphertext expansion in lattice-based schemes can
be arbitrarily small [12]. Also, very small ciphertext expansion (e.g., close to 2)
can be compatible with very high performance that can be orders of magnitude
better than Paillier-based schemes [24]. (See also [44, 43], cf. [53].)

Proving that lattice-based ciphertexts are well-formed requires proofs of small-
ness (for vectors that should be small, such as the secret key, encryption ran-
domness). Some lattice-based schemes [36, 17] have used the approach of de-
composing the coefficients of the vectors into their binary representations, and
then proving that each purported bit in the representation is indeed in {0, 1}.
Alternatively, one can use an approach somewhat similar to Camenisch-Shoup:
a Σ-protocol that proves that a vector is inside a certain ball by revealing a sta-
tistically masked version of that vector. In the lattice setting, Lyubashevsky [38]
showed how to use rejection sampling to reduce the required size gap between
the masking vector and masked vector. Some other works on proofs of smallness
are: [5, 18].

In this paper, we are motivated in part by the blockchain setting, where
PVSS can help enable a blockchain to “keep a secret” [7] that it can use to
sign or decrypt conditioned upon events, but where bandwidth is at a premium.

7 Of course, this statement refers to basic, possibly additively homomorphic lattice-
based encryption schemes, not fully homomorphic encryption.
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Currently, blockchains almost exclusively use proof systems based on QAPs [46,
29] or bulletproofs [13], because these have the most concise proofs.8

1.2 An Overview of Our PVSS Construction

We assume we have a PKI, in which each party (and potential shareholder) has
independently generated its own key pair for public-key encryption. Based on this
PKI, our goal is to design a practical non-interactive PVSS scheme that allows
a dealer to share a secret by verifiably (in zero-knowledge) encrypting shares of
the secret to a “committee” of shareholders under their keys. The scheme should
also allow each committee member to act as a dealer and verifiably “re-share”
its share to the next committee of shareholders. We use Shamir secret sharing,
though essentially any linear secret sharing will do.

Our PVSS scheme arises out of two design choices – namely, 1) to use lattice-
based encryption, and 2) to use bulletproofs. Below, we explain these choices and
their consequences.

Lattice-based encryption Lattice-based encryption is a good fit for PVSS,
not only because it is exceptionally fast, but also because its disadvantages turn
out not to be big problems in the PVSS setting. One apparent disadvantage is
that lattice-based encryption has long public keys and ciphertexts. However, in
the multi-receiver setting of PVSS, this disadvantage can be amortized away by
adapting the Peikert-Vaikuntanathan-Waters (PVW) encryption scheme [47] to
the multi-receiver setting. Another apparent disadvantage is that, for lattice-
based PVSS, proving that ciphertexts are well-formed requires zero-knowledge
proofs of smallness – e.g., that the “noise” in the ciphertexts is small. However,
as we have seen in Section 1.1, PVSS and verifiable encryption schemes based
on Paillier and ElGamal “in the exponent” also employ weak range proofs, and
therefore they have no advantage over lattices here.

We briefly review the PVW lattice-based encryption scheme, as used in our
PVSS scheme. The scheme uses a public random matrix A that is common to
all parties. Each party i generates a secret vector si, and sets bi = si ·A+ ei to
be its public key.9 The parties’ public key vectors (say that there are k of them)
are collected into a matrix B. The collective public key of the PVSS system is[
A
B

]
. The encryption of a message vector m = (m1, . . . ,mk) ∈ Zk

q is

[
A
B

]
r+

[
e1
e2

]
+

[
0
m

]
=

[
c1
c2

]
, (1)

8 Despite being compact, bulletproofs have linear verification complexity. The Dory
scheme [35] is similar to bulletproofs, but with logarithmic verification complexity.

9 In the real scheme, each user creates several such vectors, but we defer this discussion
to the body of the paper.
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where r, e1, e2 are vectors with small coefficients and all operations take place
in Zq. A committee member will use this scheme to encrypt k re-shares of its
share to the next k-member committee.10

Note how well the PVW scheme is suited to the multi-receiver setting. In
the basic setting of (single-user) Regev encryption [49], each user has its own
matrix A as part of its public key, while here A is amortized across all parties.
Moreover, note that an encryption to an extra user costs just an extra element
in Zq. When the number of users becomes large, the ciphertext expansion factor
becomes a small constant.

As far as we know, ours is the first use of the PVW lattice-based encryption
scheme in the multi-receiver setting. Proving the security of PVW in this setting
is subtle: when decrypting each user implicitly obtains the inner product of si
and r, which leaks something about r. One therefore needs to show that, for
practical parameters, the secrets are still hidden despite the leakage. We cover
this issue in Section 2.3.

Bulletproofs Our second design choice is to use bulletproofs. We are aiming
for a PVSS scheme that can be used on a blockchain, as blockchains provide
an especially compelling platform for PVSS. Linear-size proofs are not suitable
for blockchains, as such proofs (which might appear in many blocks) need to be
downloaded and verified by everyone that is confirming the blockchain state. For
this reason, proof systems in use on actual blockchains are almost exclusively
based on QAPs [46, 29] or bulletproofs [13]. Bulletproofs have some advantages
over proof systems based on QAPs, such as being based on more natural assump-
tions, not requiring bilinear maps, and having only linear (versus quasi-linear)
prover time complexity. Bulletproofs also work over small groups (a feature not
shared by PVSS schemes based on Paillier encryption).

Recently, Bootle et al. [10] described a variant of bulletproofs based on lattice
problems. In this variant, the proofs are not as compact, but proof generation and
verification presumably would be faster. As future work, it may be interesting
to investigate how using this variant affects the performance of our scheme.

Using lattice-based encryption and bulletproofs together Now our goal
is to construct a proof system, ultimately based on bulletproofs, that allows
a shareholder to prove that incoming and outgoing PVW ciphertexts correctly
encrypt re-shares associated to its share.

As a first step to make our encryption scheme and bulletproofs compatible,
we set our LWE modulus q to be the order of the bulletproof group. The plain-
text space of our encryption scheme – i.e., the space the shares live in – is also
Z/(qZ).11 Now we “simply” need to create a commitment of the messages and

10 For convenience, we have described the system as having only k members total, but
consecutive k-member committees could be non-overlapping subsets of a larger set
of parties.

11 Unlike the more standard LWE encryption in which the message also needs to be
small, we use a version of the scheme implicit in [27] where the messages can be
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prove that the ciphertext encrypts them. After this, all the proofs can be done
using bulletproofs. The main contribution of this work is a collection of tech-
niques, optimized for efficiency, to prove that a lattice encryption is valid and
that the message corresponds to some DL committed value.

In more detail, we create a Pedersen commitment to all the coefficients of
r, ei, and m. We now would like to prove that the committed values satisfy the
linear relationship in (1). Also, very importantly, we need a proof that r and ei
have small coefficients. Proving exact relationships is the bread and butter of
bulletproofs. We handle proofs of smallness in a multi-stage process that carefully
calibrates the transition from “lattice world” to “bulletproof world”. Namely, in
some cases, we first reduce the dimension of the vectors involved, and instead
prove that this dimension-reduced vector has small coefficients. This dimension
reduction in turn reduces the number of exponentiations we eventually need to
perform in the bulletproof world. Before moving to bulletproof world, we also
invoke a lattice-based (without bulletproofs) proof of smallness with a large gap.
While this proof is “slacky”, it is sufficient to prove certain expressions do not
“wrap” modulo q, so that we can now consider these expressions over Z. Now
that we have reduced the dimension and are assured that mod-q statements can
be lifted to statements over Z, we can use bulletproofs to prove the exact l2 norm
of the vectors. We provide additional techniques to hide the exact l2 norm if only
a bound on the norm is desired. The bulletproofs for the linear relationships and
for smallness are aggregated to the extent possible. Details are provided below.

Dimension reduction and slacky lattice-based proofs of smallness Our
dimension reduction technique is based on the Johnson-Lindenstrauss lemma
[34]. The idea is that for all vectors v, we have ∥vR∥ ≈

√
n∥v∥, where R is

an n-column matrix whose entries are chosen from a normal distribution of
variance 1. When R is chosen in this way, the distribution of ∥vR∥2 follows
the chi-squared distribution and its confidence intervals are known. When the
coefficients of R are instead chosen from a discrete distribution over {0,±1}
where the probability of 0 is 1/2, one can heuristically verify that these confidence
intervals are bounded by the continuous ones.12 If we would like to be in a
1 − 2−128 interval, then R can have around 256 columns and then the ratio
between the smallest value of ∥vR∥ and the largest is under 4. This means that
we can project an arbitrary-dimensional vector into just 256 dimensions and
prove the ℓ2 norm of the resulting vector, and be within a small factor of the
correct result. And, of course, the projection operation is linear. The concrete
bounds for the dimension-reduction technique are described in Section 3.2.

