
Refined Cryptanalysis of the GPRS Ciphers
GEA-1 and GEA-2

Dor Amzaleg and Itai Dinur

Department of Computer Science, Ben-Gurion University, Israel

Abstract. At EUROCRYPT 2021, Beierle et al. presented the first pub-
lic analysis of the GPRS ciphers GEA-1 and GEA-2. They showed that
although GEA-1 uses a 64-bit session key, it can be recovered with the
knowledge of only 65 bits of keystream in time 240 using 44 GiB of
memory. The attack exploits a weakness in the initialization process of
the cipher that was presumably hidden intentionally by the designers to
reduce its security.

While no such weakness was found for GEA-2, the authors presented
an attack on this cipher with time complexity of about 245. The main
practical obstacle is the required knowledge of 12800 bits of keystream
used to encrypt a full GPRS frame. Variants of the attack are applicable
(but more expensive) when given less consecutive keystream bits, or when
the available keystream is fragmented (it contains no long consecutive
block).

In this paper, we improve and complement the previous analysis of GEA-
1 and GEA-2. For GEA-1, we devise an attack in which the memory
complexity is reduced by a factor of about 213 = 8192 from 44 GiB to
about 4 MiB, while the time complexity remains 240. Our implementation
recovers the GEA-1 session key in average time of 2.5 hours on a modern
laptop.

For GEA-2, we describe two attacks that complement the analysis of
Beierle et al. The first attack obtains a linear tradeoff between the num-
ber of consecutive keystream bits available to the attacker (denoted by
`) and the time complexity. It improves upon the previous attack in the
range of (roughly) ` ≤ 7000. Specifically, for ` = 1100 the complexity of
our attack is about 254, while the previous one is not faster than the 264

brute force complexity. In case the available keystream is fragmented, our
second attack reduces the memory complexity of the previous attack by
a factor of 512 from 32 GiB to 64 MiB with no time complexity penalty.

Our attacks are based on new combinations of stream cipher cryptana-
lytic techniques and algorithmic techniques used in other contexts (such
as solving the k-XOR problem).

1 Introduction

GPRS (General Packet Radio Service) is a mobile data standard that was widely
deployed in the early 2000s. The standard is based on the GSM (2G) technology



2 Dor Amzaleg and Itai Dinur

established by the European Telecommunications Standards Institute (ETSI).
Encryption is used to protect against eavesdropping between the phone and
the base station, and two proprietary stream ciphers GEA-1 and GEA-2 were
initially designed and used for this purpose.

1.1 First Public Analysis of GEA-1 and GEA-2

Recently, Beierle et al. presented the first public analysis of GEA-1 and GEA-2,
which should ideally provide 64-bit security [2]. Remarkably, the authors de-
scribed a weakness in the initialization process of GEA-1, showing that two of
its three internal linear feedback shift registers (LFSRs) can only assume 240 val-
ues out of the 264 possible. This led to a practical meet-in-the-middle (MITM)
attack in time complexity 240 and memory complexity 44.5 GiB. The attack only
needs 65 bits of known keystream (24 from the same frame), which can be easily
deduced from the ciphertext assuming knowledge of 65 plaintext bits (that can
be obtained from metadata such as headers). The attack is therefore completely
practical, as demonstrated by the authors. Since the attack recovers the 64-bit
session key, it allows to decrypt the entire GPRS session.

The weakness of GEA-1 is believed to have been intentionally introduced and
hidden by the designers, presumably due to strict export regulations on cryp-
tography that were in effect in 1998 when the cipher was designed. To support
this hypothesis, [2] carried out extensive experiments on random LFSRs which
showed that it is very unlikely that the weakness occurred by chance. In the
followup work [3], Beierle, Felke and Leander showed how to construct such a
weak cipher efficiently.

The initialization weakness of GEA-1 is not present in the stronger cipher GEA-
2 (which also uses a fourth register to produce the output). Yet, the authors
of [2] presented an attack on GEA-2 which showed that it does not provide the
ideal 64-bit security. Specifically, given 12800 bits of keystream used to encrypt
a full GPRS frame, the complexity of the attack is about 245 GEA-2 evaluations
and it requires 32 GiB of memory. It is based on a combination of algebraic and
MITM attacks.

The main challenge in practice is in obtaining the 12800-bit consecutive keystream,
which may require social engineering or additional ad-hoc methods. Therefore,
the authors presented a data-time tradeoff curve showing that the crossover
point for beating exhaustive search is about 1468 consecutive keystream bits.

A variant of the attack is also applicable in case the known available keystream
used to encrypt a frame is fragmented and contains no long consecutive block.
In particular, given 11300 bits of fragmented keystream, the time complexity of
the attack becomes roughly 255, while the memory complexity remains 32 GiB.

Impact of Attacks. The ETSI prohibited the implementation of GEA-1 in
mobile phones in 2013. On the other hand, it is still mandatory to implement
GEA-2 today [10].



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 3

Surprisingly, the authors of [2] noticed that modern mobile phones still supported
GEA-1, deviating from the specification. As described in [2], this could have
severe implications as it opens the door for various types of downgrade attacks.
Consequently, after disclosing this vulnerability, test cases were added to verify
that the support of GEA-1 is disabled by devices before entering the market.

In contrast, ETSI followed the mid-term goal to remove the support of GEA-
2 from the specification. Yet, specification changes require consent of several
parties and may take a long time.

1.2 Our Results

In this paper, we describe several attacks on GEA-1 and GEA-2 that improve
and complement the ones of [2]. Our attacks are summarized in Table 1.

Attack G1. Attack G1 reduces the memory complexity of the previous attack
on GEA-1 by a factor of about 213 = 8192 to 4 MiB, while the time complexity
remains 240 GEA-1 evaluations.1 We implemented the attack and executed it
on a modern laptop. Averaged over 5 runs, it recovers the GEA-1 session key in
average time of 2.5 hours. In comparison, as it is difficult to run the attack of [2]
on a laptop due to its high memory consumption, it was executed on a cluster.

For GEA-2, we present two attacks that focus on scenarios where the attacker
obtains limited data which may be easier to acquire in practice. In general,
the feasibility of assumptions on the available data depend on the exact attack
scenario, and our goal is to describe attacks that optimally utilize this data.

Attack G2-1. Attack G2-1 assumes the attacker obtains ` bits of consecutive
keystream. The complexity of this attack is about 264/(` − 62) GEA-2 evalua-
tions. For example, given ` = 126 (a keystream of moderate length), it already
has a non-negligible advantage by a factor of 64 over exhaustive search. For
` = 1100 the complexity of our attack is roughly 254, while the previous attack
is not faster than the 264 brute force complexity. In the range ` > 7000, the
attack of [2] is more efficient. Our attacks consume a moderately larger amount
of memory than those of [2] (by a factor between 2 and 5, depending on the
variant).

Attack G2-2. Attack G2-2 is mostly interesting when the available keystream is
fragmented. This may occur if (for example) the eavesdropping communication
channel is noisy or not stable, or the attacker only knows parts of the plaintext. In
this scenario, our attack reduces the memory complexity of the previous attack
by a factor of at least 29 = 512 from 235 bytes (32 GiB) to at most 226 bytes
(64 MiB) with no penalty in time complexity. For example, given 11300 bits of
fragmented keystream in a frame, the complexity of the previous attack is about

1 As in [2], we define a GEA-1 evaluation as the number of bit operations required to
generate a 128-bit keystream.



4 Dor Amzaleg and Itai Dinur

255 and it requires about 32 GiB of memory. We reduce the memory complexity
to 32 MiB (by a factor of 210). Since the cost of the attack is largely influenced
by its memory complexity, such a reduction is clearly favorable.

Cipher Attack Time Data (bits) Memory Main technique Section

GEA-1 G1 240 65 4 MiB 3-XOR 3.4

GEA-2 G2-1 264/(`− 62) ` consecutive 64 GiB 4-XOR 4.3

GEA-2 G2-2� 255 11320 fragmented 32 MiB Algebraic + MITM 4.4
� Specific parameter set for the attack with 11320 bits of fragmented keystream.

Table 1. Summery of our attacks.

Impact of new attacks. Unlike the work of [2], our work does not have imme-
diate practical implications. Supposedly, after the measures taken following the
work of [2], GEA-1 should no longer be supported by modern mobile phones.
Regardless, the attack of [2] on GEA-1 is already practical and there is little
more to be gained on this front.

On the other hand, our memory-optimized attack on GEA-1 is still interest-
ing since it shows that the cost of eavesdropping to communication at a large
scale (i.e., simultaneously eavesdropping to several GPRS sessions) is even lower
than predicted by [2]. Indeed, implementing such an attack that requires several
dozens of GiB was not trivial in the early 2000’s, when GEA-1 was in wide use.
With significantly reduced memory consumption, it is much easier to distribute
the attack’s workload among many cheap low-end devices.

As for GEA-2, our attacks provide new and interesting scenarios in which the
cipher can be broken more efficiently than before. These attacks may have longer-
term impact in expediting the removal of GEA-2 from the specification.

Regardless of this work’s practical impact, we view its main contribution as
technical and summarize it below. Analyzing ciphers that have been in wide use
provides additional motivation for this work, yet it is not the only motivation.

1.3 Technical Contributions

GEA-1 and GEA-2 have interesting designs and there is additional insight to
be gained from their analysis. Our techniques build on work that was published
well after GEA-1 and GEA-2 were designed. However, this does not rule out
the possibility that (variants of) these techniques were used (e.g., by intelli-
gence agencies) to break the ciphers in practice. We now overview some of our
techniques.

