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Abstract. We obtain publicly verifiable Succinct Non-Interactive Argu-
ments (SNARGs) for arbitrary deterministic computations and bounded
space non-deterministic computation from standard group-based assump-
tions, without relying on pairings. In particular, assuming the sub-exponential
hardness of both the Decisional Diffie-Hellman (DDH) and Quadratic
Residuosity (QR) assumptions, we obtain the following results, where n
denotes the length of the instance:
1. A SNARG for any language that can be decided in non-deterministic

time T and space S with communication complexity and verifier
runtime (n+ S) · T o(1).

2. A SNARG for any language that can be decided in deterministic time
T with communication complexity and verifier runtime n · T o(1).

1 Introduction

We consider the problem of constructing succinct, publicly verifiable arguments
to certify the correctness of computation. By succinct, we refer to the setting
where the running time of verifier is much smaller than the time required to
perform the computation.

The problem of constructing such proof systems has received widespread
attention over the last three decades. These are typically called succinct non-
interactive arguments (SNARGs), where argument refers to any proof system
whose soundness holds against polynomial-time provers (under cryptographic
assumptions) and the non-interactive setting refers to a single message of com-
munication sent by the prover to the verifier. As in prior work, our work focuses
on constructions in the CRS model, where participants have access to a common
reference string.

Until recently, a significant amount of prior work on SNARGs focused on
constructions proven secure under non-falsifiable assumptions or shown secure
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only in idealized models (such as the Random Oracle Model). Indeed, Gentry
and Wichs [25] showed that if such an argument system satisfied a strong form of
soundness called as adaptive soundness, then such non-falsifiable assumptions are
necessary for SNARGs for NP. There has been recent exciting progress on con-
structing SNARGs for classes that are subsets of NP under falsifiable standard
cryptographic assumptions, and in particular the LWE (Learning with Errors
assumption), by instantiating the Fiat-Shamir paradigm, discussed next.

The Fiat-Shamir Paradigm. The Fiat-Shamir paradigm is a transformation that
converts any public-coin interactive argument (P,V) for a language L to a non-
interactive argument (P ′,V ′) for L. The CRS consists of randomly chosen hash
functions h1, . . . , hℓ from a hash family H, where ℓ is the number of rounds in
(P,V). To compute a non-interactive argument for x ∈ L, the prover P ′(x) gen-
erates a transcript corresponding to (P,V)(x), by emulating P(x) and replacing
each random verifier message by a hash of the transcript so far. The verifier V ′(x)
accepts if and only if V(x) accepts this transcript and all verifier challenges are
computed correctly as the output of the hash function on the transcript so far.
This paradigm is sound when applied to constant round protocols in the Ran-
dom Oracle Model (ROM) [6,48]. At the same time there are counterexamples
that demonstrate its insecurity in the plain model [4,26,16,5].

The recent work of Canetti et al. [15] and subsequent work of Peikert and
Shiehian [47] proved the soundness of the Fiat-Shamir paradigm, assuming stan-
dard hardness of the Learning With Errors (LWE) problem, when applied to a
specific zero-knowledge protocol. This gave the first NIZK argument from LWE.
This work also obtained a SNARG for all bounded depth computations, assuming
the existence of an FHE scheme with optimal circular security – which appears
to be an extremely strong assumption. Subsequently, [33] gave an instantia-
tion of the Fiat-Shamir paradigm applied to special classes of succinct proofs,
which resulted in SNARGs for bounded depth computations from sub-exponential
LWE [33]. Even more recently, Choudhuri et al. [22] gave a construction of
SNARGs for the complexity class P from polynomial LWE, using which Kalai
et al. [38] gave a construction of SNARGs for bounded-space nondeterministic
computation under sub-exponential LWE. The LWE assumption is a structured
cryptographic assumption that is known to imply among several other inter-
esting cryptographic primitives, compact (leveled) homomorphic encryption. In
fact, all aforementioned constructions of SNARGs implicitly make use of homo-
morphic encryption.

On the other hand, foundational group-based assumptions such as Deci-
sional Diffie-Hellman and Quadratic Residuosity are not known to imply ho-
momorphic encryption, and yet their (sub-exponential) variants have surpris-
ingly, via the Fiat-Shamir paradigm, been shown to imply non-interactive zero-
knowledge [14,32] as well as non-trivial SNARGs for batched NP statements [21].
This motivates the following question:

Do there exist SNARGs for P (and beyond) from standard group-based
assumptions like DDH and QR?
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1.1 Our Results

We address the above question and obtain the following positive results.

– We build a SNARG for the class of all non-deterministic computations re-
quiring time T (n) and space S(n) (denoted by NTISP(T (n);S(n))) where
the prover runs in time poly(T (n)) given a witness for the computation and
the verifier runs in time (n+S(n)) ·T (n)o(1) where n is the instance length.

– Plugging the SNARG above into a compiler from [38], we obtain a SNARG
for the class P where the prover runs in time poly(T (n)) and the verifier runs
in time n · T (n)o(1).

Our construction for NTISP is obtained in three steps.

1. We develop a new folding technique for interactive succinct arguments, where
we recursively break down a time-T computation into smaller subcomputa-
tions, each of time T/k (for an appropriate choice of k) and have the prover
send batch proofs of the validity of each subcomputation. This can be viewed
as a computational analogue of the RRR interactive proof [49].

2. We instantiate our protocol using batch interactive arguments for NP3 that
are “FS-compatible”, which were in particular developed in [21] based on the
hardness of QR. Here, FS-compatible refers to the fact that these interactive
batch NP arguments can be soundly converted into SNARGs via the Fiat-
Shamir paradigm. In addition, we show that our interactive argument for
NTISP is FS-compatible as long as the underlying batch NP argument is
FS-compatible.

3. We then soundly convert the above succinct interactive argument to a SNARG
by making use of correlation-intractable hash functions for low-depth thresh-
old circuits constructed in [32], based on sub-exponential hardness of DDH.

Finally, we note that the works of [2,29,42] observed that in addition to inter-
active proofs, the Fiat-Shamir paradigm can be soundly instantiated for special
types of arguments. They observed that this is possible for arguments that have
an unconditionally sound mode, and where the prover cannot detect whether
the argument is unconditionally or computationally sound. These ideas were
then extended to the setting of succinct arguments in [21,22]. As a contribution
that may be of independent interest, we abstract out a notion of Fiat-Shamir
compatibility of argument systems, which captures these broad requirements
(including those used in [2,29,42,21,22]) that interactive arguments satisfy in or-
der to soundly instantiate Fiat-Shamir from standard assumptions using known
techniques.

1.2 Other Prior Work

The works of [43,30,41,23,24,9,8,7] obtain SNARGs for non-deterministic com-
putations, with security either in the Random Oracle Model [6] or from non-
falsifiable “knowledge assumptions.” The schemes of [19,40,10,18,1,20,45] rely

3 Batch arguments for NP allow a verifier to verify the correctness of k NP instances
with circuit complexity smaller than k times the size of the NP verification circuit.
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on assumptions related to obfuscation, which are both stronger in flavor and
less widely studied than the ones used in this work. More recently, [35] con-
structed a SNARG (for deterministic computations) based on a (new) efficiently
falsifiable decisional assumption on groups with bilinear maps. Later, a line of
work [15,33,21,22,38] instantiated the Fiat-Shamir paradigm to finally result in
SNARGs for P from the learning with errors (LWE) assumption. Very recently,
the work of Gonzalez and Zacharias [28] constructed SNARGs from pairing-
based assumptions. On the other hand, in this work, we obtain SNARGs from
assumptions that hold in pairing-free groups.

Another line of work [36,37,34,12,3,13] built privately verifiable schemes for
deterministic computations and a sub-class of non-deterministic computations,
based on standard assumptions (specifically, the hardness of LWE or ϕ-hiding).
These schemes, however, are not publicly verifiable. The CRS is generated to-
gether with a secret key which is needed in order to verify the proofs.

In the interactive setting, publicly verifiable schemes exist, even for non-
deterministic computations, under standard cryptographic assumptions [39,11,46].
In fact some publicly verifiable interactive proof systems for restricted classes
of computations exist even unconditionally, in particular for bounded depth [27]
and bounded space computations [49].

2 Technical Overview

We start with a high-level overview of our recursively-built interactive argument.
To begin with, we will only focus on languages that can be decided in determin-
istic time T and space S. The prover will run in time poly(T ), and the size of
our proofs will grow (linearly) in S.

2.1 Succinct Interactive Arguments for Bounded Space from
Succinct Arguments for Batch NP

In what follows, we describe a form of interactive arguments for bounded space
computations that can be soundly compressed via the Fiat-Shamir transform.
We discuss why these ideas may seem to necessitate the use of LWE, and then
describe how our folding technique helps get around the need for the LWE as-
sumption while achieving T o(1) verification time.

