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Abstract. The celebrated PCP Theorem states that any language in
NP can be decided via a verifier that reads O(1) bits from a polynomially
long proof. Interactive oracle proofs (IOP), a generalization of PCPs,
allow the verifier to interact with the prover for multiple rounds while
reading a small number of bits from each prover message. While PCPs
are relatively well understood, the power captured by IOPs (beyond NP)
has yet to be fully explored.
We present a generalization of the PCP theorem for interactive languages.
We show that any language decidable by a k(n)-round IP has a k(n)-
round public-coin IOP, where the verifier makes its decision by reading
only O(1) bits from each (polynomially long) prover message and O(1)
bits from each of its own (random) messages to the prover.
Our result and the underlying techniques have several applications. We
get a new hardness of approximation result for a stochastic satisfiability
problem, we show IOP-to-IOP transformations that previously were
known to hold only for IPs, and we formulate a new notion of PCPs
(index-decodable PCPs) that enables us to obtain a commit-and-prove
SNARK in the random oracle model for nondeterministic computations.

Keywords: interactive proofs; probabilistically checkable proofs; interac-
tive oracle proofs

1 Introduction

Probabilistic proofs play a central role in complexity theory and cryptography.
In the past decades, probabilistic proofs have become powerful and versatile
⋆ Supported in part by a grant from the Israel Science Foundation (no. 2686/20) and

by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness.
⋆⋆ Funded by the Ethereum Foundation.

⋆ ⋆ ⋆ Part of this project was performed when Eylon Yogev was in Tel Aviv University
where he was funded by the ISF grants 484/18, 1789/19, Len Blavatnik and the
Blavatnik Foundation, and The Blavatnik Interdisciplinary Cyber Research Center
at Tel Aviv University.



2 Gal Arnon and Alessandro Chiesa and Eylon Yogev

tools in these fields, leading to breakthroughs in zero-knowledge, delegation of
computation, hardness of approximation, and other areas.

As an example, interactive proofs (IPs) [40] allow proof-verification to be
randomized and interactive, which seemingly confers them much more power
than their deterministic (and non-interactive) counterparts. In a k-round IP, a
probabilistic polynomial-time verifier exchanges k messages with an all-powerful
prover and then accepts or rejects; IP[k] is the class of languages decidable
via a k-round interactive proof. Seminal results characterize the power of IPs
(IP[poly(n)] = PSPACE) [48, 54] and also achieve zero-knowledge [40, 38].

The development of IPs, in turn, led to probabilistically checkable proofs
(PCPs) [4, 36], where a probabilistic polynomial-time verifier has query access
to a proof string. Here PCP[r, q] denotes the class of languages decidable by a
PCP verifier that uses at most r bits of randomness and queries at most q bits of
the proof string. A line of works culminated in the PCP Theorem [2, 1], which
can be stated as NP = PCP[O(log n), O(1)]; that is, every language in NP can
be decided, with constant soundness error, by probabilistically examining only a
constant number of bits in a polynomially long proof.

These advances in probabilistic proofs have reshaped theoretical computer
science.

Interactive oracle proofs. More recently, researchers formulated interactive oracle
proofs (IOPs) [12, 52], a model of probabilistic proof that combines aspects of
the IP and PCP models. A k-round IOP is a k-round IP where the verifier
has PCP-like access to each prover message: the prover and verifier interact for
k rounds, and after the interaction the verifier probabilistically reads a small
number of bits from each prover message and decides to accept or reject based on
the examined locations. The randomness used in the final phase is called decision
randomness (which we distinguish from the random messages that the verifier
sends to the prover during the interaction).

Recent work has constructed highly-efficient IOPs [9, 7, 18, 11, 10, 8, 13, 26,
53, 19–21]. While the shortest PCPs known to date have quasi-linear length [16,
30], IOPs can achieve linear proof length and fast provers. These developments
are at the heart of recent constructions of non-interactive succinct arguments
(SNARGs), and have facilitated their deployment in numerous real-world systems.
IOPs are also used to construct IPs for delegating computation [52].

IOPs beyond NP? Most research regarding IOPs has focused on understanding
IOPs for languages in NP (and more generally various forms of non-deterministic
computations) while using the additional rounds of interaction to achieve better
efficiency compared to PCPs for those languages.

However, the power of IOPs for languages beyond NP is not well understood.
We do know that IPs can express all languages in PSPACE for sufficiently large
round complexity [48, 54]; moreover more rounds lead to more languages because,
under plausible complexity assumptions, it holds that IP[k] ̸⊆ IP[o(k)] (while
restricting to polynomial communication complexity) [39]. But what can we say
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about the power of IOPs with small query complexity (over the binary alphabet)?4

Not much is known about the power of general k-round IOPs, which leads us to
ask:

What languages have a k-round IOP where the verifier decides
by reading O(1) bits from each prover message and from each verifier message?

1.1 Main results

We answer the above question by showing that (informally) the power of IOPs
with k rounds where the verifier reads O(1) bits from each communication round
(both prover and verifier messages) is the same as if the verifier reads the entire
protocol transcript (as in an IP). This can be seen as extending the PCP Theorem
to interactive proofs, interpreted as “you can be convinced by a conversation while
barely listening (even to yourself)”.

To achieve this, our main result is a transformation from IPs to IOPs: we
transform any IP into a corresponding IOP where the verifier reads O(1) bits
from each communication round and uses a total of O(log n) bits of decision
randomness.5 The round complexity is preserved, and other parameters are
preserved up to polynomial factors. (A round is a verifier message followed by a
prover message; after the interaction, the verifier’s decision is probabilistic.)

Theorem 1 (IP → IOP). Let L be a language with a public-coin IP with k
rounds and constant soundness error. Then L has an IOP with k rounds, constant
soundness error, where the verifier decides by using O(log n) bits of decision
randomness and reading O(1) bits from each prover message and each verifier
message. All other parameters are polynomially related.

Prior work on IOPs beyond NP. The PCP Theorem can be viewed as a “half-
round” IOP with query complexity O(1) and decision randomness O(log n) for
NP. For languages above NP, prior works imply certain facts about k-round IOPs
for extreme settings of k.

– For languages that have a public-coin IP with k = 1 round (a verifier message
followed by a prover message), Drucker [33] proves a hardness of approximation
result in the terminology of CSPs. His result can be re-interpreted showing
that these languages have a one-round IOP where the verifier reads O(1) bits
from each message and decides (using O(log n) bits of decision randomness).
However, Drucker’s result does not extend to arbitrary many rounds.6

4 An IP is an IOP where the verifier has large query complexity over the binary
alphabet.

5 After the interaction, the verifier uses O(logn) random bits to decide which locations
to read from all k rounds.

6 Round reduction [5] can reduce the number of rounds from any k to 1 with a blow-up
in communication that is exponential in k. This does not work when k is super
constant; see Section 2.2 for further discussion.
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– When k can be polynomially large, we observe that constant-query IOPs for
PSPACE can be obtained from [27, 28],7 which in turn provides such an IOP
for every language having an IP. Other analogues of PCP have been given
(e.g., [43] applies to the polynomial hierarchy, [32] is also for PSPACE) but
they do not seem to translate to IOPs.

– For general k, one can use the fact that AM[k] ⊆ NEXP, and obtain a PCP
where the prover sends a single exponentially-long message from which the
(polynomial-time) verifier reads O(1) bits. However, this does not help if we
require the prover to send messages of polynomial length.

See Figure 1 for a table summarizing these results and ours.

complexity model proof alphabet query round
class length complexity complexity

[14] NEXP PCP exp(|x|) {0, 1} O(1) 1

[28] PSPACE IOP poly(|x|) {0, 1} O(1) poly(|x|)

implied by [14] AM[k] PCP exp(|x|) {0, 1} O(1) 1

[3, 40] AM[k] IP k {0, 1}poly(|x|) 1 per round k

[this work] AM[k] IOP poly(|x|) {0, 1} O(1) per round k

[33] AM IOP poly(|x|) {0, 1} O(1) 1

[1, 2] NP PCP poly(|x|) {0, 1} O(1) 1

Fig. 1. Classes captured by different types of probabilistic proofs (in the regime of
constant soundness error). Here, x denotes the instance whose membership in the
language the verifier is deciding. Here, AM stands for two-message public-coin protocols
(a verifier random message followed by a prover message), and AM[k] is a k-round
public-coin protocol.

Hardness of approximation for stochastic satisfiability We use Theorem 1
to prove the hardness of approximating the value of an instance of the stochastic
satisfiability (SSAT) problem, which we now informally define.

SSAT is a variant of TQBF (true quantified boolean formulas) where the
formula is in 3CNF and the variables are quantified by alternating existential
quantifiers and random quantifiers (the value of the quantified variable is chosen
uniformly at random). A formula ϕ is in the language SSAT if the probability
that there is a setting of the existential variables that cause ϕ to be satisfied
is greater than 1/2. The value of an SSAT instance ϕ is the expected number

7 Their result shows that PSPACE has what is known as a probabilistically checkable
debate system. In their system, one prover plays a uniform random strategy. Thus
one can naturally translate the debate system into an IOP.
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of satisfied clauses in ϕ if the existential variables are chosen to maximize the
number of satisfied clauses in ϕ. We denote by k-SSAT the SSAT problem when
there are k alternations between existential and random quantifiers.