Everything in the above discussion was based on the fact that we were work-
ing over the integers, rather than over Zq. When working modulo q, it is possible
that v has a large norm, but vR mod q has a small one. This event can clearly

arbitrarily large in Zq, but the length of m⃗ has to increase to encode all of the
message. We describe this in Section 2.2.

12 There are concrete bounds for tails of some of these distributions (e.g. [1]), but they
are asymptotic and are looser than necessary for our concrete parameters.
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only occur if the coefficients of v are large enough that multiplication with R
causes a wraparound modulo q. It is therefore important to show that this does
not happen, and we do this in the manner as in the lattice-based proofs from
[41]. We now explain how the technique applies to our context. The main idea is
to show that all the elements of v are not too big. This seems a bit circular, as
our goal is already to prove that ∥v∥ is small. But our requirement now is not to
get a very tight bound on the norm, but simply to show that all the elements of
v are small enough to not cause a wrap around. For this, one employs a simple
fact that is sometimes useful in lattice cryptography [6, Lemma 2.3], which states
that if a vector v has a large coefficient, then for any y ∈ Zq, ⟨v, r⟩ + y mod q
has a large coefficient with probability at least 1/2, where the coefficients of r
are randomly chosen from {0,±1} as above. One would therefore prove that the
coefficients of v are small by committing to some masking vector y, receiving a
128-column matrix R as a challenge, and then outputting vR+ y. The purpose
of y is to hide v, and so some rejection sampling [39] is necessary to keep the
distribution of vR+ y independent of v. Note that the gap between the actual
ℓ∞ norm of v and that of what we can prove is increased by a factor of at least
the dimension of v. This is because the ℓ∞ norm is not well-preserved under
transformations and also due to the masking which is needed because we will
actually be outputting the value vR+ y. This is much larger than the factor of
approximately 4 in the ℓ2-dimension reduction above, and this is why we only
employ this technique for proving that no wrap-around occurs.

In the context of our encryption scheme, instead of proving that the long
vectors ei (with dimension dependent on the number of users) have small norm,
we can instead prove that the short 256-dimensional vector([

c1
c2

]
−

[
A
B

]
r−

[
0
m

])
·R (2)

has small norm. Also, we prove that r · R has small norm instead of r. Other
purportedly short vectors are handled in the same way. For example, each of the
k new committee members needs to prove that the public key bi = siA + ei is
properly created. The combination of these techniques is described throughout
Section 3.

Bulletproofs and precise proofs of smallness Suppose now that we want
to prove a tighter upper bound β on the squared ℓ2 norm of a vector v =
(v1, . . . , vk). (Proving tighter bounds allows us to use tighter parameters in our
lattice-based encryption scheme.) Assume β is an integer. First, we pick a vector
x such that the squared l2 norm of the concatenated vector v∥x is exactly β.
For the vector x, 4 coefficients suffice, as the non-negative integer β −

∑
v2i

can always be expressed as the sum of at most 4 squares. We then use the
“slacky” techniques above to prove that there is no wraparound modulo q in the
computation of the squared l2 norm of v∥x. Then, we commit to v∥x, and use
bulletproofs to prove the exact quadratic relation.
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We can aggregate the relations that we prove using bulletproofs – e.g., these
exact proofs of smallness are combined together with proofs of the linear equa-
tions in (1).

1.3 Organization

In Section 2 we describe our lattice-based encryption scheme, and discuss the
extension of PVW to the multi-receiver setting. In Section 3 we present the
size-proof protocols that we use in our scheme and their parameters. In Sec-
tion 4, we provide details about our implementation. In the long version [25] we
describe in more detail the various sub-protocols that the parties run locally,
for key-generation, encryption, decryption, and secret re-sharing, explain how
to aggregate aggregate the bulletproof instances from all these components into
just two bulletproof instances, and finally put all these components together in
a (proactive) publicly-verifiable secret-sharing protocol.

2 The Underlying Encryption Scheme

In this section we develop the encryption scheme that is used by our protocol,
starting from a (variant of) PVW encryption [47] and specializing it to our needs.

Below we denote integers and scalars by lowercase letters, vectors by bold
lowercase letters, and matrices by uppercase letters. Vectors are considered row
vectors by default. (Parameters are denoted by either lowercase English or low-
ercase Greek letters). For integers x, q, we denote by x mod q the unique integer
x′ ∈ [− q

2 ,+
q
2 ) such that x′ = x (mod q). We denote vectors by bold-lowercase

letters, and it will usually be evident from context whether they are row or col-
umn. The l2 and l∞ norms of a vector v are denoted ∥v∥2, ∥v∥∞, respectively.
For a matrix A, we let ∥A∥2, (resp. ∥A∥∞) denote the largest l2, (resp. l∞) norm
of any row in A.

2.1 Learning with Errors (LWE)

The LWE problem was introduced by Regev [49]. In the decision variant, the
adversary is given pairs (A,B) where A is chosen uniformly from Zk×m

q , and it
needs to distinguish the cases where:

– B is chosen uniformly at random in Zn×m
q , or

– B is set as B := SA + E mod q, where the entries of S,E are chosen from
some public distributions χs, χe over Zq that output integers of magnitude
much smaller than q with overwhelming probability.

This problem is believed to be hard for many different settings of the parameters
k,m, n, q, χs, χe. For some of them it is even proven to be as hard as solving
some “famous” lattice problems in the worst case. In this work we assume that
this problem is (exponentially) hard when the χ’s are uniform distributions on
integers is some symmetric interval [±σ] with σ ≪ q/2. The specific parameters
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that we use were chosen according to the LWE hardness estimator of Albrecht et
al. [3], see more details in The long version [25]. Also in our protocol we always
use k = m, so we drop the distinction between these parameters in the sequel.

2.2 Variants of Regev Encryption

In [49], Regev described a public-key encryption scheme whose security is based
on the hardness of decision-LWE. Later, Peikert, Vaikuntanathan and Waters
(PVW) described in [47] a variant with improved plaintext-to-ciphertext expan-
sion ratio. Our protocol is based on a variant of the PVW construction. Un-
derlying it is the following “approximate encryption” scheme, where decryption
only recovers a noisy version of the plaintext:

Key-generation. The key-owner chooses a random A← Zk×k
q , S ← χn×k

s and

E ← χn×k
e and computes B := SA + E mod q. The secret key is S and

the public key is (A,B), which is pseudorandom under the decision LWE
assumption.

Encryption. To encrypt an n-vector x ∈ Zn
q , the encryptor chooses r ← χk

s ,

e1 ← χk
e , e2 ← χn

e , and sets c1 := Ar+e1 mod q and c2 := Br+e2+x mod q.
The ciphertext is (c1, c2), which is again pseudorandom under the decision
LWE assumption.

Decryption. To decrypt (approximately), the key-owner outputs x′ := c2 −
Sc1 mod q. Substituting all the terms one can check that

x′ =
(
(SA+ E)r+ e2 + x

)
− S(Ar+ e1) = x+

e′︷ ︸︸ ︷
Er+ e2 − Se1,

where for appropriate choices of χs, χe we will have ∥e′∥∞ ≪ q.

Plaintext Encoding To be able to fully recover the plaintext, Regev encryption
uses some form of error-correction that allows the decryptor to compute x from
the noisy x′. Most variants of Regev encryption use encoding based on scaling,
but for us it is more convenient to use a different form of encoding13 (which was
implicit in the homomorphic encryption scheme of Gentry, Sahai and Waters
[27]). We encode a plaintext vector x∗ ∈ Zn

q by a higher-dimension x ∈ Zℓn
q

that includes not just x∗ but also a large multiple of it. Let ∆ := ⌊√q⌋ and
g := (∆, 1) ∈ Z2

q. The dimension-n vector (x1, . . . , xn) ∈ Zn
q is encoded in the

vector (x1g| . . . |xng) ∈ Z2n
q .

More generally, we could use a parameter ℓ ≥ 2 and set ∆ := ⌊ ℓ
√
q⌋ and

the “gadget vector” g := (∆ℓ−1, . . . ,∆, 1) ∈ Zℓ
q. We then encode a vector

(x1, . . . , xn) in the higher-dimension (x1g| . . . |xng) ∈ Znℓ
q . The larger we set

the parameter ℓ, the more redundant the encoded vector becomes, which lets us
tolerate larger noise and still recover the original vector. (On the other hand, we

13 The reason that this encoding method is better for us, is that it allows us to work
only with Zq elements. In other variants of Regev encryption one usually must work
with both Zq and Zp for some p≪ q.
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need to increase the number of rows in the secret key from n to ℓn.) Specifically,
for each entry xi in the original plaintext vector, the approximate-decryption
above yields a noisy ℓ-vector x′ = xg+e mod q, and xi can then recovered using
the decoding procedure from Fig. 1.