Consider a deterministic computation that takes T steps: the prover and
verifier agree on a (deterministic) Turing Machine M, an input y ∈ {0, 1}n,
and two configurations u, v ∈ {0, 1}S (a configuration includes the machine’s
internal state, the contents of all memory tapes, and the position of the heads).
The prover’s claim is that after running the machineM on input y, starting at
configuration u and proceeding for T steps, the resulting configuration is v. This
is denoted by

(M, y) : u
T−→ v.
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To prove correctness of this T -step computation, the prover will send (k − 1)
alleged intermediate configurations

(s1, s2, . . . , sk−1)

and will set s0 := u, sk := v, where for every i ∈ [1, k], si is the alleged configu-
ration of the machineM after T/k steps when starting at configuration si−1.

Now the prover will attempt to prove correctness of all these intermediate
configurations: a näıve way to achieve this is to run k executions of the base
protocol, one for every i ∈ [k]. But the trick to achieving succinctness will be to
prove correctness of all configurations simultaneously in verification time that
is significantly smaller than running the base protocol k times, while also not
blowing up the prover’s complexity by a factor of k. To enable this, the prover
and verifier can rely on an appropriate succinct interactive argument for batch
NP to establish that all responses would have been accepted by the verifier.

In a succinct argument for batch NP, a prover tries to convince a verifier that
(x1, . . . , xk) ∈ L⊗k, in such a way that the proof size and communication com-
plexity are smaller than the trivial solution where the prover simply sends all wit-
nesses (w1, . . . , wk) to the verifier, and the verifier computes

∧
i∈[k]RL(xi, wi).

In particular, [21] recently obtained SNARGs for batching k NP instances (from

QR and sub-exponential DDH) where the communication complexity is Õ(|C|+
k log |C|) ·poly(λ), and verifier runtime is Õ(kn+ |C|) ·poly(λ), where λ is the se-
curity parameter, |C| denotes the size of the verification circuit and n denotes the
size of each instance. In our setting, |C| ≈ (T/k), which means that verification

time for the SNARG will be Õ(k + T/k). Setting k = O(
√
T ), we would obtain

communication complexity (and verification runtime) that grows (approx.) with
O(
√
T ) and this is the best that one can hope for in this case [21]. However, in

this work, we would like to achieve an overhead of T o(1).

A Recursive Construction. The argument described above incurred an overhead
of T/k because the verification circuit for each subcomputation had size T/k.
However, what if we substituted this verification circuit with the (relatively
efficient) verifier for a succinct interactive argument for T/k-time computations?

Specifically, assume there exists a public-coin interactive argument for veri-
fying computations of size T/k. As before, suppose a prover wants to convince
a verifier that

(M, y) : u
T−→ v.

The prover sends (k − 1) intermediate configurations, as before, and then pre-
pares the first messages of all k interactive arguments, where the ith interactive

argument attests to the correctness of (M, y) : si−1
T/k−−→ si. Instead of sending

these messages in the clear, the prover sends to the verifier a succinct commit-
ment to all k first messages. Here, following [21,22,38], one could use a keyed
computationally binding succinct commitment whose key is placed in the CRS.
In fact, looking ahead, we will require a commitment that that is binding to
a (hidden) part of the input string [31], and in fact the bound parts of the
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input should be extractable given a trapdoor. We will call such commitments
somewhere-extractable (SE) commitments. In more detail, these commitments
have a key generation algorithm Gen(1λ, i) that on input an index i ∈ [k] outputs
a commitment key ck together with an extraction trapdoor td, and an extrac-
tion algorithm that given td and any commitment string c outputs the unique
ith committed block (out of a total of k blocks). Moreover, the commitment key
hides the index i in a CPA-sense.

Next, the verifier sends a single (public coin) message that serves as a chal-
lenge for all k arguments. Subsequently, the prover prepares a third message
for all arguments, and commits to these messages, after which the verifier again
generates a single (public coin) message that serves as its fourth message for all
k arguments. The prover and verifier proceed until all rounds of all k arguments
are committed, and then the prover (as before) must prove to the verifier that
all committed transcripts would be accepted.

At this point, one solution is for the prover and verifier to engage in a batch
NP argument (as before), where the prover must convince the verifier that for
every i ∈ [k], there is an opening to the commitment that would cause the verifier
to accept. In what follows, we will rely on the fact that the batch NP SNARG can
actually be obtained in two steps: first, build an interactive argument for batch
NP, and next compress rounds of interaction via Fiat-Shamir. Indeed, the batch
SNARG from [21] that we will use is obtained by first building an interactive
argument and then compressing it by soundly instantiating the Fiat-Shamir
paradigm. From this point on, unless otherwise specified, we will make use of
the [21] interactive batch NP argument, and later separately use the fact that
it can be soundly compressed via Fiat-Shamir based on sub-exponential DDH
(a property referred to as FS-compatibility). This modified interactive argument
⟨P,V⟩ for T -time computations is described in Figure 1, and it relies on a protocol
for T/k-time computations.

Batch NP and the Need for Local Openings. Unfortunately, the protocol de-
scribed in Figure 1 is not succinct. In particular, each batch NP statement in-
volves verifying an opening of the SE commitment, and therefore the verifica-
tion complexity of batch NP grows with the complexity of verifying commitment
openings. For this to be small, the SE commitment must satisfy an important
property: namely, that it is possible to succinctly decommit to a part of the
committed input in such a way that the size of the opening and complexity of
verifying openings depend only on the part being opened, and do not grow with
the size of input to the commitment. Unfortunately, such commitments are only
known from the learning with errors (LWE) assumption4; and therefore we take
a different route.

4 In the full version of this paper, we show that one can in fact construct a com-
mitment with somewhat succinct local openings from DDH or QR. However, these
are significantly less succinct than their LWE-based counterparts, and using these
commitments would lead to marginally worse parameters than one can get with the
methods described next.
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Emulation Phase.
1. P computes and sends (k−1) intermediate configurations (s1, . . . , sk−1)

to V, where si is the configuration of machineM after T/k steps when
starting at configuration si−1.

2. P prepares the first messages {m(i)
1 }i∈[k] for k interactive arguments,

where the ith interactive argument attests to the correctness of (M, x) :

si−1
T/k−−→ si. Next, P computes an SE commitment c(1) to these first

messages, and sends the commitment string c(1) to V.
3. V generates a single (public coin) message for (a single copy of) the

interactive argument for T/k-sized computation. All k arguments will
share the same verifier message.

4. More generally, for every round j ∈ [ρ] of the underlying interactive
argument,
– P computes the jth round messages for all k interactive arguments

where the ith interactive argument attests to the correctness of

(M, x) : si−1
T/k−−→ si. Next, P computes an SE commitment c(j)

to all these first messages, and sends the commitment string c(j) to
V.

– V generates a single (public coin) message for the underlying inter-
active argument for T/k-sized computation. All k arguments will
share the same verifier message.

Batch NP Phase. P proves to V that there exists an opening of the com-
mitment c = (c(1), . . . , c(ρ)) where for i ∈ [k] the ith opened value is an
interactive argument such that:

1. The commitment verifier would accept the opening and
2. The verifier for the T/k interactive argument would accept the ith ar-

gument.

Fig. 1. Recursively Defined Interactive Argument for Bounded Space Deterministic
Computation

Coincidentally, in the interactive arguments for batch NP due to [21], the first
step requires the prover to commit to witnesses (w1, . . . , wk) corresponding to
each of the k instances (x1, . . . , xk). This is done via an SE commitment in such
a way that when the commitment key is binding at index i ∈ [k], the extraction
algorithm outputs the ith committed witness wi. Moreover, this commitment
does not need to have local openings; somewhere extractability suffices5. Finally,

5 We remark that [21] also require some additional linear homomorphism properties
from the commitment, but these are not necessary for our discussion.
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the [21] protocol is actually an argument of knowledge for one of the instances:
implicit in their proof is the fact that when the SE commitment keys (in the
CRS) are binding on index i, no efficient prover can commit to wi that is a
non-witness for xi and produce an accepting transcript (except with negligible
probability).

This gives us a way out: in the Batch NP phase of our protocol, instead
of proving that there exists an opening to the commitment, we omit sending
commitments (since we already committed to all T

k transcripts), and simply
prove that for each of the transitions si−1 → si, there exists a prover strategy
corresponding to verifier coins sent in the emulation phase, that would cause
the verifier to accept. That is, the prover demonstrates membership of instances
(x̃1, . . . , x̃k) in the language L̃, where for any i ∈ [k],

x̃i = (si−1, si, y,M, β)

and L̃ is the language of all such x̃ such that there exist prover messages that
when combined with the verifier messages β create an accepting transcript. We
note that an honest prover, by the end of the emulation phase in Figure 1, will
already be committed to witnesses for this language.

