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Abstract. In Crypto’21 Gu, Jarecki, and Krawczyk [25] showed an
asymmetric password authenticated key exchange protocol (aPAKE)
whose computational cost matches (symmetric) password authenticated
key exchange (PAKE) and plain (i.e. unauthenticated) key exchange
(KE). However, this minimal-cost aPAKE did not match prior
aPAKE’s in round complexity, using 4 rounds assuming the client
initiates compared to 2 rounds in an aPAKE of Bradley et al. [13].
In this paper we show two aPAKE protocols (but not strong aPAKEs
like [30, 13]), which achieve optimal computational cost and optimal
round complexity. Our protocols can be seen as variants of the
Encrypted Key Exchange (EKE) compiler of Bellovin and Merritt [7],
which creates password-authenticated key exchange by
password-encrypting messages in a key exchange protocol. Whereas
Bellovin and Merritt used this method to construct a PAKE by
applying password-encryption to KE messages, we construct an aPAKE
by password-encrypting messages of a unilaterally authenticated Key
Exchange (ua-KE). We present two versions of this compiler. The first
uses salted password hash and takes 2 rounds if the server initiates. The
second uses unsalted password hash and takes a single simultaneous
flow, thus simultaneously matching the minimal computational cost and
the minimal round complexity of PAKE and KE.
We analyze our aPAKE protocols assuming an Ideal Cipher (IC) on a
group, and we analyze them as modular constructions from ua-KE
realized via a universally composable Authenticated Key Exchange
where the server uses one-time keys (otk-AKE). We also show that
one-pass variants of 3DH and HMQV securely realize otk-AKE in the
ROM. Interestingly, the two resulting concrete aPAKE’s use the exact
same protocol messages as variants of EKE, and the only difference
between the symmetric PAKE (EKE) and asymmetric PAKE (our
protocols) is in the key derivation equation.

1 Introduction

Password authenticated key exchange (PAKE) lets two parties establish a
secure shared session key if and only if they hold the same (possibly
low-entropy) password. The asymmetric password authenticated key exchange



protocols (aPAKE) is a client-server variant of such protocol where the input to
the server party is a one-way function of the password, a.k.a., a password hash,
and the protocol establishes a shared key iff the client’s input is a preimage of
the server’s input. Both PAKE’s and aPAKE’s have been extensively studied in
the crypto literature, starting from respectively [7] and [29], but recently there
has been a renewed interest in aPAKE’s due to the weaknesses of current
password authentication methods and to the ongoing PAKE standardization
effort of the Internet Engineering Task Force [39]. Perhaps the most striking
vulnerabilities of the current PKI-based “password-over-TLS” authentication
practice, where the client sends its password over a TLS connection to the
server, are that it enables phishing attacks against clients who establish a TLS
connection with the wrong party, and that it discloses password cleartexts on
the server, exposing them to server-side attacks. (To see why the latter might
be a problem consider that even security-conscious companies were known to
accidentally store large quantities of plaintext passwords [1, 2].)

The recent work of Gu, Jarecki, and Krawczyk [25] considered minimal-cost
aPAKE’s, and they showed an aPAKE protocol KHAPE which nearly matches
the computational cost of unauthenticated key exchange (KE), namely
Diffie-Hellman (uDH), which is 1fb+1vb exp per party (i.e., 1 fixed-base and 1
variable-base exponentiation). The KE cost is a lower-bound for both PAKE
and aPAKE because aPAKE ⇒ PAKE ⇒ KE. However, the minimal-cost
aPAKE protocol of [25] is not close to KE in round complexity. Indeed, the
aPAKE of [25] takes 3 rounds assuming the server initiates the protocol, while
uDH takes a single simultaneous flow, where each party sends a single protocol
message without waiting for the counterparty. Note that this minimal round
complexity is achieved by minimal-cost universally composable (UC) PAKE’s,
including EKE [7, 6, 37], SPAKE2 [4, 3], and TBPEKE [38, 3].3

Our Contributions. We show that cost-optimal aPAKE does not have to
come at the expense of round complexity. We do so with two new aPAKE
constructions, called OKAPE and aEKE, which are generic compilers that
construct aPAKE’s from any key-hiding one-time-key Authenticated Key
Exchange (otkAKE). Both constructions use the Random Oracle Model (ROM)
and an Ideal Cipher (IC) on message spaces formed by otkAKE public keys,
and in the case of aEKE also on the space(s) of otkAKE protocol messages. We
define the notion of key-hiding otkAKE as a relaxation of the UC key-hiding
AKE of [25], and we show that it is realized by “one-pass” variants of 3DH and
HMQV which were shown as UC key-hiding AKEs in [25].