SSAT can be viewed as a restricted “game against nature” [51] where all parties
are binary, and “nature’s” moves are made uniformly at random. Variations of
SSAT are related to areas of research in artificial intelligence, specifically planning
and reasoning under uncertainty [47]. Previous research on SSAT has studied
complexity-theoretical aspects [28, 33, 34] and SAT-solvers for it (e.g., [47, 49,
45]).

Our result on the hardness of approximation for k-SSAT is as follows.

Theorem 2. For every k, it is AM[k]-complete to distinguish whether a k-SSAT
instance has value 1 or value at most 1− 1

O(k) .

We compare Theorem 2 with prior ones about k-SSAT. For k = 1, our result
matches that of [33] who showed that the value of 1-SSAT is AM[1]-hard to
approximate up to a constant factor. Condon, Feigenbaum, Lund, and Shor
[28] show that there exists a constant c > 1 such that for every language L in
IP = PSPACE, one can reduce an instance x to a poly(|x|)-SSAT instance ϕ
such that if x ∈ L then the value of ϕ is 1, and otherwise the value of ϕ is 1/c.
The approaches used in both prior works do not seem to extend to other values
of k.

This state of affairs motives the following natural question:

How hard is it to approximate the value of k-SSAT to a constant factor
independent of k?

While PCPs have well-known applications to the hardness of approximation
of numerous NP problems, no similar connection between IOPs and hardness
of approximation was known. (Indeed, this possibility was raised as an open
problem in prior work.) The works of Drucker [33] and Condon et al. [28] can be
reinterpreted as giving such results for stochastic satisfiability problems. In this
paper we make this connection explicit and extend their results.

Transformations for IOPs We obtain IOP analogues of classical IP theorems,
as a corollary of Theorem 1. We show IOP-to-IOP transformations, with small
query complexity, and achieve classical results that were known for IPs, including:
a private-coin to public-coin transformation (in the style of [41]); a round reduction
technique (in the style of [5]); and a method to obtain perfect completeness (in
the style of [37]). A graphic of this corollary is displayed in Figure 2.

Corollary 1. Let L be a language with a k-round IOP with polynomial proof
length over a binary alphabet. Then the following holds:

1. private-coins to public-coins: L has a O(k)-round public-coin IOP;
2. round reduction: for every constant c ≤ k, L has a k/c-round IOP;
3. perfect completeness: L has a perfectly complete k-round IOP.
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All resulting IOPs have polynomial proof length and O(1) per-round query com-
plexity over a binary alphabet; all other parameters are polynomially related to
the original IOP.

Similar to the case with IPs, one can combine these transformations to get all
properties at once. In particular, one can transform any IOP to be public-coin
and have perfect completeness while preserving the round complexity.

private coin
IOP

public-coin
IP

[41] public-coin
IOPTheorem 1

k-round
IOP

k/c-round
IP

[5] k/c-round
IOP

Theorem 1

imperfectly
complete

IOP

perfectly
complete

IP
[37]

perfectly
complete

IOP
Theorem 1

Fig. 2. Corollary 1 provides IOP analogues of classical IP theorems.

1.2 A cryptographic application to SNARKs

A building block that underlies Theorem 1 is a new notion of PCP that we
call index-decodable PCPs. We informally describe this object in Section 1.2
below (and postpone the definition and a comparison with other PCP notions to
Section 2.3). Moreover, we prove that index-decodable PCPs are a useful tool
beyond the aforementioned application to Theorem 1, by establishing a generic
transformation from index-decodable PCPs to commit-and-prove SNARKs. We
discuss these SNARKs and our result in Section 1.2 below (and postpone further
discussion to Section 2.6).

Index-decodable PCPs An index-decodable PCP can be seen as a PCP on
maliciously encoded data. The prover wishes to convince the verifier about a
statement that involves k data segments i[1], . . . , i[k] and an instance x, for
example, that it knows a witness w such that (i[1], . . . , i[k],x,w) ∈ R for some
relation R. The prover outputs a PCP string Π for this statement. The verifier
receives as input only the instance x, and is given query access to an encoding of
each data segment i[i] and query access to the PCP string Π. This means that
the verifier has query access to a total of k+ 1 oracles.
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The definition of an index-decodable PCP, to be useful, needs to take into
account several delicate points (which, in fact, are crucial for our proof of
Theorem 1).

First, the encoding of each data segment must be computed independently
of other data segments and even the instance. (Though the PCP string Π can
depend on all data segments and the instance.)

Second, the verifier is not guaranteed that the k data oracles are valid
encodings, in the sense that “security” is required to hold even against malicious
provers that have full control of all k+ 1 oracles (not just the PCP string oracle).
In other words, we wish to formulate a security notion that is meaningful even
for data that has been maliciously encoded.

The security notion that we use is decodability. Informally, we require that if
the verifier accepts with high-enough probability a given set of (possibly malicious)
data oracles and PCP string, then each data oracle can be individually decoded
into a data segment and the PCP string can be decoded into a witness such
that, collectively, all the data segments, the instance, and the witness form a true
statement. We stress that the decoder algorithms must run on each data oracle
separately from other data oracles and the instance (similarly as the encoder).

Commit-and-prove SNARKs A commit-and-prove SNARK (CaP-SNARK)
is a SNARK that enables proving statements about previously committed data,
and commitments can be reused across different statements. CaP-SNARKs
have been studied in a line of work [35, 29, 46, 22, 17], where constructions have
been achieved assuming specific computational assumptions (e.g., knowledge of
exponent assumptions) and usually with the added property of zero-knowledge.

We show how to use index-decodable PCPs to unconditionally achieve CaP-
SNARKs in the random oracle model (ROM);8 in more detail we need the
index-decodable PCP to have efficient indexing/decoding and certain proximity
properties. Our transformation can be seen as an index-decodable PCP analogue
of the Micali construction of SNARKs in the ROM from PCPs [50].

Theorem 3. There is a transformation that takes as input an index-decodable
PCP (that has an efficient indexer and decoder and satisfies certain proximity
properties) for a relation R with proof length l and query complexity q, and
outputs a CaP-SNARK in the ROM for R with argument size Oλ(q · log l). (Here
λ is the output size of the random oracle.)

We obtain a concrete construction of a CaP-SNARK in the ROM (for nonde-
terministic computations) by applying the above theorem to our construction of
an index-decodable PCP system.

We conclude by noting that the ROM supports several well-known construc-
tions of succinct arguments that can be heuristically instantiated via lightweight
cryptographic hash functions, are plausibly post-quantum secure [25], and have

8 In this model, all parties (honest and malicious) receive query access to the same
random function.
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led to realizations that are useful in practice. It is plausible that our construction
can be shown to have these benefits as well — we leave this, and constructing
zero-knowledge CaP-SNARKs in the ROM, to future work.

2 Techniques

We summarize the main ideas underlying our results.
We begin by discussing the question of transforming IPs to IOPs. In Section 2.1,

we describe a solution in [33] that works for a single round and explain why it is
challenging to extend it for multiple rounds. Then, we describe our transformation
for many rounds in two steps. First, in Section 2.2, we describe how to make a
verifier query each of its random messages at few locations. Next, in Section 2.3,
we define our new notion of index-decodable PCPs and, in Section 2.4, describe
how to use these to make the verifier query each prover message at few locations
(without affecting the first step). In Section 2.5, we explain how to construct
index-decodable PCPs with good parameters.

We conclude by describing applications of our results and constructions:
(i) in Section 2.6, we construct commit-and-prove SNARKs in the random oracle
model from index-decodable PCPs; and (ii) in Section 2.7, we show that Theorem 1
has implications on the hardness of approximating the value of certain stochastic
problems.

Throughout, we call interaction randomness (or verifier random messages)
the randomness sent by the verifier to the prover during the interaction, and
decision randomness the randomness used by the verifier in the post-interaction
decision stage.

2.1 Towards transforming IPs to IOPs

We discuss the problem of transforming IPs into IOPs. We begin by describing
a solution in [33] that transforms a single-round IP into a single-round IOP.
Following that, we describe the challenges of extending this approach to work for
multi-round IPs.