Thus our final protocol has an emulation phase that is identical to Figure 1,
but the batch NP phase is modified as described in Figure 2.

It may appear that the language L̃ will contain nearly all strings: since the
protocol for T/k-sized computations is an argument, so there will exist prover
messages even for instances not in the language. However, this would only be a
problem if we relied on soundness of the batch NP protocol: on the other hand,
we are able to use the fact that the [21] protocol is an argument of knowledge
for the ith statement when the SE commitment key is binding at index i. In
particular, this means that if the SE commitment was binding at index i, then
it is possible to efficiently extract a witness, i.e., an accepting transcript for the
ith subcomputation si−1 → si.

Now if the prover managed to break soundness of our protocol, this would
imply that there exists an index j ∈ [k] such that the machine M on input
y does not transition from configuration sj−1 to sj . But, if j = i, where i is
the index where the SE commitment is binding, then one can in fact extract an
accepting transcript for the jth incorrect subcomputation sj−1 → sj . This can
therefore be used to build a prover that contradicts soundness of the protocol
for T/k-sized computations. Moreover, hiding of the index i ensures that j = i
occurs with non-negligible probability.

Finally, we point out that in the base case, i.e., for unit-time computations,
the verifier simply checks the statement on its own (this takes one time-step).

The recursive protocol described so far satisfies succinctness for an appropri-
ate choice of k (that we discuss later) but requires multiple rounds, since each
round of recursion adds a few rounds of interaction. The goal of this work is to
build a non-interactive argument, which we achieve by compressing this inter-
active argument to a SNARG based on correlation-intractable hash functions for
low-depth threshold circuits. We discuss this in detail below.
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Updated Batch NP Phase
– P and V define instances

(x̃1, . . . x̃k) where x̃i = (si−1, si, y,M, β)

where β denote all verifier messages from the emulation phase.
– P additionally defines witnesses

(w̃1, . . . w̃k)

where for every i ∈ [k], w̃i contains the prover messages for the ith

subcomputation for size T
k .

– Finally, define language

L̃ = {(s, s′, y,M, β) : ∃ prover messages π s.t.

(π, β) is accepting transcript for (M, y) : s
T/k−−→ s′.}

– P and V execute a batch NP argument to prove that for every i ∈ [k],

x̃i ∈ L̃, where they replace the first round of Batch NP (where prover
SE-commits to witnesses) with the transcript of the emulation phase.

Fig. 2. Updated Batch NP Phase for Bounded Space Deterministic Computation

2.2 Obtaining a SNARG

We now discuss why this argument can be compressed by relying on the same
CI hash functions as used in [21], leading to a sound SNARG.

Fiat-Shamir Compatible Batch NP. To soundly compress their batch NP inter-
active argument into a SNARG, the work of [21] (building on a line of recent
works including [15,47,14,2,29,42,33,32]) relies on a special type of hash func-
tion, called a correlation intractable hash function. The prover generates verifier
messages for the interactive protocol locally by applying this hash function to its
partial transcripts, in effect eliminating the need to interact with a verifier. At a
high level, a hash family H is correlation intractable (CI) for a relation R(x, y)
if it is computationally hard, given a random hash key k, to find any input x
such that (x,H(k, x)) ∈ R.

Given a CI hash function, the key observation is that if the BAD verifier
challenge for the interactive argument, which allows a prover to cheat, can be
computed by an efficient function, then replacing the verifier message by the
output of a CI hash function results in a verifier message that does not allow
a prover to cheat, except with negligible probability. But this paradigm is only
applicable to protocols where the circuits computing BAD verifier challenges
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are supported by constructions of CI hash functions exist based on standard
assumptions. In particular, CI hash functions from (sub-exponential) DDH are
known for functions that are computable by constant (and in fact, O(log log λ))
depth threshold circuits. Recall that the [21] batch NP interactive argument has
a first message that contains SE commitments to all witnesses; [21] show that
the SE commitment they use (which they construct based on the QR assump-
tion) allows for extraction in constant depth. Moreover, given the witness, all
other computations can also be performed by constant depth threshold circuits.
Therefore, their interactive arguments can be compressed based on the (sub-
exponential) DDH assumption. [21] call this the strong FS-compatible property.
We will now prove that our interactive arguments for bounded space, also inherit
this property.

Fiat-Shamir Compatible Bounded Space Arguments. To begin, we assume that
all cryptographic primitives (SE commitments, CI hash functions) satisfy T -
security, meaning that no poly(T )-size adversary can break the primitive with
advantage better than negl(T ).

Our interactive argument begins with P sending (k− 1) intermediate config-
urations to V. Observe that it is possible to verify (in time ≤ T ) whether or not
a given intermediate configuration is correct6. Of course, the verifier should not
be verifying intermediate configurations directly (as this will make verification
inefficient).

As discussed above, a cheating prover must output at least one pair of consec-
utive intermediate configurations si, si+1 such thatM does not transition from
si to si+1 in T/k steps. Moreover, by T -index hiding of the SE commitment, if
the SE commitment is set to be binding at a random index i′, the probability
(over the randomness of i′) that the prover cheats on the i′

th
underlying T/k

interactive argument must be (negligibly) close to 1/k. Finally, because the SE
commitment is extractable, in this mode, it becomes possible for a reduction to
extract an accepting transcript of the underlying T/k argument corresponding
to a false statement.

Peeling off the recursion just a little, we observe that the (T/k) interactive
argument itself begins with the prover sending (k − 1) intermediate configu-
rations, each corresponding to (T/k2) steps of the Turing Machine M. Again,
one pair of consecutive configurations s′j , s

′
j+1 must be such that M does not

transition from s′j to s′j+1 in (T/k2) steps. Moreover, by index hiding of the SE
commitment used in the (T/k) argument, if the (T/k) commitment is set to be
binding at a uniformly random index j′, the probability that the prover cheats
on the j′

th
underlying (T/k2) argument in addition to cheating on the i′

th
(T/k)

argument must be (negligibly) close to (1/k2). We can recurse logk T times all
the way to the base case, where the base argument is simply a unit-time com-
putation where the verifier checks the statement on its own. Moreover, letting π
denote the unit-time protocol obtained by peeling all layers of the recursion, we

6 This becomes somewhat non-trivial in the non-deterministic setting, which we dis-
cuss in an upcoming subsection.
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can establish that with probability (close to) (1/klogk T ) = 1/T , π corresponds
to a false statement. The rest of our analysis will be conditioned on this event.

Assuming that the base statement π (that the prover is statistically bound
to) at the end of the first message is false, we must now understand the distribu-
tion of BAD verifier challenges in subsequent messages of the argument system.
Note that the very next message will consist of the batch NP phase of the in-
teractive argument for k-size computations, encrypted under (logk T − 1) layers
of SE commitments. This phase starts with commitments to k witnesses (in this
case, the witnesses are empty transcripts), each one proving the correctness of
one of the unit-size subcomputations. The false statement from the emulation
phase immediately determines which one of the batch statements is incorrect.
As long as the SE commitment is binding at this index, the BAD function at this
lowest layer of recursion will correspond to the set of verifier challenges in the
corresponding batch NP argument that allow the prover to cheat within that
argument. This means that the BAD function can be computed by peeling off
layers of the commitment (i.e. performing logk T sequential extractions), and
then computing the BAD function for the batch NP argument (which we know
is efficiently computable by a constant-depth circuit).

Next, going back up one step, we have the protocol corresponding to k2-sized
computations. It will again be the case that assuming the SE commitment binds
at the right index, the BAD function at this layer of recursion will correspond to
the set of verifier challenges in the corresponding batch NP argument that allow
the prover to cheat within that argument. This means that the BAD function
can be computed by peeling off logk T − 1 layers of the commitment, and then
computing the BAD function for the batch NP argument (which we know is
efficiently computable by a constant-depth threshold circuit).

More generally, the BAD function of our protocol corresponds to extracting
from upto logk T layers of commitments, and feeding the result as input to the
BAD function circuit of the interactive argument for batch NP.

Communication Complexity and Verifier Runtime. Considering now the effi-
ciency of the verifier, we note that in the emulation phase, the verifier simply
has to read prover messages and generate random strings. Thus, for our overview,
it suffices to focus on the batch NP phase, as the time taken there will dominate
that of the emulation phase. If we were to use a trivial batch NP protocol that
simply provided all k witnesses and asked the verifier to check them all, this
would mean that the run time of the T verifier would increase by a factor of
k over the run time of the T/k verifier. Unrolling the recursion, unfortunately,
we would obtain a T -time verifier. Luckily, we are not constrained to use only
a trivial batch NP protocol; by being more efficient, we can improve upon the
above analysis. Indeed, applying the batch NP described above, we can improve
the k multiplicative overhead to a polynomial in λ overhead, where λ is the
security parameter of our batch NP scheme.7

7 For simplicity of exposition, we are here ignoring some additional additive overhead
as well as polylogarithmic multiplicative factors.
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By choosing k and λ such that λ << k, we can ensure that the difference
in verifier efficiency over the logk T levels between the unit protocol and the T
protocol is λc·logk T for some constant c, which can be set to T o(1) by a careful
choice of parameters. Since the verifier run time is an upper bound on the com-
munication complexity of the protocol (as the verifier needs to at a minimum
read all the messages), this gives us the same bound on the size of the proof.