Decode((x′
1, . . . , x

′
ℓ) ∈ Zℓ

q): # x′
i = x∆ℓ−i + ei mod q

1. For i = 1, . . . , ℓ− 1
let yi := x′

i+1 −∆x′
i mod q # yi = ei −∆ei+1 (w/o mod-q reduction)

2. Set z :=
∑ℓ−1

i=1 ∆
ℓ−i−1 · yi # telescopic cancellation, z = e1 −∆ℓ−1eℓ

3. Set e := z mod ∆ℓ−1 # e = e1
4. Output (x′

1 − e)/∆ℓ−1 # = x

Fig. 1. The plaintext decoding procedure

As long as all the ei’s are bounded in magnitude below q/2(∆+1) ≈ ∆ℓ−1/2,
then the equality yi = ei − ∆ei+1 in Row 2 holds not only modulo q but also
over the integers. In that case we also have z = e1 −∆ℓ−1eℓ over the integers,
and since |e1| < ∆ℓ−1/2 then also e = e1 in Row 3 holds over the integers, so we
recover the correct output x.

For our implementation we stuck to the setting ℓ = 2, which is somewhat
simpler to implement. In general, however, setting a slightly larger value (such
as ℓ = 4) may lead to somewhat better parameters, since it can tolerate larger
noise and therefore smaller lattice dimension for the same security level. We
leave exploring this direction to future work.

2.3 The Multiparty Setting

A very useful property of the scheme above is that the i’th plaintext value xi

can be recovered using only rows {1+(i−1)ℓ, . . . , iℓ} of the secret key matrix S
(indexing start at 1). To wit, denote by Si the sub-matrix of S consisting only
of these rows, and let c2,i be the sub-vector of c2 consisting of entries {1 + (i−
1)ℓ, . . . , iℓ}, then xi can be recovered by setting x′ := c2,i − Sic1 ∈ Zℓ

q, then
using the decoding procedure from Fig. 1.

It is therefore possible to use the encryption scheme above in a multiparty
setting, where all parties share the same random matrix A (a common-random-
string which is chosen by a trusted party during setup), and each party i chooses
its own secret key S ← χℓ×k

s and noise Ei ← χℓ×k
e , and computes its own public

key Bi := SiA+ Ei mod q.
The global public key is then set to include the matrix A, followed by all the

Bi’s in order (which are viewed as sub-matrices of the public-key matrix B from
above). Encryption works just as above, with the plaintext vector x ∈ Zn

q viewed
as having one plaintext element xi ∈ Zq destined to each party i. For decryption,
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each party i uses its secret key Si to get the noise vector x′i = xig + ei, then
apply the decoding procedure from Fig. 1 to recover xi from x′i.

LWE with Leakage The multiparty setting above brings up a new problem:
what happens when some of the parties are dishonest and deviate from the pre-
scribed distribution for choosing their public keys? The issue is that encryption
uses the same vector r for encrypting all the plaintext elements to all the parties.
When party i is dishonest and Bi is chosen adversarially, seeing Bir + ei may
leak information about r to the adversary, potentially making it possible for it
to distinguish some other Bjr + ej from random and maybe learn something
about the plaintext encrypted for party j.

Luckily, some characteristics of our application make it possible to counter
this threat. In particular, each party i in our protocol is required to prove that
its public key is “well formed”. Namely it must provide a proof of knowledge
of Si, Ei such that Bi := SiA + Ei mod q, and moreover where the l2 norm of
the rows in Si, Ei is bounded by some known bounds βs, βe, respectively. In this
setting, we can reduce security to plain LWE (without any leakage), as long as
the encryptor chooses e2 from a somewhat wider distribution than e1.

Fix the LWE parameters k, n, q, χs, χe1, and let ρs, ρs ∈ R be factors that
bound the size of vector from χs, χe1, respectively, along any fixed direction.
Specifically, we require that for any fixed v ∈ Zk

q , choosing s← χk
s and e← χk

e

we get

|⟨v, s⟩| ≤ ρs · ∥v∥2 and |⟨v, e⟩| ≤ ρe · ∥v∥2,

except perhaps with a probability negligible in κ. Let βs, βe ∈ R be the bounds
that the parties in our protocol must prove, and let χe2 be another noise distri-
bution over Z, which is wide enough so that χe2 is statistically close14 to χe2+ δ
for any fixed integer offset δ ≤ ⌈ρsβe + ρeβs⌉. Then consider the following game
between an adversary and a challenger:

– The challenger chooses, sends to the adversary a random matrix A ∈ Zk×k
q .

– The adversary chooses S ∈ Zn×k
q and E ∈ Zn×k

q , subject to the constraint
that the l2 norm of each row in S,E is bounded by βs, βe, respectively. The
adversary sets B = SA+ E mod q and sends S,E,B to the challenger.15

– The challenger chooses r ← χk
s , e1 ← χk

e1, e2 ← χk
e2, and a uniformly

random vector u ∈ Zk
q . It also tosses a coin σ ∈ {0, 1}.

If σ = 1 then the challenger sets c1 := Ar + e1 mod q and c2 := Br +
e2 mod q.

If σ = 0 then the challenger sets c1 := u and c2 := Sc1 + e2 mod q.

– The challenger sends (c1, c2) to the adversary, and the adversary outputs a
guess σ′ for σ.

14 Up to a distance negligible in κ.
15 The adversary sends not only B but also S,E to the challenger, since in our protocol

it will have to prove knowledge of these matrices so they can be extracted from it.
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Lemma 2.1. Let the parameters k, n, q, χs, χe1, and ρs, ρs, χe2 be as above. Then
under the hardness of decision-LWE with parameters k, n, χs, χe1, the adversary
in the game above has only a negligible advantage in guessing the value of σ.

Proof. Substituting all the variables above, we have

(Ar+ e1, Br+ e2) =
(
Ar+ e1, (SA+ E)r+ e2

)
(3)

=
(
Ar+ e1, S(Ar+ e1)− Se1 + Er+ e2

)
(s)
≈

(
Ar+ e1, S(Ar+ e1) + e2

) (c)
≈

(
u, Su+ e2

)
. (4)

The last relation follows directly from the hardness of decision LWE with these
parameters. To see why the penultimate relation holds, note that ∥Er−Se∥∞ ≤
ρsβe + ρeβs except with a negligible probability, and therefore e2 is statistically
close to Er− Se1 + e2.

Semantic Security in the Multiparty Setting Lemma 2.1 implies that
we can get semantic security for the honest parties in our protocol, even if
the dishonest parties deviate from the prescribed distribution for choosing their
public keys. (As long as they successfully prove knowledge of S,E as above.)

To that end, we modify the encryption procedure from Section 2.2 so that it
uses the wider noise χe2 rather than χe when choosing the noise vector e2. We
then view the CRS matrix together with all the honest public keys as the matrix A
from the lemma, and the dishonest public keys are viewed as the matrix B from
the lemma. We note that with this view, the matrix A is pseudorandom from
the adversary’s perspective. Lemma 2.1 tells us that Ar⃗+ e⃗1 is indistinguishable
from random even given Br + e2, and the encryption scheme uses the part of
Ar⃗ + e⃗1 corresponding to the honest parties’ public keys to mask the plaintext
values for these parties, hence we get semantic security.

How Wide Must χe2 Be? Lemma 2.1 requires that χe2 is very wide, enough
to “flood” the term δ := Er−Se, i.e., larger by at least the (statistical) security
parameter. In our application, however, making χe2 very wide is costly: For
security of 128 bits, adding one bit to the width of χe2 increases by about 40
the dimension of the LWE secret that we need to use. (So making it (say) 50-bit
wider will increase the dimension by almost 2000.)

However, in our setting it seems likely that setting χe2 only slightly larger
than (the expected size of) δ is safe, since the encryption randomness and noise
are only used once, and the adversary gets at most t < 1000 samples from
the “leakage”. We therefore took a pragmatic approach, making χe2 only large
enough so the distributions χt

e2 and χt
e2 + δ are “not too far”. Specifically, we

set it large enough to ensure that the Rényi divergence between them is a small
constant. While this is not enough to prove that decision-LWE remains hard, it
is enough to show that the search problem remains hard. As we are not aware
of any attack on decision-LWE that does not go via full recovery of the LWE
secret, we take it as a strong indication of security even in our setting.
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In more detail, in the long version [25] we establish a high-probability bound
on the l∞ norm of δ (call it µ). We use the heuristic of modeling χe2 as a zero-
mean Normal random variable with variance σ2 (where σ is the parameter that
we need to set). Using analysis similar to [4, 2], we bound the Rényi divergence
of order α between χt

e2 and χt
e2 + δ by ρ := exp

(
απt · (µ/σ)2

)
, and use the

probability-preservation property of Rényi divergence to conclude that for any
event E(v) that depends on a vector v, we have

Pr
v←χt

e2

[E(v)] ≥ Pr
v←χt

e2+δ
[E(v)]α/(α−1)/ρ.

