
Group Signatures and More from
Isogenies and Lattices:

Generic, Simple, and Efficient

Ward Beullens1,2 , Samuel Dobson3 , Shuichi Katsumata4 , Yi-Fu Lai3 ,
and Federico Pintore5

1 imec-COSIC, KU Leuven, Belgium
2 IBM Research, Zurich, Switzerland

wbe@zurich.ibm.com
3 University of Auckland, New Zealand

samuel.dobson.nz@gmail.com ylai276@aucklanduni.ac.nz
4 National Institute of Advanced Industrial Science and Technology (AIST), Japan

shuichi.katsumata@aist.go.jp
5 Department of Mathematics, University of Bari, Italy

federico.pintore@uniba.it

Abstract We construct an efficient dynamic group signature (or more
generally an accountable ring signature) from isogeny and lattice assump-
tions. Our group signature is based on a simple generic construction that
can be instantiated by cryptographically hard group actions such as the
CSIDH group action or an MLWE-based group action. The signature
is of size O(logN), where N is the number of users in the group. Our
idea builds on the recent efficient OR-proof by Beullens, Katsumata, and
Pintore (Asiacrypt’20), where we efficiently add a proof of valid cipher-
text to their OR-proof and further show that the resulting non-interactive
zero-knowledge proof system is online extractable.
Our group signatures satisfy more ideal security properties compared
to previously known constructions, while simultaneously having an at-
tractive signature size. The signature size of our isogeny-based construc-
tion is an order of magnitude smaller than all previously known post-
quantum group signatures (e.g., 6.6 KB for 64 members). In comparison,
our lattice-based construction has a larger signature size (e.g., either 126
KB or 89 KB for 64 members depending on the satisfied security prop-
erty). However, since theO(·)-notation hides a very small constant factor,
it remains small even for very large group sizes, say 220.

1 Introduction

Group signature schemes, introduced by Chaum and van Heyst [22], allow au-
thorized members of a group to individually sign on behalf of the group while
the specific identity of the signer remains anonymous. However, should the need
arise, a special entity called the group manager (or sometimes the tracing au-
thority) can trace the signature to the signer, thus holding the group members

https://orcid.org/0000-0003-0888-283X
https://orcid.org/0000-0003-0775-4019
https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0002-1346-9372
https://orcid.org/0000-0002-7985-3131

2 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

accountable for their signatures. Group signatures have been an active area
of academic research for the past three decades, and have also been gathering
practical attention due to the recent real-world deployment of variants of group
signatures such as directed anonymous attestation (DAA) [15] and enhanced
privacy ID (EPID) [16].

Currently, there are versatile constructions of efficient group signatures from
classical assumptions, e.g., [10,26,40,38,9,49,48,27,3,23]. In this work, when we
argue the efficiency of a group signature, we focus on one of the quintessential
metrics: the signature size. We require it to be smaller than c · logN bits, where
N is the group size and c is some explicit small polynomial in the security para-
meter. In their seminal work, Bellare, Micciancio, and Warinschi [4] provided a
generic construction of a group signature with signature size O(1) from any sig-
nature scheme, public-key encryption scheme, and general non-interactive zero-
knowledge (NIZK) proof system. Unfortunately, this only provides an asymptotic
feasibility result, and thus one of the main focuses of subsequent works, including
ours, has been to construct a concretely efficient group signature.

In contrast to the classical setting, constructing efficient group signatures
from any post-quantum assumptions has been elusive. Since the first lattice-based
construction by Gordon, Katz, and Vaikuntanathan [39], there has been a rich
line of subsequent works on lattice-based (and one code-based) group signatures,
including but not limited to [45,33,47,50,41]. However, these results remained
purely asymptotic. It was not until recently that efficient lattice-based group
signatures appeared [14,25,32,31]. In [31], Esgin et al. report a signature size of
12KB and 19KB for a group size of N = 26 and 210, respectively—several orders
of magnitude better than prior constructions.1 These rapid improvements in
efficiency for lattices originate in the recent progress of lattice-based NIZK proof
systems for useful languages [58,13,30,2,29,51,52], most of which rely heavily
on the properties of special structured lattices. Thus, it seems impossible to
import similar techniques to other post-quantum assumptions or to standard
non-structured lattices. For instance, constructing efficient group signatures from
isogenies—one of the promising alternative post-quantum tools to lattices—still
seems out of reach using current techniques. This brings us to the main question
of this work:

Can we construct an efficient group signature secure from isogenies?
Moreover, can we have a generic construction that can be instantiated
from versatile assumptions, including those based on less structured lat-
tices?

In addition, as we discuss in more detail later, we notice that all works
regarding efficient post-quantum group signatures [14,42,25,32,31] do not satisfy
the ideal security properties (which are by now considered standard) formalized
by Bootle et al. [11]. Thus, we are also interested in the following question:

1
We note that their signature size grows by logtN for a small constant t > 1 rather than simply
by logN .

Group Signatures and More from Isogenies and Lattices 3

Can we construct efficient post-quantum group signatures satisfying the
ideal security properties formalized by Bootle et al. [11]?

To address these questions, in this work we focus on accountable ring sig-
natures [57]. An accountable ring signature offers the flexibility of choosing the
group of users when creating a signature (like a ring signature [55]), while also
enforcing accountability by including one of the openers in the group (like a
group signature). Although research on accountable ring signatures is still lim-
ited [57,12,46,44,32], we advocate that they are as relevant and interesting as
group and ring signatures. As shown by Bootle et al. [12], accountable ring sig-
natures imply group and ring signatures by naturally limiting or downgrading
their functionality. Thus, an efficient post-quantum solution to an accountable
ring signature implies solutions for both secure (dynamic) group signatures [5]
and ring signatures, making it an attractive target to focus on.

Finally, as an independent interest, we are also concerned with tightly-secure
constructions. To the best of our knowledge, all prior efficient post-quantum se-
cure group and ring signatures are in the random oracle model and have a very
loose reduction loss. In typical security proofs, given an adversary with advant-
age ε that breaks some security property of the group signature, we can only
construct an adversary with advantage at most (N2Q)−1 · ε2 against the under-
lying hard problem, where Q is the number of random oracle queries and N is
the number of users in the system. If we aim for 128-bit security (i.e., ε = 2−128),
and set for example (N,Q) = (210, 250), then we need at least 326-bits of secur-
ity for the hard problem. When aiming for a provably-secure construction, the
parameters must be set much larger to compensate for this significant reduction
loss, which then leads to a less efficient scheme. This is especially unattractive
in the isogeny setting since only the smallest among the CSIDH parameters [20]
enjoys properties suitable to achieve concrete efficiency [8].

1.1 Our Contribution

In this work, we construct an efficient accountable ring signature based on iso-
genies and lattices. This in particular implies the first efficient isogeny-based
group signature. Our generic construction departs from known general feasibil-
ity results such as [4] and builds on primitives that can be efficiently instantiated.
Unlike previous efficient post-quantum group signatures, our scheme satisfies all
the desired properties provided by Bootle et al. [11] including dynamicity and
fully (CCA) anonymity : the former states that the group members can be ad-
ded and revoked dynamically and are not fixed on setup; the later states that
anonymity holds even in the presence of an adversary that sees the signing keys
of all honest users, who is additionally granted access to an opening oracle. We
also satisfy the ideal variant of non-frameability and traceability [11], where the
former is captured by unforgeability in the context of accountable ring signa-
ture. Roughly, this ensures that arbitrary collusion among members, even with
the help of a corrupted group manager, cannot falsely open a signature to an
honest user.

4 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

Our accountable ring signature schemes are realized in three steps. We first
provide a generic construction of an accountable ring signature from simple cryp-
tographic primitives such as a public-key encryption (PKE) scheme and an ac-
companying NIZK for a specific language. We then show an efficient instantiation
of these primitives based on a group action that satisfies certain cryptographic
properties. Finally, we instantiate the group action by either the CSIDH group
action or the MLWE-based group action. Our generic construction builds on the
recent efficient OR-proofs for isogeny and lattice-based hard languages by Beul-
lens, Katsumata, and Pintore [7], which were used to construct ring signatures.
The most technical part of this work is to efficiently add a proof of valid cipher-
text to their OR-proof and proving full anonymity, which done naively would
incur an exponential security loss. At the core of our construction is an efficient
online-extractable OR-proof that allows to also prove validity of a ciphertext.

Moreover, thanks to the online extractability, our construction achieves a
much tighter reduction loss compared to prior accountable ring signatures (and
also group and ring signatures). It suffices to assume that the underlying post-
quantum hard problem cannot be solved with advantage more than N−1 · ε
rather than (N2Q)−1 · ε2 as in prior works whose proofs rely on the forking
lemma [34,54]. Working with the above example, we only lose 10-bits rather
than 198-bits of security. We further show how to remove N−1 using the Katz-
Wang technique [43] along with some techniques unique to our NIZK. As a side
product, we obtain a tightly-secure and efficient isogeny and lattice-based ring
signatures, improving upon those by Beullens et al. [7] which have a loose security
reduction.

Comparison to Prior Work. To the best of our knowledge, Esgin et al. [32,31]
are the only other work that (implicitly) provide an efficient post-quantum ac-
countable ring signature.2 Since the efficiency of an accountable ring signature
is equivalent to those of the group signature obtained through limiting the func-
tionality of the accountable ring signature, we chose to compare the efficiency of
our scheme with other state-of-the-art post-quantum group signatures. Tab. 1
includes a comparison of the signature size and the different notions of security
it satisfies. The first two schemes satisfy all the desired security properties of a
dynamic group signature formalized by Bootle et al. [11]. Our scheme is the only
one to achieve full CCA anonymity. Esgin et al. [31] achieves full CPA anonym-
ity, where anonymity is broken once an adversary is given access to an opening
oracle; in practice, this means that if a specific signature is once opened to some
user, then any signature ever signed by that particular user will lose anonymity.
Here, “full” means that the signing key of all the users may be exposed to the
adversary. In contrast, Katz, Kolesnikov, and Wang [42] satisfies selfless CCA
anonymity. While their scheme supports opening oracles, anonymity no longer
holds if the signing key used to sign the signature is exposed to the adversary.
Moreover, our scheme is the only one that also achieves the ideal variant of non-
frameability and traceability [5,11] (illustrated in the “Manager Accountability”

2
To be precise, they consider a weaker variant of standard accountable ring signature where no
Judge algorithm is considered.