The case of a single-round IP The case of a single-round was settled by
Drucker [33], whose work implies a transformation from a public-coin single-
round IP to a single-round IOP where the verifier reads O(1) bits from the
communication transcript (here consisting of the prover message and the verifier
message). His construction uses as building blocks the randomness-efficient
amplification technique of [6] and PCPs of proximity (PCPPs) [31, 15].9 We
give a high-level overview of his construction.
9 A PCPP is a PCP system where the verifier has oracle access to its input in addition

to the prover’s proof; the soundness guarantee is that if the input is far (in Hamming
distance) from any input in the language, then the verifier accepts with small
probability.
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In a public-coin single-round IP, given a common input instance x, the verifier
VIP sends randomness ρ, the prover PIP sends a message a, and the verifier VIP

decides whether to accept by applying a predicate to (x, ρ, a). Consider the
non-deterministic machine M such that M(x, ρ) = 1 if and only if there exists a
such that VIP accepts (x, ρ, a). The constructed IOP works as follows:

1. the IOP verifier sends VIP’s randomness ρ;
2. the IOP prover computes PIP’s message a and produces a PCPP string Π for

the claim “M(x, ρ) = 1”;
3. the IOP verifier checks Π using the PCPP verifier with explicit inputs M and
x and implicit input ρ.

This IOP is sound if the underlying IP is “randomness-robust”, which means
that if x is not in the language then with high probability over ρ it holds that
ρ is far from any accepting input for M(x, ·). Drucker achieves this property
by using an amplification technique in [6] that achieves soundness error 2−|ρ|

while using O(|ρ|) random bits (standard amplification would, when starting
with a constant-soundness protocol, result in ω(|ρ|) random bits). Thus, with
high probability, ρ is not only a “good” random string (which holds for any
single-round IP) but also is δ-far from any “bad” random string, for some small
constant δ > 0. This follows since the ball of radius δ around any bad random
string has size 2δ

′|ρ|, for some small constant δ′ that depends only on δ.

Challenges of extending the single-round approach to multi-round IPs
We wish to obtain a similarly efficient transformation for a public-coin k-round
IP where k = poly(n).

One possible approach would be to reduce the number of rounds of the given
IP from k to 1 and then apply the transformation for single-round IPs. The round
reduction of Babai and Moran [5] shows that any public-coin k-round IP can be
transformed into a one-round IP where efficiency parameters grow by nO(k). This
transformation, however, is not efficient for super-constant values of k. Moreover,
it is undesirable even when k is constant because the transformation overhead
is not a fixed polynomial (the exponent depends on k rather than being a fixed
constant).

Therefore, we seek an approach that directly applies to a multi-round IP. Un-
fortunately, Drucker’s approach for one-round IPs does not generalize to multiple-
round IPs for several reasons. First, the corresponding machine M(x, ρ1, . . . , ρk)
(which accepts if and only if there exist prover messages a1, . . . , ak such that
VIP accepts (x, ρ1, a1, . . . , ρk, ak)) does not capture the soundness of the inter-
active proof because it fails to capture interaction (a protocol may be sound
according to the IP definition and, yet, for every x and ρ1, . . . , ρk it could be that
M(x, ρ1, . . . , ρk) = 1). Moreover, it is not clear how to perform a randomness-
efficient amplification for multiple rounds that makes the protocol sufficiently
“randomness robust” for the use of a PCPP. The main reason is that to get
soundness error 2−m (as in [33]), the techniques of [6] add O(m) bits per round,
which is too much when the protocol has many rounds (see Section 2.2 for a
more detailed discussion on why this approach fails for many rounds).
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We give a different solution that circumvents this step and works for any
number of rounds. Our transformation from k-round IP to an IOP in two stages.
In the first stage, we transform the IP into one in which the verifier reads only
O(1) bits from each random message it sends. In the second stage, we transform
the IP into an IOP with O(1) per-round query complexity, simultaneously for
each prover message and each verifier message. We achieve this via a new notion
of PCPs that we call index-decodable PCPs, and we describe in Section 2.3. First,
we explain how to achieve the property that the verifier reads O(1) bits from
each of its random messages to the prover.

2.2 Local access to randomness

We transform a public-coin IP (PIP,VIP) into an IP (P′
IP,V

′
IP) whose verifier

(i) reads O(1) bits from each of its random messages to the prover, and (ii) has
logarithmic decision randomness (the randomness used by the verifier in the
post-interaction decision stage). For now, the verifier reads in full every message
received from the prover, and only later we discuss how to reduce the query
complexity to prover messages while preserving the query complexity to the
verifier random messages.

One-round public-coin proofs In order to describe our ideas we begin with
the simple case of one-round public-coin interactive proofs. Recall from Section 2.1
that this case is solved in [33], but we nevertheless first describe our alternative
approach for this case and after that we will discuss the multiple-round case.

A strawman protocol. Recall that in a one-round public-coin IP the verifier sends
a uniformly random message, the prover replies with some answer, and the verifier
uses both of these messages to decide whether to accept. An idea to allow the
verifier to not read in full its own random message would be for the prover to
send the received random message back to the verifier, and the verifier to use this
latter and test consistency with its own randomness. Given an instance x: V′

IP

sends VIP’s random message ρ ∈ {0, 1}r; P′
IP replies with ρ′ := ρ and the message

a := PIP(x, ρ); and V′
IP checks that ρ and ρ′ agree on a random location and that

VIP(x, ρ
′, a) = 1.

This new IP is complete, and its verifier queries its random message at one
location to conduct the consistency test. However, the protocol might not be
sound, as we explain. Suppose that x /∈ L. Let r be the length of ρ, let β be the
soundness error of the original IP, and let νr be the volume of the Hamming
sphere of radius r/3 in {0, 1}r. A choice of verifier message ρ is bad if there exists
a such that VIP(x, ρ, a) = 1. By the soundness guarantee of VIP, the fraction of
bad choices of random verifier messages is at most β. A choice of verifier message
ρ is ball-bad if there exist a bad ρ′ that is 1/3-close to ρ. By the union bound,
the fraction of ball-bad coins is at most γ = β · νr.

Let E be the event over the choice of ρ that the prover sends ρ′ that is 1/3-far
from ρ.
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– Conditioned on E occurring, V′
IP rejects with probability at least 1/3 (whenever

V′
IP chooses a location on which ρ and ρ′ disagree).

– Conditioned on E not occurring, P′
IP cannot send any ρ′ and a such that

VIP(x, ρ
′, a) = 1 unless ρ is ball-bad, and so V′

IP rejects with probability at
least 1− γ.

Therefore, for the new IP to be sound, we need γ = β · νr to be small. Notice
that νr = 2c·r (for some constant 0 < c < 1) depends on r but not on β. Thus we
need to achieve log 1/β > c · r. As in Drucker’s transformation, this can be done
using the randomness-efficient soundness amplification of [6], but we deliberately
take a different approach that will generalize for multiple rounds.

Shrinking γ using extractors. Let Ext be an extractor with output length r, seed
length O(log 1/β), and error β;10 such extractors are constructed in [42]. Suppose
that the prover and verifier have access to a sample z from a source D with high
min-entropy. Consider the following IP: V′

IP sends s; P′
IP replies with s′ := s and

a := PIP(x,Ext(z, s
′)); V′

IP checks that s and s′ agree on a random location and
that VIP(x,Ext(z, s

′), a) = 1.
At most a 2β-fraction of the seeds s are such that there exists a such that

VIP(x,Ext(z, s), a) = 1, because Ext is an extractor with error β and D is a
distribution with high min-entropy. By an identical argument to the one done
previously, either P′

IP sends s′ that is far from s and so V′
IP rejects with constant

probability, or V′
IP rejects with probability at least γ = 2β · νr′ where r′ = |s| =

O(log 1/β). Thus we have that γ = 2 ·β1−c, which is a constant fraction for small
enough values of β (which can be achieved with standard parallel repetition).

Generating a source of high min-entropy. We describe how the prover and verifier
can agree on a sample from a high-entropy source by leveraging the following
observation: if z is a uniformly random string and z′ is an arbitrary string that
is close in Hamming distance to z, then z′ has high min-entropy. Thus we can
sample via similar ideas as above: V′

IP samples and sends z; P′
IP replies with

z′ := z; and V′
IP checks that z and z′ agree on a random location. (So V′

IP reads
one bit of its random message z.) If, with constant probability over z, P′

IP sends
z′ that is far from z, then V′

IP rejects with constant probability. Otherwise, we
show that z′ has high min-entropy because with high probability it agrees with z
on most of its locations.

Putting it all together. Let (PIP,VIP) be a public-coin single-round IP with
soundness error β and randomness complexity r, and let Ext be an extractor with
output length r, seed length O(log 1/β), and error β. The new IP (P′

IP,V
′
IP) is as

follows.
– Sample high min-entropy source: V′

IP sends z and P′
IP replies with z′ := z.

– Sample extractor seed: V′
IP sends s and P′

IP replies with s′ := s.

10 A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if, for every random
variable X over {0, 1}n with min-entropy at least k, the statistical distance between
Ext(X,Ud) and Um is at most ε.
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– Prover message: P′
IP sends a := PIP(x,Ext(z

′, s′)).
– Verification: V′

IP checks that z and z′ agree on a random location, s and s′

agree on a random location, and VIP(x,Ext(z
′, s′), a) = 1.

Extending to multiple rounds In order to extend the previously described
protocol to multiple rounds, we leverage the notion of round-by-round soundness.
An IP for a language L has round-by-round soundness error βrbr if there exists a
“state” function such that: (i) for x /∈ L, the starting state is “doomed”; (ii) for
every doomed state and next message that a malicious prover might send, with
probability βrbr over the verifier’s next message, the protocol state will remain
doomed; (iii) if at the end of interaction the state is doomed then the verifier
rejects.