The two compilers instantiated with one-pass HMQV produce two concrete
aPAKE schemes which we call OKAPE-HMQV and aEKE-HMQV. Both protocols
have close to optimal computational cost of 1fb+1vb exp for the client and
1fb+1mvb exp for the server, where mvb stands for multi-exponentiation with
two bases. Moreover, protocol aEKE-HMQV needs only a single simultaneous flow

3 Abdalla et al. [3] show that SPAKE2 [4] and TBPEKE [38] realize a relaxed version
of the UC PAKE functionality of Canetti et al. [15].
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of communication, hence aEKE-HMQV matches the lowest cost KE and PAKE
protocols in both computation and round complexity.

Protocol OKAPE requires 2 communication rounds if the server initiates the
protocol, and 3 if the client does. However, protocol aEKE uses unsalted
password hashes, whereas OKAPE supports (publicly) salted password hashes,
which have several security and operational benefits over unsalted ones (see
Note 1 below). Note that every aPAKE can be generically transformed to
support a publicly salted hash if the server first sends the salt to the client and
the two parties run aPAKE on the password appended by the salt. However,
among prior UC aPAKE’s that use unsalted password hashes [24, 32, 28, 41],
only the aPAKE of Jutla and Roy [32] and Hwang et al. [28] match the round
complexity of OKAPE-HMQV after this transformation, but they do not match
its computational cost: The PAKE-to-aPAKE compiler of [28] instantiatied
with a minimal-cost PAKE has a total computational cost of 3fb+3vb exps, i.e.
50% more than uDH, while the aPAKE of [32] is significantly more expensive,
in particular because it uses bilinear maps. This generic transformation can
also be applied to aEKE-HMQV, and the resulting protocol would match both
the rounds and exponentiation count of OKAPE-HMQV, but OKAPE-HMQV
uses only one ideal cipher operation per party whereas aEKE-HMQV uses two,
hence the latter is preferable if the cost of IC on a group is not negligible.

The only prior UC aPAKE’s that natively support salted hashes with 3 or
fewer communication rounds is the 3-round protocol OPAQUE of Jarecki et
al. [30, 31] and the 2-round CKEM-based protocol of Bradley et al. [13]. Both
of these protocols have at least 2 times higher computational costs than uDH.
However, both [30] and [13] provide strong aPAKEs (saPAKE), where the salt
in the password hash is private, whereas OKAPE supports publicly salted hash
and aEKE supports only unsalted hash, see Note 1 below.

In table 1 we compare efficiency and security properties of prior UC aPAKE’s
and the concrete protocols we propose. Note that all schemes which achieve
explicit authentication for only one party can also achieve it for the other using
one additional key confirmation flow. Note also that any single-flow aPAKE can
be transformed so it achieves explicit authentication for both parties in 3 flows,
regardless of which party starts. In the table we do not include aPAKE schemes
which were not proven in UC models so far, including VPAKE [8] or PAK-X
[12], but both schemes are slightly costlier than e.g. KC-SPAKE2+ [41], see e.g.
[13] for exact cost comparisons.

Main Idea: Encrypted Key Exchange paradigm for aPAKE. Our
protocols are compilers which build aPAKE’s from any key-hiding otkAKE, i.e.
an AKE where one party uses a one-time key. In both protocols server S picks
a one-time public key pair (b,B) and sends the public key B encrypted under a
password hash h to client C, who decrypts it under a hash of its password pw .
C also has a long-term private key a derived as a password hash as well, i.e.
(h, a) = H(pw), and S holds the corresponding public key A together with h in
the password file for this client. The two parties then run a key-hiding otkAKE
on respective inputs (a,B) and (b,A), but here the two compilers diverge: In
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scheme client(1) server(1) rounds(2) salting EA(3) assump. model