Group Signatures and More from Isogenies and Lattices 5

N Hardness Security Anonymity Manager
2 25 26 210 221 Assumption Level Accountable

Isogeny 3.6 6.0 6.6 9.0 15.5 CSIDH-512 ∗ CCA Yes
Lattice 124 126 126 129 134 MSIS/MLWE NIST 2 CCA Yes
Lattice 86 88 89 91 96 MSIS/MLWE NIST 2 CCA No

ESZ[31] / 12 / 19 / MSIS/MLWE NIST 2 CPA No
KKW[42] / / 280 418 / LowMC NIST 5 selfless-CCA No

Table 1: Comparison of the signature size (KB) of some concretely efficient post-
quantum group signature schemes. The first three rows are our scheme. Manager ac-
countability states whether the (possibly malicious) group manager is accountable when
opening a signature to some user. Namely, it is “Yes” when even a malicious group
manager cannot falsely accuse an honest user of signing a signature that it hasn’t
signed.
∗ 128 bits of classical security and 60 bits of quantum security [53].

column). The two schemes [42,31] assume the group manager honestly executes
the opening algorithm and that everyone trusts the output. Put differently, a
malicious group manager can frame any honest members in the group by simply
replacing the output of the opening algorithm. In contrast, our scheme remains
secure even against malicious group managers since the validity of the output
of the opening algorithm is verifiable. That is, even the group manager is held
accountable in our group signature.

Not only our group signatures satisfy more ideal security properties compared
to previous constructions, Tab. 1 shows that our signature size remains compet-
itive. Our isogeny-based group signature based on CSIDH provides the smallest
signature size among all post-quantum group signatures, which is 0.6 log2(N)+3
KB. In contrast, our lattice signature is larger; the scheme in the second (resp.
third) row has signature size 0.5 log2(N) + 123.5 KB (resp. 0.5 log2(N) + 85.9
KB). It is smaller compared to [42], while larger compared to [31]. Compared to
the two constructions, our signature size grows much slower with the group size
N (see also Footnote 1) and also satisfies stronger security. We thus leave it as
an interesting open problem to lower the constants in our construction.

1.2 Technical overview

An accountable ring signature is like a standard ring signature where the ring R
also includes an arbitrary opener public key opk of the signer’s choice when
creating a signature σ. The signature σ remains anonymous for anybody who
does not know the corresponding opener secret key osk, while the designated
opener can use osk to trace the user who created σ. A ring signature can be
thought of as an accountable ring signature where opk = ⊥, while a group
signature can be thought as an accountable ring signature where there is only a
single opener.

General Approach. Our generic construction of an accountable ring signature
follows the well-known template of the encrypt-then-prove approach to construct

6 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

a group signature [17]. The high-level idea is simple. The signer encrypts its
verification key vk (or another unique identifier) using the opener’s public key
opk for a PKE scheme and provides a NIZK proof for the following three facts:
the ciphertext ct encrypts vk via opk; vk is included in the ring R; and that
it knows a secret key sk corresponding to vk. To trace the signer, the opener
simply decrypts ct to recover vk. Notice that the NIZK proof implicitly defines a
verifiable encryption scheme [18,19] since it is proving that ct is a valid encryption
for some message vk in R. Below, although our construction can be based on any
cryptographically-hard group action, we mainly focus on isogenies for simplicity.

One of the difficulties in instantiating this template using isogeny-based cryp-
tography is that we do not have an efficient verifiable encryption scheme for an
appropriate PKE scheme. To achieve full anonymity, most of the efficient group
signatures, e.g., [26,40,38,49,48,25], use an IND-CCA secure PKE as a building
block and construct an efficient NIZK that proves validity of the ciphertext. Full
anonymity stipulates that an adversary cannot de-anonymize a signature even if
it is provided with an opening oracle, which traces the signatures submitted by
the adversary. Roughly, by using an IND-CCA secure PKE as a building block,
the reduction can simulate the opening oracle by using the decapsulation oracle
provided by the IND-CCA game, rather than the opener’s secret key. In the clas-
sical setting, constructing such an efficient IND-CCA secure verifiable encryption
scheme is possible using the Cramer-Shoup PKE [24] that offers a rich algeb-
raic structure. Unfortunately, in the isogeny setting, although we know how to
construct an IND-CCA secure PKE based on the Fujisaki-Okamoto transform
[37], it seems quite difficult to provide an accompanying verifiable encryption
scheme as the construction internally uses a hash function modeled as a ran-
dom oracle. Another approach is to rely on the weaker IND-CPA secure PKE but
to use a stronger NIZK satisfying online-extractability [35]. At a high level, the
reduction can use the online-extractor to extract the witness in the ciphertext
ct instead of relying on the decapsulation oracle.3 However, it turns out that
even this approach is still non-trivial since we do not have any efficient verifiable
encryption scheme for existing isogeny-based PKEs, let alone an accompanying
online-extractable NIZK. For instance, most isogeny-based IND-CPA secure PKEs
are based on the hashed version of ElGamal, and to the best of our knowledge,
there are no efficient verifiable encryption schemes for hashed ElGamal.

Verifiable Encryption Scheme for a Limited Class of PKE. In this work, we ob-
serve that in the context of accountable ring signatures and group signatures,
we do not require the full decryption capability of a standard PKE. Observe
that decryption is only used by the opener and that it knows the ciphertext
ct must be an encryption of one of the verification keys included in the ring
(or group) R. Therefore, given a ciphertext ct, we only require a mechanism to
check if ct encrypts a particular message M, rather than being able to decrypt
an arbitrary unknown message. Specifically, the opener can simply run through
all the verification keys vk ∈ R to figure out which vk was encrypted in ct. This

3
Note that extractability via rewinding is insufficient for full anonymity as it will cause an expo-
nential reduction loss when trying to extract the witness from adaptively chosen signatures [6].

Group Signatures and More from Isogenies and Lattices 7

allows us to use a simple IND-CPA secure PKE with limited decryption capab-
ility based on the CSIDH group action: Let E0 ∈ E``p(O, π) be a fixed and
public elliptic curve. The public key is pk = (E0, E := s ? E0), where sk = s is
sampled uniformly at random from the class group C`(O). To encrypt a message
M ∈ C`(O), we sample r ← C`(O) and set ct = (ct0 := r ?E0, ct1 := M? (r ?E)).
To check if ct decrypts to M′, we check whether ct1 is equal to M′ ? (sk ? ct0).
Note that in general we cannot decrypt when M is unknown since we cannot
cancel out sk ? ct0 from ct1. Now, observe that proving ct encrypts M ∈ C`(O) is
easy since there is a simple sigma protocol for the Diffie-Hellman-like statement
(ct0, (−M)? ct1) = (r ?E0, r ?E), where r is the witness, e.g., [28]. Although this
comes closer to what we want, this simple sigma protocol is not yet sufficient
since the prover must reveal the message M to run it. Specifically, it proves that
ct is an encryption of M, while what we want to prove is that ct is an encryption
of some M ∈ R. In the context of accountable ring signature and group signature,
this amounts to the signer being able to hide its verification key vk ∈ R.

Constructing NIZK for Accountable Ring Signature. Let us move forward to the
intermediate goal of constructing a (non-online-extractable) NIZK proof system
for the following three facts: the ciphertext ct encrypts vk via pk; vk is included
in the ring R; and that the prover knows a secret key sk corresponding to vk. Re-
cently, Beullens, Katsumata, and Pintore [7] proposed an efficient sigma protocol
(and a non-online-extractable NIZK via the Fiat-Shamir transform) for proving
the last two facts, which in particular constitutes an efficient OR-proof. We show
how to glue the above “weak” verifiable encryption scheme with their OR-proof.

We first review a variant of the OR-sigma protocol in [7] with proof size
O(N), where N is the size of the ring. Assume each user i ∈ [N] in the ring
holds vki = (E0, Ei := si ? E0) ∈ E``p(O, π)2 and ski = si ∈ C`(O). To prove
vkI ∈ R and that it knows skI , the prover first sample s′ ← C`(O) and sets Ri =
s′ ? Ei for i ∈ [N]. It also samples randomness randi and creates commitments
(Ci = Com(Ri, randi))i∈[N], where this commitment is simply instantiated by a
random oracle. It finally samples a random permutation φ over [N] and sends
a permuted tuple (Cφ(i) = Com(Ri, randi))i∈[N]. The verifier samples a random
bit b ∈ {0, 1}. If b = 0, the prover returns all the randomness (s′, (randi)i∈[N], φ)
used to create the first message. The verifier then checks if the first message sent
by the prover is consistent with this randomness. Otherwise, if b = 1, the prover
returns (I ′′, rand′′, s′′) := (φ(I), randI , s

′ + sI). The verifier then checks if CI′′ =
Com(s′′?E0, rand′′) holds. Notice that if the prover is honest, then s′′?E0 = s′?EI
as desired. It is easy to check it is honest-verifier zero-knowledge. The transcript
when b = 0 is independent of the witness, while the transcript when b = 1 can be
simulated if the commitment scheme is hiding. Moreover, special soundness can
be checked by noticing that given s′′ and s′, we can extract some (i∗, s∗) such that
(E0, Ei∗ = s∗ ? E0) ∈ R. A full-fledged OR-sigma protocol with proof size O(N)
is then obtained by running this protocol λ-times in parallel, where λ denotes
the security parameter. [7] showed several simple optimization techniques to
compress the proof size from O(N) to O(logN), but we first explain our main
idea below.

8 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

We add our “weakly decryptable” PKE to this OR-sigma protocol. Since our
PKE only handles messages in C`(O), the prover with vkI ∈ R encrypts the index
I ∈ [N] rather than vkI , where we assume the verification keys in the ring R
are ordered lexicographically.4 The statement now consists of the ring R and the
ciphertext ct = (ct0 := r ? E0, ct1 = I ? (r ? E)), where (E0, E) is the opener’s
public key opk. Recall the opener can decrypt ct with knowledge of the ring R
by brute-force searching for an i ∈ [N] such that ct1 = i ? (osk ? ct0). Now, to
prove vkI is an entry in R and that it knows skI , the prover samples s′ ← C`(O)
and sets Ri = s′ ? Ei for i ∈ [N] as before. It then further samples r′ ← C`(O)
and prepares ct′i = (r′ ? ct0, (−i) ? (r′ ? ct1)) for all i ∈ [N]. Observe that ct′i
is an encryption of the message (I − i) using randomness (r′ + r). Specifically,
ct′I is of the form ((r′ + r) ? E0, (r

′ + r) ? E), which admits a natural sigma
protocol as explained above. Finally, the prover samples randomness randi and a
random permutation φ over [N], and sends the randomly permuted commitments
(Cφ(i) = Com(Ri‖ct′i, randi))i∈[N]. The verifier samples a random bit b ∈ {0, 1}. If
b = 0, then similarly to the above OR-sigma protocol, the prover simply returns
all the randomness and the verifier checks the consistency of the first message.
Otherwise, if b = 1, the prover returns (I ′′, rand′′, s′′, r′′) := (φ(I), randI , s

′ +
sI , r

′+r). The verifier checks if CI′′ = Com(s′′?E0‖(r′′?E0, r
′′?E), rand′′) holds.

Correctness and honest-verifier zero-knowledge holds essentially for the same
reason as the above OR-sigma protocol. More importantly, special soundness
holds as well. Intuitively, since the opening to b = 0 forces the cheating prover
to commit to the proper (vki, i)-pair, a cheating prover cannot encrypt an index
I ′ and prove that it has skI corresponding to vkI for a different I 6= I ′.