This completes an overview of our SNARGs for deterministic bounded space
computation. In what follows, we will discuss how to extend these ideas to the
non-deterministic setting.

2.3 SNARGs for Bounded Space Non-Deterministic Computation

When the machine M is non-deterministic it is a-priori no longer clear how
to argue or even define “correctness” of intermediate configurations. It may be
tempting to consider defining correctness of intermediate configurations with
respect to both the instance and the witness. However, the witness used can
potentially change every time the prover is queried, and is therefore not well
defined. It may also in general be too large to be sent as part of the SNARG.

However, inspired by [3], we observe that if the non-deterministic Turing
Machine reads each bit of the witness only once, then it becomes possible to get
around this barrier. Similar to [3], we consider the class NTISP(T (n), S(n)) of
all languages recognizable by nondeterministic Turing Machines in time O(T (n))
and space O(S(n)). Recall that a non-deterministic Turing Machine allows each
step of the computation to non-deterministically transition to a new state. This,
in a sense, corresponds to the setting where each bit of the witness is read at
most once (and if the machine wishes to remember previous non-deterministic
choices it must explicitly write them down on its worktape). Thus an alternative
way to describe this class is as the class of languages L with a corresponding
witness relation RL, recognizable by a layered circuit Cn,m parameterized by
n = |x| and m = m(n) = |w|, that on input a pair (x,w) outputs 1 if and only
if RL(x,w) = 1. Each layer of gates in this circuit has input wires that directly
read the instance, or directly read the witness, or are the output wires of gates
in the previous layer. Moreover, each bit of the witness is read by at most one
layer. This circuit has depth D = O(T (n)) and width W = O(S(n)), where W
may be smaller than n and m.

The SNARG Construction. The construction remains largely similar to the one
in the deterministic setting. The only (syntactical) difference is that Step 1 in
the recursively defined interactive argument from Figure 1 is modified to send
wire assignments (W1, . . .Wk−1) to (k − 1) intermediate layers of the circuit,
each at a depth interval of D/k from the base layer. Next, for every i ∈ [k], the
prover runs (parallel) interactive arguments proving that there is an assignment
to witness wires such that configuration Wi transitions to Wi+1 in depth D/k.

Analysis. As discussed above, unlike the deterministic setting, it appears difficult
define a notion of “correctness” of these intermediate wire assignments. Instead,
inspired by [3], we define the notion of an accepting layer.
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The output layer consists only of the output wire, and thus the only valid
assignment for this layer is the symbol 1. For each layer i, we partition the wires
that are input to gates in layer i into three sets: intermediate wires, instance
wires, and witness wires. Intermediate wires for layer i are all wires connecting
gates in layer (i − 1) to gates in layer i; instance wires for layer i are all wires
that directly read the instance x and are input to gates in layer i; and witness
wires for layer i are all wires that directly read the witness and are input to
gates in layer i. We define AccD(x) = 1. The set AccD−1(x) contains all possible
assignments to intermediate wires connecting a gate in layer (D−1) to a gate in
layer D, such that when the instance wires for layer D are set consistently with
x, there exists some assignment to the witness wires for layer D, such that the
transition function applied to these wires results in output 1.

For each layer i < (D− 1), the set Acci(x) is defined recursively in a similar
manner. That is, for i < (D−1), Acci(x) is the set of all possible assignments to
intermediate wires connecting gates in layer i to gates in layer i + 1, such that
when the instance wires for layer i are set consistently with x, there exists an
assignment to the witness wires for layer i+1, such that the transition function
applied to these wires outputs intermediate wires connecting layer i+1 to layer
(i + 2) that lie in the set Acci+1(x). We note that the lowest i for which this
definition is meaningful is i = 1, since there are no intermediate wires before the
first layer.

By this definition, for x ̸∈ RL, the set Acc1(x) is empty. This implies that
for any set of claimed intermediate configurations (W1, . . . ,Wk−1) sent by P
(and for Wk = 1), there must exist an i ∈ [k − 1] such that Wi+1 ∈ Acci+1(x)
but Wi ̸∈ Acci(x). This means that there is no set of assignments to witness
wires that would lead to a correct transition from Wi to Wi+1. This means
that the prover must be cheating in the ith interactive argument for T/k-time
(non-deterministic) computation.

Moreover, as observed in [3], for any width W and depth D non-deterministic
computation, it is possible to decide whether a set of wire assignments are in
Acci(x), for any i ∈ [D] in time poly(D, 2W ). This is done via a straightforward
dynamic programming approach. We will set parameters so that the SE com-
mitment is index-hiding against poly(T, 2S)-size adversaries. This, together with
the previous claim implies that if the SE commitment is set to be binding at a
random index i′, the probability that the prover cheats on the i′

th
underlying

T/k interactive argument must be (negligibly) close to 1/k. Moreover, because
the SE commitment is extractable, in this mode, it becomes possible for a re-
duction to extract an accepting transcript of the underlying T/k argument for a
false statement.

At this point, it becomes possible to apply the same recursive argument as
in the deterministic setting to argue that with probability (negligibly) close to
1/klogk T = 1/T , the base argument corresponds to a false statement. Condi-
tioned on this event, it becomes possible to analyze the batch NP phase in a
manner similar to the analysis in the deterministic setting.
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SNARGs for P. We rely on the recent work of [38] to compile our SNARGs for
non-deterministic bounded-space computations to SNARGs for P.

To this end, we observe that for any language L ∈ NTISP(T, S), it holds
that L⊗k ∈ NTISP(kT, S + T ), where L⊗k is the language of k instances from
L. This implies SNARGs for batch NP with improved parameters than the [21]
SNARGs, from sub-exponential DDH and QR. In particular, this implies SNARGs
for batching k instances that have a description of size n, and proving that the
batched instances are in L⊗k where L ∈ NTISP(T, S), with communication com-
plexity and verifier runtime ko(1)(n+ poly(T +S)). By plugging this into a com-
piler of [38] from Batch SNARGs to SNARGs for P, we obtain SNARGs for T -time
deterministic computations with overhead T o(1) from sub-exponential DDH and
QR. We point out that the [38] compiler as stated also requires SE commitments
that allows for committing to T values with local openings of size polylog(T ).
However, we show that for our setting of parameters, it suffices to have a weaker
local opening property, where openings are of size T o(1). We build such commit-
ments from any (sub-exponentially index-hiding) SE commitment without local
openings, therefore obtaining our final results also from sub-exponential DDH
and QR.

FS-compatible Arguments. In the body of our paper, we abstract out some gen-
eral properties of our interactive arguments, and define a class of FS-compatible
interactive arguments that can be soundly compressed using the Fiat-Shamir
paradigm based on our technique. We show that any interactive batch NP argu-
ment that is an “FS-compatible argument” can also be converted into a proof,
(intuitively) as long as its first message essentially contains a succinct commit-
ment to witnesses for all the NP statements. We define FS-compatible interactive
arguments to be those that satisfy a variant of round-by-round soundness [15]
w.r.t. a predicate. This predicate is computed as a function of the first message of
the interactive argument8 and a trapdoor associated with the CRS. Intuitively,
we will say that an interactive argument is FS-compatible w.r.t. a predicate ϕ
if transcripts that satisfy the predicate, also satisfy round-by-round soundness
with sparse and efficiently computable BAD verifier challenges. Moreover, in or-
der to ensure that these arguments can be soundly converted into SNARGs based
on CI hash functions, we will require that the predicate be “non-trivial”. That
is, any adversary that produces accepting transcripts for false statements with
non-negligible probability should also produce accepting transcripts that satisfy
the predicate and correspond to false statements, with non-trivial probability.
We show the non-triviality of our predicate using the index hiding property of
the underlying SE commitments.

Roadmap. A formalization of the FS-compatible property and a proof that such
arguments can be converted to SNARGs can be found in Section 4. Next, in
Sections 5 and 6 we formalize our constructions of SNARGs for deterministic and
non-deterministic bounded-space computations, respectively. We also combine

8 More generally, this can be computed as a function of the entire transcript.
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the latter with recent work [38] to obtain SNARGs for P in Section 6.5. Due to
shortage of space, we only provide constructions and theorem statements, and
defer proofs to the full version of the paper.

