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Abstract. This paper proposes the first practical pairing-free three-
move blind signature schemes that (1) are concurrently secure, (2) pro-
duce short signatures (i.e., three or four group elements/scalars), and
(3) are provably secure either in the generic group model (GGM) or the
algebraic group model (AGM) under the (plain or one-more) discrete
logarithm assumption (beyond additionally assuming random oracles).
We also propose a partially blind version of one of our schemes.
Our schemes do not rely on the hardness of the ROS problem (which can
be broken in polynomial time) or of the mROS problem (which admits
sub-exponential attacks). The only prior work with these properties is
Abe’s signature scheme (EUROCRYPT ’02), which was recently proved
to be secure in the AGM by Kastner et al. (PKC ’22), but which also
produces signatures twice as long as those from our scheme.
The core of our proofs of security is a new problem, called weighted frac-
tional ROS (WFROS), for which we prove (unconditional) exponential
lower bounds.

1 Introduction

Blind signatures [1] allow a user to interact with a signer to produce a valid sig-
nature that cannot be linked back by the signer to the interaction that produced
it. Blind signatures are used in several applications, such as e-cash systems [1,2],
anonymous credentials (e.g., [3]), privacy-preserving ad-click measurement [4],
and various forms of anonymous tokens [5,6]. They are also covered by an RFC
draft [7].

This paper develops the first practical pairing-free three-move blind signa-
ture schemes that (1) are concurrently secure, (2) produce short signatures (i.e.,
three or four group elements/scalars), and (3) are provably secure either in the
generic group model (GGM) [8,9] or in the algebraic group model (AGM) [10]
under the discrete logarithm (DL) or the one-more discrete logarithm (OMDL)
assumption (in addition to assuming random oracles [11]). Our DL-based scheme
also admits a partially blind version [12], roughly following a paradigm by Abe
and Okamoto [13], that targets applications where signatures need to depend on
some public input (e.g., an issuing date) known to the signer. An overview of
our schemes is given in Table 1.



Unlike blind Schnorr [14], Okamoto-Schnorr [15], and other generic construc-
tions based on identification schemes [16], we do not rely on the hardness of
the ROS problem, for which a polynomial-time attack has recently been pre-
sented [17]. Also, unlike Clause Blind Schnorr (CBS) signatures [18], we do not
rely on the assumed hardness of the mROS problem, which is subject to (mildly)
sub-exponential attacks and we can thus support smaller group sizes.1 In fact,
our schemes all admit tight bounds, and this suggests that they can achieve
pλ{2q-bit of security on λ-bit elliptic curves, supporting an instantiation with
256-bit curves. Our security proofs rely on a reduction to a new variant of the
ROS problem, called weighted fractional ROS (WFROS), for which we prove an
exponential, unconditional lower bound. Therefore, another benefit over CBS,
beyond concrete parameters, is that we do not need to rely on an additional
assumption.

Perhaps as a testament of the unsatisfactory status of pairing-free schemes,
the only other scheme known to achieve exponential, concurrent, security is
Abe’s scheme [19]. Although its original (standard-model) proof was found to
be flawed, proofs were then given both in the GGM [20] and the AGM [21],
along with a proof for the restricted setting of sequential security [22]. Still, it
produces longer signatures and public keys, and is overall less efficient. Also, it
only offers computational blindness (under DDH), whereas our scheme provides
perfect blindness.

Discrete-Logarithm based blind signatures.We stress that our focus here
is making pairing-free schemes as practical and as secure as possible. Indeed,
very simple pairing-based blind signature schemes in the ROM can be obtained
from BLS signatures [23,24]. Blind BLS offers a different trade-off: signatures
are short (i.e., one group element) and signing requires only two moves, but
signature verification requires a more expensive (and more complex) pairing
evaluation. Indeed, the current blind signature RFC draft [7] favors RSA over
BLS, also due to lesser availability of pairings implementations. In particular,
several envisioned applications of blind signatures are inherently browser-based,
and the available cryptographic libraries (e.g., NSS for Firefox and BoringSSL
for Chrome) do not yet offer pairing-friendly curve implementations.

In contrast, (non-blind) Schnorr signatures [25,26] (such as EdDSA [27]) are
short, can rely on standard libraries, and outperform RSA. Though their blind
evaluation requires three rounds, this may be less concerning in applications
where verification cost is the dominating factor and the signing application can
easily keep state. Indeed, [7] identifies CBS as the only plausible alternative to
RSA, and our schemes improve upon CBS by avoiding the mROS assumption.
Once the group order is adjusted to resist sub-exponential attacks, we achieve
comparable signature size, more efficient signing, and accommodate for partial

1 The best known attack against mROS [18] runs in time 2``logp``1q`λ{p1`logp``1qq,
where λ is the security parameter and ` corresponds to the number of concurrent
sessions. The worst ` gives a 2Opλ{ log λq attack, and in practice, this suggests a choice
of λ “ 512 to achieve 128-bit security for all `’s.
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Scheme PK size Sig. size Assumption Communication

BS1 (Section 4) 1 G 3 Zp GGM 2 G + 3 Zp
BS2 (full version) 1 G 4 Zp OMDL 2 G + 4 Zp
BS3 (Section 5.1) 2 G 4 Zp DL 2 G + 4 Zp
PBS (Section 6) 1 G 4 Zp DL 2 G + 4 Zp

Blind Schnorr [18] 1 G 2 Zp OMDL + ROS 1 G + 2 Zp
Clause Blind Schnorr [18] 1 G 2 Zp OMDL + mROS 2 G + 4 Zp

Abe [19,21] 3 G 2 G + 6 Zp DL λ bits + 3 G + 6 Zp

Table 1. Overview of our results. The four schemes proposed in this paper com-
pared to pairing-free schemes that admit GGM/AGM security proofs in the literature.
All schemes are three-move and secure assuming the ROM; All schemes except BS1

admit AGM security proofs; further p “ |G|. As in plain Schnorr signatures, most
schemes allow replacing one element in Zp with a group element in the signature. The
ROS assumption can be broken in polynomial time unless the scheme is restricted
to tolerate only a very small number of sessions. Also, the mROS assumption admits
sub-exponential attacks, which require the choice of a larger order p over all schemes
(roughly 512-bit for 128-bit security [18]).

blindness. (No partially blind version of CBS is known to the best of our knowl-
edge.)

Finally, note that it is easier to prove security of pairing-free schemes under
sequential access to the signer. For example, Kastner et al. [21] prove that plain
blind Schnorr signatures are secure in this case, in the AGM, assuming the
hardness of OMDL. Also, Baldimtsi and Lysyanskaya [22] (implicitly) prove
sequential security of Abe’s scheme. However, many applications, like PCM,
easily enable concurrent attacks.

On ideal models.The use of the AGM or the GGM, along with the ROM, still
appears necessary for the most practical pairing-free schemes with concurrent
security. As of now, solutions solely assuming the ROM can only handle bounded
concurrency [16] or, alternatively, their communication and computation costs
grow with the number of signing sessions [28,29,30].

A number of other schemes [31,32,33,34,35,36,37] partially or completely
avoid ideal models, some of which are fairly practical. However, they do not
yet appear suitable for at-scale deployment.

1.1 A Scheme in the GGM

Our simplest scheme only admits a proof in the generic-group model (GGM)
but best illustrates our ideas, in particular, how we bypass ROS-style attacks. It
is slightly less efficient than Schnorr signatures, i.e., a signature that consists of
three scalars mod p (or alternatively, two scalars and a group element). Nonethe-
less, it has a very similar flavor (in particular, signature verification can be built
on top of a suitable implementation of Schnorr signatures in a black-box way).
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Preface: Blind Schnorr Signatures and ROS. Recall that we seek an
interactive scheme (1) that is one-more unforgeable (i.e., no adversary should be
able to generate ` ` 1 signatures by interacting only ` times with the signer),
and (2) for which interaction can be blinded. It is helpful to illustrate the main
technical barrier behind proving (1) for interactive Schnorr signatures. Recall
that the verification key is X “ gx for a generator g of a cyclic group G of prime
order p, and a signing key x. The signer starts the session by sending A “ ga,
for a random a P Zp. Then, the user sends a challenge c “ HpA,mq for a hash
function H and a message m to be signed. Finally, the signer responds with
s “ a` c ¨ x, and the signature is σ “ pc, sq.

Let us now consider an adversary that obtains ` initial messages A1, . . . , A`
from the signer, where Ai “ gai . By solving the so-called ROS problem [38,16,18],
the attacker can find ``1 vectors ~α1, . . . , ~α``1 P Z`p and a vector pc1, . . . , c`q P Z`p
such that

ÿ̀

j“1

α
pjq
i ¨ cj “ c˚i (1)

for all i P r``1s, where c˚i “ Hp
ś`
j“1A

α
pjq
i
j ,m˚i q, for some message m˚i P t0, 1u

˚.