To compile our sigma protocol into an NIZK, we apply the Fiat-Shamir trans-
form. Moreover, we apply similar optimization techniques used in [7] to compress
the proof size from O(N) to O(logN). Roughly, the prover additionally uses a
pseudorandom generator to generate the randomness (i.e., s′, r′, φ, (randi)i∈[N]).
Then, in case b = 0, the prover needs to reply only with the seed of size O(1).
The prover also uses a Merkle tree to accumulate (Cφ(i))i∈[N] and sends the root
value in the first message. It then only opens to the path necessary for verific-
ation when b = 1. This has a positive side-effect that we no longer require a
permutation φ since the path hides the index if we use a slightly tweaked variant
of the standard Merkle tree. Finally, we take advantage of the asymmetry in
the prover’s response size for b = 0 and b = 1, which are O(1) and O(logN),
respectively. Namely, we imbalance the challenge space so that the prover opens
to more 0 than 1, while still maintaining negligible soundness error.

Adding Online-Extractability. To build an accountable ring signature or group
signature, we require the above NIZK to be (multi-proof) online-extractable. This
is a strengthening of standard proof of knowledge (PoK) that roughly states
that the knowledge extractor, who can see what the adversary queries to the
random oracle, is able to directly extract witnesses from the proofs output by

4
The choice of what to encrypt is rather arbitrary. The same idea works if for instance we hash vk
into C`(O) and view the digest as the message.

Group Signatures and More from Isogenies and Lattices 9

the adversary. The OR-proof by [7], which our NIZK builds on, was only shown
to satisfy the standard PoK, which bases on a rewinding extractor.

One simple way to add online-extractability to our NIZK is to apply the Un-
ruh transform [56]. Namely, we can modify the prover to add two more commit-
ments h0 = Com(s′‖r′, rand0) and h1 = Com(s′′‖r′′, rand1) in the first message,
where Com is instantiated by the random oracle. Then, if b = 0 (resp. b = 1),
the prover further opens to h0 (resp. h1). Recall that if the reduction obtains
both (s′, r′) and (s′′, r′′), then it can invoke the extractor provided by the under-
lying sigma protocol to extract some (i∗, s∗) such that (E0, Ei∗ = s∗ ? E0) ∈ R.
Therefore, for the cheating adversary to fool the reduction, it must guess the bit
b and create hb correctly while creating h1−b arbitrary. Intuitively, if we have λ-
repetition of the sigma protocol, then the cheating prover cannot possibly guess
all the challenge bits correctly. Therefore, there must be some challenge where
it created h0 and h1 honestly. For that challenge bit, the reduction algorithm
can then retrieve the corresponding inputs (s′‖r′, rand0) and (s′′‖r′′, rand1) from
simply observing the random oracle, and then, run the extractor to obtain the
witness.

This idea works but it comes with an extra two hashes per one execution
of the binary-challenge sigma protocol. Although it may sound insignificant in
an asymptotic sense, these hashes add up when we execute the sigma protocol
many times, and it makes it difficult to apply some of the optimization tricks.
Concretely, when we apply this change to the isogeny-based ring signature by
Beullen et al. [7], the signature grows by roughly a factor of 2 to 3.

In this work, we show that we can in fact prove online-extractability without
making any modification to the aforementioned NIZK. Our main observations
are the following: if the prover uses a seed to generate the randomness used in
the first message via a random oracle, then the online extractor can observe
(s′, r′, φ, (randi)i∈[N]); and the prover must respond to some execution of the
binary-challenge sigma protocol where the challenge bit is 1. The first implies
that the seed implicitly acts as a type of commitment to (s′, r′). The second im-
plies the prover returns a response that includes (s′′, r′′). Specifically, our online
extractor only looks at all the responses for the rounds where the challenge bit
was 1, and checks the random oracle for any seed that leads to the commitment
provided in the first message of the sigma protocol. If such seed is found, then
it succeeds in extracting a witness. The intuition is simple but it turns out that
the formal proof is technically more complicated due to the several optimizations
performed on the basic sigma protocol to achieve proof size O(logN).

Generalizing with Group Actions. Although we have been explaining our generic
construction using the CSIDH group action, it is not unique to them. It works
equally well for any group action that naturally induces a PKE. Specifically,
we instantiate the above idea also by the MLWE group action defined roughly
as ? : Rn+m

q × Rmq : (s, e) ? t → A ? s + e + t, where Rq = Zq[X]/(Xd +
1). Since CSIDH and MLWE induce a PKE with slightly different algebraic
structures, we introduce a group-action-based PKE defined by two group actions
to formally capture both instances. This abstraction may be of an independent

10 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

interest since at first glance, isogeny-based and lattice-based PKEs seem to rely
on different algebraic structures. Finally, one interesting feature unique to our
generic construction is that since our sigma protocol is rather combinatorial in
nature, we can for instance use CSIDH for the user’s public key vk and mix it
with an MLWE-based PKE for the opener’ public key opk. The practical impact of
such mixture is that we can achieve stronger bit-security for anonymity (due to
MLWE) while keeping the user’s public key and signature small (due to CSIDH).

Achieving Tight Reduction. Since the proofs do not rely on the forking lemma [34,54]
to extract witnesses from the forged proofs, our construction achieves a tighter
reduction compared to prior works on efficient group signatures. However, we
still lose a factor 1/N in the proof of unforgeability, which may vary from 1/2 to
1/220.5 Recall N is the size of the group in group signatures but it is the size of
all the users enrolled in the system for accountable ring signatures, which may
be far larger than the size of the ring. The main reason for this loss was because
the reduction needs to guess one user’s verification key used by the adversary to
create its forgery and to embed the hard problem into it.

A well known technique to obtain a tight proof is to rely on the Katz-Wang
technique [43] along with the generic OR-composition of sigma protocols, and
rely on a multi-instance version of the hard problem (which are believed to be
as difficult as the single-instance version for specific hard problems). Namely,

we modify the scheme to assign two verification keys (vk(1), vk(2)) to each user.

The users will only hold one signing key sk(b) for b ∈ {1, 2} corresponding to

the verification key vk(b). The user can honestly run the aforementioned sigma
protocol where the statement includes vk(b), and a simulated sigma protocol
using the ZK-simulator where the statement includes vk(3−b). We can then use
the sequential OR-proof technique as presented in [1,36] to bridge these two
sigma protocols so that it hides the b.6

While this generic transform works, it unfortunately doubles the signature
size, which may outweigh the motivation for having a tight reduction. In this
work, we present a novel and far cheaper technique tailored to our sigma pro-
tocol. The signature size overhead is a mere 512B for our concrete lattice-based
instantiation. The key observation is that we can view the set of all users’ veri-
fication key (vk(1), vk(2)) as a ring of size 2N , rather than a ring of size N where
each ring element consists of two verification keys. This observation itself is not
yet sufficient since recall that we typically must encrypt some information bound
to the signer for traceability, e.g., encrypt the position/index of vk in R, and it is
no longer clear what to encrypt when we have two verification keys in the ring.
Luckily, it turns out that our sigma protocol can be easily modified with no loss
in efficiency to overcome this apparent issue. Details are provided in Sec. 5.3.

5
We note that we also have some independent looseness in the anonymity proof since we rely on
the “multi-challenge” IND-CPA security from our PKE. This is handled in a standard way, and this
is also why we only achieve a truly tight group signature from lattices and not from isogenies.

6
We note that it seems difficult to use the parallel OR-proof for our sigma protocol since the
challenge space is structured.

Group Signatures and More from Isogenies and Lattices 11

2 Preliminaries

Due to page limitation, the notation we use is defined in the full version of
the paper, as are the standard primitives such as relaxed sigma protocol in the
random oracle model and PKE. We instantiate several standard cryptographic
primitives, such as pseudorandom number generators (i.e., Expand) and commit-
ment schemes, by hash functions modeled as a random oracle O. With abuse
of notation, we may occasionally write for example O(Expand ‖ ·) instead of
Expand(·) to make the usage of the random oracle explicit. Finally, we denote
by AO an algorithm A that has black-box access to O, and we may occasionally
omit the superscript O for simplicity when the meaning is clear from context.

2.1 Non-Interactive Zero-Knowledge Proofs of Knowledge in the
ROM.

We consider non-interactive zero-knowledge proof of knowledge protocols (or
simply NIZK (proof system)) in the ROM. Below, we define a variant where the
proof is generated with respect to a label. Although syntactically different, such
NIZK is analogous to the notion of signature of knowledge [21]

Definition 1 (NIZK Proof System). Let L denote a label space, where check-
ing membership can be done efficiently. A non-interactive zero-knowledge (NIZK)
proof system ΠNIZK for the relations R and R̃ such that R ⊆ R̃ (which are impli-
citly parameterized by λ) consists of oracle-calling PPT algorithms (Prove,Verify)
defined as follows:

ProveO(lbl,X,W)→ π/⊥ : On input a label lbl ∈ L, a statement and witness pair
(X,W) ∈ R, it outputs a proof π or a special symbol ⊥ denoting abort.

VerifyO(lbl,X, π)→ >/⊥ : On input a label lbl ∈ L, a statement X, and a proof
π, it outputs either > (accept) or ⊥ (reject).

We omit the standard notions of correctness, zero-knowledge, and statistical
soundness to the full version of the paper. Below, we define one of the core
property we require from NIZK to construct our ARS.

Definition 2 (Multi-Proof Online Extractability). A NIZK proof sys-
tem ΠNIZK is (multi-proof) online extractable if there exists a PPT extractor
OnlineExtract such that for any (possibly computationally-unbounded) adversary
A making at most polynomially-many queries has at most a negligible advantage
in the following game played against a challenger (with access to a random oracle
O).

(i) The challenger prepares empty lists LO and LP , and sets flag to 0.

(ii) A can make random-oracle, prove, and extract queries an arbitrary polyno-
mial number of times:

12 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

• (hash, x): The challenger updates LO ← LO ∪ {x,O(x)} and returns
O(x). We assume below that A runs the verification algorithm after re-
ceiving a proof from the prover oracle and before submitting a proof to
the extract oracle.7

• (prove, lbl,X,W): The challenger returns ⊥ if lbl 6∈ L or (X,W) 6∈ R.
Otherwise, it returns π ← ProveO(lbl,X,W) and updates LP ← LP ∪
{lbl,X, π}.

• (extract, lbl,X, π): The challenger checks if VerifyO(lbl,X, π) = > and
(lbl,X, π) 6∈ LP , and returns ⊥ if not. Otherwise, it runs
W← OnlineExtractO(lbl,X, π, LO) and checks if (X,W) 6∈ R̃, and returns
⊥ if yes and sets flag = 1. Otherwise, if all checks pass, it returns W.