In the analysis of the one-round case there was an event (called bad) over the
IP verifier’s random message ρ such that if this event does not occur then the
prover has no accepting strategy. This event can be replaced, in the round-by-
round case, by the event that, in a given round, the verifier chooses randomness
where the transcript remains doomed. This idea leads to a natural extension of
the one-round protocol described in Section 2.2 to the multi-round case, which is
our final protocol.

Let (PIP,VIP) be a public-coin k-round IP with round-by-round soundness
error βrbr and randomness complexity r, and Ext an extractor with output length
r, seed length O(log 1/βrbr), and error βrbr.

– For each round j ∈ [k] of the original IP:
1. Sample high min-entropy source: V′

IP sends zj and P′
IP replies with z′j := zj .

2. Sample extractor seed: V′
IP sends sj and P′

IP replies with s′j := sj .
3. Prover message: P′

IP sends aj := PIP(x, ρ1, . . . , ρj) where ρi := Ext(zi, si).
– V′

IP accepts if and only if the following tests pass:
1. Choose a random location and, for every j ∈ [k], test that zj and z′j agree

on this location.
2. Choose a random location and, for every j ∈ [k], test that sj and s′j agree

on this location.
3. For every j ∈ [k], compute ρj := Ext(z′j , s

′
j). Check that VIP(x, ρ1, a1, . . . , ρk, ak) =

1.

The soundness analysis of this protocol is similar to the one-round case.
Suppose that x /∈ L. Then the empty transcript is “doomed”. By an analysis
similar to the one-round case, except where we set “bad” verifier messages to be
ones where the transcript state switches from doomed to not doomed, if a round
begins with a doomed transcript then except with probability γ = 2 · β1−c

rbr (for
some constant c) the transcript in the next round is also doomed. Thus, by a
union bound, the probability that the transcript ends up doomed, and as a result
the verifier rejects, is at least 1− 2 · k · β1−c

rbr . As shown in [23] round-by-round
soundness error can be reduced via parallel repetition, albeit at a lower rate
than regular soundness error. Thus, by doing enough parallel repetition before
applying our transformation, the round-by-round soundness error βrbr can be
reduced enough so that the verifier rejects with constant probability.



A PCP Theorem for Interactive Proofs and Applications 13

The above protocol has 2kIP rounds. The verifier reads 1 bit from each of
its random messages, and has O(log |x|) bits of decision randomness (to sample
random locations for testing consistency between each z′j and zj and between
each s′j and sj). To achieve kIP rounds, we first apply the round reduction of [5]
on the original IP to reduce to kIP/2 rounds, and then apply our transformation.

Why randomness-efficient soundness amplification is insufficient We
briefly sketch why applying randomness-efficient soundness amplification in the
style of [6] is insufficient in the multi-round case, even if we were to consider round-
by-round soundness. Recall that we wish for βrbr · 2Θ(r) to be small, where βrbr is
the round-by-round soundness of the protocol and r is the number of random
bits sent by the verifier in a single round. Bellare, Goldreich and Goldwasser
[6] show that, starting with constant soundness and randomness r, one can
achieve soundness error 2−m using r′ = O(r + m) random bits; they do this
via m parallel repetitions where the randomness between repetitions is shared
in a clever way. Using parallel repetition, achieving round-by-round soundness
error 2−m requires m/k repetitions (see [23]). Thus, even if we were to show that
the transformation of [6] reduces round-by-round soundness error at the same
rate as standard parallel repetition (as it does for standard soundness), in order
to get round-by-round soundness error 2−m, we would need r′ = O(r + m · k)
bits of randomness. This would achieve βrbr · 2Θ(r′) = 2−m · 2Θ(r+mk), which, for
super-constant values of k, is greater than 1 regardless of r.

2.3 Index-decodable PCPs

We introduce index-decodable PCPs, a notion of PCP that works on multi-indexed
relations. A multi-indexed relation R is a set of tuples (i[1], . . . , i[k],x,w) where
(i[1], . . . , i[k]) is the index vector, x the instance, and w the witness. As seen
in the following definition, an index-decodable PCP treats the index vector
(i[1], . . . , i[k]) and the instance x differently, which is why they are not “merged”
into an instance x′ = (i[1], . . . , i[k],x) (and why we do not consider standard
relations).

Definition 1. An index-decodable PCP for a multi-indexed relation R =
{ (i[1], . . . , i[k],x,w) } is a tuple of algorithms (IPCP,PPCP,VPCP, iDPCP,wDPCP),
where IPCP is the (honest) indexer, PPCP the (honest) prover, VPCP the verifier,
iDPCP the index decoder, and wDPCP the witness decoder. The system has (perfect
completeness and) decodability bound κPCP if the following conditions hold.

– Completeness. For every (i[1], . . . , i[k],x,w) ∈ R,

Pr
ρ

 Vπ1,...,πk,Π
PCP (x; ρ) = 1

π1 ← IPCP(i[1])
...

πk ← IPCP(i[k])
Π ← PPCP(i[1], . . . , i[k],x,w)

 = 1 .
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– Decodability. For every x, indexer proofs π̃1, . . . , π̃k, and malicious prover
proof Π̃, if

Pr
ρ

[
Vπ̃1,...,π̃k,Π̃

PCP (x; ρ) = 1
]
> κPCP(|x|)

then
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

)
∈ R.

The indexer IPCP separately encodes each index, independent of indices and
the instance, to obtain a corresponding indexer proof. The prover PPCP gets all
the data as input (index vector, instance, and witness) and outputs a prover
proof. The verifier VPCP gets the instance as input and has query access to k+ 1
oracles (k indexer proofs and 1 prover proof), and outputs a bit.

The decodability condition warrants some discussion. The usual soundness
condition of a PCP for a standard relation R has the following form: “if VΠ̃

PCP(x)
accepts with high-enough probability then there exists a witness w such that
(x,w) ∈ R”. For a multi-indexed relation it could be that for any given instance x
there exist indexes i[1], . . . , i[k] and a witness w such that (i[1], . . . , i[k],x,w) ∈
R. Since we do not trust the indexer’s outputs, a soundness condition is not
meaningful.

Instead, the decodability condition that we consider has the following form: “if
Vπ̃1,...,π̃k,Π̃

PCP (x) accepts with high-enough probability then (i[1], . . . , i[k],x,w) ∈ R
where i[1], . . . , i[k] and w are the decoded indices and witness respectively found
in π̃1, . . . , π̃k and Π̃”. It is crucial that the index decoder receives as input the
relevant indexer proof but not also the instance, or else the decodability condition
would be trivially satisfied (the index decoder could output the relevant index
of the lexicographically first index vector putting the instance in the relation).
This ensures that the proofs collectively convince the verifier not only that there
exists an index vector and witness that place the instance in the relation, but
that the prover encoded a witness that, along with index vector obtainable from
the index oracles via the index decoder, places the instance in the relation.

We do not require the indexer or the decoders to be efficient. However, in some
applications, it is useful to have an efficient indexer and decoders, and indeed we
construct an index-decodable PCP with an efficient indexer and decoders.

Remark 1 (comparison with holography). We compare index-decodable PCPs
and holographic PCPs, which also work for indexed relations (see [24] and
references therein). In both cases, an indexer produces an encoding of the index
(independent of the instance). However, there are key differences between the two:
(i) in an index-decodable PCP the indexer works separately on each entry of the
index vector, while in a holographic PCP there is a single index; moreover, (ii) in
a holographic PCP the indexer is trusted in the sense that security is required to
hold only when the verifier has oracle access to the honest indexer’s output, but
in an index-decodable PCP, the indexer is not trusted in the sense that the
malicious prover can choose encodings for all of the indices. Both differences are
essential properties for our transformation of IPs into IOPs.

We construct a binary index-decodable PCPs with O(1) query complexity
per oracle.
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Theorem 4. Any multi-indexed relation R = {(i[1], . . . , i[k],x,w)} to which
membership can be verified in nondeterministic time T has a non-adaptive index-
decodable PCP with the following parameters:

Index-Decodable PCP for (i[1], . . . , i[k],x,w) ∈ R

Indexer proof length (per proof) O(|i[i]|)
Prover proof length poly(T )
Alphabet size 2
Queries per oracle O(1)
Randomness O(log |x|)
Decodability bound O(1)

Indexer running time Õ(|i[i]|)
Prover running time poly(T )
Verifier running time poly(|x|, k, log T )
Index decoding running Õ(|i[i]|)
Witness decoding time poly(T )

Our construction achieves optimal parameters similar to the PCP theorem:
it has O(1) query complexity (per oracle) over a binary alphabet, and the
randomness complexity is logarithmic, independent of the number of indexes
k. Achieving small randomness complexity is challenging and useful. First, it
facilitates proof composition (where a prover writes a proof for every possible
random string), which is common when constructing zero-knowledge PCPs (e.g.,
[44]). Second, small randomness complexity is necessary for our hardness of
approximation results (see Section 2.7).