In particular the above holds for the event in which the adversary finds the LWE-
secret r. Setting σ = b

√
2πt and using (say) α = 2, yields ρ = exp(1) = e and

hence Prv←χt
e2
[E(v)] ≥ Prv←χt

e2+δ[E(v)]2/e. By the hardness of search-LWE,
the probability on the left-hand side is negligible, and hence so is the probability
on the right-hand side.

2.4 An Optimization: Using Module-LWE over Small Rings

As is common in lattice-based cryptosystems, we gain efficiency by using opera-
tions over higher-degree algebraic ring rather than directly over the integers. In
our multiparty setting parties use ℓ-row public key (to enable or input encoding),
so instead we use operations over a ring of dimension ℓ, namely Rℓ=Z[X]/(Xℓ+1).
(We also denote Rℓ,q = R/qR = Zq[X]/(Xℓ+1).) (Recall that our implementa-
tion uses ℓ = 2, and more generally we may use slightly larger value such as
ℓ = 4.) This means that the parties’ secret-key and noise vectors can now be
specified using half as many scalars, so in our protocols the parties will need to
commit and prove relations for half as many variables. The scheme thus needs to
choose low-norm elements in Rℓ, which is done by choosing their representation
in the power basis using the same distributions χs, χe1, χe2 over Zq. Below we
use the same notations χs, χe1, χe2 for both the Z distribution and the induced
distributions over Rℓ.

2.5 The Encryption Scheme in Our Protocol

Using all the components above, we describe here explicitly the encryption
scheme as we use it in our protocol:

Parameters. Denote by n the number of parties and t < n/2 bound the number
of dishonest parties. For LWE we have a modulus q, The dimension k of
the LWE secrets and noise vectors, and the secret- and noise-distributions
χs, χe1, χe2.
We also have the redundancy parameter ℓ, and we denote n = nℓ, t = tℓ, and
k = kℓ. Let ∆ = ⌊ ℓ

√
q⌋ and let the “gadget vector” be g = (∆ℓ−1, . . . ,∆, 1) ∈

Zℓ
q, representing the element g ∈ Rℓ,q.

Common reference string. A random matrix A← Rk×k
q .
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Key-generation. Each party i chooses the secret key and noise vectors in Rk
q ,

si ← χk
s and ei ← χk

e1, sets bi := siA + ei ∈ Rℓ,q as its public key, and
broadcasts it to everyone.

Encryption. The global public key consists of the matrix A and all the bi’s.
Let B ∈ Rn×k

ℓ,q be a matrix whose rows are all the bi’s in order.
Given n plaintext scalars x1, . . . , xn ∈ Zq, we encode them in a vector x =
(x1, . . . , xn)g ∈ Rn

ℓ,q. Namely we encode each xi as the element xig ∈ Rℓ,q.

The encryptor chooses three vectors r ← χk
s , e1 ← χk

e1, and e2 ← χk
e2, and

computes the ciphertext vectors

c1 := ArT + eT1 mod q, and c2 := BrT + eT2 + xT mod q.

Decryption. On ciphertext (c1, c2) and secret key si, party i uses the approx-
imate decryption procedure to compute y := c2 − ⟨si, c1⟩ mod q.
This yields y = xg + e for some scalar x ∈ Zq and small noise element
e ∈ Rq,ℓ, which can also be written as a vector equation y = xg + e mod q.
The decryptor then uses the decoding procedure from Fig. 1 w to recover
the scalar x.

The discussion above implies that this scheme is correct as long as the decryption
noise is smaller than ∆ℓ−1/2, and and it offers semantic security for the honest
parties under module-LWE (with leakage if χe2 does not completely drown the
other noise terms.)

3 Proofs of Smallness

Our scheme relies on parties committing to various vectors and broadcasting
publicly-verifiable proofs about them. Some of the statements that are proven
are simple linear constraints (e.g., when a party proves that it re-shared its secret
properly). But most of the proofs that we use are proofs-of-smallness, when the
prover needs to convince everyone that the norms of its vectors are bounded by
some public bounds.

The main reason for proving smallness is that lattice-based cryptosystems
only provide correctness guarantees when certain quantities are small enough.
Another reason to use proofs-of-smallness is because the underlying proof sys-
tems that we use are only capable of proving constraints modulo some integer
parameter P (e.g., discrete-logarithm-based commitments and proofs). To prove
the same constraints over the integers, we augment these underlying proofs by
also proving smallness of the relevant values, to establish that no wraparound
modulo P occurs.

A publicly verifiable proof of smallness protocol lets a prover commit to a
vector and convince everyone that the committed vector is smaller than some
public bound. Such proofs are parametrized by the norm in question (l2 or l∞)
and a gap parameter γ ≥ 1. Completeness of such proofs for a bound b only
holds when the vector of the honest prover has norm bounded by b/γ, while
soundness ensures that even cheating provers cannot pass verification if their
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vector has norm larger than b. Such protocols can be modeled as special cases
of the commit-and-prove functionality (e.g., [15]), except that the constraint
enforced on honest parties is more strict than that for dishonest parties. This is
captured in the functionality SMLl[γ] from Fig. 2.

Parameters: norm l ∈ {l2, l∞} and gap γ ≥ 1

The functionality maintains a list −→w of (vector,commitment) pairs, initially empty.

Commitment. Upon receiving (commit, sid,w ∈ Zd, c ∈ {0, 1}∗) from the prover,
if −→w does not contain any pairs with the commitment value c then add the pair
(w, c) to −→w , and send the message (receipt, sid, c, d) to everyone.

Proof. Given a message (prove, sid, c, b ∈ R) from the prover, if −→w contains a pair
(w, c) such that
– either the prover is honest and ∥v∥l ≤ b/γ,
– or the prover is dishonest and ∥v∥l ≤ b,

then send the message (proof, sid, c, b) to everyone. (Otherwise, ignore the mes-
sage.)

Fig. 2. The proof-of-smallness functionality SMLl[γ]

3.1 Underlying Commit-and-Prove Systems

Our scheme makes extensive use of underlying commit-and-prove systems, that
let parties commit to integer values and prove relations among these committed
values. Specifically, these systems lets a prover convince everyone of the veracity
of two types of constraints:

Linear constraints. The prover commits to the secret vector x, then given the
public vector a it reveal the scalar b and proves that

∑
i aixi = b (mod P ).

Quadratic constraints. The prover commits to (x|y), then given the public
offset vectors16 u,v it reveals the scalar b and proves that

∑
(xi + ui)(yi +

vi) = b (mod P ).

In our implementation we use Pedersen commitments to vectors, and small vari-
ations of the Bulletproof protocol [13]. (In this case the parameter P is the
order of the hard-discrete-logarithm group.) The Bulletproof variants that we
use are described in the long version [25], where we also show how to use some
homomorphic properties in order to aggregate them.

We note that for the systems that we use, proving linear constraints is cheaper
than proving quadratic constraints, roughly because the prover only needs to
commit to x rather than to both x and y. We therefore strive to only prove
quadratic constraints on low-dimension vectors, which leads to noticeable sav-
ings. The main novel tool that we use for that purpose, and which we believe

16 See Section 3.1 for the reason for the offset vectors.



Practical Non-Interactive PVSS with Thousands of Parties 17

will find other applications, is in showing how to use the Johnson-Lindenstrauss
lemma to reduce the dimension of the vectors on which we need to perform
quadratic proofs. That is, we replace a quadratic proof on a high-dimension vec-
tor with a linear proof on that vector, combined with a quadratic proof on a
low-dimension one (i.e. 256-dimensional). See more details later in this section.

l2 Norm Proofs Modulo P . In our scheme we often use commit-and-prove
protocols for quadratic constraints to prove the l2-norm of a vector modulo P ,
which is not entirely straightforward. Naively, we could try to let the prover
commit to (x|x) and then directly use the underlying quadratic proofs to prove
that

∑
i x

2
i = b2 (mod P ). This naive protocol doesn’t quite work, however,

since a cheating prover may commit to two different vectors (x|x′) rather than
to the same vector twice. One solution could be to add linear proofs to establish
that xi = x′i for all i, but that could become expensive (as it may require
commitments to each xi separately).

Instead, after the prover commits to (x|x′) ∈ Z2d
P and publishes the bound b,

the verifier chooses at random an offset vector u ∈ Zd
P , and the prover uses the

underlying quadratic proof protocol to prove that
∑

i(xi+ui)(xi−ui) = b2−∥u∥2
(mod P ). It is easy to see that if a cheating prover commits to some (x|x′) with
x ̸= x′, then this last constraint would only hold with probability 1/P . In our
implementation we let the verifier choose only a single random scalar u ∈ ZP ,
then use the offset vector u = (1, u, u2, . . . , ud−1). Again it is easy to see that in
this case, if x ̸= x′ then the constraint only holds with probability at most d/P .