aEKE-HMQV [∗] 1f+1.2v 1f+1.2v 1 none none gapDH RO/IC

Jutla-Roy[32] O(1) O(1) 1 none none XDH RO

KC-SPAKE2+[41] 2f+2v 2f+2v 3(C) none C+S CDH RO

OKAPE-HMQV [∗] 1f+1.2v 1f+1.2v 2(S) public S gapDH RO/IC

Hwang[28] +EKE[7] 2f+1v 1f+2.2v 2(S) public S CDH RO/IC

KHAPE-HMQV[25] 1f+1.2v 1f+1.2v 3(S) public C+S gapDH RO/IC

CKEM-saPAKE[13] 10f+1v 2f+2v 2(C) private C sDH,DDH RO

OPAQUE-HMQV[31] 2f+2.2v 1f+2.2v 3(C) private C+S OM-DH RO

Table 1. Comparison of UC aPAKE schemes, with our schemes marked [∗]:
(1) f,v denote resp. fixed-base and variable-base exponentiation, two-base multi-
exponentiation is counted as 1.2v, O(1) stands for significantly larger costs including
bilinear maps; (2) x(C) and x(S) denote x rounds if respectively client starts or server
starts, while ”1” denotes a single-flow protocol; (3) EA column lists the parties that
explicitly authenticate their counterparty at protocol termination. OPAQUE-HMQV
appeared in [30], but above we give optimized performances characteristics due to [31].

OKAPE the otkAKE subprotocol is executed in a black-box way, and it is
followed by explicit key confirmation message from C to S, whereas in aEKE
each otkAKE subprotocol message is encrypted under the password hash by its
sender and decrypted under the password hash by its receiver, and no key
confirmation message is needed for security. The protocols are shown secure if
password-encryption is implemented with an Ideal Cipher on the appropriate
message domain, which consists of one-time public keys and/or protocol
messages of the underlying otkAKE. Finally, the aEKE compiler requires the
key-hiding otkAKE to satisfy a random transcript property, i.e. that protocol
messages are indistinguishable from uniform over their message spaces.

Note that in both protocols S and C start on resp. inputs A and a and run
the following subprotocol: (1) S picks a one-time key pair (b,B) and sends B
to C, and (2) the two run otkAKE on resp. (a,B) and (b,A). This subprotocol
forms an Authenticated Key Exchange with unilateral authentication (ua-KE),
where C is authenticated to S but not vice versa. Viewed in this way, protocol
aEKE can be seen as an application of the same paradigm as the Encrypted
Key Exchange (EKE) of Bellovin and Merritt [7]. EKE is a compiler which
constructs a (symmetric) PAKE from any random-transcript KE: Each party
runs the underlying KE but encrypts protocol messages using a password as a
key. This creates a UC PAKE if the encryption is an IC on the KE protocol
message space [6, 37]. Protocol aEKE utilizes the exact same methodology of IC-
encryption of KE protocol messages with a password (or its hash), but applied
to ua-KE instead of KE, and we show that this creates a UC asymmetric PAKE.

If an EKE is applied to a single simultaneous flow, i.e. 1-round, KE like uDH,
it creates 1-round PAKE. In the same way our aEKE compiler creates 1-round
aPAKE given a 1-round ua-KE. On the other hand, if EKE instantiated with
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uDH is executed sequentially then the responder party can send its DH message
without IC-encrypting it under the password if it attaches a key confirmation
message the response [7, 6]. The same trade-off is done by OKAPE compared to
aEKE: OKAPE forgoes on IC-encryption of C’s ua-KE message but requires C to
send a key confirmation message instead.

C(pw) S(pw)

h← H(pw) h← H(pw)

-IC.Eh(gx) �IC.Eh(gb)

k = gxb

(a) EKE.v1: simultaneous flow

C(pw) S(h,A)

(h, a)← H(pw) [ A = ga ]

-IC.Eh(gx) �IC.Eh(gb)

k = g(x+d·a)b for d = H′(trans)

(b) aEKE-HMQV

C(pw) S(pw)

h← H(pw) h← H(pw)

�IC.Eh(gb)

-gx, prf(k , 1)

k = gxb

(c) EKE.v2: sequential, with initiator S

C(pw) S(h,A)

(h, a)← H(pw) [ A = ga ]

�IC.Eh(gb)

-gx, prf(k , 1)

k = g(x+d·a)b for d = H′(trans)

(d) OKAPE-HMQV

Fig. 1. Symmetric PAKE: EKE (a,c) vs. our asymmetric PAKE’s (b,d)

These parallels are easy to see if the one-pass HMQV instantiations of aEKE
and OKAPE are put side-by-side the two variants of EKE instantiated with
uDH as KE, see Figure 1.4 Since both EKE and our protocols are compilers,
resp. from KE and ua-KE, we highlight the underlying uDH instantiation of KE
and the one-pass HMQV instantiation of ua-KE in these figures in blue. The
choice of variable names gx and gb in the Diffie-Hellman key agreement comes
from one-pass HMQV, where ga and gb are resp. the permanent public key of
C and the one-time public key of S, while gx is the Diffie-Hellman contribution
of C. Intuitively, a corresponding gy contribution of S is not needed because the
ephemeral key gb already plays this role.