(iii) At some point A outputs 1 to indicate that it is finished with the game. We
say A wins if flag = 1. The advantage of A is defined as AdvOE

ΠNIZK
(A) =

Pr[A wins] where the probability is also taken over the randomness used by
the random oracle.

Note, importantly, that OnlineExtract is not given access to the queries ProveO

makes directly to O. Thus, OnlineExtract is not guaranteed to return a valid
witness W when called with any output of the Prove oracle. The requirement
that (lbl,X, π) /∈ LP ensures that this does not allow the adversary to trivially
win the game, and in particular by extension ensures that modifying the label
lbl should invalidate any proof obtained from the Prove oracle. When L = {⊥},
then it is a standard NIZK.

2.2 Accountable Ring Signatures

We provide the definition of accountable ring signatures (ARSs), following the
formalization introduced by Bootle et al. [12].

Definition 3 (Accountable Ring Signature). An accountable ring signa-
ture ΠARS consists of PPT algorithms (Setup,OKGen,UKGen,Sign,Verify,Open,
Judge) defined as follows:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns a public parameter
pp (sometimes implicitly) used by the scheme. We assume pp defines openers’
public-key space Kopk and users’ verification-key space Kvk, with efficient
algorithms to decide membership.

OKGen(pp)→ (opk, osk) : On input a public parameter pp, it outputs a pair of
public and secret keys (opk, osk) for an opener.

UKGen(pp)→ (vk, sk) : On input a public parameter pp, it outputs a pair of veri-
fication and signing keys (vk, sk) for a user.

Sign(opk, sk,R,M)→ σ : On input an opener’s public key opk, a signing key sk,
a list of verification keys, i.e., a ring, R = {vk1, . . . , vkN}, and a message
M, it outputs a signature σ.

7 This is w.l.o.g., and guarantees that the list LO is updated with the input/output
required to verify the proof A receives or sends.

Group Signatures and More from Isogenies and Lattices 13

Verify(opk,R,M, σ)→ >/⊥ : On input an opener’s public key opk, a ring R =
{vk1, . . . , vkN}, a message M, and a signature σ, it (deterministically) out-
puts either > (accept) or ⊥ (reject).

Open(osk,R,M, σ)→ (vk, π)/⊥ : On input an opener’s secret key osk, a ring R =
{vk1, . . . , vkN}, a message M, a signature σ, it (deterministically) outputs
either a pair of verification key vk and a proof π that the owner of vk produced
the signature, or ⊥.

Judge(opk,R, vk,M, σ, π)→ >/⊥ : On input an opener’s public key opk, a ring
R = {vk1, . . . , vkN}, a verification key vk, a message M, a signature σ, and
a proof π, it (deterministically) outputs either > (accept) or ⊥ (reject). We
assume without loss of generality that Judge(opk,R, vk,M, σ, π) outputs ⊥ if
Verify(opk,R,M, σ) outputs ⊥.

An accountable ring signature is required to satisfy the following properties:
correctness, anonymity, traceability, unforgeability, and tracing soundness.

First, we require correctness to hold even if the ring contains maliciously-
generated user keys or the signature has been produced for a maliciously-generated
opener key. Note that the correctness guarantee for the open and judge al-
gorithms are defined implicitly in the subsequent security definitions.

Definition 4 (Correctness). An accountable ring signature ΠARS is correct
if, for all λ ∈ N, any PPT adversary A has at most a negligible advantage in λ
in the following game played against a challenger.

(i) The challenger runs pp ← Setup(1λ) and generates a user key (vk, sk) ←
UKGen(pp). It then provides (pp, vk, sk) to A.

(ii) A outputs an opener’s public key, a ring, and a message tuple (opk,R,M) to
the challenger.

(iii) The challenger runs σ ← Sign(opk, sk,R,M). We say A wins if
• opk ∈ Kopk, R ⊆ Kvk, and vk ∈ R,
• Verify(opk,R,M, σ) = ⊥.

The advantage of A is defined as AdvCorrectΠARS
(A) = Pr[A wins].

Anonymity requires that a signature does not leak any information on who
signed it. We consider the standard type of anonymity notion where the ad-
versary gets to choose the signing key used to generate the signature. Moreover,
we allow the adversary to make (non-trivial) opening queries that reveal who
signed the messages. This notion is often called full (CCA) anonymity [4,11] to
differentiate between weaker notions of anonymity such as selfless anonymity
that restricts the adversary from exposing the signing key used to sign the sig-
nature or CPA anonymity where the adversary is restricted from querying the
open oracle.

Definition 5 (Anonymity). An accountable ring signature ΠARS is (CCA)
anonymous (against full key exposure) if, for all λ ∈ N, any PPT adversary
A has at most a negligible advantage in the following game played against a
challenger.

14 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

(i) The challenger runs pp← Setup(1λ) and generates an opener key (opk, osk)←
OKGen(pp). It also prepares an empty list Qsign and samples a random bit
b← {0, 1}.

(ii) The challenger provides (pp, opk) to A.
(iii) A can make signing and opening queries an arbitrary polynomial number of

times:
• (sign,R,M, sk0, sk1): The challenger runs σi ← Sign(opk, ski,R,M) for
i ∈ {0, 1} and returns ⊥ if Verify(opk,R,M, σi) = ⊥ for either of i ∈
{0, 1}. Otherwise, it updates Qsign ← Qsign ∪ {(R,M, σb)} and returns
σb.

• (open,R,M, σ): The challenger returns ⊥ if (R,M, σ) ∈ Qsign. Otherwise,
it returns
Open(osk,R,M, σ).

(iv) A outputs a guess b∗. We say A wins if b∗ = b.

The advantage of A is defined as AdvAnonΠARS
(A) = |Pr[A wins]− 1/2|.

Unforgeability considers two types of forgeries. The first captures the nat-
ural notion of unforgeability where an adversary cannot forge a signature for
a ring of honest users, i.e., a ring of users for which it does not know any of
the corresponding secret keys. The second captures the fact that an adversary
cannot accuse an honest user of producing a signature even if the ring contains
malicious users and the opener is malicious.

Definition 6 (Unforgeability). An accountable ring signature scheme ΠARS

is unforgeable (with respect to insider corruption) if, for all λ ∈ N, any PPT ad-
versary A has at most negligible advantage in the following game played against
a challenger.

(i) The challenger runs pp ← Setup(1λ) and initializes an empty keyed dic-
tionary DUKey[·] and three empty sets QUKey, Qsign and Qcor. It provides pp
to A.

(ii) A can make user key generation, signing, and corruption queries an arbitrary
polynomial number of times:

• (ukeygen): The challenger runs (vk, sk)← UKGen(pp). If DUKey[vk] 6= ⊥,
then it returns ⊥. Otherwise, it updates DUKey[vk] = sk and QUKey ←
QUKey ∪ {vk}, and returns vk.

• (sign, opk, vk,R,M): The challenger returns ⊥ if vk 6∈ QUKey ∩ R. Oth-
erwise, it runs σ ← Sign(opk,DUKey[vk],R,M). The challenger updates
Qsign ← Qsign ∪ {(opk, vk,R,M, σ)} and returns σ.

• (corrupt, vk): The challenger returns ⊥ if vk 6∈ QUKey. Otherwise, it
updates Qcor ← Qcor ∪ {vk} and returns DUKey[vk].

(iv) A outputs (opk, vk,R,M, σ, π). We say A wins if
• (opk, ∗,R,M, σ) 6∈ Qsign, R ⊆ QUKey\Qcor,
• Verify(opk,R,M, σ) = >,

or
• (opk, vk,R,M, σ) 6∈ Qsign, vk ∈ QUKey\Qcor,

Group Signatures and More from Isogenies and Lattices 15

• Judge(opk,R, vk,M, σ, π) = >.

The advantage of A is defined as AdvUnfΠARS
(A) = Pr[A wins].

Traceability requires that any opener key pair (opk, osk) in the range of the
opener key-generation algorithm can open a valid signature σ to some user vk
along with a proof valid π. This ensures that any opener can trace the user
and produce a proof for its decision. Below, rather than assuming an efficient
algorithm that checks set membership (opk, osk) ∈ OKGen(pp), we simply ask the
adversary to output the randomness used to generate (opk, osk). Note that this
definition contains the prior definitions where opk was assumed to be uniquely
defined and efficiently computable from osk [12].

Definition 7 (Traceability). An accountable ring signature scheme ΠARS is
traceable if, for all λ ∈ N, any PPT adversary A has at most negligible advantage
in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.
(ii) A returns a randomness, a ring, a message, and a signature tuple (rr,R,M,

σ). We say A wins if
• Verify(opk,R,M, σ) = >, where (opk, osk)← OKGen(pp; rr), and
• Judge(opk,R, vk,M, σ, π) = ⊥, where (vk, π)← Open(osk,R,M, σ).

The advantage of A is defined as AdvTraΠARS
(A) = Pr[A wins].

Finally, tracing soundness requires that a signature cannot trace to two dif-
ferent users in the ring. This must hold even if all the users in the ring and the
opener are corrupt.

Definition 8 (Tracing Soundness). An accountable ring signature scheme
ΠARS is traceable sound if, for all λ ∈ N, any PPT adversary A has at most
negligible advantage in the following game played against a challenger.

(i) The challenger runs pp← Setup(1λ) and provides pp to A.
(ii) A returns an opener’s public key, a ring, a message, a signature, and two

verification keys and proofs (opk,R,M, σ, {(vkb, πb)}b∈{0,1}). We say A wins if
• vk0 6= vk1,
• Judge(opk,R, vk0,M, σ, π0) = >,
• Judge(opk,R, vk1,M, σ, π1) = >.

The advantage of A is defined as AdvTraSΠARS
(A) = Pr[A wins].

3 Generic Construction of Accountable Ring Signature
and Dynamic Group Signature

In this section, we present novel generic frameworks for accountable ring sig-
nature, dynamic group signature, and their tightly secure variants. Firstly, we
introduce a generic construction of an accountable ring signature in Sec. 3.1.

16 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

Constructing a dynamic group signature immediately follows by limiting the
functionality of accountable ring signature. Our construction achieves a tighter
reduction compared to prior works on efficient group signatures as it does not
rely on the forking lemma [34,54]. However, since we still lose a factor of 1/N in
the reduction, we finally show how to modify our construction to be truly tight
using the Katz-Wang technique [43] in Sec. 3.3.