A similar notion is (implicitly) considered in [1] but their construction does
not achieve the parameters we obtain in Theorem 4 (most crucially, they do not
achieve small randomness).

2.4 Local access to prover messages

We show how to transform an IP into an IOP by eliminating the need of the verifier
to read more than a few bits of each prover message. This transformation preserves
the number of bits read by the verifier to its own interaction randomness. Thus,
combining it with the transformation described in Section 2.2, this completes the
proof (overview) of Theorem 1.

We transform any public-coin IP into an IOP by using an index-decodable
PCP. In a public-coin k-round IP, the prover PIP and verifier VIP receive as input
an instance x and then, in each round i, the verifier VIP sends randomness ρi and
the prover replies with a message ai ← PIP(x, ρ1, . . . , ρi); after the interaction,
the verifier VIP runs an efficient probabilistic algorithm with decision randomness
ρdc on the transcript (x, ρ1, a1, . . . , ρk, ak) to decide whether to accept or reject.

The IP verifier VIP defines a multi-indexed relation R(VIP) consisting of tuples(
i[1], . . . , i[k],x′,w

)
=

(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

)
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such that the IP verifier VIP accepts the instance x, transcript (ρ1, a1, . . . , ρk, ak),
and decision randomness ρdc. (Here we do not rely on witnesses although the
definition of index-decodable PCPs supports this.)

From IP to IOP. Let (IPCP,PPCP,VPCP, iDPCP,wDPCP) be an index-decodable PCP
for the relation R(VIP). We construct the IOP as follows. The IOP prover and
IOP verifier receive an instance x. In round i ∈ [k], the IOP verifier sends
randomness ρi (just like the IP verifier VIP) and the (honest) IOP prover
sends the indexer proof πi := IPCP(ai) where ai ← PIP(x, ρ1, . . . , ρi). In a fi-
nal additional message (which can be sent at the same time as the last in-
dexer proof πk), the IOP prover sends Π := {Πρdc

}ρdc
where, for every possi-

ble choice of decision randomness ρdc, Πρdc
is an index-decodable PCP prover

proof to the fact that
(
a1, . . . , ak, (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP). After the in-

teraction, the IOP verifier samples IP decision randomness ρdc and checks that
V

π̃1,...,π̃k,Π̃ρdc
PCP

(
x, ρ1, . . . , ρk, ρdc

)
= 1.

Proof sketch. Completeness follows straightforwardly from the construction. We
now sketch a proof of soundness. Letting L be the language decided by (PIP,VIP),
fix an instance x /∈ L and a malicious IOP prover P̃IOP. Given interaction
randomness ρ1, . . . , ρk, consider the messages π̃1, . . . , π̃k output by P̃IOP in the
relevant rounds (π̃i depends on ρ1, . . . , ρi) and the message Π̃ = {Π̃ρdc

}ρdc

output by P̃IOP in the last round (this message depends on ρ1, . . . , ρk). We
consider two complementary options of events over the IOP verifier’s randomness
(ρ1, . . . , ρk, ρdc).

1. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc
generated while interact-

ing with P̃IOP using randomness ρ1, . . . , ρk and ρdc are such that(
iDPCP(π̃1), . . . , iDPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
/∈ R(VIP) .

If this is true, then, by the decodability property of the index-decodable
PCP, the IOP verifier must reject with high probability over the choice of
randomness for VPCP.

2. With high probability the proofs π̃1, . . . , π̃k and Π̃ρdc
generated while interact-

ing with P̃IOP using randomness ρ1, . . . , ρk and ρdc are such that(
iDPCP(π̃1), . . . , iDPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP) .

We prove that this case cannot occur by showing that it contradicts the
soundness of the original IP. Suppose towards contradiction that the above is
true. We use P̃IOP and the index decoder of the index-decodable PCP, iDPCP,
to construct a malicious IP prover for the original IP as follows.
In round i, the transcript (ρ1, a1, . . . , ρi−1, ai−1) has already been set during
previous interaction. The IP verifier sends randomness ρi. The IP prover
sends ai := iDPCP(π̃i) to the IP verifier, where π̃i := P̃IOP(ρ1, . . . , ρi). Recall
that

(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈ R(VIP) if and only if the
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IP verifier accepts given instance x, randomness (ρ1, . . . , ρk, ρdc), and prover
messages DPCP(π̃1), . . . ,DPCP(π̃k), which is precisely what the IP prover supplies
it with. Since the event that

(
DPCP(π̃1), . . . ,DPCP(π̃k), (x, ρ1, . . . , ρk, ρdc),⊥

)
∈

R(VIP) happens with high probability, this implies that with high probability
the IP verifier will accept, contradicting soundness of the original IP. Here we
crucially used the fact that the decoder DPCP does not depend on the instance
of the index-decodable PCP (which consists of x and all of the IP verifier’s
randomness ρ1, . . . , ρk, ρdc) or on the other indexer messages.

The resulting IOP has k rounds, exactly as in the original IP. The IOP verifier
uses as much randomness as the original IP verifier with the addition of the
randomness used by the index-decodable PCP. The query complexity is that
of the underlying verifier of the index-decodable PCP. The proof length and
alphabet are the same as those of the index-decodable PCP.

Preserving local access to randomness. The transformation described above can
be modified to preserve the query complexity of the verifier to its own interaction
randomness if the verifier is non-adaptive with respect to its queries to its random
messages (i.e., the choice of bits that it reads depends only on x and ρdc). We can
redefine the multi-indexed relation R(VIP) to have as explicit inputs the instance
x, decision randomness ρdc, and the bits of ρ1, . . . , ρk that the verifier needs to
read to decide whether to accept or reject (rather than the entire interaction
randomness strings). In more detail, suppose that the verifier reads q bits from
its own interaction randomness. Then the new multi-indexed relation consists of
tuples: (

i[1], . . . , i[k],x′,w
)
=

(
a1, . . . , ak, (x, b1, . . . , bq, ρdc),⊥

)
such that given decision randomness ρdc the IP verifier VIP accepts given instance x,
decision randomness ρdc, prover messages (a1, . . . , ak), and (b1, . . . , bq) as answers
to its q queries to ρ1, . . . , ρk.

Given a multi-indexed PCP for this relation, the IP to IOP transformation is
identical to the one described above, except that after the interaction, the IOP
verifier samples IP decision randomness, queries its own interaction randomness
to get answers b1, . . . , bq, and these replace ρ1, . . . , ρk as explicit inputs to the
index-decodable PCP verifier VPCP.

2.5 Constructing index-decodable PCPs

We describe how to construct index-decodable PCPs: in Section 2.5 we outline a
randomness-efficient index-decodable PCP that makes O(1) queries to each of its
oracles, where the indexer proofs are over the binary alphabet and the prover
proof is over a large alphabet; then in Section 2.5 we use proof composition to
reduce the alphabet size of the latter.

Basic construction from PCPPs We outline a construction of an index-
decodable PCP with O(1) query complexity to each indexer proof and to the



18 Gal Arnon and Alessandro Chiesa and Eylon Yogev

prover proof, and where the prover proof is over a large alphabet (of size 2k).
For a later proof composition while preserving polynomial proof length, here we
additionally require that the verifier has logarithmic randomness complexity.

Building blocks. In our construction we rely on variants of PCPPs. Recall that
a PCPP is a PCP system where the verifier has oracle access to its input in
addition to the prover’s proof; the soundness guarantee is that if the input is far
(in Hamming distance) from any input in the language, then the verifier accepts
with small probability.

We use PCPPs that are multi-input and oblivious. We explain each of these
properties.

– A PCPP is multi-input if the verifier has oracle access to multiple (oracle)
inputs. The soundness guarantee is that, for every vector of inputs that satisfy
the machine in question, if at least one input oracle is far from the respective
satisfying input, then the verifier accepts with small probability.

– A (non-adaptive) PCPP is oblivious for a family of nondeterministic machines
M = {Mi}i∈[k] if the queries made by the verifier to its oracles depend only on
M and its randomness. In particular they do not depend on i. This property
will be used later to facilitate bundling queries. We will have k PCPs, each
with a different Mi, but the verifier will use the same randomness in each test.
Since the PCPPs are oblivious, this means that the verifier makes the same
queries for every test. Thus we can group together the k proofs into a single
proof with larger alphabet and maintain good query complexity on this proof.
This property is important in order to achieve our final parameters.

See the full version of this paper for formal definitions for the above notions, and
how to obtain them from standard PCPPs. Henceforth, all PCPPs that we use
will be over the binary alphabet and have constant proximity, constant soundness
error, constant query complexity, and logarithmic randomness complexity.

The construction. We construct an index-decodable PCP for a multi-indexed
relation R = {(i[1], . . . , i[k],x,w)} whose membership can be verified efficiently.