(Here, α
pjq
i is the j-th component of ~αi.) Then, the attacker can obtain sj “

aj ` cjx from the signer for all j P r`s by completing the ` signing sessions. It is
now easy to verify that pc˚i , s

˚
i q is a valid signature for m˚i for all i P r``1s, where

s˚i “
ř`
j“1 α

pjq
i ¨ sj . Benhamouda et al. [17] recently gave a simple polynomial-

time algorithm to solve the ROS problem for the case ` ą logppq, which thus
breaks one-more unforgeability.2

Fuchsbauer et al. [18] propose a different interactive signing process for
Schnorr signatures that is one-more unforgeable (in the AGM + ROM) assuming
that a variant of the ROS problem, called mROS, is hard. The mROS problem,
however, admits sub-exponential attacks, and as it gives approximately only 70
bits of security from an implementation on a 256-bit curve, it effectively forces
the use of 512-bit curves.3

Our first scheme.We take a different path which completely avoids the ROS
and mROS problems to obtain our first scheme, BS1. Again, we present a non-
blind version – the scheme can be made blind via fairly standard tricks, as we
explain in the body of the paper below. Again, the public key is X “ gx for a
secret key x. Then, the signer and the user engage in the following protocol to
sign m P t0, 1u˚:

1. The signer sends A “ ga and Y “ Xy for random a, y P Zp.
2. The user responds with c “ HpA, Y,mq
3. The signer returns a pair ps, yq, where s “ a` cxy.

2 Many envisioned implementations allow for ` ą logppq. Still, is worth noting that
the scheme retains some security for ` ă logppq even in the standard model [16].

3 mROS depends on a parameter `, with a similar role as in ROS – sub-exponential
attacks require ` ă logppq, but a one-more unforgeability attack for a small ` implies
one for any `1 ą ` simply by generating p`1 ´ `q additional valid signatures.
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4. The user accepts the signature σ “ pc, s, yq iff gs “ A ¨ Y c and Y “ Xy.

Verification simply checks that HpgsX´yc, Xy,Mq “ c. In particular, note that
pc, sq is a valid Schnorr signature with respect to the public-key Xy – this can
be leveraged to implement the verification algorithm on top of an existing im-
plementation of basic Schnorr signatures that also hash the public key (EdDSA
does exactly this).4 Further, as in Schnorr signatures, we could replace c with A
in σ, and our results would be unaffected.

Security intuition. To gather initial insights about the security of BS1, it is
instructive to attempt an ROS-style attack. The attacker opens ` sessions and
obtains pairs pA1, Y1q, . . . , pA`, Y`q, where Ai “ gai and Yi “ Xyi “ gxyi for all
i P r`s. One natural extension of the ROS attack is to find `` 1 vectors ~αi P Z`p
along with messages m˚1 ,m

˚
2 , . . . P t0, 1u

˚ such that

c˚i “ H

˜

ź̀

j“1

A
α
pjq
i
j ,

ź̀

j“1

Y
α
pjq
i

j ,m˚i

¸

for all i P r`` 1s and then find pc1, . . . , c`q P Z`p such that

ÿ̀

j“1

α
pjq
i ¨ yj ¨ cj “ c˚i ¨

ÿ̀

j“1

α
pjq
i ¨ yj , (2)

for all i P r` ` 1s. Indeed, if this succeeded, the adversary could complete the `
sessions to learn psj , yjq by inputting cj , where yj is random and sj “ aj`cj ¨x¨yj .
One could generate ` ` 1 signatures pc˚i , s

˚
i , y

˚
i q for i P r` ` 1s by setting s˚i “

ř`
j“1 α

pjq
i sj and y˚i “

ř`
j“1 α

pjq
i ¨ yj . These would be valid because

gs
˚
i “ g

ř`
j“1 α

pjq
i paj`cjxyjq

“
ź̀

j“1

A
α
pjq
i
j ¨X

ř`
j“1 α

pjq
i cjyj (2)

“
ź̀

j“1

A
α
pjq
i
j ¨

˜

ź̀

j“1

Y
α
pjq
i

j

¸c˚i

.

However, finding pc1, . . . , c`q that satisfy (2) for `` 1 i’s simultaneously is much
harder than ROS. An initial intuition here is that Xy completely hides y to the
point where y is revealed later in the session, where it appears like a random and
fresh weight in the sum, independent of ci. This intuition is however not correct,
as an attacker can use the group element Xy and can try to gain information
about y, but our proof will show (among other things) that in the GGM no
useful information is obtained about y, and y is (close to) uniform when it is
later revealed.

4 Note that this only superficially resembles key-blinding for Schnorr signatures [39].
Here, the “blinding” y is actually public and part of the signature.
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The WFROS problem. The above attack paradigm is in fact generalized in
terms of a new ROS-like problem that we call WFROS (this stands for Weighted
Fractional ROS), for which we prove an unconditional lower bound. WFROS
considers a game with two oracles that can be invoked adaptively in an inter-
leaved way:

- The first oracle, H, accepts as input a pair of vectors ~α, ~β P Z2``1
p , which are

then associated with a random δ P Z˚p .
- The second oracle, S, allows to bind, for some i P r`s, chosen input ci P Zp

with a random weight yi P Z˚p . During the course of the game, this latter
oracle must be called exactly once for each i P r`s.

The adversary finally commits to a subset of ``1 prior H queries and wins if for
each query in the subset, which has defined a pair of vector ~α, ~β and returned δ,
we have A{B “ δ, where

A “ αp0q `
ÿ

iPr`s

yipα
p2i´1q ` ci ¨ α

p2iqq , B “ βp0q `
ÿ

iPr`s

yipβ
p2i´1q ` ci ¨ β

p2iqq .

Here, vpiq denotes the i-th component of vector ~v. Our main result (Theorem 1)
says that no adversary making QH queries to H can win this game with proba-
bility better than pQ2

H ` 2`QHq{pp´ 1q, or, in other words, QH ě mint
?
p, p{`u

is needed to win with constant probability. Note that ` !
?
p is generally true,

as for our usage, ` is bounded by the number of signing sessions.
Our GGM proof for BS1 transforms any generic attacker into one breaking

the WFROS problem. This transformation is actually not immediate because a
one-more unforgeability attacker can learn functions of the secret key x when
obtaining the second message from the signer. A similar challenge occurs in
proving hardness of the OMDL problem in the GGM, which was recently resolved
by Bauer et al. [40], and we rely on their techniques.

1.2 AGM Security and Partial Blindness

The Algebraic Group Model (AGM) [10] can be seen as a weaker idealization
than the GGM. In particular, AGM proofs deal with actual groups (as opposed
to representing group elements with random labels) and proceed via reductions
that apply only to “algebraic adversaries”, which provide representation of the
group elements they output to the reduction. AGM has become a very popular
model for validating security of a number of practical group-based protocols.

The main barrier to proving one-more unforgeability of BS1 in the AGM is
that the representation of Xy could leak some information about y that would
not be available in the GGM, and thus we would not be able to apply our argu-
ment showing that y is still (close to) random looking when it is later revealed
– our reduction in the GGM security proof crucially relies on this. To over-
come this issue, for the two schemes BS2 and BS3, we replace Xy with a hiding
commitment to y. In particular, we propose two different ways of achieving this:
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Scheme BS2. Here, Xy is replaced by gtXy. Later, the signer responds to chal-
lenge c with ps, y, tq, where s “ a` c ¨ y ¨ x. A signature is σ “ pc, s, y, tq.

Scheme BS3. Here, gtXy is replaced by gtZy, where Z is an extra random
group element included in the verification key.

We consider BS2 mostly for pedagogical reasons. Indeed, we can prove security
of BS3 in the AGM based solely on the discrete logarithm problem (DL). In
contrast, BS2 relies on the hardness of the (stronger) one-more DL problem
(OMDL) [41], which asks for the hardness of breaking `` 1 DL instances given
access to an oracle that can solve at most ` (adaptively chosen) DL instances.
While we know that OMDL is generally not easier than DL [40], a prudent
instantiation may prefer relying on the (non-interactive) DL problem. While
BS3 requires a longer key, one could mitigate this by obtaining Z as the output
of a hash function (assumed to be a random oracle) evaluated on some public
input.

The proof of security for both schemes consists of showing that any adversary
breaking one-more unforgeability can be transformed into one breaking either
OMDL or DL (depending on the scheme) or into one breaking the WFROS
problem. For the latter, however, we can resort to our unconditional hardness
lower bound (Theorem 1).

Adding Partial Blindness. Finally, we note that it is not too hard to add
partial blindness to BS3, which is another reason to consider this scheme. In
particular, to obtain the resulting PBS scheme, we can adopt a framework by
Abe and Okamoto [13]. The main idea is simply to use a hash function (modeled
as a random oracle) to generate the extra group element Z in a way that is
dependent on a public input upon which the signature depends. We target in
particular a stronger notion of one-more unforgeability, which shows that if the
protocol is run ` times for a public input, then no ``1 signatures can be generated
for that public input regardless of how many signatures have been generated for
different public inputs. We defer more details to Section 6.

Outline of the Paper

Section 2 will introduce some basic preliminaries. Section 3 will then introduce
the WFROS problem, and prove a lower bound for it. We will then discuss
our GGM-based scheme in Section 4, whereas variants secure in the AGM are
presented in Section 5. Finally, we give a partially blind instantiation of our
AGM scheme in Section 6.

2 Preliminaries

Notation.For positive integer n, we write rns for t1, . . . , nu. We use λ to denote
the security parameter. We use G to denote an (asymptotic) family of cyclic
groups G :“ tGλuλą0, where |Gλ| ą 2λ. We use gpGλq to denote the generator
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of Gλ, and we will work over prime-order groups. We tacitly assume standard
group operations can be performed in time polynomial in λ in Gλ and adopt
multiplicative notation. We will often compute over the finite field Zp (for a
prime p) – we usually do not write modular reduction explicitly when it is clear
from the context. We write Z˚p “ Zpzt0u. We often need to consider vectors

~α P Z`p and usually refer to the i-th component of ~α as αpiq P Zp.
Blind signatures. This paper focuses on three-move blind signature schemes,
and our notation is similar to that of prior works (e.g., [16,18]). Formally, a
(three-move) blind signature scheme BS is a tuple of efficient (randomized) al-
gorithms

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.Verq ,

with the following behavior:

- The parameter generation algorithm BS.Setupp1λq outputs a string of pa-
rameters par, whereas the key generation algorithm BS.KGpparq outputs a
key-pair psk, pkq, where sk is the secret (or signing) key and pk is the public
(or verification) key.