3.1 Generic Construction of Accountable Ring Signature

In this subsection, we present our generic construction of an accountable ring
signature scheme. Before diving in the details we give a brief overview of our
generic construction. The setup is as follows. The opening authorities generate a
PKE key-pair, denoted as (opk, osk) to indicate that they are the opener’s keys,
and publish the opening public key opk. The users generate an element (x,w)
in a hard relation R, and publish the statement x as verification key, and keep
the witness w as secret signing key. A signature for our ARS scheme for a ring
R = {x1, . . . , xN} consists of a ciphertext ct, and a NIZK proof that: 1) The
ciphertext is an encryption of an index I ∈ [N] under an opener public key opk,
and 2) that the signer knows a witness w corresponding to the I-th statement
xI in the ring R. The second property ensures that the signature is unforgeable,
and the first property ensures that the opener (who has the secret key opk) can
decrypt the ciphertext to find out who the real signer is. To convince others
that a signature was produced by the I-th member of the ring, the opener uses
a second NIZK proof to prove that he knows an opener secret key osk that is
consistent with opk, and such that Dec(osk, ct) = I. If the opener could find a
second secret key osk′, consistent with opk and such that ct decrypts to I ′ 6= I
under osk′, then the opener could frame I ′ for signing a signature, which breaks
the tracing soundness of the signature scheme. To prevent this we require the
PKE to satisfy a strong correctness property, which says that an encryption of
I will always decrypt to I, even if the encryption randomness and decryption
key are invalid (in some specific, controlled way). More formally we define the
following special correctness notion for a PKE scheme.

Definition 9 ((R′,KR′)-correctness). Consider a public-key encryption
scheme ΠPKE = (Setup,KeyGen,Enc,Dec), with R the set containing all possible
randomness used by Enc and KR the binary relation that contains all the key
pairs (pk, sk) that can be generated by running KeyGen. Let R′ be a set containing
R, and KR′ a relation containing KR. Then we say that ΠPKE is (R′,KR′)-
correct if, for all λ ∈ N, and for all but a negligible fraction of pp ∈ Setup(1λ),
we have for all (pk, sk) ∈ KR′, for all messages m in the plaintext space M, and
all r ∈ R′ that Dec(sk,Enc(pk,m; r)) = m.

Our generic construction of an accountable ring signature scheme ΠARS =
(ARS.Setup,ARS.OKGen,ARS.UKGen,ARS.Sign,ARS.Verify,ARS.Open,ARS.Judge),
provide in Fig. 1, is based on the following building blocks:

Group Signatures and More from Isogenies and Lattices 17

– A hard-instance generator contains a setup algorithm RelSetup that, on in-
put a security parameter λ, outputs a description pp of a pair of binary
relations Rpp ⊆ R̃pp, and an instance generator IGen for those pairs of rela-
tions. That is, RelSetup and IGen are PPT algorithms such that Pr[(x,w) ∈
Rpp | pp ← RelSetup(1λ); (x,w) ← IGen(pp)] = 1, and such that if we define
the advantage of an adversary A against (RelSetup, IGen) as

AdvHardRelSetup,IGen(A) = Pr

(x,w′) ∈ R̃pp

∣∣∣∣∣∣
pp← RelSetup(1λ)
(x,w)← IGen(pp)

w′ ← A(pp, x)

 ,
then AdvHardRelSetup,IGen(A) is a negligible function of λ for every PPT adversaryA.

– A public-key encryption scheme ΠPKE = (PKE.Setup,KeyGen,Enc,Dec) with
multi-challenge IND-CPA security, and with (R′,KR′)-correctness for some
relaxed randomness set R′ and some relaxed key relation KR′. The mes-
sage space of the encryption scheme contains a set of indices [N] for any
polynomially large N ∈ N.

– A multi-proof online extractable NIZK proof system with labels ΠNIZK,lbl =
(NIZK.Setuplbl,NIZK.Provelbl, NIZK.Verifylbl) for the relations

Rsig =
{(

({xi}i∈[N], pk, ct), (I,w, r)
) ∣∣ (xI ,w) ∈ Rpp ∧ ct = Enc(pk, I; r)

}
R̃sig =

{(
({xi}i∈[N], pk, ct), (I,w, r)

) ∣∣ (xI ,w) ∈ R̃pp ∧ ct = Enc(pk, I; r)
}
.

To be precise, we need to also include the public parameters output by
RelSetup and PKE.Setup in the statement. We omit them for better readab-
ility.

– A statistically sound NIZK proof system (without labels)ΠNIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) for the relations

Ropen = {((pk, ct, I), sk) | (pk, sk) ∈ KR ∧ Dec(sk, ct) = I}
R̃open =

{
((pk, ct, I), sk)

∣∣ (pk, sk) ∈ KR′ ∧ Dec(sk, ct) = I
}
.

Similarly to above, we omit the public parameter output by PKE.Setup in the
statement. We emphasize that ΠNIZK does not need to be online extractable.

Due to page limitation, we refer to the full version of this paper for the
correctness and security of our accountable ring signature scheme ΠARS.

3.2 Accountable Ring Signature to Dynamic Group Signature

Accountable ring signatures are known to trivially imply dynamic group signa-
tures [12,11]. A formal treatment is provided by Bootle et al. [11]. We remark that
the transformation provided in [11] retains the same level of security provided
by the underlying accountable ring signature. That is, all reductions between
unforgeability, full-anonymity and traceability are tight. For completeness, we
provide more details on group signatures and the transform in the full version
of this paper .

18 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

ARS.Setup(1λ)

1: pp1 ← RelSetup(1λ)
2: pp2 ← PKE.Setup(1λ)
3: return pp = (pp1, pp2)

ARS.OKGen(pp)

1: (pk, sk)← KeyGen(pp2)
2: return (opk := pk, osk := sk)

ARS.UKGen(pp)

1: (x,w)← IGen(pp1)
2: return (vk := x, sk := w)

ARS.Verify(opk,R,M, σ)

1: (ct, πsign)← σ
2: return NIZK.Verifylbl(M, (R, opk, ct), πsign)

ARS.Sign(opk, sk,R,M)

1: {xi}i∈[N] ← R
2: if @I : (xI , sk) ∈ Rpp1 then
3: return ⊥.
4: r

$← R
5: ct = Enc(opk, I; r)
6: πsign ←

NIZK.Provelbl(M, (R, opk, ct), (I, sk, r))
7: return σ := (ct, πsign)

ARS.Judge(opk,R, vk,M, σ, πopen)

1: (ct, πsign)← σ
2: if @I : vk = RI then
3: return ⊥.
4: b0 ← ARS.Verify(opk,R,M, σ)
5: b1 ← NIZK.Verify((opk, ct, I), πopen)
6: return b0 ∧ b1

ARS.Open(osk,R,M, σ)

1: if ARS.Verify(opk,R,M, σ) = ⊥
then

2: return ⊥
3: (ct, πsign)← σ
4: I ← Dec(osk, ct)
5: πopen ← NIZK.Prove((opk, ct, I), osk)
6: return π := (RI , πopen)

Figure 1: Generic construction of an accountable ring signature ΠARS obtained
from a hard instance generator (RelSetup, IGen), a public-key encryption algorithm
(PKE.Setup,KeyGen,Enc,Dec) satisfying some suitable security and correctness prop-
erties, a NIZK with labels ΠNIZK,lbl for Rsig, and a NIZK without labels ΠNIZK for Ropen.
The public parameter pp is provided to all algorithms where we may omit them for
readability.

3.3 Tightly Secure Variant

Observe the only source of loose reduction in the previous section was in the
unforgeability proof (see the full version of this paper), where we assume each
building blocks, i.e., NIZK and PKE, are tightly reduced to concrete hardness
assumptions. In this subsection, we present a modification of the construction in
Fig. 1 to obtain a tight reduction in the unforgeability proof by using the Katz-
Wang method [43]. The main difference is that we rely on a multi-proof online
extractable NIZK proof system with labels for the following family of relations:

RTight
sig =

((pp, {x(j)i }(i,j)∈[N]×[2], pk, ct), (I, b,w, r)
) ∣∣∣∣∣∣

(I, r) ∈ [N]×R∧
(x

(b)
I ,w) ∈ Rpp ∧

ct = Enc(pk, I; r)

R̃Tight

sig =

((pp, {x(j)i }(i,j)∈[N]×[2], pk, ct), (I, b,w, r)
) ∣∣∣∣∣∣

(I, r) ∈ [N]×R′ ∧
(x

(b)
I ,w) ∈ R̃pp ∧

ct = Enc(pk, I; r)

 .

Group Signatures and More from Isogenies and Lattices 19

We show in Sec. 5.3 that we can obtain such a NIZK efficiently by slightly
tweaking our NIZK for Rsig. The high level idea of how to use the Katz-Wang

technique along with our NIZK for RTight
sig is provided in the technical overview.

Due to page limitation, we provide the full detail in the full version of this paper.

4 Group-Action-Based Hard Instance generators and
PKEs

In this section, we introduce group-action-based hard instance generators (HIGs)
and group-action-based PKEs. These are classes of HIGs and PKEs, that derive
their security from cryptographic group actions, and which have some specific
internal structure. We define these concepts because, as we will see in Sections 5
and 6, if we instantiate our generic accountable ring signature construction with
a group-action-based HIG and a group-action-based PKE, then we can construct
a very efficient multi-proof online extractable NIZK for the Rsig relation. We
provide concrete instantiations of group-action-based HIGs and PKEs from lat-
tices and isogenies in Sec. 7.

4.1 Group-Action-based Hard Instance Generator

We consider a special class of hard instance generators naturally induced by
cryptographic hard actions.

Definition 10 (Group-Action-based Hard Instance Generator). A group-
action-based hard instance generator, GA-HIG in short, is a pair of efficient
algorithms (RelSetup, IGen) with the following properties:

– On input a security parameter λ, RelSetup outputs pp = (G,S1, S2, δ,X0,X , ?)
such that: G is an additive group whose elements can be represented uniquely,
S1 ⊆ S2 are symmetric subsets of G, such that membership in S1 and S2 can
be decided efficiently, and such that the group law can be computed efficiently
for elements in S1 ∪ S2. Moreover, the intersection S3 = ∩g∈S1g + S2 has
cardinality δ |S2| and membership of S3 can be decided efficiently. ? is an
action ? : G×X → X of G on a set X that contains the element X0. ? can
be evaluated efficiently on elements of S1∪S2. These parameters describe an
NP-relation Rpp = {(X, s) | s ∈ S1 : s ? X0 = X} , and a relaxed NP-relation

R̃pp = {(X, s) | s ∈ S2 + S3 : s ? X0 = X} .
– On input pp, IGen samples an element s from S1 and outputs (s ? X0, s) ∈
Rpp.

– (RelSetup, IGen) is a hard instance generator as defined in Sec. 3.

4.2 Group-Action-based PKE

We also consider group actions provided with a corresponding public-key en-
cryption scheme, as specified in the following definition.