Optimization and adaptation of k-XOR algorithms. In the k-XOR prob-
lem, we are given access to k random functions f1, . . . , fk and a target value t,



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 5

and the goal is to find a k-tuple of inputs (x(1), . . . , x(k)) such that f1(x(1))⊕. . .⊕
fk(x(k)) = t. Since the outputs of GEA-1 and GEA-2 are calculated by XOR-
ing the outputs of their internal registers, using techniques for solving k-XOR
in their cryptanalysis is natural (indeed, the MITM attacks of [2] essentially
solve a 2-XOR problem). However, in our specific case, we wish to apply addi-
tional techniques which are not directly applicable. Consequently, we optimize
and adapt them to obtain our attacks.

Attack G1. In cryptanalysis of GEA-1, we use the clamping through precomputa-
tion technique, proposed to reduce the memory complexity of k-XOR algorithms
in [4] by Bernstein. Applying the technique naively results in a penalty in time
complexity. Our main observation is that the k = 3 functions in the correspond-
ing 3-XOR problem are not random, and we show how to exploit a property of
the GEA-1 internal registers to apply the technique with no penalty. Essentially,
the property is that it is possible to efficiently enumerate all internal states of a
register that output a given prefix string.2

Attack G2-1. In Attack G2-1, we attempt to apply Wagner’s k-tree algorithm [17].
For k = 4 it improves upon standard 4-XOR algorithms provided that the do-
mains of f1, f2, f3, f4 are sufficiently large and many 4-XOR solutions exist. The
algorithm exploits this to efficiently find only one of them. However, the k-tree
algorithm is not directly applicable to GEA-2, as a standard attack based on
4-XOR can only target a single internal state of GEA-2. Nevertheless, we show
how to adapt a technique developed in [2] (and used in another attack) which al-
lows to simultaneously target several internal states of the stream cipher. In our
case, this artificially creates more solutions to the 4-XOR problem, and therefore
a variant of the k-tree algorithm is applicable.

Application to the stream cipher XOR combiner. Interestingly, unlike the
other attacks on GEA-2 (including the ones of [2], which exploit the low algebraic
degree of its output), Attack G2-1 does not assume any special property of the 4
internal GEA-2 registers, whose outputs are XORed to produce the keystream.
The attack is therefore applicable to a generic XOR combiner of 4 stream ciphers
with an arbitrary internal structure.

Optimizing meet-in-the-middle attacks by subspace decompositions.
A MITM attack is composed of two parts, each iterating over a subspace of
vectors. If the vectors of the two subspaces are linearly dependent, we can de-
compose them and iterate over their common dependent part in a loop. Each
iteration consists of a MITM attack on smaller independent subspaces, reducing

2 This property is somewhat related to the sampling resistance property defined in
the context of time-memory tradeoffs for stream ciphers with precomputation [5,6].
However, sampling resistance deals with the complexity of efficiently generating a
single state (specified by some index) that produces an output prefix. On the other
hand, we need to efficiently generate all states with a different efficiency measure.



6 Dor Amzaleg and Itai Dinur

the memory complexity. This technique is relatively standard (see [1,7,13]), al-
though typically applied in different settings such as hash function cryptanalysis.

Our attacks use subspace decompositions several times. In a few of these cases,
they are not initially applicable and only made possible in combination with
additional techniques. Specifically, for GEA-1 we use two decompositions and
the second one is made possible by exploiting specific properties of its internal
registers. Attack G2-2 is based on the combined algebraic and MITM (or 2-XOR)
attack of [2]. Subspace decomposition is made possible after guessing the values
of carefully chosen linear combinations of variables.

1.4 Structure of the Paper

The rest of this paper is structured as follows. Next, in Section 2, we give some
preliminaries. Our attack on GEA-1 is described in Section 3, while our attacks
on GEA-2 are given in Section 4.

2 Preliminaries

2.1 Description of GEA-1 and GEA-2

We give a short description of the GPRS ciphers GEA-1 and GEA-2, as specified
in [2] (which is currently the only public source for their specification). We only
describe the relevant components for our analysis.

The input to the encryption process of both ciphers consists of a 12800-bit
plaintext (GPRS frame), a 64-bit session key, a direction bit (uplink/downlink),
and a 32-bit IV which is a counter incremented for each frame.

GEA-1. GEA-1 uses three linear feedback shift registers (LFSRs) over F2,
named A,B and C of lengths 31, 32 and 33, respectively. The registers operate
in Galois mode, namely the bit that is shifted out of a register is XORed to the
bits in a specified set of positions. The output of each register is computed by
a non-linear Boolean function f : F7

2 → F2 which has an algebraic degree of 4
(see [2] for its specification).

Initialization. The inputs to the GEA-1 initialization process consist of a 64-bit
secret key, a public direction bit, and a 32-bit public IV. The initialization uses
a non-linear feedback shift register (NLFSR) of length 64 to which the inputs
are loaded while clocking the register (refer to [2] for more details).

The NLFSR’s final state is a 64-bit seed. The seed is used to initialize the
registers A,B and C via a linear mapping. The exact details of this mapping are
irrelevant to this paper. However, the weakness of GEA-1 is based on a crucial
property of this mapping (discovered in [2]): the joint 64-bit initial state of the
registers A and C can only attain 240 values (out of the 264 possible).



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 7

We further note that in the event that one of the registers is set to 0 after
initialization, it is reset to a non-zero state. For simplicity, throughout this paper,
we will ignore this unlikely event.

Finally, another property of the initialization that we will use (shown in [2]), is
that given a 96-bit initial state of the registers and the public IV and direction
bits, there is a very simple algorithm that inverts the initialization process and
recovers the session key. This implies that recovering the 96-bit initial state in
the encryption process of a single plaintext (frame) allows to decrypt the entire
session.

Keystream generation. After initialization, the cipher starts generating keystream.
The output of each register is calculated by applying f to 7 bits in specified po-
sitions. A keystream bit is computed by XORing the 3 register outputs. After
calculating a keystream bit, each register is clocked once before producing the
next keystream bit.

The feedback positions of each register and the positions which serve as inputs
to f are given in Figure 1 (taken from [2]).

Fig. 1. Keystream generation of GEA-1 and GEA-2. Register D is only present in
GEA-2. Credit: [2].

GEA-2. GEA-2 is built similarly to GEA-1, hence we focus on the differences.
Besides the registers A,B,C, the GEA-2 state consists of a fourth 29-bit register
D (which also uses f to produce the output), as shown in Figure 1. The GEA-2
keystream is generated by XORing the outputs of the 4 registers.



8 Dor Amzaleg and Itai Dinur

The initialization process of GEA-2 is similar to that of GEA-1, but it makes
use of a longer 97-bit NLFSR which produces a 97-bit seed. The seed is then
used to initialize the state of the 4 registers via a linear mapping. Unlike the
initialization mapping of GEA-1, the mapping of GEA-2 does not seem to have
any noticeable weakness (in particular, one can verify that any pair of registers
can assume all possible states). As for GEA-1, given an initial state and the
public inputs, it is possible to efficiently recover the session key.

2.2 Notation

We describe the notation used throughout this paper.

For an integer n > 0, let [n] = {1, . . . , n}. For a vector x ∈ Fn2 and m ∈ [n],
x[m] ∈ Fm2 denotes the vector composed of the first m bits of x. For m1,m2 ∈ [n]

such that m1 ≤ m2, x[m1,m2] ∈ Fm2−m1+1
2 denotes the vector composed of the

bits of x in position m1 up to m2 (inclusive).

For a linear transformation T , we denote by Im(T ) its image and by ker(T ) its
kernel. For a linear subspace V , we denote by dim(V ) its dimension.

GEA-related notation. For the register A, we denote by Â ∈ F31
2 its internal

state, and by fA : F31
2 → {0, 1}∗ the output of A starting from the given internal

state. Typically, we will refer to specific bits of this function. In particular, for
m ∈ N, fA(Â)[m] ∈ Fm2 denotes the first m output bits. Analogous notation is
defined for the remaining registers B,C,D.

For v ∈ F96
2 (which represents an internal state of GEA-1), denote by v[B] ∈ F32

2

its projection on the register B and by v[AC] ∈ F64
2 its projection on the registers

A and C. We use similar notations for the other GEA-1 registers and for GEA-2.

2.3 Computation model and data structures.

Consistently with [2], the complexity of the attacks on GEA-1 and GEA-2 is
measured in terms of the number of operations required to generate a keystream
of 128 bits.

The algorithms we describe use various lookup tables that support the operations
of inserting and searching for elements. We assume that each such operation
takes unit time (which is a standard assumption when using hash tables). This
complexity of lookup table operations will typically be ignored in the total time
complexity calculation, as for most attacks, it is proportional to the number of
basic operations of evaluating the outputs of GEA registers.3 We note that [2]
used a slightly different computational model, but it does not have a significant
impact on the final complexity estimations in our case.

3 An exception is Attack G2-2, where most calculations involve different operations.
For this attack we mainly reuse the analysis of [2].



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 9

2.4 3-XOR Problem

We define a variant of the well-known 3-XOR problem that is relevant for this
paper. For simplicity, we assume the parameter n is divisible by 3.

Definition 1 (3-XOR). Given access to 3 random functions f1, f2, f3 : Fn/32 →
Fn2 and a target t ∈ Fn2 , find (x(1), x(2), x(3)) ∈ (Fn/32 )3 such that f1(x(1)) ⊕
f2(x(2))⊕ f3(x(3)) = t.

We note that in a random function the output of every input is chosen uniformly
at random from the range, independently of the other inputs. Since the 3-XOR
problem places an n-bit condition on each triplet (x(1), x(2), x(3)), the average
number of solutions is 23·n/3 · 2−n = 1.