- The interaction between the user and the signer to sign a message m P t0, 1u˚

with key-pair ppk, skq is defined by the following experiment:

psts,msg1q Ð BS.S1pskq , pst
u, chlq Ð BS.U1ppk,msg1,mq ,

msg2 Ð BS.S2pst
s, chlq , σ Ð BS.U2pst

u,msg2q .
(3)

Here, σ is either the resulting signature or an error message K.
- The (deterministic) verification algorithm outputs a bit BS.Verppk, σ,mq.

We say that BS is (perfectly) correct if for every message m P t0, 1u˚, with
probability one over the sampling of parameters and the key pair ppk, skq, the
experiment in (3) returns σ such that BS.Verppk, σ,mq “ 1. All of our schemes
are going to be perfectly correct.

One-more unforgeability. The standard notion of security for blind sig-
natures is one-more unforgeability (OMUF). OMUF ensures that no adversary
playing the role of a user interacting with the signer ` times, in an arbitrarily
concurrent fashion, can issue ``1 signatures (or more, of course). The OMUFA

BS

game for a blind signature scheme BS is defined in Figure 1. The corresponding
advantage of A is defined as Advomuf

BS pA, λq :“ PrrOMUFA
BSpλq “ 1s. All of our

analyses will further assume one or more random oracles, which are modeled as
an additional oracle to which the adversary A is given access.

Blindness. We also consider the standard notion of blindness against a mali-
cious server that can, in particular, attempt to publish a malformed public key.
The corresponding game BlindA

BS is defined in Figure 2, and for any adversary

A, we define its advantage as Advblind
BS pA, λq :“

ˇ

ˇ

ˇ
PrrBlindA

BSpλq “ 1s ´ 1
2

ˇ

ˇ

ˇ
. We

say the scheme is perfectly blind if and only if Advblind
BS pA, λq “ 0 for any A and

all λ.
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Game OMUFA
BSpλq :

par Ð BS.Setupp1λq
psk, pkq Ð BS.KGpparq
sid Ð 0 ; `Ð 0 ; Ifin ÐH

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2ppkq

If D k1 ‰ k2 such that pm˚k1 , σ
˚
k1
q “ pm˚k2 , σ

˚
k2
q

then return 0
If D k P r`` 1s such that BS.Verppk, σ˚k ,m

˚
k q “ 0

then return 0
Return 1

Oracle S1 :
sid Ð sid` 1
pstssid,msg1q Ð BS.S1pskq
Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
msg2 Ð BS.S2pst

s
i , ciq

Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Fig. 1. The OMUF security game for a blind signature scheme BS.

Game BlindA
BSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u ; b0 Ð b ; b1 Ð 1´ b
b1Ð$ AInit,U1,U2pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, m̃0, m̃1q :
sess0 Ð init

sess1 Ð init

pk Ð p̃k
m0 Ð m̃0 ; m1 Ð m̃1

Oracle U1pi,msgpiq1 q :
If i R t0, 1u or sessi ‰ init then return K
sessi Ð open

pstui , chl
piq
q Ð BS.U1ppk,msgpiq1 ,mbiq

Return chlpiq

Oracle U2pi,msgpiq2 q :
If i R t0, 1u or sessi ‰ open then return K
sessi Ð closed

σbi Ð BS.U2pst
u
i ,msgpiq2 q

If sess0 “ sess1 “ closed then
If σ0 “ K or σ1 “ K then return pK,Kq
Return pσ0, σ1q

Return pi, closedq

Fig. 2. The Blind security game for a blind signature scheme BS.

Game-playing proofs. Several of our proofs adopt a lightweight variant of the
standard “Game-Playing Framework” by Bellare and Rogaway [42].

3 The Weighted Fractional ROS Problem

This section introduces and analyzes an unconditionally hard problem under-
lying all of our proofs, which we call the Weighted Fractional ROS problem
(WFROS). It is a variant of the original ROS problem [38,16,18], which, in turn,
stands for Random inhomogeneities in a Overdetermined Solvable system of lin-
ear equations. While ROS can be solved in polynomial time [17] and its mROS
variant can be solved in sub-exponential time [18], we are going to prove an
exponential lower bound for WFROS.
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Game WFROSA
`,p :

hid Ð 0 ; Ifin ÐH

J Ð AH,S
ppq

If J Ę rhids or |J | ď ` or Ifin ‰ r`s then
Return 0

For each j P J ,
Aj Ð α

p0q
j `

ř

iPr`s yipα
p2i´1q
j ` ci ¨ α

p2iq
j q

Bj Ð β
p0q
j `

ř

iPr`s yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

If @j P J : pAj “ δjBj ^ Bj ‰ 0q then
Return 1

Return 0

Oracle Hp~α, ~βq :
hid Ð hid` 1
~αhid Ð ~α ; ~βhid Ð ~β
δhid Ð$ Z˚p
Return δhid, hid

Oracle Spi, ciq :
If i R r`szIfin then return K
yiÐ$ Z˚p
Ifin Ð Ifin Y tiu
Return yi

Fig. 3. The WFROS problem. Here, ~α, ~β P Z2``1
p , which is indexed as ~α “

pαp0q, . . . , αp2`qq and ~β “ pβp0q, . . . , βp2`qq.

The WFROS problem. The problem is defined via the game WFROSA
`,p, de-

scribed in Figure 3, which involves an adversary A and depends on two integer
parameters ` and p, where p is a prime. The adversary here interacts with two
oracles, H and S. The first oracle allows the adversary to link a vector pair
~α, ~β P Z2``1

p with a random inhomogeneous part δ P Z˚p – each such query de-
fines implicitly an equation A{B “ δ in the unknowns C1, . . . ,C` and Y1, . . . ,Y`.
A call to Spi, ciq lets us set the value of Ci to ci and set Yi to a random value yi.
The second oracle Spi, ¨q must be called once for every i P r`s. It is noteworthy
to stress that the ci’s can be chosen arbitrarily, whereas the corresponding yi’s
are random and independent.

In the end, the adversary wins the game if a subset of ``1 equations defined
by the H queries is satisfied by the assignment defined by querying S. In particu-
lar, we define Advwfros

`,p pAq “ Pr
“

WFROSA
`,p “ 1

‰

. Note that it would be possible
to carry out some of the following security proofs using restricted versions of the
WFROS game, but the above formulation lets us handle all schemes via a single
notion.

A Lower Bound for WFROS. The following theorem, our main result on
WFROS, shows that any adversary winning WFROS with constant probability
requires QH “ Ωpmint

?
p, p{`uq queries. (Also, note that all applications of

interest assume ` !
?
p.)

Theorem 1 (Lower bound for WFROS). For any ` ą 0, any prime number
p, and any adversary A playing the WFROS`,p game that makes at most QH

queries to H, we have

Advwfros
`,p pAq ď QHp2``QHq

p´ 1
.

The proof is given in the next section. To gain some very high-level intuition,
we observe that a key contributor to the hardness of WFROS are values yi,

10



which are defined after the ci’s are fixed and hence randomize the Aj and Bj ’s.
Therefore, to satisfy Aj “ δj ¨Bj , the adversary is restricted in the way it plays.

For example, to satisfy an equation defined by an H query p~αj , ~βjq, the adversary

can pick ci’s such that pα
p2i´1q
j ` ciα

p2iq
j q “ δj ¨ pβ

p2i´1q
j ` ciβ

p2iq
j q for all i P r`s.

Then, the equation Aj “ δjBj is satisfied no matter what the yi’s are. Our proof
shows that the adversary has to pick ci’s this way – and in fact, it has to follow
even more restrictions. Finally, we show that under these restrictions, no set of
`` 1 equations can be satisfied simultaneously.

3.1 Proof of Theorem 1

Let A be an adversary for the WFROS game that makes at most QH queries to
H. Without loss of generality, we assume that A makes exactly one query pi, ciq
to S for each i P r`s and that A always outputs J Ď rQHs.

In the WFROSA
`,p game, for each j P rQHs, denote the event Wj as

α
p0q
j `

ÿ

iPr`s

yipα
p2i´1q
j ` ci ¨ α

p2iq
j q “ δj

¨

˝β
p0q
j `

ÿ

iPr`s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

˛

‚

(W1)

^ β
p0q
j `

ÿ

iPr`s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q ‰ 0 . (W2)

In other words, Wj is the event that the equation defined by the j-th H query
is satisfied. Then, A wins if and only if |J | ą ` and Wj occur for each j P J .

Denote W :“ p|J | ą `q ^
´

Ź

jPJ Wj

¯

and we have Advwfros
`,p pAq “ PrrW s.

To bound PrrW s, we need notation to refer to some values (formally, random

variables) defined in the execution of the WFROSA
`,p game. First, denote as Ipjqfin

the contents of the set Ifin when the adversary makes the j-th query to H, and
let p~αj , ~βjq be the input of this query to H, which is answered with δj . Also,

let Ipjqunk :“ r`szIpjqfin , i.e., the set of indices i P r`s for which A has not yet made
any query pi, ¨q to S when the j-th query to H is made. Further, c1, . . . , c` and
y1, . . . , y` are the values defined by querying S.