3.2 Tails of Distributions and the Johnson-Lindenstrauss Lemma

As we mentioned above, an important component in our scheme is projecting
high-dimension vectors down to lower dimension using the Johnson-Lindenstrauss
Lemma. Namely, instead of directly proving smallness of a high-dimension vec-
tor w, we choose a random rectangular matrix R, prove smallness of the lower-
dimension v = wR, and use Johnson-Lindenstrauss to argue that this implies
also tight approximation for the norm of the original w. (Specifically, the distri-
bution D that we use for the entries of R has D(0) = 1/2 and D(±1) = 1/4.)

To obtain very tight bounds, we use a heuristic that roughly states that the
tail of the distribution on ∥wR∥ can be bounded as if the entries of R were cho-
sen from the zero-mean continuous Normal distribution of the same variance. A
strong justification for this heuristic comes from the analysis of Achlioptas [1],
who proved that for an arbitrary vectorw and R← Dn×k, all the moments of the
induced distribution over ∥wR∥2 are bounded by the corresponding moments of
the distribution ∥wR′∥2 where the entries of R′ are chosen from the correspond-
ing zero-mean continuous Normal distribution. This intuitively implies that the
tails of the continuous distribution are fatter, and so bounding them will imply
bounds on the discrete distribution. This intuition generally holds except that
the discretization may cause some minor discrepancies that vanish exponentially
with the dimension k. See more discussion in the long version [25]. This heuristic
lets us use the following bounds when setting concrete parameters:
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Fact 3.1 Let N be the continuous normal distribution centered at 0 with vari-
ance 1, and χ2[k] be the χ2 distribution with k degrees of freedom.17 Then for
every vector w ∈ Zd it holds that:

Pr
r←Nd

[∣∣∣∣〈w,
1√
2
r

〉∣∣∣∣ > 9.75 · ∥w∥
]
= Pr

y←N

[
|y| > 9.75 ·

√
2
]

< 2−141.

Pr
R←Nd×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥2 < 30 · ∥w∥2
]
= Pr

y←χ2[256]
[y < 60] < 2−128.

Pr
R←Nd×256

[∥∥∥∥ 1√
2
wR

∥∥∥∥2 > 337 · ∥w∥2
]
= Pr

y←χ2[256]
[y > 674] < 2−128.

Corollary 3.2. [heuristic] Let D be a distribution on {0,±1} such that D(1) =
D(−1) = 1

4 and D(0) = 1
2 . Under the heuristic substitution of D with 1√

2
N , for

every vector w ∈ Zd:

Pr
r←Dd

[|⟨w, r⟩| > 9.75 · ∥w∥] ⪅ 2−141,

Pr
R←Dd×256

[∥wR∥2 < 30 · ∥w∥2] ⪅ 2−128,

Pr
R←Dd×256

[∥wR∥2 > 337 · ∥w∥2] ⪅ 2−128,

where ⪅ denotes a heuristic bound.

3.3 A Modular Johnson–Lindenstrauss Variant

In some cases we need a high probability bounds on the size of wR mod P rather
than the size of wR itself. When the bound that we seek is sufficiently smaller
than P , we get this as an easy corollary:

Corollary 3.3. Fix d, P ∈ Z and a bound b ≤ P/45d, and let w ∈ [±P/2]d
with ∥w∥ ≥ b. Let D[0] = 1/2 and D[±1] = 1/4, then Pr

R←Dd×256
[∥wR mod P∥ <

b
√
30] < 2−128.

Proof. We have two cases:

– The first case is when ∥w∥∞ ≥ P/4d. Let i be an index of an entry in w with
magnitude at least P/4d, and consider any column of R (denoted r): After
choosing all but the i’th entry in r, at most one of the three values {0,±1}
yields |⟨w, r⟩ mod P | < P/8d. Hence the probability that all the columns of
R yield entries smaller than P/8d is at most (1/2)256. Since b ≤ P/45d then
P/8d > b

√
30 and therefore

Pr
R←Dd×256

[∥wR mod P∥ < b
√
30] ≤ Pr

R
[∥wR mod Pq∥ < P/8d] ≤ 2−256.

17 The χ2 distribution with k degrees of freedom is the distribution of
k∑

i=1

x2
i where

xi ← N .
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– The second case is when ∥w∥∞ < P/4d. Here with probability one we have
wR ∈ [±P/2]256, so mod-P reduction has no effect and the assertion follows
directly from Corollary 3.2.

3.4 Approximate Proofs of Smallness

A tool from previous work that will be used as a subroutine in most of our new
proofs is a zero-knowledge proof that proves that a committed vector has small
coefficients. We use the approximate proofs of l∞-smallness of Lyubashevsky
et al. [42] (which also utilize rejection sampling, as is common in lattice-based
proofs). This proof system has a fairly large gap between the l∞ norm of the
vector used by honest provers and what the prover can prove. But this gap will
not show up in the rest of our scheme, because these proofs are only used to
show that there is no wraparound modulo P (after which we use an exact proof
for l2 norm modulo P ). The main feature of this proof is that the dimension
of the transmitted vector is just 128, irrespective of how long the vector whose
smallness we would like to prove.

To bound the size of a vector w, the prover commits to w and to a masking
vector y (chosen at random to be somewhat larger than w), and sends the
commitments to the verifier. The verifier chooses a small random matrix R, and
the prover opens z = wR + y (and convinces the verifier that it is indeed the
right z wrt w and y), and the verifier checks that z is small. Soundness relies
on the following lemma.

Lemma 3.4 ([42], Lemma 2.5). Fix q, d ∈ Z and any two vectors y ∈
[±q/2]128 and w ∈ [±q/2]d. Let D[0] = 1/2 and D[±1] = 1/4, then choosing
R← Dd×128 we have

Pr
R

[∥∥wR+ y mod q
∥∥
∞ < 1

2∥w∥∞
]
< 2−128.⊓⊔

Describing the proof system in more detail, we use a hard-DL group of or-
der P for the underlying commit-and-prove protocols, as follows. The prover
holds a vector w, and the verifier holds a discrete-log-based commitment to w
(e.g., Pedersen). The goal of the protocol is to prove thatw has l∞ norm bounded
by some known b, where for the honest prover we assume that ∥w∥∞ ≤ b/γ (with
γ our gap parameter).

0. We use security parameter λ = 128 and the size gap is γ = 2 · 9.75λ
√
d <

2500
√
d.

1. The prover has a vector w ∈ Zd of bounded size ∥w∥∞ ≤ b/γ, and the
verifier knows a commitment to w.

2. The prover chooses a uniform masking vector y ← [ ±⌈ b2 (1 +
1
λ )⌉ ]λ and

sends to the verifier a commitment to y.

3. Let D(0) = 1/2 and D(±1) = 1/4, the verifier chooses R← Dd×λ and sends
it to the prover.
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4. The prover computes u := wR and z := u+y. It restarts the protocol from
Step 2 if either ∥u∥∞ > b/2λ or ∥z∥∞ > b/2.
If the two tests above passed, then the prover sends z to the verifier along
with a ZKPOK that indeed z = wR+ y (mod P ).

5. The verifier accepts if the ZKPOK succeeds, and in addition ∥z∥∞ ≤ b/2.

Lemma 3.5. The protocol above is an approximate proof-of-smallness for the
l∞ norm, with size gap γ < 2500

√
d.

Proof. The honest prover has ∥w∥∞ ≤ b/γ, so by the first part of Claim 3.2
and the union bound, we have that ∥u∥∞ ≤ 9.75

√
d∥w∥∞ ≤ 9.75

√
db/γ < b/2λ

except with probability 27 · 2−141 = 2−134. A restart due to this check therefore
only happens with negligible probability.

Conditioned on ∥u∥∞ ≤ b/2λ, the rejection sampling check for ∥u+ y∥∞ ≤
b/2 leaks nothing about u (or w), by [39]. Furthermore, using the analysis from
[40, Section 5.2], the probability of the prover restarting due to this check is
about 1− 1

e ≈ 0.63. Hence the expected number of repetitions is constant.
It is left to show soundness, so consider a cheating prover with ∥w∥∞ > b.

By Lemma 3.4 such prover has probability at most 2−128 of getting ∥wR +
y mod P∥∞ ≤ b/2, regardless of y. This completes the proof.

3.5 Exact Proofs of Smallness

Using the protocol from Section 3.4, combined with a sum-of-squares proof, we
can get an efficient exact proofs of smallness, provided that the bound b that we
need to prove is sufficiently smaller than

√
P . Roughly, to prove that a value x has

magnitude smaller than some public bound b, it is sufficient to show that b2−x2

is non-negative,18 which can be done by representing it as a sum of squares: After
committing to x, the prover finds and commits to four other integers α, β, γ, δ
such that b2 − x2 = α2 + β2 + γ2 + δ2. The prover uses the underlying commit-
and-prove systems to show that this equality holds modulo P , and also uses the
approximate proof from above to show that the numbers are small enough so
that they do not trigger a wraparound modulo P . Taken together, this means
that this constraint holds over the integers, hence proving that indeed |x| < b.