The naive 3-XOR algorithm based on sort-and-match (or meet-in-the-middle)
has time complexity of roughly 22n/3. It is a major open problem to improve
this complexity significantly.4 The naive 3-XOR algorithm also requires 2n/3

words of memory (of length O(n) bits). However, unlike time complexity, we can
significantly improve the memory complexity.

Proposition 1 (3-XOR algorithm using enumeration). Let τ ∈ {0, . . . , n/3}
be a parameter. Assume there is an (enumeration) algorithm that, given t′ ∈ Fτ2 ,

enumerates all the (expected number of) 22n/3−τ pairs (x(2), x(3)) ∈ (Fn/32 )2

such that (f2(x(2)) ⊕ f3(x(3)))[τ ] = t′ in time complexity O(22n/3−τ ) and mem-

ory complexity O(2n/3−τ ). Then, there in an algorithm that solves 3-XOR in
time O(22n/3) and memory O(2n/3−τ ).

Here, the memory complexity is measured in terms of the number of words of
length O(n) bits.

The 3-XOR algorithm is based on the clamping through precomputation tech-
nique that was proposed to reduce the memory complexity of k-XOR algorithms
in [4] by Bernstein (and subsequently used in several works such as [9,14]). For
3-XOR, the idea is to build a (partial) table for f1 that fixes its output prefix to
u ∈ Fτ2 (XORed with t[τ ]), and loop over all prefixes. Specifically, the algorithm
below establishes the proposition.

1. For all u ∈ Fτ2 :

(a) – Initialize a table T1, storing elements in Fn/32 .

– For all x(1) ∈ Fn/32 , if f1(x(1))[τ ] ⊕ t[τ ] = u, store x(1) at indexa

f1(x(1))⊕ t in T1.

(b) Run the algorithm of Proposition 1 on input t′ = u. For each pair
(x(2), x(3)) returned:

4 There are algorithms that save factors polynomial in n for some variants of the
problem (e.g. [9,12,14,15]), but these are generally inapplicable in our setting.



10 Dor Amzaleg and Itai Dinur

– Search T1 for f2(x(2)) ⊕ f3(x(3)). If a match x(1) exists, return
(x(1), x(2), x(3)) as a solution to 3-XOR.

a The index f1(x(1))⊕ t is the input to the hash function of T1.

Analysis.

Correctness. A 3-XOR solution satisfies f1(x(1)) ⊕ t = f2(x(2)) ⊕ f3(x(3)), and
therefore if f1(x(1))[τ ] ⊕ t[τ ] = u, then (f2(x(2)) ⊕ f3(x(3)))[τ ] = u. Thus, for

u = f1(x(1))[τ ] ⊕ t[τ ], (x(2), x(3)) is returned by the enumeration algorithm and
the solution is output.

Complexity. For each of the 2τ iterations, Step 1.(a) requires O(2n/3) time,
while (by the assumption of Proposition 1) Step 1.(b) requires time O(22n/3−τ ).
The total time complexity is thus O(22n/3) as claimed. The probability that
f1(x(1))[τ ] ⊕ t[τ ] = u is 2−τ . The number of elements stored in T1 in each it-

eration is therefore O(2n/3−τ ) with high probability, and by the assumption of
Proposition 1, this dominates the memory complexity of the algorithm.

Enumeration algorithm for Proposition 1. Below we describe a simple
enumeration algorithm5 for Proposition 1. We do not use this algorithm and it
is only described for the sake of completeness.

1. For all u′ ∈ Fτ2 :

(a) – Initialize a table T2, storing elements in Fn/32 .

– For all x(2) ∈ Fn/32 , if f2(x(2))[τ ] ⊕ t′ = u′, store x(2) in T2.

(b) For all x(3) ∈ Fn/32 , if f3(x(3))[τ ] = u′:

– For all x(2) in T2, output (x(2), x(3)).

Complexity analysis. The total time complexity is O(max(2n/3+τ , 22n/3−τ )),
where 22n/3−τ represents the expected number of output pairs. The memory
complexity is O(2n/3−τ ).

Setting τ = n/6 optimizes the time complexity of the algorithm. Combined with
Proposition 1, this gives a 3-XOR algorithm with time and memory complexities
of O(22n/3) and O(2n/6), respectively.

2.5 4-XOR Problem

We consider the following variant of the 4-XOR problem. For simplicity, assume
the parameter n is divisible by 4.

5 The full 3-XOR algorithm is similar to the 3-SUM algorithm of Wang [18].



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 11

Definition 2 (4-XOR). Given access to 4 random functions f1, f2, f3, f4 :

Fn/42 → Fn2 and a target t ∈ Fn2 , find (x(1), x(2), x(3), x(4)) ∈ (Fn/42 )4 such that
f1(x(1))⊕ f2(x(2))⊕ f3(x(3))⊕ f4(x(4)) = t.

As we have an n-bit condition on each quartet (x(1), x(2), x(3), x(4)), the average
number of solutions is 24·n/4 · 2−n = 1.

A naive meet-in-the-middle algorithm has time complexity of about 2n/2 and
requires 2n/2 words of memory. It is not known how to substantially improve
its time complexity. On the other hand, the memory complexity of the naive
algorithm can be significantly reduced to 2n/4 using a variant of the Schroeppel-
Shamir algorithm [16], which is described in [11] (for the subset-sum problem).

The idea is to enumerate over all u ∈ Fn/42 , representing the values

f1(x(1))[n/4] ⊕ f2(x(2))[n/4] ⊕ t[τ ] and f3(x(3))[n/4] ⊕ f4(x(4))[n/4],

which are equal for a 4-XOR solution. This allows to split the 4-XOR problem
into two 2-XOR problems, each solved by a MITM procedure. The solutions
of the two 2-XOR problems are then merged to give a solution to the original
4-XOR problem.

Wagner’s k-tree algorithm [17] provides an improvement for k-XOR when the

domains of the functions are larger. For k = 4, if f1, f2, f3, f4 : Fn/32 → Fn2 , then
the number of expected solutions is 24·n/3 · 2−n = 2n/3 and the k-tree algorithm
finds one of them in time and memory complexities of O(2n/3). The high-level

idea is that we only need to enumerate over a single u ∈ Fn/32 to find a solution
with high probability.

In the general case where f1, f2, f3, f4 : Fκ2 → Fn2 for n/4 ≤ κ ≤ n/3, a full
tradeoff algorithm was devised in [11]. Its time complexity is O(2n−2κ), while its
memory complexity is O(2κ).

3 Memory-Optimized Attack on GEA-1

In this section we describe our memory-optimized attack on GEA-1. We begin
by describing the findings of [2] regarding the initialization process of GEA-1 in
Section 3.1, and the corresponding attack in Section 3.2. We then optimize the
memory complexity in two steps. The first step is based on a simple observation
and reduces the memory complexity by a factor of about 28 = 256 to 128 MiB.
The second step further reduces the memory complexity by a factor of about
25 = 32 to 4 MiB. While the additional reduction is only by a factor of 32, it
is clearly non-negligible and technically more interesting. Furthermore, some of
the ideas will be reused in Attack G2-2 on GEA-2.

3.1 Weakness in the GEA-1 Initialization Process

The initialization process of GEA-1 defines an injective mapping M : F64
2 → F96

2

which maps the seed to an initial state (Â, B̂, Ĉ). We can decompose the mapping



12 Dor Amzaleg and Itai Dinur

according to its projections on the different registers:

MA : F64
2 → F31

2 ,MB : F64
2 → F32

2 ,MC : F64
2 → F33

2 .

Further define
MAC : F64

2 → F64
2

as the projection of M onto (Â, Ĉ).

Crucially, it was observed in [2] that dim(ker(MAC)) = 24, where ideally it
should be 0. This implies that dim(Im(MAC)) = 64−24 = 40 and thus the state
(Â, Ĉ) obtained after initialization can only assume 240 values.

Decomposition of the initialization mapping. We have dim(Im(MB)) = 32
and therefore dim(ker(MB)) = 64 − 32 = 32 (and also dim(ker(MAC)) = 24).
Furthermore, dim(ker(MB) ∩ ker(MAC)) = 0.

Hence, F64
2 can be decomposed as a direct sum into

F64
2 = W (1) � ker(MAC) � ker(MB),

where dim(W (1)) = 64− dim(ker(MAC))− dim(ker(MB)) = 8.

It will be more convenient to work directly over Im(M) rather than over F64
2

(here, we slightly deviate from [2]). Thus, let

U (B) = {(0, x, 0) ∈ F31
2 × F32

2 × F33
2 } and U (AC) = {(x, 0, y) ∈ F31

2 × F32
2 × F33

2 }.

Define V (1) as the image of W (1) under M , V (2) ⊂ U (B) as the image of
ker(MAC) under M and V (3) ⊂ U (AC) as the image of ker(MB) under M .
We have

Im(M) = V (1) � V (2) � V (3), (1)

where
dim(V (1)) = 8, dim(V (2)) = 24, dim(V (3)) = 32.

The decomposition above implies that every state (Â, B̂, Ĉ) ∈ Im(M) (obtained
after initialization) can be uniquely represented by a triplet

(v(1), v(2), v(3)) ∈ V (1) × V (2) × V (3)

such that
(Â, B̂, Ĉ) = v(1) ⊕ v(2) ⊕ v(3).