Now, for each j P rQHs, we define the following events:

Event E
p1q
j . First, let E

p1q
1,j be the event that β

p0q
j `

ř

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

‰ 0. For each i P Ipjqunk, also let E
p1q
2,pj,iq be the event that α

p2i´1q
j ` ci ¨α

p2iq
j ‰

δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

. Finally, let E
p1q
j :“ E

p1q
1,j _

´

Ž

iPrIpjqunks
E
p1q
2,pj,iq

¯

.

Event E
p2q
j . We denote the event E

p2q
j as the event where

@ i P Ipjqunk : α
p2iq
j ¨ β

p2i´1q
j “ α

p2i´1q
j ¨ β

p2iq
j . (4)

11



Note that events E
p1q
j and E

p2q
j are, by themselves, not necessarily unlikely – the

adversary can certainly provoke them. However, we intend to show that this has
implications on the ability to satisfy the j-th equation. In particular, we prove
the following two lemmas in Sections 3.2 and 3.3 below, respectively.

Lemma 1. PrrWj ^ E
p1q
j s ď ``1

p´1 .

Lemma 2. PrrWj ^ p E
p1q
j q ^ E

p2q
j s ď `

p´1 .

Now, if we denote Ep1q :“
Ž

jPrQHs
pWj ^ E

p1q
j q and Ep2q :“

Ž

jPrQHs
pWj ^

p E
p1q
j q ^ E

p2q
j q, the union bound yields PrrEp1qs ď QHp``1q

p´1 and PrrEp2qs ď
QH¨`
p´1 . Our final lemma (proved in Section 3.4) is then the following:

Lemma 3. PrrW ^ p Ep1qq ^ p Ep2qqs ď QHpQH´1q
p´1 .

The three lemmas can be combined to obtain

PrrW s ď PrrEp1qs ` PrrEp2qs ` PrrW ^ p Ep1qq ^ p Ep2qqs ď
QHp2``QHq

p´ 1
.

which concludes the proof. In the next three sections, we prove the three perced-
ing lemmas.

3.2 Proof of Lemma 1

Throughout this proof, let us fix j P rQHs. We first define a sequence of ran-

dom variables pD0, D1, . . . , Dn, X1, . . . , Xnq, where n “ `` 1, such that E
p1q
j

implies one of D0, . . . , Dn is not equal to 0 and D0 `
ř

kPrnsDkXk “ 0. Fur-

ther, we also ensure that Xk is uniformly distributed over Z˚p independent of

pD0, D1, . . . , Dk, X1, . . . , Xk´1q for each k P rns and use this to bound PrrE
p1q
j s.

More concretely:

- Let D0 :“ α
p0q
j `

ř

iPIpjqfin

yi

´

α
p2i´1q
j ` ci ¨ α

p2i´1q
j

¯

, X1 :“ ´δj , D1 :“ β
p0q
j `

ř

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

, and note that E
p1q
1,j is equivalent to D1 ‰ 0.

- Further, for 1 ď k ď |Ipjqunk|, denote ik P Ipjqunk as the index such that pik, cikq

is the k-th query made to S among the indexes in Ipjqunk and let Xk`1 “ yik ,

Dk`1 :“ α
p2ik´1q
j ` cik ¨ α

p2ikq
j ´ δj

´

β
p2ik´1q
j ` cik ¨ β

p2ikq
j

¯

, we have E
p1q
2,pj,ikq

occurs is equivalent to Dk`1 ‰ 0.

- For |Ipjqunk| ` 1 ă k ď n, let Dk “ 0 and Xk be a random variable uniformly
distributed in Z˚p independent of pD0, D1, . . . , Dk, X1, . . . , Xk´1q.

5

5 For |Ipjqunk| ` 1 ă k ď n, Dk, Xk act as placeholders so that we can apply Lemma 4

for an a priori fixed value n instead of a random variable |Ipjqunk| ` 1.
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Note that D0 `
řn
k“1DkXk “ α

p0q
j `

ř

iPr`s yi ¨
´

α
p2i´1q
j ` ci ¨ α

p2iq
j

¯

´ δj ¨
´

β
p0q
j

`
ř

iPr`s yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯¯

. Therefore, by (W1), we know Wj occurs im-

plies D0`
řn
i“1DiXi “ 0. Thus, the event Wj ^ E

p1q
j implies, in addition, that

one of D0, . . . , Dn is not equal to 0. Then, the upper bound PrrWj ^ E
p1q
j s ď ``1

p´1

follows by combining the following lemma6 and claim. The proofs of the lemma
and claim are presented in the full version of this paper.

Claim 1 For each k P rns, Xk is uniformly distributed over Z˚p independent of
pD0,. . . ,Dk,X1,. . . ,Xk´1q.

Lemma 4. Let p be prime. Let D0, D1, . . . , Dn, X1, . . . , Xn P Zp be random
variables such that for all k P rns, Xk is uniform over Uk Ď Zp and independent
of pD0, . . . , Dk, X1, . . . , Xk´1q. Then,

Pr

«

D i P t0, . . . , nu : Di ‰ 0 ^ D0 `

n
ÿ

j“1

DjXj “ 0

ff

ď

n
ÿ

i“1

1

|Ui|
.

3.3 Proof of Lemma 2

It is easier to introduce a new event Fj and show that Wj ^ p E
p1q
j q implies

Fj . We will then bound PrrFj ^ E
p2q
j s. In particular, define the event Fj as

@ i P Ipjqunk : α
p2i´1q
j ` ci ¨ α

p2iq
j ´ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ 0 (F1)

^
ÿ

iPIpjqunk

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

‰ 0 , (F2)

and we have the following lemma.

Lemma 5. If Wj ^ p E
p1q
j q occurs, then the event Fj occurs.

We also denote

Dj :“

"

α
p2iq
j

β
p2iq
j

| i P Ipjqunk, β
p2iq
j ‰ 0

*

Y

"

α
p2i´1q
j

β
p2i´1q
j

| i P Ipjqunk, β
p2iq
j “ 0, β

p2i´1q
j ‰ 0

*

.

We have |Dj | ď |ti P Ipjqunk | β
p2iq
j ‰ 0u Y ti P Ipjqunk | β

p2iq
j “ 0u| “ |Ipjqunk|.

Claim 2 The event Fj ^ E
p2q
j implies δj P Dj.

The proofs of the above claim and lemma are presented in the full version of
this paper. Note that δj is generated uniformly at random, independently of Dj ,
since the latter is defined by the j-th H query. Therefore, Lemma 5 and Claim 2

yield PrrWj ^ p E
p1q
j q ^ E

p2q
j s ď PrrFj ^ E

p2q
j s ď Prrδj P Djs ď

|Ipjqunk|

p´1 ď `
p´1 .

6 Note that Lemma 4 cannot be directly derived from the Schwartz-Zippel lemma
by viewing D0 `

řn
j“1 DjXj “ 0 as a polynomial of X1, . . . , Xn, since we cover

for example the case where D0, D1, . . . , Dn are adaptively chosen, i.e., each Di can
depend on X1 . . . , Xi´1.
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3.4 Proof of Lemma 3

To conclude the analysis, we introduce yet another event, Ep3q. We will show
below that W ^ p Ep1qq ^ p Ep2qq implies Ep3q, and thus it is enough to upper
bound the probability of Ep3q occurring. Concretely, Ep3q is defined as follows
(the definition of the following events Fj1 is given in Section 3.3).

Event Ep3q. For each j1, j2 P rQHs and j1 ă j2, denote the event E
p3q
pj1,j2q

as

D i P Ipj1qunkXI
pj2q
unk : α

p2iq
j1
¨β
p2i´1q
j1

‰ α
p2i´1q
j1

¨β
p2iq
j1

^ α
p2iq
j2
¨β
p2i´1q
j2

‰ α
p2i´1q
j2

¨β
p2iq
j2

.

Denote E1
p3q
pj1,j2q

:“ E
p3q
pj1,j2q

^ Fj1 ^ Fj2 and Ep3q :“
Ž

j1,j2PrQHs,j1ăj2
E1
p3q
pj1,j2q

.

To see why the above implication is true, assume that W indeed occurs, but
both Ep1q and Ep2q do not occur. We now fix some j P J . We know Wj occurs,

but both E
p1q
j and E

p2q
j do not occur. In particular, by the definition of E

p2q
j , we

know there exists i P Ipjqunk such that α
p2iq
j ¨ β

p2i´1q
j ‰ α

p2i´1q
j ¨ β

p2iq
j .

Let i
pjq
min be the smallest index in Ipjqunk such that α

p2i
pjq
minq

j ¨β
p2i
pjq
min´1q

j ‰ α
p2i
pjq
min´1q

j ¨

β
p2i
pjq
minq

j . Since W occurs, we know |J | ą `. Then, since i
pjq
min P I

pjq
unk Ď r`s for each

j P J and |J | ą `, by the pigeonhole principle, we know there exists j1, j2 P J
such that j1 ă j2 and i

pj1q
min “ i

pj2q
min, which implies E

p3q
pj1,j2q

occurs. Also, since we

know both Wj1 ^ p E
p1q
j1
q and Wj2 ^ p E

p1q
j2
q occur, by Lemma 5, we have

Fj1 and Fj2 both occur. Therefore, we know E1
p3q
pj1,j2q

“ E
p3q
pj1,j2q

^ Fj1 ^ Fj2

occurs, which implies Ep3q occurs.
Therefore, we have Pr

“

W ^ p Ep1qq ^ p Ep2qq
‰

ď PrrEp3qs. We now just

need to bound PrrE1
p3q
pj1,j2q

s for any j1 ă j2.