The security of our aPAKEs holds for essentially the same reasons as the
security of EKE: (1) security against passive attackers holds regardless of pw by
the passive security of the underlying (ua-)KE; (2) if encryption is an ideal cipher
then any ciphertext sent by an attacker to C decrypts to a random group element
B ′ = gb

′
on all passwords except the one used by an attacker in encryption, so

an attack on such sessions would be an attack on a passively observed otkAKE
instance; (3) the attacker can encrypt a chosen gb value under a single password,

4 Actual protocols diverge from Fig. 1 in some technicalities, e.g. session key derivation
uses a hash of k , but crucially H inputs include a salt in OKAPE-HMQV and
server/user identifiers in aEKE-HMQV: We come back to this last point below.
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but in the IC model the simulator can observe this and extract a unique password
guess which the attacker tests in such protocol instance; (4) same arguments work
regarding attacks on S in aEKE, while in OKAPE the client’s key confirmation
message commits the attacker to a session key, which implies a single input pair
(a,B) for which this session key is correct, which in turn commits to a single
password from which (a,B) are derived.

Although our protocols can be seen as applications of EKE compiler to
ua-KE, we analyze them as compilers from otkAKE for several reasons: First,
otkAKE is a simpler notion which can be realized with a single protocol flow;
Second, otkAKE yields ua-KE (see above) while the converse is not clear;
Third, setting the boundary around otkAKE lets us treat it as a black box in
OKAPE compiler, because S’s one time key gb , which is the only part that
OKAPE wraps using IC encryption is an input to otkAKE, and not its protocol
message. In aEKE the otkAKE subprotocol is not used as a black-box, because
its protocol messages are IC-encrypted, and this compiler is secure only if
otkAKE has a random-transcript property. We prove aEKE secure only for
otkAKE realized with a single-flow protocol, which includes both our otkAKE
instantiations, i.e. one-pass 3DH and HMQV. Although we believe that this
compiler works for multi-round protocols as well, we show it only for
single-round otkAKE to limit the complexities in the security argument, which
arise from the non-black-box use of otkAKE in this compiler.

Similarities to OPAQUE and KHAPE. Our protocols are also closely
related to saPAKE protocol OPAQUE [30] and aPAKE protocol KHAPE [25].
Both of these protocols were compilers from AKE (the OPAQUE protocol in
addition uses an Oblivious PRF), where passwords are used to encrypt the
client’s private key a and the server’s public key B , the corresponding keys A
and b are held in a password file held by S for this client C, and the key
establishment comes from AKE run on these inputs. Protocol KHAPE can be
seen as a variant of OPAQUE without the Oblivious PRF. In that case security
degrades from saPAKE to aPAKE, but the resulting aPAKE can have minimal
cost (i.e. ≈ KE) if C’s AKE inputs (a,B) are delivered from S to C in an
envelope, IC-encrypted under the password, and if the AKE protocol is
key-hiding, i.e. even an active attacker cannot tell what keys (skP, pkCP) an
attacked party P assumes except if the attacker knows the corresponding pair
(pkP, skCP). The reason the KHAPE compiler needs the key-hiding property of
AKE is to avoid off-line attacks, because if each password decrypts the
envelope sent to the client into some pair (a ′,B ′), there must be no way to test
which pair corresponds to either the client or the server keys unless via an
active attack which tests at most one of these choices.

Our compilers OKAPE and aEKE are refinements of the KHAPE compiler:
First, instead of permanent envelope in the password file that encrypts (and
authenticates) a permanent server public key gb , we ask the server to create one-
time key per each execution, and IC-encrypt it under a password hash stored in
the password file. Replacing key-hiding AKE with key-hiding one-time-key AKE
reduces complexity because it can be instantiated with a single C-to-S message.
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In addition, the IC encryption with subsequent otkAKE together implement
implicit S-to-C authentication: If the attacker does not encrypt B = gb under
C’s password then C will decrypt it into a random key B ′ = gb

′
, for which

the attacker cannot compute the corresponding session key because it does not
know b′. This lets us eliminate the S-to-C key confirmation message in KHAPE
and leads to OKAPE. If in addition C’s AKE message is IC-encrypted under a
password hash then we eliminate also the C-to-S key confirmation message in
KHAPE and we get the aEKE protocol, an aPAKE which is non-interactive and
has optimal computation cost.