Since v
(2)
[AC] = 0 and v

(3)
[B] = 0, then

B̂ = (v(1) ⊕ v(2) ⊕ v(3))[B] = (v(1) ⊕ v(2))[B] and

(Â, Ĉ) = (v(1) ⊕ v(2) ⊕ v(3))[AC] = (v(1) ⊕ v(3))[AC].
(2)



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 13

3.2 Basic Meet-in-the-Middle Attack

Below we describe the basic attack of [2] with minor differences and using some-
what different notation. We assume for simplicity that the algorithm is given
as input the consecutive keystream z[32], and additional keystream that allows
verifying that the initial state (or key) is correctly recovered. However, as noted
in [2], it can be easily adjusted to use only 24 bits from the same frame.

1. For all v(1) ∈ V (1):

(a) Initialize a table T v(1)B , storing elements in F32
2 .

(b) For all v(2) ∈ V (2), let B̂ = (v(1)⊕v(2))[B]. Store B̂ in T v(1)B at index

fB(B̂)[32].

2. For all v(1) ∈ V (1):

(a) For all v(3) ∈ V (3), let (Â, Ĉ) = (v(1) ⊕ v(3))[AC]. Search T v(1)B for

fA(Â)[32] ⊕ fC(Ĉ)[32] ⊕ z[32]. For each match B̂:

– Test the state (Â, B̂, Ĉ), and if the test succeeds, recover and
output the key.

Since the first step is independent of the keystream, in [2] it was performed in
preprocessing.

Testing states. A state (Â, B̂, Ĉ) is tested by using it to produce more output and
comparing with the (additional) available keystream. Since there are 264 possible
initial states and the attack directly exploits 32 bits of available keystream, the
expected number of states to test is 264−32 = 232.

Complexity analysis. The memory complexity is 28 · 224 = 232 words (dom-

inated by the 28 tables T v(1)B , each of size 224) and the time complexity is 240,
dominated by the second step. It is assumed to dominate the complexity of
testing the 232 states.

3.3 Basic Memory-Optimized Attack

In the previous attack the decomposition is only used to obtain a post-filtering
condition. Specifically, all vectors in V (1) are iterated over independently in both
steps, and v(1) ∈ V (1) determines which small table to access in the second step.
We construct an outer loop over the elements of the common subspace V (1).
This allows to divide the computation of the previous attack into 28 independent
parts, each using a single small table. We remark that unlike the previous attack,
the small tables are no longer computed during preprocessing. Nevertheless, the
memory-optimized attack seems favorable, as the online complexity is similar to
the previous one, while the memory complexity is reduced. The details of the
algorithm are provided below. It is given as input the keystream z[32].



14 Dor Amzaleg and Itai Dinur

1. For all v(1) ∈ V (1):

(a) – Initialize a table TB , storing elements in F32
2 .

– For all v(2) ∈ V (2), let B̂ = (v(1) ⊕ v(2))[B]. Store B̂ at index

fB(B̂)[32] ⊕ z[32] in TB .

(b) For all v(3) ∈ V (3), let (Â, Ĉ) = (v(1) ⊕ v(3))[AC]. Search TB for

fA(Â)[32] ⊕ fC(Ĉ)[32]. For each match B̂:

– Test the state (Â, B̂, Ĉ), and if the test succeeds, recover and
output the key.

Analysis.

Correctness. Let (Â, B̂, Ĉ) be the internal state used to produce the keystream.
In particular, it satisfies

fB(B̂)[32] ⊕ z[32] = fA(Â)[32] ⊕ fC(Ĉ)[32]. (3)

Consider its decomposition (v(1), v(2), v(3)) ∈ V (1) × V (2) × V (3) such that B̂ =
(v(1) ⊕ v(2))[B] and (Â, Ĉ) = (v(1) ⊕ v(3))[AC]. By (3), this state is tested in

Step 1.(b) for the corresponding value of v(1) and the correct key is output.

Complexity. The time complexity of the attack remains 28 ·232 = 240, dominated
by the 28 executions of Step 1.(b). The memory complexity (dominated by each
TB) is 224 words.

3.4 Attack G1 – Improved Memory-Optimized Attack

We now revisit the previous attack on GEA-1, with the aim of further improving
its memory complexity with only a minor effect on time complexity. Specifically,
similarly to 3-XOR algorithms, given a prefix string, we would like to devise an
efficient enumeration algorithm for internal states (Â, Ĉ) that output this prefix
(fA and fC replace f2 and f3 in Definition 1).

For GEA-1 we are only interested in a small fraction of states (Â, Ĉ) that can
be produced by the initialization process. On the other hand, the standard enu-
meration algorithm used in Section 2.4 for the 3-XOR problem does not impose
such restrictions and therefore mostly outputs states that are irrelevant for us,
rendering it inefficient for our purpose. Therefore, we need to devise a more
dedicated algorithm.

High-level overview of the attack. The attack is based on an enumeration
algorithm similarly to the 3-XOR algorithm of Section 2.4. Specifically, Propo-
sition 2 below is analogous to Proposition 1 for 3-XOR. It isolates the challenge



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 15

in improving the memory complexity and allows to design the algorithm in a
modular way.

Let V
(3)
[AC] ⊂ F64

2 be the projection of V (3) in (1) on the registers A and C

(since v
(3)
[B] = 0 for all v(3) ∈ V (3), the projection does not reduce its dimension).

Essentially, the challenge is to enumerate all states (Â, Ĉ) in the 32-dimensional

coset v
(1)
[AC] ⊕ V

(3)
[AC] that produce a given output prefix efficiently with limited

memory.

Proposition 2. Let τ ∈ [8] be a parameter. Assume there is a state enumeration
algorithm that given a target u ∈ Fτ2 and a vector v(1) ∈ V (1), enumerates all

the (expected number of) 232−τ states (Â, Ĉ) such that (Â, Ĉ) ⊕ v(1)[AC] ∈ V
(3)
[AC]

and fA(Â)[τ ] ⊕ fC(Ĉ)[τ ] = u in time complexity 232−τ and memory complexity
2m words of 32 bits. Then, there is a key-recovery attack on GEA-1 in time
complexity 240 and memory complexity about 224−τ + 2m words of 32 bits.

Obviously, we would like to have 2m � 224−τ so the overall memory complexity
is about 224−τ .

Note that if (Â, Ĉ) = (v(1) ⊕ v(3))[AC] as in the previous attack, then (Â, Ĉ) ⊕
v
(1)
[AC] ∈ V

(3)
[AC] as in the above proposition.

We now describe the key-recovery attack that establishes the proposition. It is
based on the clamping through precomputation technique similarly to the 3-
XOR algorithm of Proposition 1. Yet, it uses the additional constraint on the
states (similarly to the basic GEA-1 attack above). As previously, the attack
directly utilizes a keystream z[32].

Attack G1

1. For all v(1) ∈ V (1) and all u ∈ Fτ2 :

(a) – Initialize a table TB , storing elements in F32
2 .

– For all v(2) ∈ V (2), let B̂ = (v(1)⊕v(2))[B]. If fB(B̂)[τ ]⊕z[τ ] = u,

store B̂ at index fB(B̂)[32] ⊕ z[32] in TB .

(b) – Run the algorithm of Proposition 2 on inputs v(1) and u.

– For each state (Â, Ĉ) returned (satisfying (Â, Ĉ) ⊕ v
(1)
[AC] ∈

V
(3)
[AC] and fA(Â)[τ ] ⊕ fC(Ĉ)[τ ] = u), search TB for fA(Â)[32] ⊕
fC(Ĉ)[32]. For each match B̂:

• Test the state (Â, B̂, Ĉ), and if the test succeeds, recover
and output the key.

Analysis.



16 Dor Amzaleg and Itai Dinur

Correctness. Let (Â, B̂, Ĉ) be the internal state used to produce the keystream.
In particular

fB(B̂)[32] ⊕ z[32] = fA(Â)[32] ⊕ fC(Ĉ)[32].

We show that when iterating over v(1) and u satisfying u = fB(B̂)[τ ] ⊕ z[τ ] =

fA(Â)[τ ] ⊕ fC(Ĉ)[τ ], this state is tested and thus the key is returned.

Consider the state’s decomposition (v(1), v(2), v(3)) ∈ V (1) × V (2) × V (3) such
that B̂ = (v(1) ⊕ v(2))[B] and (Â, Ĉ) = (v(1) ⊕ v(3))[AC]. For u = fB(B̂)[τ ] ⊕ z[τ ],
B̂ is stored at index fB(B̂)[32] ⊕ z[32] in TB .

Since (Â, Ĉ)⊕ v(1)[AC] = v
(3)
[AC] ∈ V

(3)
[AC] and fA(Â)[τ ] ⊕ fC(Ĉ)[τ ] = u, the enumera-

tion algorithm returns (Â, Ĉ) and (Â, B̂, Ĉ) is tested as claimed.

Complexity. The complexity of all 28+τ executions of Step 1.(a) is 28+τ · 224 =
232+τ ≤ 240 evaluations of (32 bits of) fB . By Proposition 2, the complexity of all
28+τ executions of Step 1.(b) is 28+τ ·232−τ = 240 (evaluations of fA and fC) and
it dominates the complexity of the attack. The memory complexity is dominated
by TB in addition to 2m of the enumeration algorithm and is 224−τ + 2m words
of 32 bits, as claimed.

Devising a state enumeration algorithm. We have reduced the goal to devising
a state enumeration algorithm. If we assume that fA, fC are random functions,
then clearly we cannot produce all solutions required by Proposition 2 in 232−τ <
232 time (regardless of the memory complexity), since the size of the domain of

Ĉ is 233 (and the number of vectors that satisfy (Â, Ĉ) ⊕ v(1)[AC] ∈ V
(3)
[AC] is 232).

Our main observation is that the functions fA, fC are not random and we can
utilize their specific properties to devise a dedicated algorithm for GEA-1.