To gain insight, suppose E1
p3q
pj1,j2q

occurs. We can show that there exists i P

Ipj1qunk XIpj2qunk such that α
p2iq
j1
´δj1β

p2iq
j1

‰ 0 and α
p2iq
j2
´δj2β

p2iq
j2

‰ 0. Then, since Fj1

and Fj2 occur, by (F1), it holds that
α
p2i´1q
j1

´δj1 ¨β
p2i´1q
j1

α
p2iq
j1
´δj1 ¨β

p2iq
j1

“ ci “
α
p2i´1q
j2

´δj2 ¨β
p2i´1q
j2

α
p2iq
j2
´δj2 ¨β

p2iq
j2

.

However, this can occur with only small probability since δj1 and δj2 are sampled
independently. The following claim makes this formal. The proof is presented in
the full version of this paper.

Claim 3 For any j1, j2 P rQHs such that j1 ă j2, suppose E1
p3q
pj1,j2q

occurs.

Let idif be the smallest index in Ipj1qunk X Ipj2qunk such that α
p2idif q
j1

¨ β
p2idif´1q
j1

‰

α
p2idif´1q
j1

¨ β
p2idif q

j1
and α

p2idif q

j2
¨ β
p2idif´1q
j2

‰ α
p2idif´1q
j2

¨ β
p2idif q
j2

. Then, we have

α
p2idif q

j1
´ δj1β

p2idif q

j1
‰ 0. Moreover, let T “

α
p2idif´1q

j1
´δj1 ¨β

p2idif´1q

j1

α
p2idif q

j1
´δj1 ¨β

p2idif q

j1

, and we have

β
p2idif´1q
j2

´ T ¨ β
p2idif q

j2
‰ 0 and δj2 “

α
p2idif´1q

j2
´T ¨α

p2idif q

j2

β
p2idif´1q

j2
´T ¨β

p2idif q

j2

.
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Algorithm BS1.Setupp1
λ
q :

pÐ |Gλ|
Let g be the generator of Gλ
Select H : t0, 1u˚ Ñ Zp
Return par Ð pp, g,Hq

Algorithm BS1.KGpparq :
pp, g,Hq Ð par
xÐ$ Z˚p ; X Ð gx

sk Ð x ; pk Ð X
Return psk, pkq

Algorithm BS1.S1pskq :
xÐ sk ; X Ð gx

aÐ$ Zp ; yÐ$ Z˚p
AÐ ga ; Y Ð Xy

sts Ð pa, y, xq ; msg1 Ð pA, Y q
Return psts,msg1q

Algorithm BS1.S2pst
s, cq :

pa, y, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, yq

Algorithm BS1.U1ppk,msg1,mq :
X Ð pk ; pA, Y q Ð msg1

r1, r2 Ð$ Zp ; γÐ$ Z˚p
Y 1 Ð Y γ ; A1 Ð gr1 ¨Aγ ¨ Y 1

r2

c1 Ð HpA1 }Y 1 }mq
cÐ c1 ` r2

stu Ð pc, c1, r1, γ,X, Y,Aq
Return pstu, cq

Algorithm BS1.U2pst
u,msg2q :

pc, c1, r1, γ,X, Y,Aq Ð stu

ps, yq Ð msg2

If y “ 0 or Y ‰ Xy or gs ‰ A ¨ Y c

then return K
s1 Ð γ ¨ s` r1 ; y1 Ð γ ¨ y
Return σ Ð pc1, s1, y1q

Algorithm BS1.Verppk, σ,mq :
pc, s, yq Ð σ
If y “ 0 then return 0
Y Ð Xy ; AÐ gs ¨ Y ´c

If c ‰ HpA }Y }mq then return 0
Return 1

Fig. 4. The blind signature scheme BS1 “ BS1rGs.

Let T and idif be the values defined in the above claim. Consider the step when
δj2 is generated. We know the j2-th query to H has been made, and thus ~αj2
and ~βj2 are determined. Also, since j1 ă j2, the j1-th query to H has returned,
and thus ~αj1 , ~αj2 , and δj1 are determined. Therefore, we know idif and T are
also determined. Thus, we know δj2 is picked uniformly at random from Z˚p
independent of idif , ~αj1 , ~αj2 , ~βj1 , ~βj2 , δj1 , and T . Then, by the above claim,

PrrE1
p3q
pj1,j2q

s ď Pr

«

α
p2idif q

j1
´ δj1β

p2idif q
j1

‰ 0

^ β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0
^ δj2 “

α
p2idif´1q

j2
´T ¨α

p2idif q

j2

β
p2idif´1q

j2
´T ¨β

p2idif q

j2

ff

ď Pr

«

δj2 “
α
p2idif´1q

j2
´T ¨α

p2idif q

j2

β
p2idif´1q

j2
´T ¨β

p2idif q

j2

ˇ

ˇ

ˇ

ˇ

ˇ

α
p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0

^ β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0

ff

ď
1

p´ 1
.

4 Efficient Blind Signatures in the GGM

This section introduces our first scheme, BS1, which relies on a prime-order cyclic
group and a hash function H. We describe this scheme formally in Figure 4.
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Roughly, it extends (blind) Schnorr Signatures by sending an additional group
element Y “ Xy in the first round. Then, the signer’s final response to challenge
c reveals y along with s “ a`cxy. We also note that we could consider a variant
of the scheme where the signature consists of σ “ pA1, s1, y1q, where A1 replaces
c1.

Security analysis. First off, we observe that the protocol is blind. We give a
complete proof of the following theorem in the full version of this paper.

Theorem 2. Let G be an (asymptotic) family of prime-order cyclic groups.
Then, the blind signature scheme BS1rGs is perfectly blind.

Our main result shows OMUF security of BS1 in the generic-group model
(GGM) following Shoup’s original formalization [8], which encodes every group
element with a random label. To this end, we present in Figure 5 a game describ-
ing a GGM-version of OMUF security for BS1, adapting the one from Section 2.
We also define a corresponding advantage Advomuf-ggm

BS1rGs pA, λq to measure the

probability that A wins the game. Note that to keep notation homogenous, it
is convenient to allow the game to depend on G, although the game itself only
makes use of the order of the group. The game also models the hash function H
as a random oracle, to which the adversary is given oracle access.

The following theorem states our main result in the form of a reduction to
WFROS and is proved in Section 4.1.

Theorem 3 (OMUF Security of BS1). Let G be an (asymptotic) family of

prime-order cyclic groups. For any adversary A for the OMUF-GGMBS1rGspλq
game making at most QΠ queries to Π, QS1

queries to S1, and QH queries to
the random oracle H, there exists an adversary B for the WFROSQS1

,p problem,
where p “ |Gλ|, making at most QH ` QS1

` 1 queries to the random oracle H

such that Advomuf-ggm
BS1rGs pA, λq ď Advwfros

QS1
,ppBq `

QΦpQΦ`2QH`2QS1
`2q

p´p1`QS1
`Q2

Φq
, where QΦ is

the maximum number of queries to Φ during the game OMUF-GGM, and we
have QΦ “ QΠ ` 4QS1 ` 4.

By Theorem 1, we have the following corollary.

Corollary 1. Let G be an (asymptotic) family of prime-order cyclic groups.

For any adversary A playing game OMUF-GGMBS1rGspλq making at most QΠ
queries to Π, QS1 queries to S1, and QH queries to the random oracle H, we

have Advomuf-ggm
BS1rGs pA, λq ď 2QΦpQΦ`2QH`2QS1

`2q

p´p1`QS1
`Q2

Φq
, where QΦ “ QΠ ` 4QS1

` 4.

We note in particular that the concrete security of BS1 in the GGM is compa-
rable to that of the discrete logarithm problem, in that QΦ “ Ωpmint

?
p, p{QH,

p{QS1uq is necessary to break security with constant probability.

4.1 Proof of Theorem 3

Let us fix an adversary A that makes (without loss of generality) exactly QΠ
queries to Π, QS1

queries to S1, and QH queries to the random oracle H. Without
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Game OMUF-GGMA
BS1rGspλq :

pÐ |Gλ| ; xÐ$ Z˚p
sid Ð 0 ; `Ð 0 ; Ifin ÐH ; CurÐH

Ξ Ð pq ; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, Φpxqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ xq }Φpyk ¨ xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle Φpvq :
If v P Cur then return Ξpvq
Ξpvq Ð$ t0, 1ulogppq

zΞpCurq
CurÐ Cur X tvu
Return Ξpvq

Oracle Πpξ, ξ1, bq :

If Dv, v1 P Cur such that ξ “ Ξpvq and ξ1 “ Ξpv1q then
Return Φpv ` p´1qbv1q

Else return K

Oracle S1 :
sid Ð sid` 1
asid Ð$ Zp ; ysid Ð$ Z˚p
stssid Ð pasid, ysidq

msg1 Ð pΦpasidq, Φpxysidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then

Return K
pai, yiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 5. The OMUF security game in GGM for the blind signature scheme BS1rGs.

loss of generality, assume it also makes exactly one query pi, ciq to S2 for each
i P rQS1

s. Then, after A returns, we know ` “ QS1
and Ifin “ rQS1

s. Also, it
is clear that the overall number of queries to Φ in OMUF-GGMA

BS1
is at most

QΦ :“ QΠ ` 4QS1 ` 4.

We prove the theorem by going through a series of games, from Game0 to
Game4, where Game0 is the OMUF-GGMA

BS1
game and Game4 is an interme-

diate game that enables an easier reduction to WFROS. Here, however, we first
introduce Game4 and Lemma 6 and then discuss the reduction to WFROS,
which is the core of the proof. We leave the definition of the intermediate games
between Game0 to Game4 to the proof of Lemma 6. The game-hopping argument
is non-trivial, but it follows the same blueprint as in [40].