The indexer encodes each index via an error-correcting code with (constant)
relative distance greater than the (constant) proximity parameter of the PCPP
used later. The prover uses PCPPs to prove that there exist indexes and a witness
that put the given instance in the relation and adds consistency checks to prove
that the indices are consistent with those encoded by the indexer. The verifier
checks each of these claims. The index decoder decodes the indexer proofs using
the same code.

In slightly more detail, the index-decodable PCP is as follows.

– IPCP(i[i]): Encode the index i[i] as πi using an error-correcting code.
– PPCP(i[1], . . . , i[k],x,w):

1. Encoding the indexes. Compute Π∗, an encoding of the string (i[1], . . . , i[k],w).
2. Membership of encoding. Compute a PCPP string Πmem for the claim that

M∗(x, Π∗) = 1 where M∗ checks that Π∗ is a valid encoding of indexes and
a witness that put x in R.
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3. Consistency of encoding. For every j ∈ [k], compute a PCPP string Πj

for the claim that Mj(πj , Π∗) = 1 where Mj checks that πj and Π∗ are
valid encodings and that the string i[j] encoded within πj is equal to the
matching string encoded within Π∗.

4. Output (Π∗, Πmem, Πi) where Πi are the proofs Π1, . . . ,Πk “bundled” to-
gether into symbols of k bits such that Πi[q] = (Π1[q], . . . ,Πk[q]).

– V
π̃1,...,π̃k,(Π̃∗,Π̃mem,Π̃i)
PCP (x): Check that all the tests below pass.

1. Membership. Run the PCPP verifier on the claim that M∗(x, Π̃∗) = 1 using
proof oracle Π̃mem.

2. Consistency. For every j ∈ [k], run the PCPP verifier on the claim that
Mj(π̃j , Π̃∗) = 1 using proof oracle Π̃j . These k tests are run with the same
randomness. Since the PCPP is oblivious and randomness is shared, the
queries made by the PCPP verifier in each test are identical, and so each
query can be made by reading the appropriate k-bit symbols from Π̃i.

– iDPCP(π̃j): output the codeword closest to π̃j in the error-correcting code.
– wDPCP(Π̃∗, Π̃mem, Π̃i): Let (̃i[1], . . . , ĩ[k], w̃) be the codeword closest to Π̃∗ in

the error-correcting code and output w̃.

Completeness follows straightforwardly from the construction. We now sketch
decodability.

Decodability. Fix an instance x, indexer proofs π̃1, . . . , π̃k, and prover proof
(Π̃∗, Π̃mem, Π̃i). Suppose that the verifier accepts with high-enough probability. We
argue that this implies that there existsw such that

(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

)
∈

R. Specifically, we argue that Π̃∗ encodes indices ĩ[1], . . . , ĩ[k] and witness w̃ that
place x in R and, additionally, each π̃j is an encoding of ĩ[j]. This completes the
proof of decodability because iDPCP decodes each π̃j to ĩ[j], and these strings
together with w̃ put x in the multi-indexed relation R.

Let δPCPP be the PCPP’s proximity and δECC the code’s (relative) distance;
recall that δPCPP ≤ δECC.

– Membership: We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ that place x
in R and whose encoding has Hamming distance at most δPCPP from Π̃∗; since
δPCPP ≤ δECC, this implies that Π̃∗ decodes to (̃i[1], . . . , ĩ[k], w̃). Suppose towards
contradiction that there are no such strings. In other words, for every codeword
Π̂∗ that is close in Hamming distance to Π̃∗ we have that M∗,x(x, Π̂∗) = 0. As
a result the PCPP verifier must reject with high probability, which contradicts
our assumption that VPCP (which runs the PCPP verifier) accepts with high
probability.

– Consistency : We claim that there exist strings ĩ[1], . . . , ĩ[k] and w̃ such that
their collective encoding is close to Π̃∗ and that, for every j ∈ [k], π̃j is close
to the encoding of ĩ[j]. As before, since the proximity parameter of the PCPP
is smaller than the distance of the code, this implies that Π̃∗ decodes to
(̃i[1], . . . , ĩ[k], w̃) and that π̃j decodes to ĩ[j]. Suppose towards contradiction
that for some j ∈ [k] the above condition does not hold: for every π̂j and Π̂

such that π̂j is close to π̃j and Π̂∗ is close to Π̃∗ it holds that Mj(π̂j , Π̂∗) = 0.



20 Gal Arnon and Alessandro Chiesa and Eylon Yogev

By the soundness of the (multi-input) PCPP, the PCPP verifier must reject
with high probability, which contradicts our assumption that VPCP (which runs
the PCPP verifier) accepts with high probability.

Complexity measures. The above construction is an index-decodable PCP with
polynomial-length proofs and where the verifier makes O(1) queries to each indexer
proof and makes O(1) queries to the prover proof. Moreover, the prover proof has
alphabet size 2k since the prover bundles the PCPP consistency test proofs into
k-bit symbols; this bundling is possible because the verifier shares randomness
between all of the (oblivious) PCPPs in the consistency test. Since the PCPPs are
oblivious to the index i, and they share randomness, they all must make the same
queries to their oracles. The verifier uses O(log |x|) bits of randomness: O(log |x|)
for the membership test, and O(log |x|) for all k consistency tests combined.

Achieving constant query complexity over a binary alphabet We describe
how to achieve an index-decodable PCP with constant query complexity per proof
over the binary alphabet. The main tool is proof composition. In order to apply
proof composition, we define and construct a robust variant of index-decodable
PCPs.

Proof composition. Proof composition is a technique to lower the query complexity
of PCPs [2] and IOPs [9]. In proof composition, an “inner” PCP is used to prove
that a random execution of the “outer” PCP would have accepted. The inner
PCP needs to be a PCPP, which is a PCP system where the verifier has oracle
access to its input in addition to the prover’s proof, and the soundness guarantee
is that if the input is far from any input in the language, then the verifier accepts
with small probability. To match this, the outer PCP must be robust, which
means that the soundness guarantee ensures that when the instance is not in the
language then not only is a random local view of the verifier rejecting but it is
also far (in Hamming distance) from any accepting local view.

Typically the robust outer PCP has small proof length but large query
complexity, while the inner PCPP has small query complexity but possibly a
large proof length. Composition yields a PCP with small query complexity and
small proof length.

We observe that proof composition preserves decodability : if the outer PCP in
the composition is index-decodable, then the composed PCP is index-decodable.
This is because the composition operation does not change the outer PCP proof
and only adds a verification layer to show that the outer verifier accepts.

We thus apply proof composition as follows: the outer PCP is a robust variant
of the index-decodable PCP from Section 2.5; and the inner PCP is a standard
PCPP with polynomial proof length. This will complete the proof sketch of
Theorem 4.

Defining robust index-decodable PCPs. Our goal is to perform proof composition
where the outer PCP is index-decodable. As mentioned above, this requires the
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PCP to be robust. Our starting point is the index-decodable PCP from Section 2.5.
This PCP does have large query complexity over the binary alphabet (O(k) queries
to the prover proof). However, the fact that its queries to the prover proof are
already bundled into a constant number of locations over an alphabet of size 2k

implies that we do not have to worry about a “generic” query bundling step and
instead only have to perform a (tailored) robustification step prior to composition.
Accordingly, the robustness definition below focuses on the prover proof, and so
is the corresponding construction described after.

Definition 2. A non-adaptive11 index-decodable PCP (IPCP,PPCP, (V
qry
PCP,V

dc
PCP), iDPCP,wDPCP)

for a multi-indexed relation R is prover-robustly index-decodable with decod-
ability bound κPCP and robustness σPCP if for every x and proofs Π̃i = (π̃1, . . . , π̃k)
and Π̃ if

Pr
ρ

[
∃A′ s.t. Vdc

PCP(x, ρ, Π̃i[Qi], A
′) = 1 ∧ ∆(A′, A) ≤ σPCP(|x|)

(Qi, Q∗)← Vqry
PCP(x, ρ)

A := { Π̃[q] | q ∈ Q∗ }

]
> κPCP(|x|)

then
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

)
∈ R. Above Qi and Q∗ are the

queries made to the indexer proofs the prover proof respectively and ∆(A′, A) is
the relative distance between A′ and A.

In other words, if
(
iDPCP(π̃1), . . . , iDPCP(π̃k),x,wDPCP(Π̃)

)
/∈ R then with high

probability not only will the verifier reject but also any set of answers from the
prover proof that are close in Hamming distance to the real set of answers will
also be rejecting.

Robustification. We outline how we transform the index-decodable PCP con-
structed in Section 2.5 into a robust index-decodable PCP. The techniques follow
the robustification step in [15]. The transformation preserves the verifier’s ran-
domness complexity O(log |x|), which facilitates using this modified PCP as the
outer PCP in proof composition.

We apply an error-correcting code separately to each symbol of the prover
proof. When the verifier wants to read a symbol from this proof, it reads the
codeword encoding the symbol, decodes it, and then continues. It reads the
indexer proofs as in the original PCP. This makes the PCP robust because if a
few bits of the codeword representing a symbol are corrupted, then it will still be
decoded to the same value. The robustness, however, degrades with the number
of queries. If the relative distance of the error-correcting code is δ and the original
verifier reads q symbols from the prover proof, then the resulting PCP will have
robustness O(δ/q).