Proposition 3 (State enumeration algorithm for GEA-1). For τ = 5
and m = 7, there is a state enumeration algorithm for GEA-1. Specifically,
given inputs v(1) ∈ V (1) and u ∈ F5

2, there is an algorithm that enumerates all

the 240−8−5 = 227 states (Â, Ĉ) such that (Â, Ĉ)⊕ v(1)[AC] ∈ V
(3)
[AC] and fA(Â)[5] ⊕

fC(Ĉ)[5] = u in time complexity 227 using 27 � 219 memory words of 32-bits.

Therefore, Proposition 2 implies that we can recover the key of GEA-1 in time
complexity 240 and memory complexity (slightly more than) 219 + 27 words of
32 bits.6 Below we describe the details of the algorithm.

Influence of the state on the output. We observe that for all registers, only
a subset of the internal state bits influence the first output bits. Specifically, we
will exploit the following property, which is easily deduced from Figure 1.

6 Based on this computation, the algorithm requires about 2 MiB of memory. However,
if we use the data structure used in the GEA-1 attack of [2], the memory complexity
would be 4 MiB (which is what we claim).



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 17

Property 1 (Influence of the state on the output).

– fA(Â)[5] only depends on 31− 5 = 26 bits of Â.

– fB(B̂)[5] only depends on 32− 7 = 25 bits of B̂.

– fB(Ĉ)[5] only depends on 33− 11 = 22 bits of Ĉ.

Denote these 26 (resp. 25, 22) state bit indices of A (resp. B,C) by JA (resp.
JB , JC). We note that we use the above property only for registers A and C.

Initial attempt. An initial idea that exploits Property 1 is to prepare a table for
all possible 222 values of JC . Then, enumerate over the 226 bits of JA and merge
the (partial) states according to the linear constraints imposed by V (3) via the

relation (Â, Ĉ)⊕v(1)[AC] ∈ V
(3)
[AC] and the output constraint fA(Â)[5]⊕fC(Ĉ)[5] = u.

While this algorithm satisfies the required time complexity, it does not give the
desired memory saving.

Decomposition by influential bits. Let V
(3)
[JAJC ] ⊂ F48

2 denote the projec-

tion of V (3) on the 48 influential bits JA ∪ JC . Using a computer program, we

calculated dim(V
(3)
[JAJC ]) = dim(V (3)) = 32.

Recall that we are only interested in states (Â, Ĉ) that satisfy (Â, Ĉ)⊕ v(1)[AC] ∈
V

(3)
[AC], namely contained in the 32-dimensional coset (v(1)⊕V (3))[AC]. Moreover,

as we are only interested in the first 5 output bits, it is sufficient to consider
only 48-bit partial states in the projected coset (v(1) ⊕ V (3))[JAJC ] and then

complement them to full 64-bit states (Â, Ĉ).

Since dim(V
(3)
[JAJC ]) = 32, it is not efficient to iterate over its elements directly,

but the main observation is that we can decompose it according to the bits of
JA and JC and perform a MITM procedure as in the initial attempt above, but
with less memory.

We restrict the discussion to the 48-bit subspace spanned by JA ∪ JC (viewed
as unit vectors). Let U (JA) ⊂ F48

2 be the 26-dimensional subspace whose vectors
are zero on the bits of JC . Define the 22-dimensional subspace U (JC) similarly.

We have

dim(V
(3)
[JAJC ] ∩ U

(JA)) ≥

dim(V
(3)
[JAJC ]) + dim(U (JA))− 48 = 32 + 26− 48 = 10,

and similarly, dim(V
(3)
[JAJC ] ∩U

(JC)) ≥ 32 + 22− 48 = 6 (both hold with equality,

as verified by our program). Since dim(U (JA) ∩ U (JC)) = 0, we can decompose

V
(3)
[JAJC ] = V (4) � V (A) � V (C), (4)



18 Dor Amzaleg and Itai Dinur

where V (A) ⊂ U (JA) and dim(V (A)) = 10, while V (C) ⊂ U (JC) and dim(V (C)) =
6. Therefore, dim(V (4)) = 32− 10− 6 = 16.

The additional decomposition allows to divide the computation of the MITM
procedure in the initial attempt above into 216 independent smaller procedures,
one for each v(4) ∈ V (4). Consequently, the size of the table for JC is reduced to
222−16 = 26, while we need to enumerate over 226−16 = 210 values for the bits
of JA and match with the table on the 5-bit output u. The average number of
matches in the table per v(4) ∈ V (4) is 26+10−5 = 211, and this matching phase
dominates the complexity (which is 216 ·211 = 227 as required by Proposition 3).
We give the details below.

State enumeration algorithm for GEA-1. Based on the decomposition

V
(3)
[JAJC ] = V (4) � V (A) � V (C),

given in (4), any partial state (xA, yC) ∈ V (3)
[JAJC ] is decomposed as

xA = v
(4)
[JA] ⊕ v

(A)
[JA] ⊕ v

(C)
[JA] = v

(4)
[JA] ⊕ v

(A)
[JA] and

yC = v
(4)
[JC ] ⊕ v

(A)
[JC ] ⊕ v

(C)
[JC ] = v

(4)
[JC ] ⊕ v

(C)
[JC ].

Partial states relevant for the MITM procedure in the coset (Ã, C̃) ∈ (v(1) ⊕
V (3))[JAJC ] are similarly decomposed as

Ã = v
(1)
[JA] ⊕ v

(4)
[JA] ⊕ v

(A)
[JA] and C̃ = v

(1)
[JC ] ⊕ v

(4)
[JC ] ⊕ v

(C)
[JC ].

This is the main decomposition used by the algorithm.

Yet, as the algorithm needs to return full 64-bit states and not partial states, it
will be more convenient to directly work with 64-bit vectors and project them

to partial states when needed. For this purpose, note that since dim(V
(3)
[JAJC ]) =

dim(V (3)) = 32, then any 48-bit vector v ∈ V (3)
[JAJC ] can be uniquely extended

via linear algebra to a 64-bit vector v′ ∈ V (3)
[AC] such that v = v′[JAJC ].

Similarly, the subspaces V (4), V (A), V (C) (of V
(3)
[JAJC ]) can be uniquely extended

to subspaces V (4′), V (A′), V (C′) (of V
(3)
[AC]) such that V

(4′)
[JAJC ] = V (4), V

(A′)
[JAJC ] =

V (A), V
(C′)
[JAJC ] = V (C). Moreover, any v(3

′) ∈ V (3)
[AC] can be uniquely written as

v(3
′) = v(4

′) ⊕ v(A
′) ⊕ v(C

′), (5)

where (v(4
′), v(A

′), v(C
′)) ∈ V (4′) × V (A′) × V (C′).



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 19

Details of the state enumeration algorithm. We extend the output func-
tions fA(Â)[5] and fC(Ĉ)[5] to work with partial states Ã ∈ F26

2 and C̃ ∈ F22
2 ,

respectively.

Recall that the state enumeration algorithm receives inputs v(1) ∈ V (1) and

u ∈ F5
2 and enumerates all 240−8−5 = 227 states (Â, Ĉ) such that (Â, Ĉ)⊕v(1)[AC] ∈

V
(3)
[AC] and fA(Â)[5] ⊕ fC(Ĉ)[5] = u. The algorithm is given below.

1. For all v(4
′) ∈ V (4′):

(a) – Initialize a table TC , storing elements in F64
2 .

– For all v(C
′) ∈ V (C′), let C̃ = v

(1)
[JC ] ⊕ v

(4′)
[JC ] ⊕ v

(C′)
[JC ] . Store v(C

′)

at index fC(C̃)[5] ⊕ u in TC .

(b) For all v(A
′) ∈ V (A′), let Ã = v

(1)
[JA] ⊕ v

(4′)
[JA] ⊕ v

(A′)
[JA] . Search TC for

fA(Ã)[5]. For each match v(C
′):

– Let v(3
′) = v(4

′)⊕v(A′)⊕v(C′) and return (Â, Ĉ) = v
(1)
[AC]⊕v

(3′).

Analysis.

Correctness. Let (Â, Ĉ) be such that (Â, Ĉ) ⊕ v
(1)
[AC] ∈ V

(3)
[AC] and fA(Â)[5] ⊕

fC(Ĉ)[5] = u. Then, we can write (Â, Ĉ) = v
(1)
[AC]⊕v

(3′), where v(3
′) ∈ V (3)

[AC], and

v(3
′) = v(4

′)⊕v(A′)⊕v(C′) as in (5). Then, the partial state (Ã, C̃) = (Â, Ĉ)[JAJC ]

is considered when iterating over v(4
′), and (Â, Ĉ) is returned as required.

Complexity. The heaviest step is 1.(b). For each v(4
′) ∈ V (4′), its complexity is

210 for iterating over v(A
′) ∈ V (A′). The expected number of matches in TC is

210 · 26 · 2−5 = 211 (it is a 5-bit matching). Hence, the total complexity of each
iteration is about 211, while the total complexity is 216 · 211 = 227 as claimed in
Proposition 3. In terms of memory, table TC requires 26 words of 64 bits.

Implementation. We implemented the attack in C++ and experimentally ver-
ified it on a laptop with an AMD Ryzen-7 5800H processor. The program re-
covered the GEA-1 session key in 153 minutes, averaged over 5 runs. As the
attack of [2] was implemented on a cluster, it cannot be directly compared to
ours. Nevertheless, we give a rough comparison in terms of CPU time: our attack
takes 6× time using 32× less cores which are 1.5× faster. This seems favorable
and is possibly a consequence of the reduced allocated memory fitting in cache.

4 Attacks on GEA-2

In this section we analyze the GEA-2 cipher. We begin by giving an overview of
the attacks of [2], as our attacks reuse some of their techniques.