In our implementation we actually use a slightly more general version, where
the prover may wish to amortize over m instances of this problem. The upside of
amortizing is that he will only need one l∞ proof (as opposed to one per vector).
The downside is that the size-bounds that we can prove this way are slightly
more restricted, since the gap in the approximate proofs grows with (the square
root of) the total dimension of all the vectors combined.

The protocol is described below. In this description we assume that com-
mitments to different vectors can be combined to a single commitment for the
concatenated vector (as needed for the underlying proofs systems). This clearly
holds for the Pedersen commitments that we use in our implementation.

18 More generally, to show that x ∈ [a, b] it is sufficient to show that (x− a)(b− x) is
non-negative.
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1. The prover has m vectors w1, . . .wm ∈ Zd, and the verifier has commitments
to all these vectors. For each vector wi, the prover wants to prove that
∥wi∥ ≤ bi (where the bi’s are public).
Denote b = maxi bi, and assume that b <

√
P/(3536(d+ 4)

√
m).

2. For each wi, the prover finds four non-negative integers αi, βi, γi, δi such
that α2

i + β2
i + γ2

i + δ2i = b2i − ∥wi∥2.
Let ui := (αi, βi, γi, δi) and vi := (wi|ui) ∈ Zd+4. The prover sends to the
verifier commitments to all the ui’s, and they both combine them with the
commitments to wi’s to get commitment for the vi’s.

3. The prover provides a ZKPOK that for all i, ∥vi∥2 = b2i (mod P ) (cf. Sec-
tion 3.1).

4. The prover provides an l∞ ZKPOK showing that
∥(v1| · · · |vm)∥∞ <

√
P/2(d+ 4).

Lemma 3.6. If b = maxi bi <
√
P/ (3536(d+ 4)

√
m), then the protocol above

is correct, and a zero-knowledge proof of knowledge that ∥wi∥ ≤ bi for all i.

Proof. ZK follows from the ZK of the two underlying proofs.
For soundness, note that proving statement (3) implies that for all the vi’s

we have ∥vi∥∞ <
√
P/2(d+ 4), and therefore ∥vi∥2 =

∑d+4
j=1 v

2
i,j < P/2. This

implies that statement (2) holds over the integers and not just modulo P , hence
b2i − ∥wi∥2 is positive.

The only thing left to show is that the bound b = maxi bi is small enough to
allow the use of the l∞ approximate proof from Section 3.4 To prove that all the
coefficients in the concatenated vector (v1| · · · |vm) of dimension m(d+4) are of
size at most

√
P/2(d+ 4) using that proof, the honest prover must have all the

coefficients smaller than
√
P/2(d+ 4)/γ, where γ = 2500

√
m(d+ 4). Hence we

need

b ≤
√

P/2(d+ 4)

2500
√
m(d+ 4)

=
√
P/

(√
2 · 2500 · (d+ 4)

√
m
)
≈
√
P/

(
3536(d+ 4)

√
m
)
,

which is exactly the bound in the statement of the lemma.

As a side remark, if we can tolerate a one-bit leakage on each ∥wi∥2, then
the prover can instead find three integers αi, βi, γi such that α2

i + β2
i + γ2

i =
b2i − ∥wi∥2 ± 1 (such three integers always exist since every integer which is
congruent to 1 or 2 modulo 4 is a sum of three squares). The prover then does
the same proof as above, but sending δi = ±1 to the verifier in the clear. (We
do not use this option in our protocol.)

Exact Proofs of Smallness with Larger Bounds In our scheme we some-
times need to prove exact bounds on vectors with entries that are larger than
the bound above. To do that, we let the prover break each coefficients into (say)
two digits of size ≤ ⌈

√
b⌉, commit to these digits and prove exact smallness for

them separately, and then prove that combining these digits indeed yields the
original coefficient.
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Namely, the honest prover has a dimension-d vector w with ∥w∥ ≤ b, and the
verifier has a commitment to w. The prover uses radix ϕ ∈ Z, chosen as small
as possible subject to ϕ2 − ϕ ≥ b

√
d/2. It breaks w into two “digit vectors”,

wlo := w mod ϕ (with entries in [±ϕ/2]) and whi := (w−wlo)/ϕ. It commits to
these vectors, produces a linear-constraint proof showing that w = ρ ·whi +wlo

(mod P ), and uses the exact proof protocol from above to prove that

∥wlo∥ ≤
√
d · ϕ/2, and ∥whi∥ ≤ b/ϕ+

√
d/2. (5)

To see why the last inequality must hold, observe that

∥whi∥ = ∥w −wlo∥/ϕ ≤ (∥w∥+ ∥wlo∥)/ϕ ≤ (b+ ϕ
√
d/2)/ϕ = b/ϕ+

√
d/2.

Let b∗ :=
√
P/

(
3536(d+ 4)

√
m) be the bound that we need in order to be able

to use the exact proofs from above. The condition ϕ2 − ϕ ≥ b
√
d/2 ensures that

b/ϕ +
√
d/2 ≤

√
d · ϕ/2, so we can use the above proofs as long as we are able

to set the radix ϕ small enough such that
√
d · ϕ/2 ≤ b∗. It is not hard to verify

that when
√
b < b∗ · (4/d)3/4− (4/d)1/4, the two conditions ϕ2−ϕ ≥ b

√
d/2 and√

d · ϕ/2 ≤ b∗ can always be satisfied.19

Combining the two bounds from Eq. (5) and the linear-relation proof, we can
therefore conclude that the size of the original w is bounded by

∥w∥ ≤ ϕ∥whi∥+ ∥wlo∥ ≤ ϕ(b/ϕ+
√
d/2) + ϕ

√
d/2 = b+ ϕ

√
d.

Therefore, this technique induces a multiplicative size gap of γ = 1+ϕ
√
d

b between
what the honest prover holds and what we can conclude about the vector of a
cheating prover. (In our setting this gap will be minuscule.)

We remark that when using this technique, the prover needs to commit to
more vectors and prove quadratic constraints on them, incurring a somewhat
higher computational cost. Also, in the amortized setting, we can deal with a
mix of some “small” and “large” vectors by breaking into digits only the large
vectors and keeping the small vectors intact.

Approximate Proofs of Smallness for l2 Norm The protocol in the pre-
vious section for proving that ∥w∥ ≤ b require proving quadratic constraints
on the vi’s to show that ∥vi∥2 = b2i , which may be costly. We note, however,
that a simple application of Corollary 3.2 allows us to reduce the number of
coefficients that are involved in the quadratic proof to 256+ 4 = 260, regardless
of the dimension of w. The price that we pay is a small gap between what we
can prove and what the honest prover actually uses (and the restriction on the
bound that the protocol supports becomes somewhat smaller).

The idea is to first project the d-dimensional vector down to a 256-dimensional
one by setting u = wR, for a random matrix R, and then apply the proof from

19 Jumping ahead, in our setting we have b∗ > 2104 and d = 256, so we can handle
bounds up to b ≈ 2190. The bounds that we actually need to prove will all be much
much smaller.
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the previous section to the projected vector u. Using Corollary 3.2, an exact
bound on ∥u∥ yields a very narrow range for the bound on ∥w∥. In our protocol,
however, we use a more general form of this approximate proof, which is tailored
to proving LWE relations, as we described next.

3.6 Proofs of Smallness for LWE

In the encryption scheme from Section 2.5, the prover sometimes has an LWE
instance b = sA + e (mod q), and it needs to prove that s, e are small. While
the prover can commit to s, e and use the proofs above, in this case we can
save about half the cost by skipping the commitment to e, since e is implicitly
committed by seeing the commitment to s and knowing A and b.

Below we describe this more efficient protocol, for the case q = P (with P
the parameter of the underlying commit-and-prove systems). In fact we need
a slightly more general variant that includes a committed “offset vector”, and
as in previous sections we also let the prover amortize over m such proofs. We
also use the technique from Section 3.5 to handle vectors with larger norm by
splitting the projected vectors into high and low digits.

In more detail, both prover and verifier know public matrices Ai ∈ Zki×di

P ,
i = 1, . . . ,m and bounds bi, b

′
i, and let γ be the size gap (to be defined below).

The prover has vectors si ∈ Zk
P and ei,xi ∈ Zdi

P , where ∥si∥ ≤ bi/γ and ∥ei∥ ≤
b′i/γ. The 2m vectors si, ei are partitioned into a set L of ml “large” vectors and
a set S of ms “small” ones (so ml +ms = 2m). The designation of which vector
belongs to what set is also public.