20 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

Definition 11 (Group-action-based PKE). A group-action-based public-
key encryption scheme, GA-PKE in short, is a public-key encryption scheme
ΠGA-PKE = (Setup,KeyGen,Enc,Dec) with the following properties:

Setup(1λ)→ pp : On input a security parameter 1λ, it returns the public para-
meter pp = (G,GM,X , S1, S2, δ,DX , ?M,M) (sometimes implicitly) used by
the scheme. Here, G,GM are additive groups, S1, S2 two symmetric subsets
of G, X a finite set, δ a real number in [0, 1], DX a distribution over a set
of group actions ?pk : G× X → X and elements in X , ?M : GM × X → X a
group action, M⊆ GM a message space. For any polynomially large N ∈ N,
we assume that there exists a feasible and invertible embedding τ from the
set of index [N] into the message space M. For simplicity, we will write
τ(i) ?M X, Enc(pk, τ(i)) as i ?M X, Enc(pk, i) respectively without causing
confusion.

KeyGen(pp)→ (pk, sk) : On input a public parameter pp, it returns a public key
pk and a secret key sk. We assume pk = (?pk, Xpk) to be drawn from DX ,
where ?pk : G × X → X is a group action and Xpk ∈ X , and sk ∈ G. We
also assume pk includes pp w.l.o.g.

Enc(pk,M; r) → ct : On input a public key pk = (?pk, Xpk) and a message
M ∈M, it returns a ciphertext ct. We assume ct is generated as M ?M (r ?pk
Xpk) ∈ X , where the encryption randomness is sampled as r

$← S1.
Dec(sk, ct)→ M : On input a secret key skand a ciphertext ct, it (determinist-

ically) returns a message M ∈M.

In addition, we assume the following properties hold for the group actions
defined by pp.

1. There exists a positive-valued polynomial T such that for all λ ∈ N, pp ∈
Setup(1λ), and (pk, sk) ∈ KeyGen(pp), one can efficiently compute g?pkX for
all g ∈ S1 ∪ S2 and all X ∈ X in time at most T (λ), sample uniformly from
S1 and S2, and represent elements of G and X uniquely. It is also efficient
to compute the action ?M for every possible input.

2. The intersection S3 of the sets S2 + g, with g varying in S1, is such that its
cardinality is equal to δ |S2|. Furthermore, it is efficient to check whether an
element g ∈ G belongs to S3.

We further require a group-action-based PKE to satisfy standard correctness
and decryption efficiency.

Definition 12 (Correctness and Decryption Efficiency). We say a group-
action-based PKE ΠGA-PKE is correct if for all λ ∈ N, and for all but a negligible
fraction of pp ∈ Setup(1λ), we have Dec(sk,Enc(pk,M)) = M for all (pk, sk) ∈
KeyGen(pp)and M ∈ M. Moreover, we require Dec to run in poly(λ) for a fixed
polynomial function poly and for all possible inputs.

As we show in Sec. 3.1, in order to construct an accountable ring signature, a
group-action-based PKE is also required to be (multi-challenge) IND-CPA secure
and (R′,KR′)-correct for some relaxed randomness set R′ and some relaxed key
relation KR′ (Def. 9).

Group Signatures and More from Isogenies and Lattices 21

5 Sigma Protocol for a “Traceable” OR Relation

In this section, we present an efficient sigma protocol for the relation Rsig intro-
duced in Sec. 3.1, using group-action-based HIG and a group-action-based PKE
from the previous section. Recall this relation was used to define the multi-proof
online extractable NIZK with labels ΠNIZK, which allowed an OR proof along
with a proof of opening to a ciphertext. Looking ahead, in Sec. 6, we show that
our sigma protocol can be turned into a multi-proof online extractable NIZK
using the Fiat-Shamir transform. This is in contrast to the common application
of Fiat-Shamir transform that only provides a proof of knowledge via the re-
winding argument [34,54]. We note that we do not focus on the other NIZK for
the relation Ropen in Sec. 3.1 since they can be obtained easily from prior works.

We call the sigma protocol we present in this section as a traceable OR
sigma protocol since it allows to trace the prover. This section is structured
as follows. Firstly, we introduce a base traceable OR sigma protocol Πbase

Σ for
the relation Rsig with proof size O(logN) but with a binary challenge space.
Secondly, we amplify the soundness of the sigma protocol by performing parallel
repetitions. Here, instead of applying λ-parallel repetitions naively, we optimize
it using three approaches developed in [7] to obtain our main traceable OR sigma

protocol Π tOR
Σ . Finally, we show a sigma protocol for the “tight” relation RTight

sig

introduced in Sec. 3.3.

5.1 From a Group-Action-Based HIG and PKE to Base Traceable
OR Sigma Protocol

In this section, we present a base OR sigma protocol for the relation Rsig with
a binary challenge space from which the main OR sigma protocol will be deduced.

Parameters and Binary Relation. The sigma protocol is based on a group-
action-based HIG and PKE. Let pp1 = (G,X , S1, S2, δx, ?,X0) and pp2 = (G,GT,
Y, S1, S2, δy, DY , ?M,M) be public parameters in the image of RelSetup and
PKE.Setup, respectively. Moreover, let (pk, sk) ∈ KeyGen(pp2). The relation Rsig

in Sec. 3.1 can be equivalently rewritten as follows:

Rsig =

{(
({Xi}i∈[N], pk, ct), (I, s, r)

) ∣∣∣∣ (I, s, r) ∈ [N]× S1 × S1∧
XI = s ? X0 ∧ ct = Enc(pk, I; r)

}
.

Recall that by definition of GA-PKE (Def. 11), the ciphertext ct is restricted to
the simple form I ?M (r ?pk Ypk) ∈ Y, where r ∈ S1 ⊆ G.

Sigma Protocol for Rsig. We now sketch the base traceable OR sigma protocol

Πbase
Σ . A prover with witness (I, s, r) ∈ [N] × S1 × S1 first samples (s′, r′)

$←
S2 × S2, and ({bitsi}i∈[N])← {0, 1}λN . Then, it computes commitments

Ci = O(Com ‖ s′ ? Xi ‖ r′ ?pk (−i ?M ct) ‖ bitsi) ∀i ∈ [N],

and builds a Merkle tree with (C1, . . . ,CN) as its leaves, obtaining root. Here,
notice r′ ?pk (−i ?M ct) = r′ ?pk (−i + I) ?M (r ?pk Ypk) is simply (r′ + r) ?pk Ypk

22 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

when i = I. Then, the prover sends com = root to the verifier as the commitment
of the sigma protocol. The verifier, in turn, responds with a uniform challenge
chall ∈ {0, 1}.

If the challenge bit chall is 0, then the prover sends (s′, r′) and the commit-
ment randomness {bitsi}i∈[N]. That is, all the randomness it generated in the
first round. The verifier then can reconstruct the Merkle tree and verify that the
root of the obtained tree is equal to root.

If the challenge bit chall is equal to 1, then the prover computes s′′ = s′ + s,
r′′ = r′+ r. The prover aborts the protocol if s′′ 6∈ S3 or r′′ 6∈ S3. The first event
will occur with probability (1−δx) and, similarly, the second event will occur with
probability (1− δy). Otherwise, the prover sends (r′′, s′′) together with the path
connecting CI to root in the Merkle tree, and the corresponding commitment
randomness bitsI to the verifier. The verifier computes C̃I = O(Com ‖ s′′ ? X0

‖ r′′ ?pk Ypk ‖ bitsI) and uses the received path to reconstruct r̃oot of the Merkle
tree. The verifier checks whether r̃oot = root.

To reduce the communication cost, a pseudorandom number generator (PRG)
Expand can be run over a uniform seed seed ∈ {0, 1}λ to produce the group ele-
ments s′, r′ and all commitment randomness values bits1, . . . , bitsN (part of the
response for chall = 0). As a consequence, if the challenge bit is 0, the prover re-
sponds with seed so that the verifier can generate (s′, r′, bits1, · · · , bitsN) with the
PRG Expand. The response corresponding to the challenge bit chall = 1 remains
unchanged. We instantiate the PRG by a random oracle O(Expand ‖ ·). Looking
ahead, using a PRG not only provides efficiency, but it proves to be essen-
tial when proving multi-proof online extractability when compiled into a NIZK.
Roughly, the seed binds the cheating prover from using arbitrary (s′, r′, bits1, · · · ,
bitsN) and the random oracle allows for efficient extraction. Finally, we instan-
tiate the collision-resistant hash function HColl(·) used in our Merkle tree by a
random oracle O(Coll ‖ ·).

A formal description of Πbase
Σ is provided in Fig. 2. The full detail on its

correctness and security is provided in the full version of this paper.

5.2 From Base to Main Traceable OR Sigma Protocol

In this section, we expand the challenge space of Πbase
Σ to make the soundness

error negligibly small. Such expansion is straightforward if we run the OR sigma
protocol in parallel λ-times. However, we show how to do much better by in-
corporating the three optimizations developed in [7] explained in the technical
overview. As the way we apply these optimizations follows [7] closely, we leave
the details of our main traceable OR sigma protocol, denoted by Π tOR

Σ , to the
full version of this paper.

5.3 Base Sigma Protocol for The “Tight” Relation RTight
sig

In this section, we show how to slightly tweak our base sigma protocol for the re-
lation Rsig to obtain a sigma protocol for the “tight” relation RTight

sig (see Sec. 3.3).

Group Signatures and More from Isogenies and Lattices 23

round 1: P ′O1 (({Xi}i∈[N], pk, ct), (I, s, r))

1: seed
$← {0, 1}λ

2: (s′, r′, bits1, · · · , bitsN)← O(Expand ‖ seed) . Sample (s′, r′) ∈ S2 × S2 and
bits ∈ {0, 1}λ

3: for i from 1 to N do
4: (Ti, cti)← (s′ ? Xi, r

′ ?pk (−i ?M ct))
5: Ci ← O(Com ‖ Ti ‖ cti ‖ bitsi) . Create commitments Ci ∈ {0, 1}2λ

6: (root, tree)← MerkleTree(C1, · · · ,CN)
7: Prover sends com← root to Verifier.

round 2: V ′1 (com)

1: c
$← {0, 1}

2: Verifier sends chall← c to Prover.

round 3: P ′2((I, s, r), chall)

1: c← chall
2: if c = 1 then
3: (s′′, r′′)← (s′ + s, r′ + r)
4: if s′′ 6∈ S3 or r′′ 6∈ S3 then
5: P aborts the protocol.

6: path← getMerklePath(tree, I)
7: resp← (s′′, r′′, path, bitsI)
8: else
9: resp← seed

10: Prover sends resp to Verifier

Verification: V ′O2 (com, chall, resp)

1: (root, c)← (com, chall)
2: if c = 1 then
3: (s′′, r′′, path, bits)← resp
4: if s′′ 6∈ S3 or r′′ 6∈ S3 then
5: V outputs reject.

6: (T̃ , c̃t)← (s′′ ? X0, r
′′ ?pk Ypk)

7: C̃← O(Com ‖ T̃ ‖ c̃t ‖ bits)

8: r̃oot← ReconstructRoot(C̃, path)
9: Verifier accepts only if r̃oot = root.

10: else
11: Repeat round 1 with seed← resp.
12: Output accept if the computation

results in root, and reject otherwise.