20 Dor Amzaleg and Itai Dinur

We then describe a simple attack that is based on the Schroeppel-Shamir vari-
ant for 4-XOR. This attack needs only a small amount of keystream. Its time
complexity is about 263 and it requires roughly 32 GiB of memory. We sub-
sequently describe Attack G2-1 that improves the simple attack in a scenario
where a longer keystream sequence is available: given a consecutive keystream of
` bits, the time complexity is about 264/(`− 62), while the memory complexity
is about 64 GiB accessed randomly (and additional 96 GiB of storage accessed
sequentially, which can be eliminated at a small cost).

Finally, we describe Attack G2-2 that targets the initialization of GEA-2. As we
explain, for technical reasons the current results are mostly interesting in case
the attacker obtains a long yet fragmented keystream (not containing a long
window of consecutive known bits). Compared to [2], Attack G2-2 provides an
improvement by a factor of (at least) 29 = 512 in memory complexity in the
considered scenario.

4.1 Previous Attacks on GEA-2

Let (Â, B̂, Ĉ, D̂) be an internal state. Since the algebraic degree of the filter
function f is 4, any consequent output bit can be symbolically represented as a
polynomial of algebraic degree 4 over F2 in terms of the 125 bits of (Â, B̂, Ĉ, D̂),
treated as variables.

Assume we receive the encryption of a fully known GEA-2 frame, thus obtaining
12800 keystream bits. Hence, we can construct a system of 12800 polynomial
equations of degree 4 in 125 variables. Since the registers are independent, the
number of monomials that appear in the polynomials is upper bounded by

1 +

4∑
i=1

(
29

i

)
+

(
31

i

)
+

(
32

i

)
+

(
33

i

)
= 152682.

Attempting to apply a linearization attack, we replace every monomial in each
polynomial equation with an independent variable and try to eliminate variables
by Gaussian elimination on the 12800 linearized polynomial representations of
the keystream bits. Unfortunately, the number of variables is much larger than
the 12800 available equations, rendering this straightforward approach useless.

Therefore, [2] considers a hybrid approach in which we guess some variables
in order to reduce the number of monomials. However reducing the number of
monomials to 12800 seems to require guessing at least 58 variables.7 Each such
guess requires additional linear algebra computations which make the attack
slower than exhaustive search.

7 The authors of [2] showed how to reduce the number of monomials to 12800 by
guessing 59 variables. We have found a way to do it by guessing only 58 variables,
but this does not have a substantial effect on the attack.



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 21

Hybrid with meet-in-the-middle. The main idea of [2] is to combine the
hybrid approach with a MITM procedure. More specifically, the idea is to guess
some bits of the internal states of the shorter registers A and D and eliminate
their contribution from the keystream by linearization. Then, perform a MITM
procedure on the registers B and C.

We give a high-level overview of this attack. Let (Â, B̂, Ĉ, D̂) be an unknown
internal state that produces z[12800]. Guess 11 bits of Â and 9 bits of D̂. This
reduces the number of monomials in the remaining 20 + 20 unknown variables
in these registers to

∑4
i=1

(
20
i

)
+
(
20
i

)
= 12390. By Gaussian elimination, find

12800−12390 = 410 linear expressions (masks) of length 12800, each eliminating
the contributions of Â and D̂ from the keystream. The attack essentially only
needs 64 of these masks.

Next, apply the 64 masks to the keystream to derive a 64-bit masked keystream
(that should depend only on B̂ and Ĉ if the initial guess is correct). Finally,
perform a MITM procedure: for each possible value of B̂, compute fB(B̂)[12800]
and apply the 64 masks. Store B̂ indexed by the 64-bit results (after XORing
with the masked keystream) in a table. Then, for each possible value of Ĉ,
compute fC(Ĉ)[12800], apply the 64 masks and search the table for the 64-bit
value. After additional tests, a match allows to easily construct the full state
of GEA-2 and to recover the key if the state is correct. In order to perform
all these 232 + 233 computations of 64 bits efficiently (without expanding the
full 12800-bit output and applying the 64 masks), the attack first interpolates
the symbolic representations of the 64 masked outputs of B̂ and Ĉ (which are
Boolean functions of degree 4). Then, the fast polynomial evaluation algorithm
of [8] is used.

There are two optimizations applied to the attack. The first optimization uses
the observation that degree 4 monomials produced by the 20 + 20 eliminated
variables of Â and D̂ are unchanged by the guesses (as they are not multiplied
by any other variable in the original polynomial representations that involve the
guessed variables). This allows to perform the Gaussian elimination only once
on these

(
20
4

)
+
(
20
4

)
= 9690 linearized variables and reduces the complexity of

the remaining work for computing the 410 masks.

Overall, the 29+11 performed MITM procedures dominate the time and memory
complexities of the attack, which the authors estimate as (about) 254 GEA-2
evaluations, and roughly 232 words, respectively.

Shifted keystreams. The second optimization produces 753 internal state targets
for the attack at different clocks. This allows to reduce the number of guesses
by a factor of (roughly) 753 (after 220/753 guesses, we expect to hit one of the
internal state targets). Specifically, the idea is to produce from the 12800-bit
keystream 753 shifted consecutive keysteams of length 12047 (keystream i starts
from position i). Then, by linear algebra, compute 12047 − 753 + 1 = 11295
masks (linear expressions), each having a constant value on all 753 keystreams.
These 11295 constant bits serve as the keystream input to the previous attack



22 Dor Amzaleg and Itai Dinur

and allows to simultaneously target all 753 shifted keystreams. Since the effective
keystream size is reduced to 11295, we now have to guess 21 variables instead of
20 to perform linearization, but we are expected to hit one of the targets much
faster. The authors estimate the complexity of this attack by about 245 GEA-2
evaluations. The memory complexity remains roughly 232 words (32 GiB).

The authors also calculated the complexity of the optimized attack when given
less data and estimated that it beats exhaustive search given at least 1468 con-
secutive keystream bits.

Attack on fragmented keystream. We note that the final optimization can only
be applied if the attacker obtains a long sequence of consecutive keystream bits.
On the other hand, assume the attacker obtains a frame in which 11300 bits of
keystream at arbitrary locations are known. In this case, the best attack is the
previous one (without the final optimization) that can be adjusted to work in
slightly higher complexity of 255 GEA-2 evaluations (instead of 254), and 232

words of memory.

4.2 Basic 4-XOR Attack

Our first attack adapts the Schroeppel-Shamir variant for 4-XOR (summarized
in Section 2.5) to an attack on GEA-2. As in the Schroeppel-Shamir variant,
we partition the functions fA, fB , fC , fD into pairs during the merging process.
The time complexity will be dominated by the pair of registers that has the
maximal number of possible states. In order to optimize the attack, we consider
the pairs (fC , fD) and (fA, fB) to obtain time complexity of about 231+32 = 263

(the number of internal states of registers A and B). This complexity is very
close to exhaustive search, and we describe it below mainly as an exposition to
Attack G2-1 that follows.

Let τ ≤ 64 be a parameter. We enumerate over all u ∈ Fτ2 , representing the
values of

fC(Ĉ)[τ ] ⊕ fD(D̂)[τ ] ⊕ z[τ ] and fA(Â)[τ ] ⊕ fB(B̂)[τ ].

These values are equal for the correct state (Â, B̂, Ĉ, D̂).

We assume that we have a 64-bit keystream z[64] (although the attack can be
applied in additional scenarios).

1. – Initialize a table TD, storing elements in F29
2 .

– For all D̂ ∈ F29
2 , store D̂ at index fD(D̂)[τ ] in TD.

2. – Initialize a table TA, storing elements in F31
2 .

– For all Â ∈ F31
2 , store Â at index fA(Â)[τ ] in TA.

3. For each u ∈ Fτ2 :

(a) – Initialize a table TCD, storing pairs in F33
2 × F29

2 .



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 23

– For all Ĉ ∈ F33
2 , search TD for fC(Ĉ)[τ ] ⊕ u ⊕ z[τ ]. For each

match D̂:

• Let vCD = fC(Ĉ)[τ+1,64] ⊕ fD(D̂)[τ+1,64] ⊕ z[τ+1,64]. Store

(Ĉ, D̂) at index vCD in TCD.

(b) For all B̂ ∈ F32
2 , search TA for fB(B̂)[τ ] ⊕ u. For each match Â:

– Let vAB = fA(Â)[τ+1,64] ⊕ fB(B̂)[τ+1,64]. Search vAB in TCD.

For each match (Ĉ, D̂):

• Test the state (Â, B̂, Ĉ, D̂) and if the test succeeds, recover
and output the corresponding key.

Testing states. A 125-bit state (Â, B̂, Ĉ, D̂) can be tested by computing more
output bits and comparing them against additional available keystream bits (a
total of 125 bits suffice on average). Since we impose a 64-bit condition on the
125-bit internal state, the expected number of states to test is 2125−64 = 261. As
the total complexity will be about 263, we consider the testing time as negligible.

Analysis.

Correctness. Fix any (Ĉ, D̂). Then, for

u = fC(Ĉ)[τ ] ⊕ fD(D̂)[τ ] ⊕ z[τ ],

fC(Ĉ)[τ ] ⊕ u ⊕ z[τ ] = fD(D̂)[τ ] is searched in TD and D̂ is retrieved. Therefore,

(Ĉ, D̂) is stored at index vCD in TCD. If (Â, B̂, Ĉ, D̂) is the correct state, then

u = fA(Â)[τ ] ⊕ fB(B̂)[τ ]

holds as well, implying that when searching TA for fB(B̂)[τ ] ⊕ u, the state Â is

retrieved and vAB = fA(Â)[τ+1,64] ⊕ fB(B̂)[τ+1,64] is searched in TCD. Finally,

since vAB = vCD for the correct state (Â, B̂, Ĉ, D̂), then it is tested.