To simplify notations somewhat, below we assume that the LWE secrets are
all “small” and the noise vectors are all “large”, which would be the case in our
application. The protocol can be easily extended to handle an arbitrary mix of
“large” and “small”, but the notations get rather awkward.

Let β :=
√
P/(
√
2 · 2500 · 260 ·

√
ms + 2ml) ≈

√
P/(219.9

√
ms + 2ml). For

correctness of the protocol below, we require that the the bounds on the “small”
vectors in S all satisfy bi ≤ β/

√
30. For the “large” vectors in L, let b∗ =

mini(b
′
i) (i.e., the smallest “large” bound) and b∗ = maxi(b

′
i), and we require

that 8b∗/
√
b∗ ≤ β.

The radix for breaking integers into digits is set to ϕ ∈ Z, taken as large as
possible subject to

√
30b∗/ϕ + 8 ≥ 8ϕ, specifically we use ϕ := ⌊

√
b∗ · 30/64⌋.

Denoting γ1 :=
√
337/30 ≤ 3.36 and γ2 := 1 + 16ϕ√

30b∗
< 1 + 2√

b∗
, the size-gap

that the protocol below achieves is γ1 · γ2. 20 The protocol proceeds as follows:

0. For all i, let b̂i :=
√
30 bi/γ2 and b̂hii := (

√
30 b′i/ϕ +

√
256/2)/γ2 =

(
√
30 b′i/ϕ+ 8)/γ2, and also let b̂lo :=

√
256ϕ/(2γ2) = 8ϕ/γ2.

1. The prover sets bi := siAi+ei+xi mod P for all i, and sends to the verifier
the bi’s and also commitments to the si’s and xi’s.

2. Let D[0] = 1/2 and D[±1] = 1/4. The verifier chooses Ri ← Dki×256 and
R′i ← Ddi×256, and sends to the prover.

20 In our setting we have b∗ > 290, so the term 2√
b∗

is insignificant.
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3. The prover computes ui := siRi, vi := eiR
′
i. If ∥ui∥ >

√
30bi/γ2 or ∥vi∥ >√

30b′i/γ2 then the prover aborts.
Otherwise it splits the vi’s into digits, vlo

i = vi mod ϕ (with entries in
[±ϕ/2]), and vhi

i = (vi − vlo
i )/ϕ.

The prover commits to all the ui’s, v
lo
i ’s, and vhi

i ’s and sends to the verifier.
4. the parties then engage in the following ZKPOK protocols:

A. Exact smallness proofs (cf. Section 3.5): For all i the prover proves that

∥ui∥ ≤ b̂i, ∥vlo
i ∥ ≤ b̂lo, and ∥vhi

i ∥ ≤ b̂hii .
B. Linear-constraint proofs for the projected LWE secrets, siRi = ui (mod P )

for all i.
C. Linear-constraint proof for the LWE relation: For each all i it proves

that
biR

′
i = siAiR

′
i + ϕvhi

i + vlo
i + xiR

′
i (mod P ).

5. The verifier accepts if all the proofs passed.

Lemma 3.7. Assume that the dimensions and bounds satisfy the following con-
ditions:

– For vectors in S we have bi ≤ β/
√
30, and for vectors in L we have 8b∗/

√
b∗ ≤

β.
– For all i, bi ≤ P/45ki and b′i ≤ P/45di.

Then the protocol is correct ZKPOK, proving that bi = siAi + ei + xi mod P
holds for some ∥si∥ ≤ bi and ∥ei∥ ≤ b′i. The size gap for both the si’s and ei’s
is γ :=

√
337/30 · (1 + 16ϕ

b∗ ) ≤ 3.36(1 + 20√
b∗
).

Proof. ZK follows from the ZK of all the components. For completeness, first note
that since the honest prover has si ≤ bi/γ and si ≤ b′i/γ then by Corollary 3.2
the prover only aborts in Step 3 with negligible probability.

We also need to show that the bounds used in Step 4A satisfy the constraints
from Lemma 3.6. As we have ms +2ml projected vectors ui,vi ∈ Z256

P , we need

to ensure that the bounds b̂i, b̂
hi
i , b̂lo that are used in the exact-smallness proofs

do not exceed
√
P/

(√
2 · 2500 · 260

√
ms + 2ml

)
= β. For vectors in S we have

bi ≤ β/
√
30 and therefore b̂i ≤

√
30bi ≤ β. For vectors in L, recall that we set

ϕ = ⌊
√
b∗ · 30/64⌋ to get b̂hii ≥ b̂lo, and since b′i ≤ b∗ we get:

b̂lo ≤ b̂hii ≤ (
√
30 b′i/ϕ+ 8)/γ2 ≤

(
√
30 b∗ + 8ϕ)/ϕ

(
√
30 b∗ + 16ϕ)/(

√
30 b∗)

=

√
30 b∗ + 8ϕ√
30 b∗ + 16ϕ

·
√
30 b∗

⌊
√
b∗ · 30/64⌋

≤ (b∗/b∗) · 8
√
b∗ = 8b∗/

√
b∗ ≤

√
P/(
√
2 · 2500 · 260 ·

√
ms + 2ml).

It remains to prove soundness. Due to the proofs in Step 4 we can extract con-
crete si,xi,ui, v

hi
i ,vlo

i even from cheating provers. For each i, we can therefore
define ei := bi−siAi−xi mod P ∈ [±P/2]di (so the constraint bi = siAi+ei+xi
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(mod P ) holds by definition). All we need to show, then, is that ∥si∥ ≤ bi and
∥ei∥ ≤ b′i.

Due to constraint 4C, it holds by definition of ei that (ϕvhi + vlo) = eiR
′
i

(mod P ). Letting vi := ϕvhi+vlo, the bounds that we proved on the size of ∥vhi∥
and ∥vlo∥, together with the setting γ2 = 1 + 16ϕ/(

√
30b∗) ≥ 1 + 16ϕ/(

√
30b′i),

imply that

∥vi∥ ≤ ϕb̂hii + b̂lo = (
√
30 b′i + 8ϕ)/γ2 + 8ϕ/γ2 ≤

√
30 b′i + 16ϕ

1 + 16ϕ/(
√
30b′i)

=
√
30b′i.

Since bi ≤ P/45ki and b′i ≤ P/45di then we can use Corollary 3.3. By this
corollary, it must be the case that ∥si∥ ≤ bi and ∥ei∥ ≤ b′i for all i, or else we
would only have negligible probability of getting ∥ui∥ ≤ bi

√
30 or ∥vi∥ ≤ b′i

√
30.

This completes the proof.

Using different ϕi for different LWE equations. The protocol above uses the
same radix ϕ for all the “large” vectors, adding an extra factor of b∗/b∗ in
the conditions of Lemma 3.7. In our application this factor does not make a
difference, but it can be avoided by using a different radix ϕi = ⌊

√
b′i · 30/64⌋

for splitting the i’th “large” vector vi. This would have the effect of only requiring
8
√
b∗ ≤ β (rather than 8b∗/

√
b∗ ≤ β).

Sharing LWE secrets across instances. When using the proof above in our pro-
tocol, we often need to prove multiple LWE instances for the same LWE secret.
For example the same secret key is used in both the proof of key generation and
the proof of decryption.

In this case, the prover will only send a single commitment to that LWE secret
s, the verifier will only send a single challenge matrix R, and the parties will only
run a single exact-smallness proof for u = sR in Step 4A and a single instance
of the linear proof for it in Step 4B. On the other hand, they will run a separate
instance of the proof in Step 4C for each LWE relation. The bounds will remain
exactly as in Lemma 3.7 (although in this case we may have ms + 2ml < 2m).

Proofs for Module-LWE As mentioned in Section 2.4, our implementation
actually uses Module-LWE over a low dimension extension field FP ℓ rather than
over the integers (specifically we use ℓ = 2).

The proofs-of-smallness protocols above can easily be extended to this case,
treating b = sA+ e (mod q) as an equation over the FP ℓ , which can be written
as B = SA′ + E (mod P ) in matrix notation over the integers.

Given A′ and B, every entry in E can be expressed as an affine expression in
the entries of S, and moreover, the entries in S are all known linear combinations
of the (representation over Zp of) s. We can therefore arrange the entries of E

in a vector ẽ, and get a new equation over the integers b̃ = sÃ + ẽ (mod P ),
which we can prove using the protocol above.
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4 Implementation and Performance

In the long version [25] we describe how to put the techniques from the previous
sections together into a PVSS scheme. We implemented the components above
in C++, with operations in the Curve 25519 using libsodium and operations in
FP 2 using NTL. The implementation is available under MIT license from https:

//github.com/shaih/cpp-lwevss. Our implementation is still quite naive, op-
erating single-threaded, and making direct call to the exponentiation routines of
libsodium without any optimizations for multi-exponentiations.