Note 1: Salted and unsalted password hashes vs. round complexity.
The UC aPAKE model of Gentry et al. [24] does not enforce salting of
password hashes, which allows their precomputation and an immediate look-up
once the server storage is breached. By contrast, Jarecki et al. [30] proposed a
UC strong aPAKE model (saPAKE), where each password file includes a
random and private salt value s, and the password hash involves this salt and
cannot be precomputed without it. Our protocols aEKE and OKAPE are just
aPAKEs, not saPAKEs, but they can support public salting of the password
hash, which has security advantages over unsalted hash. Looking more closely,
the aPAKE model of [24] enforces that a single real-world offline dictionary
attack test corresponds not only to a single password guess pw∗ but also a
single tuple (S, uid) where S is an identifier of a server S and uid is a userID
with which S associates a password file. (This can be seen in command
(OfflineTestPwd,S, uid, pw∗) to the aPAKE functionality of [24], included in
Fig. 9 in Section A.) This means that a password hash in UC aPAKE, at least
as defined by [24], cannot be implemented e.g. simply as h = H(pw) but in the
very least as h = H(S, uid, pw), so that a single H computation corresponds to a
single password guess pw and a single account (S, uid). This is indeed how we
implement the RO hash in protocol aEKE, see Section 4.

However, such implementation has some negative implications, stemming
from the fact that C has to know values (S, uid) in the protocol. (This is reflected
in the aPAKE functionality realized by protocol aEKE, see Appendix A.) Tying
such application-layer values in a cryptographic protocol can be problematic. For
example, in some applications it might be fine to equate S with e.g. the server’s
domain name, but it would be then impossible to modify it, since all users
would have to reinitialize and recompute their password hashes. An alternative
generic implementation is to use (semi) public salts as follows: S can associate
each uid account with a random salt s, set the password hash as h = H(pw |s),
attach s in the first S-to-C aPAKE message, and the two parties can then run an
unsalted aPAKE on a modified password pw ′ = pw |s. Since each s is associated
with a unique (S, uid) pair, each H computation still corresponds to a unique
(S, uid, pw) tuple, but C does not need values (S, uid) within the aPAKE protocol,
and password hashes do not have to change with changes to identifiers S or uid.
Moreover, if the aPAKE protocol runs over a TLS connection then an adversary
can find s only via an online interaction with S, and it needs to know the user
ID string uid for S to retrieve the uid-indexed password file and send s out. Even
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better, if clients update the (s, h) values at each login, then value s the adversary
compromises for some user will be obsolete after that user authenticates to S.

However, this implementation requires interaction. Since S sends the first
message in OKAPE, attaching s to S’s message does not influence the round
complexity of OKAPE, and this is indeed how we implement password hashes
in that protocol, see Section 3. Every unsalted aPAKE can be transformed to
publicly salted in this way, but for many aPAKEs, including aEKE, this would
imply additional communication rounds.

Note 2: Implicit and explicit authentication vs. round complexity.
Note that our round-minimal aPAKE protocol aEKE does not have explicit
entity authentication, i.e. each party computes a key and the security implies
that only a party with proper credentials can compute that key as well, but
they do not get a confirmation that their counterparty can compute the same
key and thus is indeed the party they meant to establish a connection with.
Key confirmation can be added to any KE protocol, but it adds a round of
communication. Likewise, our three-round (if C initializes) aPAKE protocol
OKAPE has only C-to-S entity authentication, and adding S-to-C entity
authentication would make it a four-round protocol. Therefore the
round-reduction advantage of OKAPE over protocol KHAPE of [25] will benefit
only those applications where C can use the session key without waiting for S’s
key confirmation message.