Indeed, let c1, . . . , cq be the codewords read by the new PCP verifier from the
prover proof, and let a1, . . . , aq be such that ai is the decoding of ci. In order to
change the decoding into some other set of strings a′1, . . . , a

′
q that, when received

11 A PCP verifier is non-adaptive if it can be split into two algorithms: Vqry
PCP chooses

which locations to query without accessing its oracles; and Vdc
PCP receives the results

of the queries and decides whether to accept or reject.
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by the verifier, may induce a different decision than a1, . . . , aq, it suffices (in the
worst case) to change a single codeword to decode to a different value. Since
the relative distance of the code is δ, to do this, one must change at least a
δ-fraction of the bits of a single codeword, ci. A δ-fraction of a single codeword
is a δ/q-fraction of the whole string of q codewords, c1, . . . , cq.

In sum, to achieve constant robustness, we need to begin with an index-
decodable PCP with a small number of queries to the prover proof, but possibly
with a large alphabet. It is for this reason that we required this property in Sec-
tion 2.5.

2.6 Commit-and prove SNARKs from index-decodable PCPs

We outline the proof of Theorem 3 by showing how to generically transform an
index-decodable PCP into a commit-and-prove SNARK. First, we review the
Micali transformation from PCPs to SNARGs. Then, we define commit-and-prove
SNARKs and explain the challenges in constructing them. Finally, we outline
how we overcome these challenges in our construction.

Review: the Micali construction. The SNARG prover uses the random oracle
to Merkle hash the (long) PCP string into a (short) Merkle root that acts
as a commitment; then, the SNARG prover uses the random oracle to derive
randomness for the PCP verifier’s queries; finally, the SNARG prover outputs
an argument string that includes the Merkle root, answers to the PCP verifier’s
queries, and Merkle authentication paths for each of those answers (acting as local
openings to the commitment). The SNARG verifier re-derives the PCP verifier’s
queries from the Merkle root and runs the PCP verifier with the provided answers,
ensuring that each answer is authenticated.

The security analysis roughly works as follows. Fix a malicious prover that
makes at most t queries to the random oracle and convinces the SNARG verifier
to accept with probability δ. First, one argues that the malicious prover does not
find any collisions or inversions for the random oracle except with probability
µ := O( t2

2λ
). Next, one argues that there is an algorithm that, given the malicious

prover, finds a PCP string that makes the PCP verifier accept with probability at
least 1

t · (δ − µ). This enables to establish soundness of the SNARG (if the PCP
has soundness error βPCP then for instances not in the language it must be that
1
t · (δ − µ) ≤ βPCP and thus that the SNARG has soundness error t · βPCP + µ) and
also to establish knowledge soundness of the SNARG (if the PCP has knowledge
error κPCP then the PCP extractor works provided that 1

t · (δ − µ) ≥ κPCP and
thus the SNARG is a SNARK with knowledge error t · κPCP + µ).

The aforementioned algorithm that finds the PCP string is known as Valiant’s
extractor (it was used implicitly in [55] and formally defined and analyzed in [12]).
Given the query/answer transcript of the malicious prover to the random oracle,
Valiant’s extractor finds the partial PCP string that the malicious prover “had
in mind” when producing the SNARG: any location that the malicious prover
could open is part of the partial PCP string (and has a unique value as we
conditioned on the prover finding no collisions); conversely, any location that is
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not part of the partial PCP string is one for which the malicious prover could
not generate a valid local opening. Crucially, the malicious prover, in order to
cause the SNARG verifier to accept, must generate randomness by applying
the random oracle to the Merkle root, and answering the corresponding PCP
queries with authenticated answers. Hence the partial PCP string output by
Valiant’s extractor causes the PCP verifier to accept with the same probability
as the malicious prover, up to (i) the additive loss µ due to conditioning on no
inversions and collisions, and (ii) the multiplicative loss of t due to the fact that
the malicious prover can generate up to t different options of randomness for the
PCP verifier and then choose among them which to use for the output SNARG.
Overall, while Valiant’s extractor cannot generate an entire PCP string, it finds
“enough” of a PCP string to mimic the malicious prover, and so the PCP string’s
undefined locations can be set arbitrarily.

Commit-and-prove SNARK. A CaP-SNARK (in the ROM) for an indexed relation
R = {(i,x,w)} is a tuple ARG = (C,P,V) of deterministic polynomial-time
oracle machines, where C = (Com,Check) is a succinct commitment scheme,12
that works as follows. The committer sends a short commitment cm := C.Com(i)
to the verifier. Subsequently, the prover sends a short proof pf := P(i,x,w)
attesting that it knows a witness w such that (i,x,w) ∈ R and i is the index
committed in cm. The verifier V receives (cm,x, pf) and decides whether to
accept the prover’s claim. Completeness states that, if all parties act honestly,
the verifier always accepts.

The security requirement of a CaP-SNARK is (straight-line) knowledge sound-
ness. Informally, knowledge soundness says that if a query-bounded malicious
prover convinces the verifier to accept the tuple (cm,x, pf) with large enough
probability, then the prover “knows” an index i opening cm and a witness w such
that (i,x,w) ∈ R. In more detail, we say that ARG = (C,P,V) has knowledge
error ϵ if there exists a deterministic polynomial-time machine E (the extractor)
such that for every λ ∈ N, n ∈ N, and deterministic t-query (malicious) prover P̃,

Pr

 Vζ(cm,x, pf) = 1 ∧ |x| = n ∧(
(i,x,w) /∈ R ∨ C.Checkζ(cm, i, op) = 0

) ζ ← U(λ)
(cm,x, pf; tr) := P̃ζ

(i, op,w) := E(cm,x, pf, tr)

 ≤ ϵ(λ, n, t) ,

where U(λ) is the uniform distribution over functions ζ : {0, 1}∗ → {0, 1}λ and
tr := (j1, a1, . . . , jt, at) are the query/answer pairs made by P̃ to its oracle.

First construction attempt. At first glance, constructing CaP-SNARKs using
index-decodable PCPs seems like a straightforward variation of Micali’s construc-
tion of SNARGs from PCPs.
12 A pair of algorithms C = (Com,Check) is a succinct commitment scheme if: (1) it

is hard for every query-bounded adversary to find two different messages that pass
verification for the same commitment string; and (2) the commitment of a message
of length n with security parameter λ has length poly(λ, logn).
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– C.Com: Apply the ID-PCP indexer IPCP to the index i and output the Merkle
root rti of its output.

– C.Check: Given a Merkle root rti and index i, check that C.Com(i) = rti.
– P: Compute the ID-PCP prover proof and a corresponding Merkle root; then

use the random oracle to derive randomness for the ID-PCP verifier’s queries;
finally, output an argument string pf that includes the Merkle root, answers
to the verifier’s queries, and authentication paths for each answer relative to
the appropriate Merkle root (for the indexer proof or for the prover proof).

– V: Re-derive the ID-PCP verifier’s queries from the Merkle root and run
the ID-PCP verifier with the provided answers, ensuring that each answer is
authenticated.

The main issue with this strawman construction is that we need to handle
malicious provers that have a partial tree in their query trace. Consider a malicious
prover that, for some (i,x,w) ∈ R, computes honestly the indexer proof for i
as π := IPCP(i) and then generates as its “commitment” a Merkle tree root rti
obtained by computing a partial Merkle tree that ignores a small number of
locations of π (i.e., for a small number of locations it begins deriving the tree
from a level other than the leaves). While this malicious prover cannot open this
small number of locations of π, it can still open all other locations of π. Next, the
malicious prover generates honestly an argument string pf, opening the required
locations of π from rti. This malicious prover makes the argument verifier accept
(w.h.p.) since the ID-PCP verifier queries the small subset of locations that the
prover cannot open with small probability.

However, the only way to find a string π′ that (honestly) hashes to rt is to find
inversions in the random oracle, which is infeasible. Thus, there is no efficient
extractor that, given rt and all of the queries that the prover made, outputs i′
whose indexer proof hashes to rt.

Solving the problem via proximity. We solve the above difficulty by modifying
the commitment scheme C = (Com,Check) and requiring more properties from
the underlying index-decodable PCP.

– C.Com: Compute π := IPCP(i) (apply the ID-PCP indexer to the index i) and
output the commitment cm := rti that equals the Merkle hash of π and output
the opening information op that consists of the list of authentication paths for
each entry in π.

– C.Check: Given a commitment cm = rti, index i, and opening information op,
check that op is a list of valid authentication paths for a number of entries
that is above a certain threshold, and that the partial string specified by them
decodes into i (when setting the unspecified values arbitrarily).