We run this program on an old server that we had access to, featuring Intel
Xeon CPU, E5-2698 v3 running at 2.30GHz (which is a Haswell processor) with
32 cores and 250GB RAM. The software configurations included libsodium

1.0.18, NTL version 11.3.0, and GMP version 6.2.0, all compiled with gcc 7.3.1 and
running on CentOS Linux 7, kernel version 3.10.0.

The performance results with number of parties from 128 to 1024 are sum-
marized in Tables 1 and 2. In Table 1 we specify for each setting the time
spent in each of the high-level subroutine: key-generation, encryption, decryp-
tion, proving, and verifying. We also specify there the number of scalar-point
multiplications (denoted #exp) performed in each subroutine, and the total
RAM consumption.

# of Keygen Encrypt Decrypt Prove Verify RAM
parties time(sec) time(sec) time(ms) # exp time(sec) # exp time(sec) usage

128 5.1 4.2 1.4 80392 22.9 23145 15.3 2.26GB

256 5.2 4.4 1.4 82608 23.7 23451 15.9 2.73GB

512 5.2 5.0 1.4 84030 25.3 24063 17.4 3.74GB

1024 5.3 5.8 1.4 87524 28.2 24939 20.0 5.28GB

Table 1. Performance results with 128-1024 parties, by high-level subroutine.

In Table 2 we specify for each setting the running-time spent in some of the
lower-level subroutines: In particular the time spent by vector-matrix multipli-
cation by the CRS matrix over Zq, and the time spend performing scalar-point
multiplications on the curve.

As can be seen in Table 2, only about 25-30% of the prover time and about
15% of the verifier time was spent performing scalar-point multiplications on
the curve. The reason is that the number of these curve operations is lin-
ear in the dimensions k, while the number of scalar multiplications modulo q
is quadratic (since we compute a few vector-matrix multiplications.) We also
note that switching to a structured CRS matrix (by moving to operations over
dimension-k extension field/ring and relying on ring-LWE) would have reduced
the multiply-by-CRS time, making it insignificant. Implementing this optimiza-
tion could yield an almost 2× speedup for the prover and about 1.5× speedup for
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Prover Verifier
# of multiply point-scalar total multiply point-scalar total

parties by CRS multiply time by CRS multiply time

128 15.2 9.6 32.2 6.1 2.8 15.3

256 15.3 9.9 33.3 6.1 2.8 15.9

512 15.8 10.1 35.5 6.4 2.9 17.4

1024 16.1 10.5 39.4 6.5 3.0 20.0

Table 2. Running time (seconds) with 128-1024 parties, by low-level subroutine.

the verifier. It is clear from these tables that this PVSS scheme is quite feasible,
even for committees with many hundreds of parties and with our rather naive,
single-thread implementation.
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12. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Theory of Cryp-
tography Conference. pp. 407–437. Springer (2019)

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA. pp. 315–334. IEEE Computer Society (2018), https://doi.org/
10.1109/SP.2018.00020

14. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Annual International Cryptology Conference. pp. 126–144. Springer
(2003)

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC. pp. 494–503.
ACM Press (May 2002). https://doi.org/10.1145/509907.509980

16. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985). pp. 383–395. IEEE (1985)

17. Costa, N., Mart́ınez, R., Morillo, P.: Proof of a shuffle for lattice-based cryptogra-
phy. In: Nordic Conference on Secure IT Systems. pp. 280–296. Springer (2017)

18. Del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for proving
knowledge of small secrets. In: Annual International Cryptology Conference. pp.
365–394. Springer (2017)

19. D’Souza, R., Jao, D., Mironov, I., Pandey, O.: Publicly verifiable secret sharing
for cloud-based key management. In: International Conference on Cryptology in
India. pp. 290–309. Springer (2011)

20. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: International Workshop on Public Key Cryptography. pp.
300–316. Springer (2001)

21. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 224–245. Springer (2011)

22. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In: International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 32–46. Springer (1998)

23. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ecdsa with fast trustless
setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1179–1194 (2018)

24. Gentry, C., Halevi, S.: Compressible fhe with applications to pir. In: Theory of
Cryptography Conference. pp. 438–464. Springer (2019)

25. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly veri-
fiable secret sharing with thousands of parties. https://eprint.iacr.org/2021/
1397 (2021)

26. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR
with applications to large-scale secure MPC. https://eprint.iacr.org/2020/1248
(2020)

27. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I. Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer (2013),
https://doi.org/10.1007/978-3-642-40041-4_5



Practical Non-Interactive PVSS with Thousands of Parties 29

28. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. Journal of the ACM
(JACM) 38(3), 690–728 (1991)

29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual in-
ternational conference on the theory and applications of cryptographic techniques.
pp. 305–326. Springer (2016)

30. Groth, J.: Applied crypto: Introducing noninteractive dis-
tributed key generation (2021), https://medium.com/dfinity/

applied-crypto-one-public-key-for-the-internet-computer-ni-dkg-4af800db869d

31. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021), https://eprint.iacr.org/2021/339

32. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing
schemes. In: International Workshop on Selected Areas in Cryptography. pp. 294–
308. Springer (2008)

33. Jhanwar, M.P., Venkateswarlu, A., Safavi-Naini, R.: Paillier-based publicly ver-
ifiable (non-interactive) secret sharing. Designs, codes and Cryptography 73(2),
529–546 (2014)

34. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert
space 26. Contemporary mathematics 26 (1984)

35. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. IACR Cryptol. ePrint Arch. 2020, 1274 (2020)

36. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge argu-
ments for matrix-vector relations and lattice-based group encryption. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. pp. 101–131. Springer (2016)

37. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. In: ACM CCS 18. pp.
1837–1854. ACM Press (2018). https://doi.org/10.1145/3243734.3243788

38. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: International workshop on public key cryptography. pp. 162–179. Springer
(2008)

39. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 598–616. Springer, Heidelberg (Dec 2009), https://doi.org/10.1007/

978-3-642-10366-7_35

40. Lyubashevsky, V.: Basic lattice cryptography: Encryption and Fiat-Shamir signa-
tures. https://www.tinyurl.com/latticesurvey, accessed Apr-2021 (2020)

41. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge
proofs for integer relations. In: CCS. pp. 1051–1070. ACM (2020)

42. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge
proofs via one-time commitments. In: Garay, J.A. (ed.) Public-Key Cryptography
- PKC 2021, Part I. Lecture Notes in Computer Science, vol. 12710, pp. 215–241.
Springer (2021), https://doi.org/10.1007/978-3-030-75245-3_9

43. Melchor, C.A., Barrier, J., Fousse, L., Killijian, M.O.: Xpir: Private information
retrieval for everyone. Proceedings on Privacy Enhancing Technologies 2016, 155–
174 (2016)

44. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: International Conference on Financial Cryptography and
Data Security. pp. 158–172. Springer (2011)



30 Craig Gentry, Shai Halevi, and Vadim Lyubashevsky

45. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International conference on the theory and applications of cryptographic
techniques. pp. 223–238. Springer (1999)

46. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE (2013)

47. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D.A. (ed.) Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5157,
pp. 554–571. Springer (2008), https://doi.org/10.1007/978-3-540-85174-5_31

48. Rambaud, M., Urban, A.: Almost-asynchronous mpc under honest majority, revis-
ited. IACR Cryptol. ePrint Arch. 2021, 503 (2021)

49. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009), http://doi.acm.org/10.1145/1568318.
1568324

50. Reyzin, L., Smith, A., Yakoubov, S.: Turning hate into love: Compact homomorphic
ad hoc threshold encryption for scalable mpc. In: International Symposium on
Cyber Security Cryptography and Machine Learning. pp. 361–378. Springer (2021)

51. Ruiz, A., Villar, J.L.: Publicly verifiable secret sharing from paillier’s cryptosys-
tem. In: WEWoRC 2005–Western European Workshop on Research in Cryptology.
Gesellschaft für Informatik eV (2005)

52. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Annual International Cryptology Conference. pp.
148–164. Springer (1999)

53. Sion, R., Carbunar, B.: On the computational practicality of private information
retrieval. In: Proceedings of the Network and Distributed Systems Security Sym-
posium. pp. 2006–06. Internet Society (2007)

54. Stadler, M.: Publicly verifiable secret sharing. In: Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application of Cryp-
tographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Lecture
Notes in Computer Science, vol. 1070, pp. 190–199. Springer (1996), https:

//doi.org/10.1007/3-540-68339-9_17

55. Wu, T.Y., Tseng, Y.M.: A pairing-based publicly verifiable secret sharing scheme.
Journal of Systems Science and Complexity 24(1), 186–194 (2011)

56. Young, A., Yung, M.: A pvss as hard as discrete log and shareholder separability.
In: International Workshop on Public Key Cryptography. pp. 287–299. Springer
(2001)