Complexity analysis. The complexity of generating the outputs D̂ in the first
step and building the table is about 229 (in terms of τ -bit computations of fD).
Similarly, the complexity of the second step for A is about 231.

For each of the 2τ iterations of Step 3, the complexity of generating the outputs Ĉ
in Step 3.(a) is about 233. The expected number of matches in TD is 229·233·2−τ =
262−τ (as we match on τ bits), which gives the expected number of entries in
TCD. For Step 3.(b), the complexity of generating the outputs fB(B̂) is about
232. The expected number of matches in TA is 231 ·232 ·2−τ = 263−τ . Overall, we
estimate the total time complexity per u ∈ Fτ2 by about max(233, 263−τ ) GEA-2
evaluations (producing a 128-bit keystream). To optimize the time complexity
(and minimize memory complexity for this choice), we choose τ = 30. This gives
total time complexity of 230+33 = 263.

The memory complexity of all the 3 tables is 229 + 231 + 232 < 233 words.



24 Dor Amzaleg and Itai Dinur

4.3 Attack G2-1 – Extended 4-XOR Attack

The basic attack requires a short keystream and we would like to optimize it in
case additional keystream data is available to the attacker.

We show how to apply a variant of Wagner’s k-tree algorithm that solves 4-XOR
more efficiently than the Schroeppel-Shamir variant in case there are many so-
lutions. For this purpose, we use the idea of [2] and combine several (shifted)
keystreams by computing common masks. This allows to combine multiple tar-
gets (internal states at different clocks) for the attack, and has an analogous
(although not identical) effect to enlarging the domains of the functions in the
original 4-XOR problem.

In this attack, the value u ∈ Fτ2 that we iterate over in the loop will represent
the values of the linear masks applied to fC(Ĉ)⊕ fD(D̂)⊕ z.

Linear masks. We assume that we have a keystream of length ` ≥ 64 bits
denoted by z[`]. For convenience, we assume that ` is even. Let `′ = (`− 62)/2,

and for j ∈ [`′] define shifted streams z(j) = z[j,j+`′+62] ∈ F`
′+63
2 . Note that the

last index of z(`
′) is keystream bit number `′+`′+62 = `, which is the last index

of the stream.

We have `′ shifted sequences, each of length `′ + 63 bits, and can compute 64

linearly independent masks m(1), . . . ,m(64) where m(i) ∈ F`
′+63
2 such that for

each i ∈ [64], m(i) · z(j) = c(i) for all j ∈ [`′], where c(i) ∈ F2 is a constant
independent of j (the symbol · denotes inner product mod 2).

Concretely, define a (`′−1)×(`′+63)-dimensional matrix (denoted by Z), where
the j’th row is z(j) ⊕ z(`′). The kernel of this matrix is of dimension (at least)
(`′+63)−(`′−1) = 64. The masks are a basis of the kernel and can be computed
by Gaussian elimination. The 64 constants c(i) are determined by application of
the 64 masks to z(`

′).

Before describing the attack, we define some additional notation: given the masks
m(1), . . . ,m(64) (as an implicit input), and a state Â, let

gA(Â) = {m(i) · fA(Â)[`′+63]}i∈[64] ∈ F64
2

denote the concatenations of the applications of the 64 masks to the (`′ + 63)-
bit output prefix produced by Â. Similar notation is defined for the registers
B,C,D. Finally, let c ∈ F64

2 denote the concatenation of all the constants c(i).

Details of the algorithm. The algorithm is given as input the keystream z[`].
Let τ ≤ 64 be a parameter.

Attack G2-1



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 25

1. Given z[`], compute the matrix Z ∈ F(`′−1)×(`′+63)
2 defined above. Then,

derive the masks m(1), . . . ,m(64) ∈ F`
′+63
2 and c ∈ F64

2 by Gaussian
elimination.

2. – Initialize a table TD, storing pairs in F29
2 × F64

2 .

– For all D̂ ∈ F29
2 , store (D̂, gD(D̂)) at index gD(D̂)[τ ] in TD.

– Build a similar table TA for A, storing (Â, gA(Â)) ∈ F31
2 × F64

2 at
index gA(Â)[τ ].

3. – Initialize a sequential table (array) TB , storing elements in F64
2 .

– For all B̂ ∈ F32
2 , store gB(B̂) in TB in entry B̂.

– Build a similar table TC for C, storing gC(Ĉ) ∈ F64
2 in entry Ĉ.

4. For each u ∈ Fτ2 :

(a) – Initialize a table TCD, storing pairs in F33
2 × F29

2 .

– For all Ĉ ∈ F33
2 , retrieve gC(Ĉ) from TC . Search TD for

gC(Ĉ)[τ ] ⊕ u⊕ c[τ ]. For each match (D̂, gD(D̂)):

• Let vCD = gC(Ĉ)[τ+1,64] ⊕ gD(D̂)[τ+1,64] ⊕ c[τ+1,64]. Store

(Ĉ, D̂) at index vCD in TCD.

(b) For all B̂ ∈ F32
2 , retrieve gB(B̂) from TB . Search TA for gB(B̂)[τ ]⊕u.

For each match (Â, gA(Â)):

– Let vAB = gA(Â)[τ+1,64] ⊕ gB(B̂)[τ+1,64]. Search vAB in TCD.

For each match (Ĉ, D̂):

• Test the state (Â, B̂, Ĉ, D̂). If the test succeeds, recover and
output the corresponding key.

Testing a state is done by computing output bits and comparing with z[`] at all
indices j ∈ [`′] (on average, we need to compute about dlog `′e < dlog `e ≤ 14
output bits). We note that the attack involves precomputation of additional
tables TB , TC in order to avoid recomputing the masks in each iteration.

Analysis.

Correctness. Fixing (Ĉ, D̂), for u = gC(Ĉ)[τ ]⊕gD(D̂)[τ ]⊕c[τ ], (Ĉ, D̂) is stored at

index vCD in TCD. If (Â, B̂, Ĉ, D̂) is a state that produced the shifted keystream
z(j) for j ∈ [`′], then for every i ∈ [64],

(gA(Â)⊕ gB(B̂)⊕ gC(Ĉ)⊕ gD(D̂))i =

m(i) · (fA(Â)⊕ fB(B̂)⊕ fC(Ĉ)⊕ fD(D̂))[`′+63] =

m(i) · z(j) = c(i),



26 Dor Amzaleg and Itai Dinur

where the final equality holds by the properties of the masks. Equivalently,

c = gA(Â)⊕ gB(B̂)⊕ gC(Ĉ)⊕ gD(D̂).

Specifically,

gC(Ĉ)[τ ] ⊕ gD(D̂)[τ ] ⊕ c[τ ] = gA(Â)[τ ] ⊕ gB(B̂)[τ ].

This implies that if the algorithm iterates over u = gC(Ĉ)[τ ] ⊕ gD(D̂)[τ ] ⊕ c[τ ],
then vAB is searched in TCD and the key is output.

Complexity. Since there are `′ shifted keystreams z(j), then the expected number
of corresponding u ∈ Fτ2 values is about `′ (assuming `′ < 2τ ) and hence the
algorithm is expected to recover the key in about 2τ/`′ iterations.

In terms of time complexity, computing the masks in Step 1 by naive Gaussian
elimination requires time complexity of roughly `3 bit operations. Naively ap-
plying the masks to the outputs of all states of each register and building the
tables TA, TB , TC , TD requires about 64 · (229 + 231 + 232 + 233) · ` ≤ 240 · ` bit
operations.

Since for GEA-2 we have ` ≤ 12800 < 214, then the linear algebra complex-
ity is upper bounded by roughly 214·3 + 254 ≈ 254 bit operations, which is 247

operations on 128-bit words (an upper bound on the complexity in GEA-2 eval-
uations).

Choosing τ = 30 as in the basic attack, the complexity of each iteration remains
about 233 and their total complexity is

233 · 230/`′ = 264/(`− 62).

Since ` ≤ 12800, this term dominates the complexity of the attack.

The memory complexity of the attack is calculated as follows: the matrix Z re-
quires about `2 bits of storage, but this will be negligible. The hash tables TA and
TD require about 229 + 231 words of 96 bits. The hash table TCD requires mem-
ory of about 232 words of 64 bits. Altogether, the hash tables require memory of
about 64 GiB. The sequential tables TB , TC require storage of 232 + 233 = 3 · 232
words of 64 bits or 96 GiB.

Note that this attack does not exploit any special property of the internal GEA-
2 shift registers, and is thus applicable to any construction that combines the
outputs of 4 independent stream ciphers by a simple XOR operation.

Recomputation of masked outputs. It is possible to eliminate the sequential tables
and recompute the masked outputs for B and C on-the-fly at a modest penalty
in time complexity. For GEA-2, this can be done (for example), with the fast
polynomial evaluation algorithm of [8] (as also used in [2]), exploiting the low
degree representation of the output of its registers.



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 27

4.4 Attacks Targeting the GEA-2 Initialization

We consider attacks that target the GEA-2 initialization process. Although this
process does not have a significant weakness as in GEA-1, it linearly maps a
97-bit seed to a 125-bit internal state. Therefore, this state resides in a 97-
dimensional linear subspace. Our previous attacks (and the ones of [2]) do not
exploit this property and it is interesting to investigate whether it leads to im-
proved attacks. On the other hand, we note that attacks which target the ini-
tialization process cannot benefit from the optimization that allows targeting
multiple states using a consecutive keystream. While such attacks can target
multiple initial states obtained by different GEA-2 frames using similar ideas,
this requires more data and is therefore less practical.