Definition of Game4. The pseudocode description of Game4 is given in Fig-
ure 6. The main difference from OMUF-GGMA

BS1
is that the encoding oracle Φ

takes as input a polynomial instead of an integer in Zp. (Note that the adversary
cannot query Φ directly, and thus this difference is not directly surfaced.) This
essentially captures the algebraic core of our proof.

Also, for a valid query pi, ciq to S2, the output values psi, yiq are directly
sampled uniformly from ZpˆZ˚p . Furthermore, when this happens, two polyno-
mials, R1 “ Ai` ci ¨Yi´si and R2 “ Yi´yi ¨X, are recorded in the set L. Then,
in the encoding oracle Φ, two polynomials, P1 and P2, are considered to differ
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Game Game4:
pÐ |Gλ|
sid Ð 0 ; `Ð 0 ; S ÐH ; CurÐH

Ξ Ð pq ; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, ΦpXqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ Xq }Φpyk ¨ Xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle ΦpP q :

If DP 1 P Cur such that P “L P
1 then

Return ΞpP 1q
ΞpP q Ð$ t0, 1urlogppqs

zΞpCurq
CurÐ Cur X tP u
Return ΞpP q

Oracle Πpξ, ξ1, bq :

If DP, P 1 P Cur such that ξ “ ΞpP q
and ξ1 “ ΞpP 1q then
Return ΦpP ` p´1qbP 1q

Else return K

Oracle S1 :
sid Ð sid` 1
msg1 Ð pΦpA sidq, ΦpYsidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
siÐ$ Zp ; yiÐ$ Z˚p
R1 Ð Ai ` ciYi ´ si
R2 Ð Yi ´ yiX
LÐ LY tR1, R2u

msg2 Ð psi, yiq
If D P1, P2 P Cur such that
P1 ‰ P2 and P1 “L P2

then abort game
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 6. The definition of Game4. The symbols P and P 1 denote polynomials over
variables X, tAi,YiuiPrsids. Also, a new equality notation, ““L”, is used. We say P1 “L

P2 if and only if P1´P2 can be represented as a linear combination of polynomials in L.

if and only if P1 ‰L P2, where P1 “L P2 means that P1 ´ P2 can be generated
as a linear combination of polynomials in L. Still, P1 ‰L P2 could occur when
queries P1 and P2 are made to Φ, but they becomes equal (in the sense of ““L”)
after L is updated. The game aborts when this happens.

Overall, we have the following lemma. The proof is presented in the full
version of this paper.

Lemma 6. Advomuf-ggm
BS1rGs pA, λq ď PrrGameA4 “ 1s `

Q2
Φ

p´p1`QS1
`Q2

Φq
.

Reduction to WFROS. The core of the proof is to relate the probability of
the adversary A winning Game4 with the advantage of an adversary B winning
the WFROS problem, as stated in the following lemma. The proof is given in
Section 4.2.

Lemma 7. For every λ, there exists an adversary B for the WFROSQS1
,p prob-

lem, where p “ |Gλ|, making at most QH `QS1 ` 1 queries to H such that

PrrGameA4 “ 1s ď Advwfros
QS1

,ppBq `
p2QΦ ` 1qpQH `QS1

` 1q

p´QΦ
. (5)
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The statement of Theorem 3 follows by combining Lemmas 6 and 7.

4.2 Proof of Lemma 7

We construct B that interacts with A by simulating the oracles from Game4 using
the two oracles S and H in WFROS. In particular, we extract suitable vectors ~α
and ~β to query to H in WFROS, i.e., each RO query str is decomposed as str “
ξA } ξY }m, where ξA and ξY are encodings of group elements. If both encodings
are valid, there must exist PA, PY such that ΞpPAq “ ξA and ΞpPY q “ ξY

; then, B defines two vectors ~α and ~β to make a corresponding query to H in
WFROS. The oracle S is also used to simulate the signer’s second stage. Finally,
when A outputs QS1 ` 1 different valid message-signature pairs in Game4, B
tries to map each valid message-signature pair to a query to H in WFROS. We
show that this strategy succeeds with probability close to that of A succeeding.

The adversary B. Specifically, B initializes the variables sid, Cur, Ifin, Ξ, and
T as in Game4. In addition, B initializes an empty table Hid, used later in the
simulation of Ĥ.

Then, B runs A on input pp, Φ̂p1q, Φ̂pXqq and with access to the oracles Π̂,
Ŝ1, Ŝ2, and Ĥ. These oracles, along with Φ̂, operate as follows:

Oracles Φ̂, Π̂: Same as in Game4. In particular, L is updated by calls to Ŝ2.

Oracle Ŝ1: Same as in Game4.

Oracle Ŝ2: Same as Game4 except that instead of sampling yi randomly, if
i P rsidszIfin, B makes a query pi, ciq to S and uses its output as the value
yi.

Oracle Ĥ: After receiving a query str, if T pstrq ‰ K, the value T pstrq is re-
turned. Otherwise, str is decomposed as str “ ξA } ξY }m such that the
length of ξA and ξY is rlogppqs.

– If there exist PA, PY P Cur such that ΞpPAq “ ξA and ΞpPY q “ ξY ,
denote the coefficients of PA, PY as

PA “ α̂g ` α̂XX`
ÿ

iPrsids

α̂AiAi `
ÿ

iPrsids

α̂YiYi , (6)

PY “ β̂g ` β̂XX`
ÿ

iPrsids

β̂AiAi `
ÿ

iPrsids

β̂YiYi . (7)
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Then, B issues the query p~α, ~βq to H, where ~α, ~β P Z2QS1
`1

p are such that

αpi
1
q “

$

’

’

’

&

’

’

’

%

α̂X , i1 “ 0

α̂Yi , i1 “ 2i´ 1 , i P rsids

´α̂Ai , i1 “ 2i , i P rsids

0 , o.w.

,

βpi
1
q “

$

’

’

’

&

’

’

’

%

´β̂X , i1 “ 0

´β̂Yi , i1 “ 2i´ 1 , i P rsids

β̂Ai , i1 “ 2i , i P rsids

0 , o.w.

.

(8)

After receiving the output pδhid,hidq, B sets T pstrq Ð δhid and Hidpstrq Ð
hid.

– Otherwise, if ξA R T pCurq or ξY R T pCurq (or if the decomposition of str is
not possible), B samples T pstrq uniformly from Zp and sets Hidpstrq “ K.

Finally, B returns T pstrq.

After A outputs tpm˚k , σ
˚
k qukPrQS1

`1s, B aborts if the signatures are not valid,
i.e., one of the following conditions is not satisfied:

@ k1, k2 P rQS1
` 1s and k1 ‰ k2 : pm˚k1 , σ

˚
k1
q ‰ pm˚k2 , σ

˚
k2
q , (9)

@ k P rQS1
` 1s : y˚k ‰ 0 ^ c˚k “ Ĥpstr˚kq , (10)

where pc˚k , s
˚
k , y

˚
k q “ σ˚k and str˚k “ Φ̂ps˚k ´ c˚k ¨ y

˚
k ¨ Xq } Φ̂py

˚
k ¨ Xq }m

˚
k . (Here, Ĥ

and Φ̂ are the oracles described previously.) Further, B aborts if the following
condition does not hold:

@ k P rQS1 ` 1s : Hidpstr˚kq ‰ K . (11)

Otherwise, B outputs J :“ tHidpstr˚kqukPrQS1
`1s.

Analysis of B.Note that B queries to H at most once when it receives a query
to Ĥ and makes QS1

` 1 more queries to Ĥ when checking the validity of the
output. Therefore, B makes at most QH `QS1

` 1 queries to H. Also, it is clear
that B simulates oracles S1, S2 in Game4 perfectly. For the simulation of Ĥ, the
only difference is that the distribution of δhid outputting from H in WFROS is
uniformly over Z˚p , where in Game4 it is always uniformly from Zp. However,
the statistical distance between the two distributions is 1{p. Since B makes at
most QH`QS1

` 1 queries to H, the statistical difference between the view of A
in Game4 and that in the one simulated by B is bounded by pQH `QS1

` 1q{p.
Denote the event E1 such that when B checks the output from A, both (9) and

(10) hold. As these are exactly the winning conditions of Game4, which is simu-

lated statistically closed to perfect, we have PrrE1s `
QH`QS1

`1

p ě PrrGameA4 “

1s. Also, let E2 be the event for which the condition (11) holds immediately
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afterward. If E2 does not happen, but E1 does, then we know A outputs a valid
message-signature pair pm˚k , σ

˚
k q such that Hidpstr˚kq “ K, which is unlikely to

happen. The following formalizes this.

Claim 4 PrrE1 ^ p E2qs ď
2QΦpQH`QS1

`1q

p´QΦ
.

Then, we can conclude the proof with the following claim.

Claim 5 If both E1 and E2 happen, then B outputs a valid WFROS solution
J , which in turn implies that PrrE1 ^ E2s ď Advwfros

QS1
,ppBq.

The proofs of the above two claim are presented in the full version of this paper.

5 Efficient Blind Signatures in the AGM

We now present schemes that are secure in the algebraic group model (AGM) [10].
This model considers security for algebraic adversaries - these are adversaries
that, when used within a reduction, provide a representation of any group ele-
ment they output in terms of all prior group elements input to the adversary. (We
dispense with a more formal definition since the use of the AGM is self-evident
in our proofs.)