3 Preliminaries

In what follows, when we say we assume (T1, T2)-hardness of an efficiently falsi-
fiable assumption, we mean that there exists a negligible function µ(·) such that
no poly(T1)-size adversary can falsify the assumption with probability better
than µ(T2).

3.1 Correlation Intractable Hash Functions

In this section, we recall the notion of a CI hash family. We start by recalling
the notion of a hash function family.

Definition 1. A hash family H is associated with algorithms (H.Gen,H.Hash),
and a parameter n = n(λ), such that:

– H.Gen is a PPT algorithm that takes as input a security parameter 1λ and
outputs a key k.

– H.Hash is a polynomial time computable (deterministic) algorithm that takes
as input a key k ∈ H.Gen(1λ) and an element x ∈ {0, 1}n(λ) and outputs an
element y.

We consider hash families H such that for every λ ∈ N, every key k ∈ H.Gen(1λ)
and every x ∈ {0, 1}n(λ), the output y = H.Hash(k, x) is in {0, 1}λ.

Definition 2 (Correlation Intractable). [17,15] Fix any T1 = T1(λ) ≥ poly(λ)
and T2 = T2(λ) ≥ poly(λ). A hash family H = (H.Gen,H.Hash) is said to be
(T1, T2) correlation intractable (CI) for a family R = {Rλ}λ∈N of efficiently
enumerable relations if the following two properties hold:

– For every λ ∈ N, every R ∈ Rλ, and every k ∈ H.Gen(1λ), the functions R
and H.Hash(k, ·) have the same domain and the same co-domain.

– For every poly(T1)-size A = {Aλ}λ∈N there exists a negligible function µ
such that for every λ ∈ N and every R ∈ Rλ,

Pr
k←H.Gen(1λ)

x←A(k)

[(x,H.Hash(k, x)) ∈ R] = µ(T2(λ)).

We will use the following theorems from prior work.

Theorem 1. [32] Fix any T = T (λ) ≥ 2λ
ϵ

for some 0 < ϵ < 1. Assuming
the (T, T )-hardness of DDH, there exists a constant c > 0 such that for any
B = B(λ) = poly(λ), depth L ≤ O(log log λ) and any family R = {Rλ}λ∈N of
relations that are enumerable by threshold circuits of size B(λ) and depth L, there
exists a (T, T ) correlation intractable (CI) hash family H = (H.Gen,H.Hash)
computable in time (B(λ) · λ · L)c, for R (Definition 2).
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3.2 Somewhere Extractable (SE) Commitments

Definition 3 (SE Commitments). A somewhere extractable (SE) commit-
ment consists of PPT algorithms (Gen,Com,Open,Verify,Extract) along with an

alphabet Σ = {0, 1}ℓblk and a fixed polynomial p = p(·) satisfying the following:

– (ck, ek) ← Gen(1λ, L, ℓblk, i): Takes as input an integer L ≤ 2λ, block length
ℓblk and integer i ∈ {0, . . . , L − 1} and outputs a public commitment key ck
along with an extraction trapdoor ek.

– h ← Com(ck, x): is a deterministic polynomial time algorithm that takes as

input x = (x[0], . . . , x[L− 1]) ∈ ΣL and outputs h ∈ {0, 1}ℓcom .
– π ← Open(ck, x, i): Given the commitment key ck, x ∈ ΣL and an index

i ∈ {0, . . . , L− 1}, outputs proof π ∈ {0, 1}ℓopen .
– b ← Verify(ck, y, i, u, π): Given a commitment key ck and y ∈ {0, 1}ℓcom , an

index i ∈ {0, . . . , L − 1}, opened value u ∈ Σ and a proof π ∈ {0, 1}ℓopen ,
outputs a decision b ∈ {0, 1}.

– u← Extract(ek, y): Given the extraction trapdoor ek and a commitment

y ∈ {0, 1}ℓcom , outputs an extracted value u ∈ Σ.

We require the following properties:

– Correctness: For any integers L ≤ 2λ and i ∈ {0, . . . , L− 1}, any
ck← Gen(1λ, L, i), x ∈ ΣL, π ← Open(ck, x, j): we have that
Verify(ck,Com(ck, x), j, x[j], π) = 1.

– Index Hiding: We consider the following game between an attacker A and
a challenger:
• The attacker A(1T1) outputs an integer L and two indices
i0, i1 ∈ {0, . . . , L− 1}.

• The challenger chooses a bit b← {0, 1} and sets ck← Gen(1λ, L, ib).
• The attacker A gets ck and outputs a bit b′.

We say that an SE commitment satisfies (T1, T2) index-hiding if for every
poly(T1)-size attacker A there exists a negligible function µ(·) such that:∣∣∣Pr[A = 1|b = 0]− Pr[A = 1|b = 1]

∣∣∣ = µ(T2)

in the above game.
– Somewhere Extractable: We say that a commitment is somewhere ex-

tractable if there is a negligible function µ such that for every L(λ) ≤ 2λ and
i ∈ {0, . . . L− 1},

Pr
(ck,ek)←Gen(1λ,L,i)

[
∃y∈{0,1}ℓcom , u∈Σ, π∈{0,1}ℓopen

s.t. Verify(ck,y,i,u,π)=1 ∧ Extract(ek,y)̸=u

]
= µ(T2)

Theorem 2 (SE Commitments from QR [21]). Fix any T1 = T1(λ) ≥
poly(λ) and T2 = T2(λ) ≥ poly(λ). Assuming (T1, T2) hardness of QR, there
exists an SE commitment satisfying Definition 3 where the extraction algorithm
can be implemented by a threshold circuit of constant depth, and which satisfies
(T1, T2)-index hiding. Furthermore, this satisfies the following properties: ℓcom =
ℓblkλ, ℓopen = ℓblkL, |ck| = ℓblkLλ, |ek| = ℓblkλ, the running time of Gen and Verify
is ℓblkLλ and the running time of Extract is ℓblkpoly(λ).
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4 Fiat-Shamir for Arguments

In this section, we define a class of (multi-round) interactive arguments to which
the Fiat-Shamir paradigm can be soundly applied, based on an (appropriate)
correlation-intractable hash function. In particular, we will define a few prop-
erties that a multi-mode interactive argument should satisfy, in order to be
converted to a non-interactive one by applying our technique. We begin with a
natural definition of multi-mode interactive arguments:

Definition 4 (N-Mode Protocols). Let N(λ) ≥ λ be a function. We say
that Π = (Setup,P,V) is an N -mode protocol for a language L if the following
property holds:

– Syntax: Setup is a randomized algorithm that obtains input a security pa-
rameter λ and some i ∈ [N(λ)]. Setup outputs common reference string CRS
and auxiliary information aux such that aux contains i.

Next, we define a notion of a predicate, that applies to the first prover mes-
sage, the instance and a trapdoor in the CRS.

Definition 5 (Predicate). ϕ is a predicate for an N -mode (Definition 4) pro-
tocol Π = (Setup,P,V) if ϕ has the following property:

– Syntax: For any i ∈ [N(λ)], ϕ takes as input instance x, the first prover
message α1, and some auxiliary information aux computed by Setup(1λ, i).
ϕ outputs a binary value in {0, 1}.

Definition 6 ((T ′, N)-Non-Trivial Predicate). Let Π = (Setup,P,V) be an
N -mode (Definition 4) public-coin interactive proof system for a language L. We
say that a predicate ϕ for Π (Definition 5) is time-T ′ non-trivial for Π if the
following properties hold:

– Syntax: For any λ ∈ Z+, any instance x, any i ∈ [N(λ)], any (CRS, aux) ∈
Support(Setup(1λ, i)), and any (partial) transcript τ = (α1, β1, . . . , αj) for
some j ∈ [ρ(λ)], we define ϕ(x, τ, aux) = ϕ(x, α1, aux).

– Non-Triviality: There exists a polynomial p(·) such that for λ ∈ Z+, and
any poly(T ′)-time adversary A, if there exists a polynomial q(·) such that:

Pr
i←[N ],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[x ̸∈ L ∧ x ̸= ⊥] ≥ 1

q(λ)

then

Pr
i←[N ],

(CRS,aux)←Setup(1λ,i),
(x,α1)←A(CRS)

[ϕ(x, α1, aux) = 1|x ̸∈ L ∧ x ̸= ⊥] ≥ 1

p(N(λ))
.

– Efficiency: ϕ can be evaluated in poly(T ′) time.
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4.1 Round-by-Round Soundness

We now define a notion of round-by-round soundness for interactive arguments
w.r.t. a predicate ϕ. The definition below is a generalization of the definition in
[15] to the setting of interactive arguments.