Figure 2: Construction of the base traceable OR sigma protocol Πbase
Σ = (P ′ =

(P ′1, P
′
2), V ′ = (V ′1 , V

′
2)) for the relation Rsig. Informally, O(Expand‖·) and O(Com‖·)

are a PRG and a commitment scheme instantiated by the random oracle, respectively.

This can then be used to construct the desired NIZK for RTight
sig required for our

tightly secure accountable ring signature construction (see the full version of this
paper).

As explained in the technical overview, we can use the sigma protocol for
Rsig along with the sequential OR-proof [36] to construct a sigma protocol for

the “tight” relation RTight
sig . Unfortunately, this approach requires to double the

proof size. Instead, we present a small tweak to our sigma protocol for Rsig to

directly support statements in RTight
sig . Concretely, we use the same Merkle tree

to commit to the 2N instances {X(j)
i }(i,j)∈[N]×[2] and for each X

(1)
i and X

(2)
i , we

encrypt the same index i. The main observation is that when the prover opens
to the challenge bit 1 (which is the only case that depends on the witness), the

path does no leak which X
(1)
i and X

(2)
i it opened to, and hence hides b ∈ [2].

Notice the only increase in the size of the response is due to the path. Since
the accumulated commitment only grows from N to 2N , the overhead in the size

24 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

of the path is merely 2λ bits. By using the unbalanced challenge space CM,K for
the optimized parallel repetition, which consists of M -bit strings of Hamming
weight K, the additional cost is only 2Kλ where we typically set K to be a
small constant (e.g., K ≤ 20 for our concrete instantiation). This is much more
efficient than the generic approach that doubles the proof size. More details are
provided in the full version of this paper.

6 Multi-Proof Online Extractable NIZK From Sigma
Protocol Π tOR

Σ

In this section, we show that applying the Fiat-Shamir transform to our traceable
OR sigma protocol Π tOR

Σ from the previous section results in a multi-proof online
extractable NIZK with labels ΠNIZK,lbl. The construction of our ΠNIZK,lbl for the
relation Rsig is provide in Fig. 3.8 We assume the output of O(FS‖ ·) is an M -bit
string of Hamming weight K, i.e., the image is the challenge set CM,K .

ProveO(lbl, ({Xi}i∈[N], pk, ct), (I, sI , r))

1: resp := ⊥
2: while resp = ⊥ do
3: com← PO1 (({Xi}i∈[N], pk, ct), (I, sI , r))
4: chall← O(FS ‖ lbl ‖ ({Xi}i∈[N], pk, ct) ‖ com)
5: resp← PO2 ((I, sI , r), chall)

6: return π ← (com, chall, resp)

VerifyO(lbl, ({Xi}i∈[N], pk, ct), π)

1: (com, chall, resp)← π
2: if accept← V O2 (com, chall, resp)∧ chall = O(FS ‖ lbl ‖ ({Xi}i∈[N], pk, ct) ‖ com)

then
3: return >
4: else
5: return ⊥

Figure 3: A multi-proof online extractable NIZK with labelsΠNIZK,lbl for the relationRsig

obtained by applying the Fiat-Shamir transform to the traceable OR sigma protocol
Π tOR
Σ = (P = (P1, P2), V = (V1, V2)) defined in the full version of this paper.

Correctness of ΠNIZK,lbl for the relation Rsig follows directly from the correct-
ness of the underlying traceable OR sigma protocol Π tOR

Σ . We show in the full
version of this paper that ΠNIZK,lbl is multi-proof online extractable and zero-
knowledge. We highlight that while we show special soundness for Π tOR

Σ with
respect to the relaxed relation R̃′sig (see the full version), ΠNIZK,lbl is multi-proof

8
An astute reader may notice that the prover is only expected polynomial time. We can always
assign an upper bound on the runtime of the prover, but did not do so for better readability. In
practice, for concrete choices of the parameter, the number of repetition never exceeds, say 10.

Group Signatures and More from Isogenies and Lattices 25

online extractable with respect to the relaxed relation R̃sig originally considered
in Sec. 3.1 for the generic construction of accountable ring signature. At a high
level, we upper bound the probability that a cheating prover finds a collision in
the random oracle, which was the only difference between R̃sig and R̃′sig. This
subtle difference makes the resulting NIZK more handy to use as a building block,
since we can ignore the edge case where the extractor accidentally extracts a col-
lision in the random oracle. Due to page limitation, the proof of zero-knowledge
is provided in the full version of the paper. Below, we provide the proof of the
multi-proof online extractability. Formally, we have the following.

Theorem 13. The NIZK with labels ΠNIZK,lbl in Fig. 3 is multi-proof online

extractable for the family of relations Rsig and R̃sig considered in Sec. 3.1, where
Rsig was formally redefined using notations related to group actions in Sec. 5.1

and R̃sig is formally redefined as follows:

R̃sig =

{
(({Xi}i∈[N], pk, ct),W)

∣∣∣∣ W = (I, s, r) ∈ [N]× (S2 + S3)× (S2 + S3)
∧ XI = s ? X0 ∧ ct = Enc(pk, I; r)

}
.

More precisely, for any (possibly computationally-unbounded) adversary A mak-
ing at most Q queries to the random oracle and T queries to the extract oracle,
we have

AdvOE
ΠNIZK,lbl

(A) ≤ T ·
(
Q2/22λ−2 + (M ·Q)/2λ + 1/ |CM,K |

)
,

where CM,K is the challenge space (or equivalently the output space of O(FS‖·)).

Proof. We begin the proof by providing the description of the online extractor
OnlineExtract. Below, it is given as input (lbl,X, π, LO), where π is guaranteed
to be valid by definition.

1. It parses ({Xi}i∈[N], pk, ct) ← X, (com, chall, resp) ← π, ((salt, com1, · · · ,
comM), c = (c1, · · · , cM)) ← (com, chall), (seedsinternal, {respj}j s.t. cj=1) ←
resp, and rootj ← comj for j ∈ [M].9

2. For j ∈ [M] such that cj = 1, it proceeds as follows:

(a) It parses (s′′j , r
′′
j , pathj)← respj .

(b) For every
(
(salt ‖ j ‖Expand ‖ seed), (s′, r′, bits1, · · · , bitsN)

)
∈ LO, where

salt ‖ j ‖ Expand is fixed, it proceeds as follows:

i. It sets (s, r) = (s′′j − s′, r′′j − r′) and checks if (s, r) ∈ (S2 + S3) ×
(S2 + S3).

ii. It then checks if there exists I ∈ [N] such that XI = s ? X0 and
ct = Enc(pk, I; r).

iii. If all the check above passes, it returns W = (I, s, r).

3. If it finds no witness W of the above form, then it returns W = ⊥.

9
Throughout the proof, we use overlines for (com, chall, resp) to indicate that it is a transcript of of

ΠtOR
Σ . We use respi without overlines to indicate elements of resp.

26 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

We analyze the probability of A winning the multi-proof online extractability
game with the above online extractor OnlineExtract. Below, P ′ and V ′ are the
prover and verifier of the base traceable OR sigma protocol Πbase

Σ in Fig. 2.

– We say a tuple inputbase = (X, salt, j, com, chall, resp) is valid if the following
properties hold:
• chall = 1;

• V ′O(salt‖j‖·)
2 (com, chall, resp) outputs accept (i.e., it is a valid transcript

for Πbase
Σ with challenge 1);

• there exists (seed, s′, r′, bits1, · · · , bitsN) such that
(
(salt ‖ j ‖ Expand ‖

seed), (s′, r′, bits1, · · · , bitsN)
)
∈ LO, and if we execute P

′O(salt‖j‖·)
1 with

randomness seed, it produces com. Here, we use the fact that P
′O(salt‖j‖·)
1

can be executed without the witness. By correctness of Πbase
Σ , this implies

that (com, 0, seed) is a valid transcript.
– We say a tuple inputbase = (X, salt, j, com, chall, resp) is invalid if chall = 1,

V
′O(salt‖j‖·)
2 (com, chall, resp) outputs accept, but it is not valid.

Observe that if inputbase is valid, then the online extractor can recover a valid
transcript (com, 0, seed) from inputbase. Then, it can (informally) extract a wit-
ness by combining it with (com, 1, resp) and using the extractor from Πbase

Σ con-
structed in the full version of this paper. In contrast, if inputbase is invalid, then
intuitively, no adversary would be able to prepare a valid response resp = seed
for the challenge chall = 0 since LO (i.e., the random oracle query the adversary
makes) does not contain a valid response. However, to make this claim formal,
we need to also take into account the fact that the adversary may learn non-
trivial information about resp = seed via the proof output by the prove query.
That is, when the challenger runs PO, the adversary may learn non-trivial in-
put/output pairs without directly querying the random oracle itself. In this case,
even though no useful information is stored in LO, the adversary may still be
able to forge a proof.

We formally show in Lem. 14 below that if an adversary A submits an extract
query on a valid input (lbl,X, π), then a valid inputbase must be included in π (i.e.,
it cannot consist of inputbase that are all invalid). This allows us to argue that the
online extractor will be able to recover two valid transcripts with overwhelming
probability, which then further allows the online extractor to extract the witness
by running the extractor for the special soundness of the base traceable OR
sigma protocol Πbase

Σ . Due to page limitation, the proof is provide in the full
version of this paper.

Lemma 14. Assume an adversary A submits a total of T extract queries of
the form {(lblk,Xk, πk)}k∈[T], where every πk is a valid proof including the same
salt and satisfies (lblk,Xk, πk) 6∈ LP . Let {(comk,j , challk,j , respk,j)}j∈[M] be the

transcript of the base traceable OR sigma protocol Πbase
Σ that the verification

algorithm reconstructs when verifying πk (see the full version of the paper). Then,
with probability at least 1−T ·

(
Qsalt/2

2λ−1 + (M ·Qsalt)/2
λ+ 1/ |CM,K |

)
, for all

k ∈ T there exists at least one j ∈ [M] such that inputbase = (Xk, salt, j, comk,j ,
challk,j = 1, respk,j) is valid.

Group Signatures and More from Isogenies and Lattices 27

We are now prepared to analyze the probability that A wins the multi-proof
online extractability game with the aforementioned online extractor OnlineExtract.
By Lem. 14, if A makes at most T extract queries, then by a simple union
bound and using the inequality

∑
iQsalti ≤ Q, with probability at least 1 − T ·(

(2Q)/22λ + (M · Q)/2λ + 1/ |CM,K |
)
, all the inputbase included in the queried

proof are valid. Then, by the definition of valid and the description of OnlineExtract,
OnlineExtract is able to extract two valid transcripts for all T proofs queried by
A. As shown in the full version of the paper, OnlineExtract either succeeds in
extracting a witness W = (I, s, r) ∈ [N]× (S2 +S3)× (S2 +S3) or a witness that
consists of a collision in O(salt‖j‖Coll‖·) or O(salt‖j‖Com‖·) for some j ∈ [M].
Hence, with all but probability Q2/22λ, OnlineExtract succeeds in extracting a
witness W = (I, s, r) as desired, conditioned on all the inputbase included in the
queried proof are valid. Collecting the bounds, we arrive at our statement.