5.1 A Protocol Secure under the DL Assumption

In this section, we introduce a scheme, which we refer to as BS3, that relies on
the hardness of the (plain) discrete logarithm (DL) problem, which is formal-
ized in Figure 8. In contrast to BS1, our new scheme (described in Figure 7)
requires an extra group element Z in the public key, and the commitment Xy

in is replaced by gtZy. (This will necessary result in an additional scalar in
the signature.) However, one could generate Z as an output of a hash function
(assuming the hash function is a random oracle, which we assume anyways),
although, interestingly, our proof for BS3 will show that blindness holds even
when Z is chosen maliciously by the signer (who may consequently also know
its discrete logarithm). We also present a slightly simpler alternative protocol,
called BS2, in the full version of this paper, that avoids the need of such an extra
group element, at the cost of relying on the hardness of a stronger assumption,
the one-more discrete logarithm (OMDL) problem. (Needless to say, a scheme
based on DL only is seen as more desirable than a scheme based on the OMDL
assumption [43].)

The additional group element Z will in fact allow us to develop a partially
blind version of BS3, which we refer to as PBS, which we discuss in Section 6
below. We note that in fact all results about BS3 can be obtained as a corollary
of our analysis of PBS, because a blind signature scheme is of course a special
case of a partially blind one. However, we are opting for a separate presentation,
as the main ideas behind the reduction are much simpler to understand in (plain)
BS3, and the proof of PBS adds some extra complexity (in particular, in order
to obtain a tighter bound), which obfuscates the main ideas.
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Algorithm BS3.Setupp1
λ
q :

pÐ |Gλ| ; g Ð gpGλq
Select H : t0, 1u˚ Ñ Z˚p
Return par Ð pp,Gλ, g,Hq
Algorithm BS3.KGpparq :
pp,Gλ, g,Hq Ð par
xÐ$ Zp ; X Ð gx ; ZÐ$ Gλ
sk Ð x ; pk Ð pX,Zq
Return psk, pkq

Algorithm BS3.S1pskq :
xÐ sk ; X Ð gx

a, tÐ$ Zp ; yÐ$ Z˚p
AÐ ga ; C Ð gtZy

sts Ð pa, y, t, xq ; msg1 Ð pA,Cq
Return psts,msg1q

Algorithm BS3.S2pst
s, cq :

If c “ 0 then return K
pa, y, t, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, y, tq

Algorithm BS3.U1ppk,msg1,mq :
X Ð pk ; pA,Cq Ð msg1

r1, r2 Ð$ Zp ; γ1, γ2 Ð$ Z˚p
A1 Ð gr1 ¨Aγ1{γ2 ; C 1 Ð Cγ1gr2

c1 Ð HpA1 }C 1 }mq
cÐ c1 ¨ γ2

stu Ð pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq
Return pstu, cq

Algorithm BS3.U2pst
u,msg2q :

pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq Ð stu

ps, y, tq Ð msg2

If y “ 0 or C ‰ gtZy or gs ‰ A ¨Xc¨y

then return K
s1 Ð pγ1{γ2q ¨ s` r1

y1 Ð γ1 ¨ y ; t1 Ð γ1 ¨ t` r2

Return σ Ð pc1, s1, y1, t1q

Algorithm BS3.Verppk, σ,mq :
pc, s, y, tq Ð σ
If y “ 0 then return 0
C Ð gtZy ; AÐ gs ¨X´c¨y

If c ‰ HpA }C }mq then return 0
Return 1

Fig. 7. The blind signature scheme BS3 “ BS3rGs.

Security analysis. The following theorem establishes the blindness of BS3.
(Its proof is presented in the full version of this paper.)

Theorem 4. Let G be an (asymptotic) family of prime-order cyclic groups.
Then, the blind signature scheme BS3rGs is perfectly blind.

The core of the analysis is once again a proof that the scheme is one-more
unforgeable in the AGM, i.e., we only prove security against algebraic adver-
saries. In particular, we model the selected hash function as a random oracle H,
to which the adversary is given explicit access.

Theorem 5. Let G be an (asymptotic) family of prime-order cyclic groups. For

any algebraic adversary Aalg for the game OMUFBS3rGspλq making at most QS1

queries to S1 and QH queries to the random oracle H, there exists an adversary
Bdlog for the DLog problem running in a similar running time as Aalg such that

Advomuf
BS3rGspAalg, λq ď 2Advdlog

G pBdlog, λq `
pQH`QS1

`1qpQH`3QS1
`1q

p´1 .

Proof (of Theorem 5). Let us fix an adversary Aalg that makes at most QS1

queries to S1 and QH queries to the random oracle H. Without loss of generality,
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Game DLogA
G pλq :

pÐ |Gλ| ; g Ð gpGλq ; XÐ$ Gλ
y Ð App, g,Gλ, Xq
If gy “ X then return 1
Return 0

Fig. 8. The DLog game.

Game OMUF
Aalg

BS3rGspλq:

pÐ |Gλ| ; g Ð gpGλq ; xÐ$ Zp ; X Ð gx ; Z Ð Gλ
sid Ð 0 ; `Ð 0 ; Ifin ÐH ; T Ð pq ; hid Ð 0 ; Hid Ð pq

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2,H

alg pp, g,Gλ, X, Zq
If D k1 ‰ k2 such that pm˚k1 , σ

˚
k1
q “ pm˚k2 , σ

˚
k2
q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or c˚k ‰ Hpgs
˚
kX´c

˚
k
¨y˚
k } gt

˚
k Zy

˚
k }m˚k q

where pc˚k , s
˚
k , y

˚
k , t

˚
k q “ σ˚k then return 0

Return 1

Oracle HpA }C }mq :
If T pA }C }mq “ K then
T pA }C }mq Ð$ Zp
hid Ð hid` 1 ; HidpA }C }mq Ð hid

� A “ gα̂
g

Xα̂X

Zα̂
Z ś

iPrsidsA
α̂Ai

i Cα̂
Ci

i

� C “ gβ̂
g

X β̂X

Z β̂
Z ś

iPrsidsA
β̂Ai

i C β̂
Ci

i

δhid Ð T pA }C }mq ; ~̂αhid Ð ~̂α ;
~̂
βhid Ð

~̂
β

Return T pA }C }mq

Oracle S1 :
sid Ð sid` 1
asid, tsid Ð$ Zp
ysid Ð$ Z˚p
stssid Ð pasid, ysid, tsidq
Asid Ð gasid

Csid Ð gtsidZysid

msg1 Ð pAsid, Csidq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin

or ci “ 0 then
Return K

pai, yi, tiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yi, tiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Fig. 9. The OMUF security game for the blind signature scheme BS3rGs.

assume Aalg makes exactly QS1 queries to S1 and exactly one query pi, ciq to S2

for each i P rQS1s. Then, after Aalg returns, we know ` “ QS1 and Ifin “ rQS1s.

The OMUF
Aalg

BS3rGs game is formally defined in Figure 9. In addition to the

original OMUF game (defined in Figure 1), for each query pA }C }mq to H, its
corresponding hid is recorded in HidpA }Y }mq, and the output of the query is
recorded as δhid. Also, since Aalg is algebraic, it also provides the representations

of A and C, and the corresponding coefficient ~̂α and
~̂
β are recorded as ~̂αhid and

~̂
βhid.

Denote the event WIN as Aalg wins the OMUF
Aalg

BS3rGs game, i.e., all output

message-signature pairs tm˚k , σ
˚
k ukPrQS1

`1s are distinct and valid. Furthermore,
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let us denote str˚k :“ gs
˚
kX´c

˚
k ¨y

˚
k } gt

˚
k Zy

˚
k }m˚k . We let E be the event in the

OMUF
Aalg

BS3rGs game for which, after the validity of the output is checked, for each

k P rQS1 ` 1s and j “ Hidpstr˚kq,
7 the following conditions hold:

α̂X
j ´

ÿ

iPrQS1
s

yi ¨ ci ¨ α̂
Ai
j “ ´δj ¨ y

˚
k , (12)

β̂Z
j `

ÿ

iPrQS1
s

yi ¨ β̂
Ci
j “ y˚k . (13)

Since Advomuf
BS3rGspAalg, λq “ PrrWINs “ PrrWIN ^ Es ` PrrWIN ^ p Eqs,

the theorem follows by combining the following two lemmas with Theorem 1.

Lemma 8. There exists an adversary Bwfros for the WFROSQS1
,p problem mak-

ing at most QH`QS1
`1 queries to the random oracle H such that Advwfros

QS1
,ppBwfrosq

ě PrrWIN ^ Es.

Lemma 9. There exists an adversary Bdlog for the DLog problem running in a

similar running time as Aalg such that Advdlog
G pBdlog, λq ě

1
2PrrWIN ^ p Eqs.

[\

The proof of Lemma 8 is presented in the full version of this paper, which is
similar to the proof of Lemma 7.

5.2 Proof of Lemma 9

Proof. We first partition the event WIN ^ p Eq into two cases. Denote F1 as

the event in the OMUF
Aalg

BS3rGs game that there exists k P rQS1 ` 1s such that

(12) does not hold, and denote F2 as the event that there exists k P rQS1 ` 1s
such that (13) does not hold. Then, if E does not occur, we know either F1 or
F2 occurs. Therefore, we have WIN ^ p Eq “ pWIN ^ F1q _ pWIN ^ F2q.
We then prove the following two claims.

Claim 6 There exists Bp0qdlog for the DLog problem running in a similar running

time as Aalg such that PrrWIN ^ F1s ď Advdlog
G pBp0qdlog, λq.

Claim 7 There exists Bp1qdlog for the DLog problem running in a similar running

time as Aalg such that PrrWIN ^ F2s ď Advdlog
G pBp1qdlog, λq.