Now C.Check allows partial specification of the string under the Merkle root,
so to preserve the binding property of the commitment scheme we require
that (IPCP, iDPCP) is an error correcting code. The threshold of the number of
authentication paths required is related to the distance of this code.
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In the security analysis, Valiant’s extractor finds a partial PCP string that
makes the ID-PCP verifier accept with probability related to the SNARG prover’s
convincing probability, as well as authentication paths for each entry of that
partial PCP string. To ensure that the number of authenticated entries is large
enough to pass the threshold in C.Check, we add another requirement: if π̃ and
Π̃ make the ID-PCP verifier accept an instance x with probability larger than
the decodability bound then π̃ is close to a codeword of the code (IPCP, iDPCP) (in
addition to the fact that the decodings of π̃ and Π̃ put x in the relation as is the
case in the definition considered so far).

Our construction of index-decodable PCP supports these new requirements.

From an index-decodable PCP to a CaP-SNARK. Let (IPCP,PPCP,VPCP, iDPCP,wDPCP)
be an index-decodable PCP system where (IPCP, iDPCP) is an error correcting code
with relative distance δ and where indexer proofs are guaranteed to be δ/8-close to
valid codewords (when VPCP accepts above the decodability bound). We construct
a CaP-SNARK ARG = (C,P,V) as follows.

– C.Com: Given as input an index i, compute the indexer proof π := IPCP(i),
compute the Merkle root rti of a Merkle tree on π (using the random oracle as
the hash function), and output the commitment cm := rti and the opening op
containing all authentication paths.

– C.Check: Given as input a commitment cm := rti, an index i, and an opening
op containing authentication paths, do the following:
• check that op contains a list of authenticated entries relative to the Merkle

root rti;
• check that op represents at least a (1− δ

8 )-fraction of all possible entries for
a string under rti;

• let π be the string induced by the authenticated entries in op, setting
arbitrarily other entries;

• check that IPCP(i) is δ/4-close to π.
– P: Given as input (i,x,w), do the following:
• compute the commitment rti to the index i as the committer does;
• compute the PCP string Π := PPCP(i,x,w);
• compute the Merkle root rtw of a Merkle tree on Π;
• apply the random oracle to the string (rti||x||rtw) to derive randomness for

the index-decodable PCP verifier VPCP, and compute the answers to the
verifier’s queries to both π and Π;
• collect authentication paths from the Merkle trees for each answer; and
• output a proof pf containing rtw, query answers for π and Π and their

authentication paths.
– V: Check the authentication paths, re-derive randomness, and run the index-

decodable PCP verifier with this randomness and given these answers.

The tuple C = (Com,Check) is a binding commitment scheme, as we now
explain. Consider an attacker that outputs cm := rt, two distinct messages m,m′,
and two openings op := S and op′ := S′ such that C.Checkζ(c̃m,m, op) = 1 and
C.Checkζ(c̃m,m′, op′) = 1. Condition on the attacker not finding collisions or
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inversions of the random oracle ζ (as this is true with high probability). Since S
and S′ each pass the checks in C.Check, each set covers at least (1− δ/8) of the
possible openings for a string. Therefore, their intersection covers at least (1− δ/4)
of the possible openings. Since there are no collisions or inversions, S and S′

agree on all of these locations. Thus, letting π and π′ be the strings defined using
S and S′ respectively (as computed by C.Check), we have that ∆(π, π′) ≤ δ/4.
Additionally, we have that that ∆(IPCP(m), π) ≤ δ/4 and ∆(IPCP(m

′), π′) ≤ δ/4
since C.Check accepts the commitments to m and m′, and this is one of the checks
it does. Putting all of this together, we have that ∆(IPCP(m), IPCP(m

′)) ≤ δ/2
which implies that m =m

′ since δ/2 is the unique decoding distance.
Completeness of the CaP-SNARK is straightforward. Below we outline the

extractor E, which receives as input a commitment cm := rti, an argument
string pf (containing the commitment rtw, query answers for π and Π, and
corresponding authentication paths with respect to rti and rtw), and the list tr of
query/answer pairs made by the malicious prover P̃ to the random oracle.

Use Valiant’s extractor to compute the set Si of all valid local openings of
rti that the prover could generate and similarly extract Sw from rtw. Let π̃
be the string whose entries are defined by the local openings generated of
rti (and whose undefined entries are set arbitrarily to 0). Let Π̃ be defined
similarly from the openings of rtw. Compute the index i := iDPCP(π̃) and
the witness w := wDPCP(Π̃), and set op := Si. Output (i, op,w).

We show the following lemma. See the full version of this paper for a proof.

Lemma 1. Let κPCP be the decodability bound of the index-decodable PCP, t ∈ N
be a bound on the number of queries made by a malicious prover P̃, and λ ∈ N
be a security parameter. Then the knowledge extractor E above has knowledge
error t · κPCP +O( t2

2λ
).

2.7 Hardness of approximation

We outline our proof of Theorem 2 (it is AM[k]-complete to decide if an instance
of k-SSAT has value 1 or at most 1− 1

O(k) ). See Section 1.1 for definitions.
First we explain how an AM[k] protocol can distinguish whether a k-SSAT

instance has value 1 or value 1 − 1
O(k) . On input a k-SSAT instance ϕ, the

prover and verifier take turns giving values to the variables: the verifier sends
random bits ρ1,1, . . . , ρ1,ℓ, the prover answers with a1,1, . . . , a1,ℓ, the verifier sends
ρ2,1, . . . , ρ2,ℓ, and so on until all of the variables of ϕ are given values. The verifier
then accepts if and only if all of the clauses of ϕ are satisfied. For completeness, if
ϕ has value 1, then for any choice of verifier messages there exists some strategy
for the prover that will make the verifier accept. For soundness, when the value
of ϕ is at most 1− 1

O(k) , no matter what strategy the prover uses, the probability
that the verifier accepts is at most 1− 1

O(k) (which can be made constant using
parallel repetition).

Next we show that, for every language L ∈ AM[k], a given instance x can be
reduced in deterministic polynomial time to a k-SSAT formula ϕ such that:
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– if x ∈ L then the value of ϕ is 1;
– if x /∈ L then the value of ϕ is at most 1− 1

O(k) .
By Theorem 1, L has a k-round public-coin IOP with a non-adaptive verifier,

polynomial proof length, and logarithmic decision randomness where the IOP
verifier reads q = O(k) bits of its interaction with the IOP prover. We stress that
in the following proof it is crucial that Theorem 1 achieves an IOP with both
logarithmic decision randomness complexity and small query complexity to both
the prover and verifier messages.

Let Vρdc
be the circuit that computes the decision bit of the verifier given as

input the q answers to the q queries made by the IOP verifier, for the instance x
and decision randomness ρdc. By carefully following the proof of Theorem 1, we
know that the IOP verifier’s decision is the conjunction of O(k) computations,
each of which takes O(1) bits as input. Therefore d := |Vρdc

| = O(k).
Via the Cook–Levin theorem we efficiently transform Vρdc

into a 3CNF
formula ϕρdc

: {0, 1}q+O(d) → {0, 1} of size O(d) the satisfies the following for
every b1, . . . , bq ∈ {0, 1}:
– if Vρdc

(b1, . . . , bq) = 1 then ∃ z1, . . . , zO(d) ∈ {0, 1} ϕρdc
(b1, . . . , bq, z1, . . . , zO(d)) =

1;
– if Vρdc

(b1, . . . , bq) = 0 then ∀ z1, . . . , zO(d) ∈ {0, 1} ϕρdc
(b1, . . . , bq, z1, . . . , zO(d)) =

0.
Next we describe the k-SSAT instance ϕ. The variables of ϕ correspond to

messages in the IOP as follows. For each i ∈ [k], the random variables ρi,1, . . . , ρi,r
represent the verifier’s message in round i and the existential variables ai,1, . . . , ai,l
represent the prover’s message in round i. To the final set of existential variables
we add additional variables zρdc,1 . . . , zρdc,O(d) for every ρdc ∈ {0, 1}O(log |x|),
matching the additional variables added when reducing the boolean circuit Vρdc

to the boolean formula ϕρdc
. The k-SSAT instance ϕ is the conjunction of the

formulas ϕρdc
for every ρdc ∈ {0, 1}O(log |x|) where each ϕρdc

has as its variables
the variables matching the locations in the IOP transcript that the IOP verifier
queries given x and ρdc, and additionally the variables added by converting Vρdc

into a formula, zρdc,1 . . . , zρdc,O(d).
By perfect completeness of the IOP, if x ∈ L then there is a prover strategy

such that, no matter what randomness is chosen by the verifier, every Vρdc
is

simultaneously satisfied, and hence so are the formulas ϕρdc
, implying that the

value of ϕ is 1.
By soundness of the IOP, if x /∈ L then (in expectation) at most a constant

fraction of the circuits {Vρdc
}ρdc∈{0,1}O(log |x|) are simultaneously satisfiable, and

thus this is also true for the formulas {ϕρdc
}ρdc∈{0,1}O(log |x|) . Every formula ϕρdc

that is not satisfied has at least one of its O(d) clauses not satisfied. Thus, the
value of ϕ is at most 1− 1

O(d) = 1− 1
O(k) .
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