Unlike [15], we don’t define State on the empty transcript, instead only start-
ing to define it once the first prover message has been sent. The key differ-
ence from [15] is that we define the State function on the first prover message
to reject when the predicate ϕ(x, α1, aux) = 1, instead of defining it to reject
when x ̸∈ L. In particular, if we apply the definition below with the predicate
ϕ(x, α1, aux) = x ̸∈ L (and modify the syntax of Setup appropriately), we will
recover the definition in [15,33].

Definition 7 (b-Round-by-Round Soundness w.r.t. ϕ). [15] Let Π =
(Setup,P,V) be a public-coin N -mode (Definition 4) interactive proof system for
a language L. We say that Π is b-round-by-round sound with respect to predicate
ϕ (Definition 5), if there exists State such that, denoting the size of every verifier
message by λ, for any i ∈ [N(λ)], any (CRS, aux) ∈ Support(Setup(1λ, i)), the
following properties hold:

1. Syntax: State is a deterministic function that takes as input the CRS, an
instance x, a transcript prefix τ , and auxiliary information aux computed by
Setup. State outputs either accept or reject.
For every x, every non-empty transcript τ = (α1, β1, . . . , αj , βj), and any
next prover message αj+1, we have

State(CRS, x, τ, aux) = State(CRS, x, τ∥αj+1, aux).

2. End Functionality: For every x and every first prover message α1,
State(CRS, x, α1, aux) = reject iff ϕ(x, α1, aux) = 1. For every complete tran-
script τ , if V(CRS, x, τ) = 1, State(CRS, x, τ, aux) = accept.

3. Sparsity: For every x and transcript prefix τ = (α1, β1, . . . , αj−1, βj−1, αj),
if ϕ(x, α1, aux) = 1 and State(CRS, x, τ, aux) = reject, it holds that

Pr
β←{0,1}λ

[State(CRS, x, τ∥β, aux) = accept] ≤ b(λ) · 2−λ. (1)

4.2 FS-Compatible Arguments

In the following definition, we formalize the requirements from round-by-round
sound arguments w.r.t. ϕ that allow them to be compressed by the Fiat-Shamir
paradigm via our approach.

Definition 8 (FS-Compatible Multi-mode Argument with Respect to
ϕ). For some ρ,N : Z+ → Z+, let Π = (Setup,P,V) be a ρ-round N -mode (Def-
inition 4) public-coin interactive argument system where Setup is a randomized
algorithm that obtains input a security parameter λ and some i ∈ [N(λ)]. For
any B, b, d : Z+ → Z+, we say that Π is (B, b, d) FS-compatible with respect to
predicate ϕ (Definition 5) if the following properties hold:
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1. Completeness: For any λ ∈ Z+, i ∈ {1, 2, . . . , N(λ)}, and x ∈ L, we have

Pr
CRS←Setup(1λ,i)

[⟨P,V⟩(CRS, x) = accept] = 1.

2. b-Round-by-round soundness w.r.t. ϕ: Π is b-round-by-round sound
with respect to ϕ (Definition 7); let State be the corresponding state function.

3. d-depth B-efficient BAD w.r.t. ϕ: For any λ ∈ Z+, any i ∈ [N(λ)], any
(CRS, aux) ∈ Support(Setup(1λ, i)), there exists a (non-uniform) randomized
function BADaux that satisfies the following guarantees:
– Syntax: BADaux is hardwired with aux and takes as input the CRS, in-

stance x, a partial transcript τ = (α1, β1, . . . , αi); and potentially addi-
tional uniform randomness r.

– BAD w.r.t. ϕ: For every x and every τ ≜ (α1, β1, . . . , αj−1, βj−1, αj)
s.t. State(CRS, x, τ,
aux) = reject and ϕ(x, α1, aux) = 1, BADaux(CRS, x, τ) enumerates the
set BCRS,ϕ,aux,τ , where

BCRS,ϕ,aux,τ := {β : State(CRS, x, τ∥β, aux) = accept}.

If BCRS,aux = ∅, BADaux(CRS, x, τ) outputs ⊥. By Equation (1),
|BCRS,aux| ≤ b(λ).

– d-Depth, B-Efficient computation: BADaux can be evaluated by a
d(λ)-depth (non-uniform) threshold circuit of size B = B(λ).

4.3 From FS-Compatible Arguments to SNARGs

In what follows, we formally state our theorem that arguments satisfying Def-
inition 8 with respect to a non-trivial predicate (Definition 6) can be soundly
compressed to obtain a SNARG; the proof of this is deferred to the full version
of the paper.

Definition 9 ((T ′, N)-Sound Non-interactive Arguments). For any T ′ =
T ′(λ) and N = N(λ), we say that a N -mode protocol (Definition 4) Π =
(Setup,P,V) is a non-interactive argument for a language L if the following
properties hold:

– Completeness: For any λ ∈ Z+, any i ∈ [N(λ)], and x ∈ L, we have that

Pr
CRS←Setup(1λ,i)

τ←P(1λ,CRS)

[V(CRS, x, τ) = accept] = 1.

– N-Mode Indistinguishability of CRS: There exists a negligible function
µ(·) such that for any i1, i2 ∈ [N(λ)], and any poly(T ′)-time adversary A we
have that∣∣∣∣ Pr

CRS←Setup(1λ,i1)
[A(CRS) = 1]− Pr

CRS←Setup(1λ,i2)
[A(CRS) = 1]

∣∣∣∣ = µ(N(λ)).
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– Adaptive Soundness: There exists a negligible function µ(·) such that for
any λ ∈ Z+, any i ∈ [N(λ)], and any non-uniform poly(T ′)-time adversary
A we have that

Pr
CRS←Setup(1λ,i)

(x,τ)←A(1λ,CRS)

[x ̸∈ L ∧ V(CRS, x, τ) = 1] ≤ µ(N(λ)).

Theorem 3 (FS-Compatible). Suppose that there exist N,T ′, B, b, d (all func-
tions of λ) where N,T ′ ≥ λ. Let Π = (Setup,P,V) be a ρ(λ)-round N(λ)-
mode (Definition 4) protocol for a language L decidable in (deterministic) time
poly(T ′). Let Π have prover runtime TP and verifier runtime TV. Let H be a
hash function. If Π and H are such that:

– Π is (B, b, d)-FS-compatible according to Definition 8 with respect to a (T ′, N)
nontrivial predicate ϕ (Definition 6).

– H is (T ′, N) CI (Definition 2) for all relations sampleable by d-depth thresh-
old circuits of size B, and is computable in time p(B) for some fixed poly-
nomial p(·).

Then ΠHFS, which is the protocol where every verifier message is computed by the
prover by hashing the latest prover message, is a (T ′, N)-sound non-interactive
argument system for L (Definition 9). ΠHFS has ρ(λ)·p(B(λ))+TP prover runtime
and ρ(λ) · p(B(λ)) + TV verifier runtime.

5 FS-compatible Arguments for Bounded Space
Computations

In this section, we describe and prove FS-compatibility of our interactive argu-
ments for bounded space computation. Before providing a formal theorem, in
the following subsection, we define an FS-Compatible Batch NP argument with
respect to a batch predicate and SE commitment. We will bootstrap interactive
arguments for batch NP satisfying this definition to obtain interactive arguments
for bounded space computation.

5.1 FS-Compatible Batch NP Arguments

Let ΠBNP = (SetupBNP,PBNP,VBNP) be a public-coin argument system for Rk for
some circuit satisfiability relation R such that SetupBNP(1

λ, i) runs (ck, ek) ←
C.Gen(1λ, k, i) for some SE commitment scheme C and puts ck in CRS and (i, ek)
in aux. Then we define a predicate ϕBNP such that

ϕBNP((x1, . . . , xk), α1, aux) =
(
(xi, C.Extract(ek, α1)) ̸∈ R

)
.

Theorem 4 (FS-compatible Batch NP w.r.t. C [21]). Assuming the hard-
ness of QR, for any n = n(λ),m = m(λ), s = s(λ), k = k(λ), and field F where
|F| ≤ 2λ there exists an FS-compatible Batch NP w.r.t. C and ϕBNP, where C
satisfies Definition 3, for Rk

n,m,s,F where Rn,m,s,F is any C-SAT relation.

20



5.2 Bounded-Space Protocol Construction

For any T ∈ N, consider a language LT that contains the set of all strings
(M, s0, sT , y) whereM is the description of a Turing machine, s0 is the initial
state, sT is the final state and y is an input such that runningM on y with the
start state to be s0 for T time steps results in the final state sT . We construct
an interactive FS-compatible argument for the language LT .

For any k, γ ≥ 1 where kγ = T , for every ℓ ∈ [γ], we construct an argument
for kℓ-time, S-space computations in Figure 4 in terms of an interactive argument
for kℓ−1-time, S-space computations.

– Let Π0 = (Setup,P,V) denote a trivial protocol (Figure 3) for unit-time
computations where the verifier given a machine M, instance x and states
s0, s1, outputs 1 ifM(x, s0) transitions to state s1 in one time step. Setup(1λ)
outputs (⊥,⊥).