7 Instantiations

We instantiate the building blocks required for our generic construction of an
accountable ring signature scheme presented in Sec. 3 via isogenies based on
CSIDH group action and lattices. Specifically, we instantiate a group-action-
based HIG and PKE, and the corresponding NIZKs for the relations Rsig and
Ropen from the CSIDH group action and the MLWE group action. We use well-
known PKEs based on isogenies and lattices as the basis for the group-action-
based PKE. Due to page limitation, the details are provided in the full version
of this paper.

We finish by providing details on how we arrive at the concrete parameters
presented in Tab. 1. For our isogeny based instantiation, we chose an HIG and a
PKE based on the CSIDH-512 group action. The structure of this class group has
been computed, which allows for more efficient proofs. We chose the challenge
space as string of length M = 855 with Hamming weight K = 19. Most of the
signature is independent of N , and contains a fixed number of curves and class
group elements as well as some overhead from the generic construction such as
a hash value, the internal nodes in the seed tree, and commitment randomness
to open the commitments. The only reason the signature size increases with N
is that the signature contains a fixed amount of paths in a Merkle tree of depth
log2N . This makes for a very mild dependence on N .

For the lattice based instantiations, we use M = 1749,K = 16. Our HIG
is based on the NIST security level 2 parameter set from the (Round 3) NIST
submission Dilithium. Our PKE uses the Lindner-Peikert framework, where we
are forced to use MLWE parameters with a large modulus (q ≈ 249) to achieve
the (R′,KR′)-correctness requirement. For the instantiation without manager
accountability, we only need (R′,KR)-correctness which allows us to use smaller
parameters (q ≈ 230). We use an optimization due to Bai and Galbraith to reduce
the size of the proofs (and therefore the size of the signature). Similar to the
isogeny instantiation, the signature size depends very mildly on N because N
only affects the length of some paths in the signature. For precise parameters

28 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

we refer to the full version of this paper. Finally, we can use Sec. 5.3 to obtain
a tightly secure scheme. Since K = 16, the overhead compared to the non-tight
scheme is a mere 512B.

Acknowledgements

Yi-Fu Lai was supported by the Ministry for Business, Innovation and Employ-
ment in New Zealand. Shuichi Katsumata was supported by JST CREST Grant
Number JPMJCR19F6, Japan. This work was supported by CyberSecurity Re-
search Flanders with reference number VR20192203, and in part by the Research
Council KU Leuven grant C14/18/067 on Cryptanalysis of post-quantum cryp-
tography. Ward Beullens is funded by FWO Junior Postdoc- toral Fellowship
1S95620N.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
ASIACRYPT 2002, pp. 415–432.

2. T. Attema, V. Lyubashevsky, and G. Seiler. Practical product proofs for lattice
commitments. CRYPTO 2020, Part II, pp. 470–499.

3. M. Backes, L. Hanzlik, and J. Schneider-Bensch. Membership privacy for fully
dynamic group signatures. ACM CCS 2019, pp. 2181–2198.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. EUROCRYPT 2003, pp. 614–629.

5. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. CT-RSA 2005, pp. 136–153.

6. D. Bernhard, M. Fischlin, and B. Warinschi. Adaptive proofs of knowledge in the
random oracle model. PKC 2015, pp. 629–649.

7. W. Beullens, S. Katsumata, and F. Pintore. Calamari and Falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices. ASIACRYPT 2020, Part II,
pp. 464–492.

8. W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. ASIACRYPT 2019, Part I, pp. 227–
247.

9. P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty
via group signatures without encryption. SCN 10, pp. 381–398.

10. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. CRYPTO 2004,
pp. 41–55.

11. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully
dynamic group signatures. ACNS 16, pp. 117–136.

12. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short ac-
countable ring signatures based on DDH. ESORICS 2015, Part I, pp. 243–265.

13. J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er) exact
lattice-based zero-knowledge proofs. CRYPTO 2019, Part I, pp. 176–202.

14. C. Boschini, J. Camenisch, and G. Neven. Floppy-sized group signatures from
lattices. ACNS 18, pp. 163–182.

Group Signatures and More from Isogenies and Lattices 29

15. E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. ACM
CCS 2004, pp. 132–145.

16. E. Brickell and J. Li. Enhanced privacy id: A direct anonymous attestation scheme
with enhanced revocation capabilities. In Proceedings of the 2007 ACM workshop
on Privacy in electronic society, pp. 21–30.

17. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT’97, pp.
465–479.

18. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. ASIAC-
RYPT 2000, pp. 331–345.

19. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. CRYPTO 2003, pp. 126–144.

20. W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An
efficient post-quantum commutative group action. ASIACRYPT 2018, Part III,
pp. 395–427.

21. M. Chase and A. Lysyanskaya. On signatures of knowledge. CRYPTO 2006, pp.
78–96.

22. D. Chaum and E. van Heyst. Group signatures. EUROCRYPT’91, pp. 257–265.
23. R. Clarisse and O. Sanders. Group signature without random oracles from ran-

domizable signatures. ProvSec 2020, pp. 3–23.
24. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. CRYPTO’98, pp. 13–25.
25. R. del Pino, V. Lyubashevsky, and G. Seiler. Lattice-based group signatures and

zero-knowledge proofs of automorphism stability. ACM CCS 2018, pp. 574–591.
26. C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signa-

tures. Progress in Cryptology - VIETCRYPT 06, pp. 193–210.
27. D. Derler and D. Slamanig. Highly-efficient fully-anonymous dynamic group sig-

natures. ASIACCS 18, pp. 551–565.
28. A. El Kaafarani, S. Katsumata, and F. Pintore. Lossy CSI-FiSh: Efficient signature

scheme with tight reduction to decisional CSIDH-512. PKC 2020, Part II, pp. 157–
186.

29. M. F. Esgin, N. K. Nguyen, and G. Seiler. Practical exact proofs from lattices:
New techniques to exploit fully-splitting rings. ASIACRYPT 2020, Part II, pp.
259–288.

30. M. F. Esgin, R. Steinfeld, J. K. Liu, and D. Liu. Lattice-based zero-knowledge
proofs: New techniques for shorter and faster constructions and applications.
CRYPTO 2019, Part I, pp. 115–146.

31. M. F. Esgin, R. Steinfeld, and R. K. Zhao. Matrict+: More efficient post-quantum
private blockchain payments. Cryptology ePrint Archive, Report 2021/545.

32. M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu. MatRiCT: Efficient,
scalable and post-quantum blockchain confidential transactions protocol. ACM
CCS 2019, pp. 567–584.

33. M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang. A provably secure
group signature scheme from code-based assumptions. ASIACRYPT 2015, Part I,
pp. 260–285.

34. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. CRYPTO’86, pp. 186–194.

35. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. CRYPTO 2005, pp. 152–168.

36. M. Fischlin, P. Harasser, and C. Janson. Signatures from sequential-OR proofs.
EUROCRYPT 2020, Part III, pp. 212–244.

30 W. Beullens, S. Dobson, S. Katsumata, Y.-F. Lai, and F. Pintore

37. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. CRYPTO’99, pp. 537–554.

38. J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps.
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, 89(5):1328–1338.

39. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from
lattice assumptions. ASIACRYPT 2010, pp. 395–412.

40. J. Groth. Fully anonymous group signatures without random oracles. ASIAC-
RYPT 2007, pp. 164–180.

41. S. Katsumata and S. Yamada. Group signatures without NIZK: From lattices in
the standard model. EUROCRYPT 2019, Part III, pp. 312–344.

42. J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge
with applications to post-quantum signatures. ACM CCS 2018, pp. 525–537.

43. J. Katz and N. Wang. Efficiency improvements for signature schemes with tight
security reductions. ACM CCS 2003, pp. 155–164.

44. S. Kumawat and S. Paul. A new constant-size accountable ring signature scheme
without random oracles. In International Conference on Information Security and
Cryptology, pp. 157–179. Springer.

45. F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group signa-
tures with logarithmic signature size. ASIACRYPT 2013, Part II, pp. 41–61.

46. R. W. F. Lai, T. Zhang, S. S. M. Chow, and D. Schröder. Efficient sanitizable
signatures without random oracles. ESORICS 2016, Part I, pp. 363–380.

47. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. EUROCRYPT 2016, Part II, pp. 1–31.

48. B. Libert, F. Mouhartem, T. Peters, and M. Yung. Practical “signatures with
efficient protocols” from simple assumptions. ASIACCS 16, pp. 511–522.

49. B. Libert, T. Peters, and M. Yung. Short group signatures via structure-preserving
signatures: Standard model security from simple assumptions. CRYPTO 2015,
Part II, pp. 296–316.

50. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Constant-size group signatures from
lattices. PKC 2018, Part II, pp. 58–88.

51. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Practical lattice-based zero-
knowledge proofs for integer relations. ACM CCS 2020, pp. 1051–1070.

52. V. Lyubashevsky, N. K. Nguyen, and G. Seiler. SMILE: Set membership from
ideal lattices with applications to ring signatures and confidential transactions.
CRYPTO 2021, Part II, pp. 611–640, Virtual Event, 2021.

53. C. Peikert. He gives C-sieves on the CSIDH. EUROCRYPT 2020, Part II, pp.
463–492.

54. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396.

55. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. ASIACRYPT 2001,
pp. 552–565.

56. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle
model. EUROCRYPT 2015, Part II, pp. 755–784.

57. S. Xu and M. Yung. Accountable ring signatures: A smart card approach. In Smart
Card Research and Advanced Applications VI, pp. 271–286. Springer, 2004.

58. R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based
zero-knowledge arguments with standard soundness: Construction and applica-
tions. CRYPTO 2019, Part I, pp. 147–175.

	Group Signatures and More from Isogenies and Lattices: Generic, Simple, and Efficient
	Introduction
	Our Contribution
	Technical overview

	Preliminaries
	Non-Interactive Zero-Knowledge Proofs of Knowledge in the ROM.
	Accountable Ring Signatures

	Generic Construction of Accountable Ring Signature and Dynamic Group Signature
	Generic Construction of Accountable Ring Signature
	Accountable Ring Signature to Dynamic Group Signature
	Tightly Secure Variant

	Group-Action-Based Hard Instance generators and PKEs
	Group-Action-based Hard Instance Generator
	Group-Action-based PKE

	 Sigma Protocol for a “Traceable” OR Relation
	From a Group-Action-Based HIG and PKE to Base Traceable OR Sigma Protocol
	From Base to Main Traceable OR Sigma Protocol
	Base Sigma Protocol for The ``Tight'' Relation R-tight

	Multi-Proof Online Extractable NIZK From Sigma Protocol main traceable OR sigma protocol
	Instantiations