Exploiting the GEA-2 Initialization. Our goal is to exploit the fact that
the state obtained after initialization resides in a 97-dimensional linear subspace
to optimize attacks of GEA-2. This seems difficult at first, as the linear relations
among the registers are complex and each register (and pair of registers) can at-
tain all possible values. However, a careful examination will allow optimizations,
as described next.

Note that any valid state obtained after initialization must satisfy 125−97 = 28
linear equations (masks). Denote these masks by m(1), . . . ,m(28), where m(i) ∈
F125
2 for i ∈ [28]. Let (Â, B̂, Ĉ, D̂) be a state obtained after initialization. Then,

for all i ∈ [28], m(i) · (Â, B̂, Ĉ, D̂) = 0.

Suppose we wish to eliminate g ≤ 28 variables from each register of an unknown
state (Â, B̂, Ĉ, D̂). Consider m(1), . . . ,m(g) and for each i ∈ [g], guess the 3 bits

m
(i)
[A] · Â, m

(i)
[B] · B̂, m

(i)
[C] · Ĉ.

This immediately gives

m
(i)
[D] · D̂ = m

(i)
[A] · Â⊕m

(i)
[B] · B̂ ⊕m

(i)
[C] · Ĉ.

Therefore, we have g linear equations per register (4g in total), and by guessing
the values of 3g of them we reduce the dimension of the subspace spanned by any
register by g. We can thus symbolically represent the value of any b-bit register
with only b − g variables, which has an identical effect to guessing g variables
per register. Overall, we have eliminated 4g variables at the cost of guessing 3g
bits.

Attack G2-2 – hybrid with meet-in-the-middle. The guessing strategy
described above can be used to optimize the hybrid attack on GEA-2, yet it is
still not very efficient. We now show how to use the guessing strategy to improve
the memory complexity of the hybrid with meet-in-the-middle attack of [2] with
no penalty in time complexity. This results in the most efficient attack on GEA-2
given a fragmented keystream.



28 Dor Amzaleg and Itai Dinur

Assume that we have a frame with 12800 known keystream bits. The analysis
can be easily adjusted to a fragmented keystream with less known bits. Recall
that the goal in this attack is to eliminate the contributions of the two registers
A and D from the keystream, and then perform a meet-in-the-middle attack on
registers B and C.

Consider m(1), . . . ,m(9) as defined in the guessing strategy. For each i ∈ [9] guess
the 2 bits

m
(i)
[A] · Â, m

(i)
[D] · D̂.

Moreover, guess additional 2 arbitrary bits of Â. This has an identical effect to
guessing 11 bits of Â and 9 bits of D̂, and now the attack of [2] described above
(without exploiting shifted keystreams) is directly applicable.

Optimizing memory complexity using additional linear equations. For each i ∈
[9], we have

m
(i)
[B] · B̂ ⊕m

(i)
[C] · Ĉ = m

(i)
[A] · Â⊕m

(i)
[D] · D̂, (6)

where the right hand side is known. These 9 linear equations reduce the dimen-
sion of the subspace of states (B̂, Ĉ) relevant to the MITM attack. The main
observation is that we can exploit the reduced dimension of this subspace to save
memory by decomposing it, similarly to the attacks on GEA-1.

Let
U (B) = {(x, 0) ∈ F32

2 × F33
2 } and U (C) = {(0, x) ∈ F32

2 × F33
2 }.

In addition, define

V (BC) = {(x, y) ∈ F32
2 × F33

2 | ∀i ∈ [9] : m
(i)
[B] · x⊕m

(i)
[C] · y = 0}.

The states relevant for the attack form an affine subspace w ⊕ V (BC), where
w ∈ F32

2 × F33
2 depends on the guesses on the right hand side of (6).

We have dim(V (BC)) = 65 − 9 = 56. Moreover, as all relevant subspaces are in
a 65-dimensional subspace,

dim(V (BC)∩U (B)) ≥ 56+32−65 = 23 and dim(V (BC)∩U (C)) ≥ 56+33−65 = 24

(we chose the masks so both hold with equality, as verified by our program). Since
dim(U (B) ∩ U (C)) = 0, similarly to the attacks on GEA-1, we can decompose
the 56-dimensional subspace V (BC) as a direct sum

V (BC) = V (1) � V (2) � V (3),

where dim(V (1)) = 9, dim(V (2)) = 23, dim(V (3)) = 24, such that for any
(B̂, Ĉ) ∈ V (BC), we have B̂ = (v(1) ⊕ v(2))[B] and Ĉ = (v(1) ⊕ v(3))[C].

By considering the affine subspace w⊕V (BC), similarly to the attacks on GEA-
1, this decomposition allows to reduce the memory complexity by a factor of



Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2 29

2dim(V (1)) = 29 to about 223 words (it still dominates the memory complexity of
the attack).

Interestingly, our advantage in terms of memory complexity increases as the
number of available keystream bits decreases. This is because more variables are

guessed, implying that dim(V (1)) and 2dim(V (1)) (which is the advantage factor
in memory complexity) increase. For example, given 11300 bits of fragmented
keystream, the memory complexity is reduced by a factor of 210.

Implementation. We implemented the attack in sage, assuming 11300 keystream
bits are available. We executed several iterations, each with a different guess for
the linear expressions described above. An iteration took about 50 minutes to
execute on a laptop using a single thread. While our implementation can be
significantly optimized, its main purpose was to verify correctness by checking
that the attack indeed returns the correct state for the correct guess.

Acknowledgements. This work was supported by the Israel Science Founda-
tion grant no. 1903/20 and by the European Research Council under the ERC
starting grant agreement no. 757731 (LightCrypt).

References

1. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5677, pp. 70–
89. Springer (2009)

2. Beierle, C., Derbez, P., Leander, G., Leurent, G., Raddum, H., Rotella, Y., Rup-
precht, D., Stennes, L.: Cryptanalysis of the GPRS Encryption Algorithms GEA-
1 and GEA-2. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12697, pp. 155–183.
Springer (2021)

3. Beierle, C., Felke, P., Leander, G.: To Shift or Not to Shift: Understanding GEA-1.
IACR Cryptol. ePrint Arch. p. 829 (2021), https://eprint.iacr.org/2021/829

4. Bernstein, D.J.: Better price-performance ratios for generalized birthday attacks
(2007), https://cr.yp.to/rumba20/genbday-20070904.pdf

5. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) Advances in Cryptology - ASIACRYPT 2000, 6th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Kyoto, Japan, December 3-7, 2000, Proceedings. Lecture Notes
in Computer Science, vol. 1976, pp. 1–13. Springer (2000)

6. Biryukov, A., Shamir, A., Wagner, D.A.: Real Time Cryptanalysis of A5/1 on a
PC. In: Schneier, B. (ed.) Fast Software Encryption, 7th International Workshop,
FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings. Lecture Notes in
Computer Science, vol. 1978, pp. 1–18. Springer (2000)

https://eprint.iacr.org/2021/829
https://cr.yp.to/rumba20/genbday-20070904.pdf


30 Dor Amzaleg and Itai Dinur

7. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanal-
ysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) Selected Areas in Cryptography - 17th International Work-
shop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 6544, pp. 229–240. Springer (2010)

8. Bouillaguet, C., Chen, H., Cheng, C., Chou, T., Niederhagen, R., Shamir, A.,
Yang, B.: Fast Exhaustive Search for Polynomial Systems in F2. In: Mangard,
S., Standaert, F. (eds.) Cryptographic Hardware and Embedded Systems, CHES
2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6225, pp. 203–218. Springer
(2010)

9. Bouillaguet, C., Delaplace, C., Fouque, P.: Revisiting and Improving Algorithms
for the 3XOR Problem. IACR Trans. Symmetric Cryptol. 2018(1), 254–276 (2018)

10. ETSI: Digital cellular telecommunications system (Phase 2+) (GSM); 3GPP TS
24.008 version 16.7.0 Release 16: (2021), https://www.etsi.org/deliver/etsi_
ts/124000_124099/124008/16.07.00_60/ts_124008v160700p.pdf

11. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks.
In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings. Lecture
Notes in Computer Science, vol. 6110, pp. 235–256. Springer (2010)

12. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall/CRC (2009)
13. Knellwolf, S., Khovratovich, D.: New Preimage Attacks against Reduced SHA-1.

In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7417, pp. 367–383.
Springer (2012)

14. Leurent, G., Sibleyras, F.: Low-Memory Attacks Against Two-Round Even-
Mansour Using the 3-XOR Problem. In: Boldyreva, A., Micciancio, D. (eds.) Ad-
vances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 11693, pp. 210–235. Springer (2019)

15. Nikolic, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized birth-
day problem. In: Tetsu Iwata and Jung Hee Cheon (ed.) Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol.
9453, pp. 683–703. Springer (2015)

16. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-
Complete Problems. SIAM J. Comput. 10(3), 456–464 (1981)

17. Wagner, D.A.: A Generalized Birthday Problem. In: Yung, M. (ed.) Advances in
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 18-22, 2002, Proceedings. Lecture Notes
in Computer Science, vol. 2442, pp. 288–303. Springer (2002)

18. Wang, J.R.: Space-Efficient Randomized Algorithms for K-SUM. In: Schulz, A.S.,
Wagner, D. (eds.) Algorithms - ESA 2014 - 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8737, pp. 810–829. Springer (2014)

https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/16.07.00_60/ts_124008v160700p.pdf
https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/16.07.00_60/ts_124008v160700p.pdf

	Refined Cryptanalysis of the GPRS Ciphers GEA-1 and GEA-2