– Let Πkℓ−1 = (Setup,P,V) be a ρ-round public-coin protocol for (kℓ−1)-time
computations with ν-length prover messages whose verifier V = (V1, . . . ,Vρ)
where r(i) ← Vi(1

λ, |x|) for i ∈ [ρ − 1] and {0, 1} ← Vρ(x, τ) for transcript
τ .

– Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying
Definition 3.

– LetΠBNP be a batch NP protocol for circuit satisfiability that is FS-compatible
with respect to the commitment C (see section 5.1 in the full version of the
paper for a formal definition of FS-compatibility for batch NP protocols).

Unit Time Interactive Protocol
P and V obtain an instance x(0), which P wishes to prove is in the language

L(0) ≜
{
(M, y, s0, s1) : s1 ←M(y, s0, 1)

}
.

That is,M with initial state s0 reaches state s1 in one time step on input
y.

1. P sends dummy message α to V.
2. V sends dummy message β to P.
3. V computes s′1 ←M(y, s0). V accepts iff s′1 = s1.

Fig. 3. Unit Time Interactive Protocol (Setup,P,V)
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Interactive Argument for kℓ-Time S-Space Computation

Common Input: The common input for P and V is an instance
x = (M, s0, sT , y) of the language Lkℓ . Setup(1λ, i, k):

– Parse i as a tuple (i1, i2, . . . , iℓ) ∈ [k]ℓ.
– Obtain (ck, ek)← C.Gen(1λ, iℓ, k) and

(CRS′, aux′) = Πkℓ−1 .Setup(1λ, (i1, . . . , iℓ−1), k).
– Output CRS = (CRS′, ck), aux = (aux′, ek, (i1, . . . , iℓ)).

– Initial Processing. P computes s = (s0, . . . , sk) for initial state s0 and
{sj ≜M

(
y, s0, 1

T ·j/k)}j∈[k]. P sends s to V.
– P and V define k instances (x′1, . . . , x

′
k) for language Lkℓ−1 where x′j =

(M, sj−1, sj , y) for j ∈ [k].

– Emulation Phase. For every r ∈ [1, ρ], let ν denote the maximum
message size of Πkℓ−1 .P. P computes k parallel executions of Πkℓ−1 .P’s
rth round message, Πkℓ−1 .Pr:

π(r) =

 π(r)[1] · · · π(r)[ν]


≜

 π
(r)
1 ≜ Πkℓ−1 .Pr(CRS

′, x′1,Lkℓ−1 , {β(1), . . . , β(r−1)})
· · ·

π
(r)
k ≜ Πkℓ−1 .Pr(CRS

′, x′k,Lkℓ−1 , {β(1), . . . , β(r−1)})

 .

P sends C(r) = (C(r)[1], . . . , C(r)[ν]) where C(r)[j] ≜ C.Com(ck, π(r)[j])
for j ∈ [ν].

– V sends Πkℓ−1 .V’s rth round message computed as β(r) ← Πkℓ−1 .Vr(1
λ).

– Batch NP Phase. P and V define the instances (x′′1 , . . . , x
′′
k) and P

defines the witnesses (ω′′1 , . . . , ω
′′
k ) as follows:

For j ∈ [k], x′′j = (x′j , {β(r)}r∈[ρ]), ω′′j = {π(r)
j }r∈[ρ].

– Define language L′′ ≜{
(x, {βr}r∈[ρ]) : ∃{πr}r∈[ρ] s.t. Πkℓ−1 .V(CRS′, x, {πr, βr}r∈[ρ]) = 1

}
.

– P and V execute ΠBNP on input ck, instances (x′′1 , . . . , x
′′
k) and witnesses

(ω′′1 , . . . , ω
′′
k ) where the first round message of P in ΠBNP is ignored and

replaced by {C(r)}r∈[ρ] as sent in the emulation phase.
– If ΠBNP.V accepts, then V accepts.

Fig. 4. Bounded Space Computation Protocol Πkℓ w.r.t. ΠBNP and C
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5.3 Non-trivial predicate for Bounded-Space Protocol

We start with the description of the predicate ϕ for the protocol Πkγ . Let ΠT =
(Setup,P,V) be the protocol defined by Figure 4, where T = kγ . The predicate
ϕ equals ϕγ , where ϕℓ is defined recursively for every x, α, aux and ℓ ∈ [γ].

– ϕ0(x, α, aux) = 1 ⇐⇒ x ̸∈ L(0).
– ϕℓ(x, α, aux) for ℓ ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , iℓ)) and parse

α = ((s0, . . . , sk), C
(1)). Define instances (x′1, . . . , x

′
k) as in Figure 4, where

x′j = (M, sj−1, sj , y) for j ∈ [k].

Set ϕℓ(x, α, aux) = (x′iℓ ̸∈ Lkℓ−1) ∧ ϕℓ−1(x
′
iℓ
, C.Extract(ek, C(1)), aux′).

Theorem 5 (Non-trivial predicate). For every T = T (λ), T ′ = T ′(λ), as-
suming the (T ′, T )-index hiding property of SE commitments, ϕ is a (T ′, T )-non-
trivial predicate for the protocol ΠT .

5.4 FS-Compatibility for Bounded-Space Protocol

Theorem 6 (FS-Compatibility w.r.t. Predicate ϕ). Let C be a somewhere
extractable commitment (Definition 3) with security parameter λ whose extrac-
tion algorithm Extract has depth dExtract and size BExtract. Suppose that ΠBNP is
a k-mode (BBNP, bBNP, dBNP)-FS-compatible batch NP argument with respect to C
and ϕBNP for some BBNP, bBNP, dBNP, k that are all functions of λ.

Then for any T = T (λ) ≥ λ and k = k(λ), Π (Fig. 4) is a T -mode (B, b, d)-
FS-compatible argument (Definition 8) with respect to the predicate ϕ, where

B = logk T ·BExtract +BBNP, b = bBNP, d = logk T · dExtract + dBNP.

Furthermore, Π has both communication complexity and verifier complexity
|Πkγ .V| = (kS + |y|) · (λ · log(kS + |y|))O(γ) and prover complexity poly(kγ) for
a fixed polynomial poly(·).

Corollary 1. Assuming the subexponential hardness of QR and subexponential
hardness of DDH, there exists a SNARG for any time-T space-S deterministic

computation with
(
T

c√
log log log T · (S + n)

)
verifier runtime and communication

complexity, as well as poly(T, S) prover runtime, where n denotes the size of the
input, and c is a constant > 0.

6 FS-compatible Arguments for Non-Deterministic
Bounded Space

We now describe our interactive arguments for NTISP(T (n), S(n)), which is the
class of all languages recognizable by non-deterministic Turing Machines in time
T (n) and space S(n). Such a Turing Machine allows each step of the compu-
tation to non-deterministically transition to a new state. Thus, in a sense, this
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corresponds to the setting where each bit of the witness is read at most once9.
An alternative way to describe this class is as the class of languages L with a
corresponding witness relation RL, recognizable by a deterministic Turing Ma-
chines with access to an input tape and a read-only, read-once witness tape, in
addition to a work tape where only O(S(n)) space is used, and that runs in
O(T (n)) time.

First, we introduce some notation and provide some background on NTISP
computations. The following subsection closely mirrors [3].

6.1 Background.

Fix any L ∈ NTISP(T (n), S(n)). Denote by RL its corresponding NP relation,
and denote by M = ML a T (n)-time S(n)-space (non-deterministic) Turing
machine for deciding L. M can alternately be defined as a two-input Turing
machine, that takes as input a pair (x,w) and outputs 1 if and only if (x,w) ∈
RL.

Corresponding Layered Circuit CM
n,m. Any such Turing machine M can be con-

verted into a layered circuit, denoted by CM
n,m, which takes as input a pair (x,w),

where n = |x| and |w| = m = m(n) (where m(n) is an upper bound on the length
of a witness corresponding to a length n instance), and outputs 1 if and only if
M(x,w) = 1. Moreover, CM

n,m is a layered circuit, with W = O(S(n)) denoting
the maximum of the number of gates and number of wires in each layer, and
depth D = O(T (n)), such that an incoming wire to a gate in layer i+1 is either
an input wire (i.e. a wire that reads the input), a witness wire (i.e. a wire that is
attached to a trivial witness gate with fan-in and fan-out 1 whose output equals
its input, and whose input wire reads the witness), or the output wire of a gate
in layer i. Moreover, any witness gate has fan-out 1 (this corresponds to read-
once access to the witness tape), and any layer of the circuit reads at most one
(unique) bit from the witness tape. In addition, there is a deterministic Turing
machine M ′ of space O(log T ) that on input n outputs the (description of the)
circuit CM

n,m.