From the above two claims, we can conclude the lemma by construct the adverary

Bdlog that runs either Bp0qdlog or Bp1qdlog with 1/2 probability. [\

Proof (of Claim 6). We first give a detailed description of Bp0qdlog playing the
DLogG game.

7 Here, Hidpstr˚k q must be defined since a query str˚k is made to H when checking the
validity of the output pm˚k , σ

˚
k q.
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The adversary Bp0qdlog. Initially, Bp0qdlog initializes sid, Ifin, `, T , hid, and Hid as

described in the OMUF
Aalg

BS3rGs game. After Bp0qdlog receives pp, g,Gλ,W q from the

DLogG game, Bp0qdlog samples z uniformly from Zp and sets X Ð W,Z Ð gz.

Then, Bp0qdlog runs Aalg on input pp, g,Gλ, Xq and with access to the oracles Ŝ1,

Ŝ2, and Ĥ. These oracles operate as follows:

Oracle Ŝ1: Bp0qdlog samples ssid, t
1
sid uniformly from Zp and y1sid unifomly from Z˚p

and setsAsid “ gssidX´y
1
sid and Csid “ gt

1
sid . Then, Bp0qdlog returns psid, Asid, Csidq.

Oracle Ŝ2: Same as in the OMUF
Aalg

BS3rGs game if i R rsidszIfin or ci “ 0. Other-

wise, after receving a query pi, ciq to Ŝ2 from Aalg, Bp0qdlog sets yi Ð y1i{ci and

ti Ð t1i ´ yi ¨ z. Then, Bp0qdlog returns psi, yi, tiq to Aalg.

Oracle Ĥ: Same as in the OMUF
Aalg

BS3rGs game.

After receiving the output tpm˚k , σ
˚
k qukPrQS1

`1s, B
p0q
dlog aborts if the event WIN ^

F1 does not occur.

It is clear that Bp0qdlog simulates the OMUF
Aalg

BS3rGs game perfectly. Therefore, it

is left to show that if the event WIN ^ F1 occurs within the simulation, Bp0qdlog

can compute the discrete log of X, which equals to W .
Suppose WIN ^ F1 occurs. There exists k P rQS1

` 1s and j “ Hidpstr˚kq
such that (12) does not hold. Since Hidpstr˚kq “ j and δj “ c˚k , we have

gs
˚
kX´δj ¨y

˚
k “ gs

˚
kX´c

˚
k ¨y

˚
k “ gα̂

g
jX α̂X

jZα̂
Z
j

ź

iPrsids

A
α̂

Ai
j

i C
α̂

Ci
j

i . (14)

Similar to the preceding case, since Bp0qdlog knows the discrete log of Z as z and

(12) does not hold, by substituting Ai “ gsiX´ci¨yi , Ci “ gtiZyi , and Z “ gz

into (14), Bp0qdlog can compute the discrete log of X as

x :“
s˚k ´ α̂

g
j ´ α̂

Z
j ¨ z ´

ř

iPrQS1
spα̂

Ai
j ¨ si ` α̂

Ci
j ¨ pti ` yi ¨ zqq

α̂X
j ´

ř

iPrQS1
s yi ¨ ci ¨ α̂

Ai
j ` δj ¨ y

˚
k

.

[\

The proof of Claim 7 is presented in the full version of this paper, which is
analogous to the proof of Claim 6.

6 Partially Blind Signatures

This section presents our partially blind signature scheme, PBS, which is detailed
in Figure 10. The scheme builds on top of the BS3 scheme by replacing the extra
generator Z contained in the public key with the output of a hash function F
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Algorithm PBS.Setupp1λq :
pÐ |Gλ| ; g Ð gpGλq
Select H : t0, 1u˚ Ñ Z˚p
Select F : t0, 1u˚ Ñ Gλ
Return par Ð pp,Gλ, g,H,Fq
Algorithm PBS.KGpparq :
pp,Gλ, g,H,Fq Ð par
xÐ$ Zp ; X Ð gx

sk Ð x ; pk Ð X
Return psk, pkq

Algorithm PBS.S1psk, infoq :
xÐ sk ; X Ð gx ; Z Ð Fpinfoq
a, tÐ$ Zp ; yÐ$ Z˚p
AÐ ga ; C Ð gtZy

sts Ð pa, y, t, xq ; msg1 Ð pA,Cq
Return psts,msg1q

Algorithm PBS.S2pst
s, cq :

If c “ 0 then return K
pa, y, t, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, y, tq

Algorithm PBS.U1ppk,msg1, info,mq :
X Ð pk ; pA,Cq Ð msg1 ; Z Ð Fpinfoq
r1, r2 Ð$ Zp ; γ1, γ2 Ð$ Z˚p
A1 Ð gr1 ¨Aγ1{γ2 ; C 1 Ð Cγ1gr2

c1 Ð Hpinfo }A1 }C 1 }mq
cÐ c1 ¨ γ2

stu Ð pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq
Return pstu, cq

Algorithm PBS.U2pst
u,msg2q :

pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq Ð stu

ps, y, tq Ð msg2

If y “ 0 or C ‰ gtZy or gs ‰ A ¨Xc¨y

then return K
s1 Ð pγ1{γ2q ¨ s` r1

y1 Ð γ1 ¨ y ; t1 Ð γ1 ¨ t` r2

Return σ Ð pc1, s1, y1, t1q

Algorithm PBS.Verppk, info, σ,mq :
X Ð pk ; Z Ð Fpinfoq ; pc, s, y, tq Ð σ
If y “ 0 then return 0
C Ð gtZy ; AÐ gs ¨X´c¨y

If c ‰ Hpinfo }A }C }mq then return 0
Return 1

Fig. 10. The partially blind signature scheme PBS “ PBSrGs.

(also modeled as a random oracle in the OMUF proof) applied to the public
input info. We do not formally redefine the syntax of partially blind signatures,
but we note that it simply extends that of blind signatures by adding the extra
input info P t0, 1u˚ to the signer, the user, and the verification algorithm.

Blindness.We first study the blindness of PBS. The PBlindA
PBS game is defined

in Figure 11. The only difference between PBlind and Blind is that initially,
the adversary A also picks a public information info and interacts with PBS.U1

and PBS.U2 for signing pinfo,m0q and pinfo,m1q. Denote the advantage of the

adversary A as Advpblind
PBS pA, λq :“

ˇ

ˇ

ˇ
PrrPBlindA

PBSpλq “ 1s ´ 1
2

ˇ

ˇ

ˇ
. We say a partially

blind signature scheme PBS is perfectly blind if and only if Advpblind
PBS pAq “ 0 for

any A.

Theorem 6. Let G be an (asymptotic) family of prime-order cyclic groups. The
partially blind signature scheme PBSrGs is perfectly blind.

Since the algorithm PBS.U1 and PBS.U2 are almost the same as BS3.U1 and
BS3.U2, we can use a proof similar to the one for BS3 (Section 5.1) to show
PBSrGs is perfectly blind. The only difference is that in BS3, Z is given in the
public key, while in PBSrGs, Z is given by Fpinfoq.
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Game PBlindA
PBSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u ; b0 Ð b ; b1 Ð 1´ b
b1Ð$ AInit,U1,U2pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, ˜info, m̃0, m̃1q :
sess0 Ð init

sess1 Ð init

pk Ð p̃k
infoÐ ˜info
m0 Ð m̃0 ; m1 Ð m̃1

Oracle U1pi,msgpiq1 q :
If i R t0, 1u or sessi ‰ init then return K
sessi Ð open

pstui , chl
piq
q Ð PBS.U1ppk,msgpiq1 , info,mbiq

Return chlpiq

Oracle U2pi,msgpiq2 q :
If i R t0, 1u or sessi ‰ open then return K
sessi Ð closed

σbi Ð PBS.U2pst
u
i ,msgpiq2 q

If sess0 “ sess1 “ closed then
If σ0 “ K or σ1 “ K then return pK,Kq
Return pσ0, σ1q

Return pi, closedq

Fig. 11. The PBlind security game for a partially blind signature scheme PBS.

OMUF security. We next study the OMUF security of PBS. Note that the
definition must also be adjusted: The main difference is that the adversary wins
as long as it can produce ` ` 1 valid message-signature pairs for some info for
which it has run only ` signing sessions, regardless of how many signing sessions
are run with info1 ‰ info (i.e., their number could be higher than `). We present
the corresponding game for the specific case of the scheme PBS and prove the
following theorem in the full version of this paper.

Theorem 7. Let G be an (asymptotic) family of prime-order cyclic groups. Let

Aalg be an algebraic adversary for the game OMUFPBSrGs
pλq such that for each

public information info, makes at most QS1
queries to S1 and QH queries to the

random oracle H that start with info. Also, let the total number of distinct public
information info’s queried by Aalg to S1 be bounded by Qinfo. Then, there exists
an adversary Bdlog for the DLog problem running in similar running time as

Aalg such that Advomuf
PBSrGspAalg, λq ď 2Advdlog

G pBdlog, λq `
QinfopQH`3QS1

`1q2`2

p´1 .

The proof is very similar to that for BS3 except we need to additionally
perform a hybrid argument over queries to F, guessing which info will be the one
leading to a one-more forgery. However, we need to work harder here to ensure
the discrete logarithm advantage does not scale with Qinfo.

We also note that we have no argument supporting the fact that the information-
theoretic term in Theorem 7 is tight and the inclusion of info in H is necessary.
However, a tighter analysis appears to require studying a more general version
of WFROS. We leave this to future work.
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