6.2 Interactive Arguments for Bounded Space Non-Deterministic
Computation.

For any ℓ ≥ 1, we construct an interactive argument that proves correctness of
wire assignments to layered circuits Cktn,m where n = |x| and m = |w| that
are of the form described above (i.e. corresponding to computations of a Turing
Machine M). We will assume that Cktn,m has depth D = kℓ and width W , and
describe an interactive argument in terms of an interactive argument for kℓ−1-
depth, W -width circuits. We will prove in subsequent sections that this protocol
is FS-compatible.

9 If a non-deterministic Turing Machine wishes to remember what non-deterministic
choices it made, it has to write them down to its work tape.
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– Let Π0 = (Setup,P,V) denote a trivial protocol for unit-depth circuits where
the prover sends a dummy message followed by a dummy verifier mes-
sage, and the verifier given a circuit Cktn,1 with a single layer, instance
x s.t. |x| = n and states s0, s1, outputs 1 iff s1 = Cktn,1(x, 0, s0, 1) or
s1 = Cktn,1(x, 1, s0, 1). Setup(1

λ) outputs (⊥,⊥).
– Let Πkℓ−1 = (Setup,P,V) be a ρ-round public-coin protocol for (kℓ−1)-time

computations with ℓ-length prover messages whose verifier V = (V1, . . . ,Vρ)
where r(i) ← Vi(1

λ, |x|) for i ∈ [ρ− 1] and {0, 1} ← Vρ(x, τ).
– Let C = (Gen,Com,Open,Verify,Extract) be an SE commitment satisfying

Definition 3.
– Let ΠBNP be a batch NP protocol for circuit satisfiability.

For any D ∈ N, consider language LD defined by the NP relation RLD
where

RLD
(x,w) = 1 iff x = (M ′, n, sn, sD, y) where M ′ outputs a description of

a circuit Ckt such that sn is a set of wire assignments to the intermediate and
input wires in the nth layer of the circuit, y and w respectively define assignments
to all input and witness wires in the circuit, and sD is a set of consistent wire
assignments to intermediate and input wires of the circuit at layer D + n.

Our argument is identical to the one in Figure 4, except for the following
(syntactic) changes to the inputs of both players, and to the initial processing.

Inputs. The common input for P and V is an instance x = (M ′, s0, sT , y) of the
language Lkℓ . P also obtains a witness ω, such that (x, ω) ∈ RLD

.

Initial Processing.

– P sends s = (s0, . . . , sk) for {si ≜ Ckt (y, ω, s0, iD/k)}i∈[k] to V.

– P and V define instances (x1, . . . , xk) where {xi ≜ (M ′, (i−1)D
k , si−1, si, y)}i∈[k]

of the language Lkℓ−1 .
– P partitions ω into witnesses ω1, . . . , ωk where for all i ∈ [k], ωi is used to

generate assignments to witness wires in layers (i−1)D
k through iD

k .

6.3 Non-Trivial Predicate

Let ΠT = (Setup,P,V) be the protocol defined by Figure 4, where D = kγ , and
with modifications from the previous section. The predicate ϕ equals ϕγ , where
ϕℓ is defined recursively for every x, α, aux and ℓ ∈ [γ].

– ϕ0(x, α, aux) = 1 ⇐⇒ x ̸∈ L(0).
– ϕℓ(x, α, aux) for ℓ ∈ [1, γ]: Parse aux = (aux′, ek, (i1, . . . , iℓ)) and parse

α = ((s0, . . . , sk), C
(1)). Define instances (x′1, . . . , x

′
k) as in Figure 4, where

x′j = (M, sj−1, sj , y) for j ∈ [k]. Finally, set ϕℓ(x, α, aux) = (x′iℓ ̸∈ Lkℓ−1) ∧
ϕℓ−1(x

′
iℓ
, C.Extract(ek, C(1)), aux′).

Theorem 7 (Non-trivial predicate). Assuming the (T · 2S , T )-index hiding
property of SE commitments, ϕ is a (T · 2S , T )-non-trivial predicate for the pro-
tocol ΠT where T = kγ .

The proof of this theorem builds on [3] and appears in the full version.
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6.4 FS-Compatibility w.r.t. Predicate Φ

Theorem 8 (FS-Compatibility w.r.t. Predicate ϕ). Let C be a somewhere
extractable commitment (Definition 3) whose extraction circuit has depth dExtract
and size BExtract. Let ΠBNP be a k-mode ρ-round (BBNP, bBNP, dBNP)-FS-compatible
batch NP with respect to C, for some BBNP, bBNP, dBNP, k (all functions of λ).

Then for any T = T (λ) ≥ λ and k = k(λ), Π defined above is a T -mode
(B, b, d)-FS-compatible argument (Definition 8) with respect to the predicate ϕ
defined above, where B = logk T · BExtract + BBNP, b = bBNP, d = logk T ·
dExtract + dBNP.

Furthermore, Π has communication complexity and verifier runtime |Πkγ .V| =
(kS + |y|) · (λ · log(kS + |y|))O(γ) and prover runtime poly(T ) given the witness,
for a fixed polynomial poly(·).

The proof of this theorem follows identically to that of Theorem 6. In par-
ticular, the proofs of completeness, round-by-round soundness, FS-compatibility
and efficiency follow identically to that of Theorem 6. We obtain the following
corollaries of this theorem.

Corollary 2. Assuming the (T ·2S , T )-hardness of QR, for any time-T space-S
non-deterministic computation, there is a T -mode (B, b, d)-FS-compatible argu-
ment (Definition 8) w.r.t. a (T ·2S , T ) non-trivial predicate ϕ, where each verifier
message is of size λ (which also denotes the security parameter), and where veri-

fier runtime and communication complexity are bounded by T
c√

log log log T ·(S+|y|),
c is a constant > 0, |y| denotes the size of the input and where λ = T

1
log log log T ,

where B = T
c√

log log log T , b = poly(λ), d = O(
√
log log log T ).

Proof. We set λ such that λγ = k, this implies that T = λγ2

, and log T =

γ2 log λ. We also set γ2 = log log log T , This implies that λ = T
1
γ2 = T

1
log log log T ,

and log T < log2 λ. Substituting, this implies that there is a constant c > 0 such
that

|ΠT .V| ≤ (kS + |y|) · (kc)
which implies that there is a constant c > 0 such that

|ΠT .V| ≤ T
c√

log log log T · (S + |y|)

Finally, we note that λ = T
1

log log log T , which completes our proof.

The following Corollary follows from Corollary 2, Theorem 3 and Theo-

rem 1, where we set the security parameter λ = max(S1/ϵ, T
1

log log log T ), where ϵ
is the smaller of the subexponential parameters for QR/DDH hardness. Then,
(2λ

ϵ

, 2λ
ϵ

)-hardness of QR implies the conditions of the corollary above. In addi-
tion, (2λ

ϵ

, 2λ
ϵ

)-hardness of DDH implies the conditions of Theorem 1.

Corollary 3. Assuming the subexponential hardness of QR and subexponential
hardness of DDH, there exists a SNARG for any time-T space-S non-deterministic
computation with verifier runtime and communication complexity T

c√
log log log T ·

(S + n) and prover runtime poly(T, S) given the witness, where n denotes the
size of the input, and c is a constant > 0.
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We also obtain the following corollary about improved SNARGs for Batch
NTISP, which follows from the observation that if L ∈ NTISP(T, S), then L⊗k ∈
NTISP(kT, S), where L⊗k is the language containing k instances of L. This is
because we can verify the k different instances by verifying each one individually
in time T , and reusing the same workspace for every instance.

Corollary 4. For every L ∈ NTISP(T, S) and every k ≥ S, assuming the sub-
exponential hardness of QR and DDH, there exists a SNARG for L⊗k where
verifier runtime and communication complexity are bounded by (kT )

c√
log log log kT ·

(S + n) and prover runtime is poly(k, T, S) given the NP witnesses where n
denotes the size of the claimed (potentially succinctly described) instance of L⊗k,
and c > 0 is a constant.

6.5 SNARGs for P and beyond

Given the SNARG for batch-NTISP above, we can use methods from [38] to
build a SNARG for any language decidable in deterministic time T (and in
fact, any language that has a no-signaling PCP, just as in [38]). We instantiate
what is essentially their approach with different parameters, specifically, while
they obtain polylog(T ) overhead from sub-exponential LWE, we obtain T o(1)

overhead from sub-exponential DDH and QR. Thus, we have:

Corollary 5. Let L be a language and T = T (n) be a function such that
poly(n) ≤ T (n) ≤ exp(n) and L ∈ DTIME(T ). Then assuming the subexponential
hardness of QR and DDH, there exists a SNARG for L with prover time poly(T ),
verifier time n · poly

(
T o(1)

)
, and communication complexity n · poly

(
T o(1)

)
.
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