Note 3: Current costs of ideal cipher on groups. Just like EKE [7, 6],
our protocols rely on an ideal cipher on group elemnets. Implementing an ideal
cipher on elliptic curve groups, which are of most interest for current aPAKE
proposals, is non-trivial and current techniques for implementing them incur
non-negligible costs in computation and sometimes in bandwidth expansion as
well. We discuss several implementation options for group IC in Section 6, but
to give an example, using the Elligator2 method [9] each IC operation can cost
≈10-15% of 1vb exp and it requires resampling of the encrypted random group
element with probability 1/2. Thus we can estimate the total computational
cost of OKAPE-HMQV with this IC implementation as (expected) 2fb+1.15vb
for S and 1fb+1.15vb for C, and of aEKE-HMQV as 2fb+1.30vb per each party.
However, the overhead of IC might be significantly smaller in the case of other
settings of interest, like lattice cryptosystems.

Organization. In Section 2, we define key-hiding one-time-key AKE as a UC
notion, and we show that 2DH and one-pass HMQV both securely realize this
notion under the Gap DH assumption in ROM. In Section 3 and Section 4, we
show our two compilers from otkAKE to asymmetric PAKE, namely OKAPE
and aEKE. In Section 5 we describe two concrete aPAKE protocol proposals,
OKAPE-HMQV and aEKE-HMQV, which instantiate OKAPE and aEKE with
one-pass HMQV as the otkAKE. In Section 6 we discuss possible
implementation choices of an ideal cipher encryption on elliptic curve groups.
Finally, in Appendix A we include our definition(s) of the UC aPAKE model,
and in Appendix B we include the overview of the security proof for protocol
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OKAPE. For space constraint reasons we defer all security proofs to the full
version [23], including an extension which instantiates otkAKE based on
SKEME [34], which allows for aPAKE construction based solely on KEM.

2 Key-hiding one-time-key AKE

We define key-hiding one-time-key Authenticated Key Exchange (otkAKE), as
an asymmetric variant of the universally composable key-hiding AKE defined
in [25]. We denote the otkAKE functionality FotkAKE and we include it in
Figure 2. An AKE functionality allows parties to generate public key pairs
(this is modeled by environment query Init to the functionality). These keys
can be compromised, modeled by adversarial query Compromise. However, this
is the key difference between our (key-hiding) otkAKE functionality and the
(key-hiding) AKE functionality of [25], here we distinguish two types of keys,
the long-term keys which can be compromised by the adversary, and the
ephemeral keys which cannot. We arbitrarily call the first type “client keys”
and the second “server keys” because this is how we will use an otkAKE
protocol in the context of our otkAKE-to-aPAKE compilers in Section 3 and 4,
i.e. clients will use long-term keys and servers will use ephemeral keys in both
of these applications of otkAKE.

As in [25], any party P holding a key pair indexed by the public key pkP ,
whether a long-term one or an ephemeral one, can start a session using such
key, and using also some key pkCP as the public key of the counterparty that P
expends on this session. This is modeled by the environment’s command
(NewSession, sid,CP, role, pkP, pkCP) to P, where sid is the unique session
identifier, CP is the supposed identifier of the counterparty, and role is either
cl or sr, defining if P is supposed to run the long-term-key party or the
ephemeral-key party. (As we can see below, the protocols realizing this
functionality can be asymmetric, so parties act differently based on that role
bit.) As in [25], the functionality marks this session as initially fresh, creates an
appropriate session record and picks a random function Rsid

P (whose meaning
we will explain shortly). Crucially the functionality only sends
(NewSession, sid,P,CP, role) to the adversary, i.e. the adversary only learns
which party P wants to authenticate, which party CP they intend to
communicate with, what session identifier sid they use, and whether they play
the client and the server role, but the adversary does not learn the keys this
party uses, neither their own key pkP nor the key pkCP this party expects of its
counterparty. This, exactly as in [25], models the key-hiding property of the
AKE’s which are required in our AKE-to-aPAKE compiler constructions.

Next, if an adversary actively attacks session Psid, as opposed to passively
observing its interaction with some other session CPsid, this is modeled by the
adversarial query Interfere, and its effect is that session Psid is marked as
interfered. The consequence of this marking comes in when the session
terminates (i.e. if the adversary delivers all messages this party expects) and
outputs a key, which is modeled by adversarial query NewKey. Namely, if a
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PK stores all public keys created in Init; CPK stores all compromised keys;
PK cl

P stores P’s permanent public keys; PK sr
P stores P’s ephemeral public keys;

Keys: Initialization and Attacks

On (Init, role) from P:

If role ∈ {cl, sr} send (Init,P, role) to A, let A specify pk s.t. pk 6∈ PK , add pk to
PK and PK role

P , and output (Init, pk) to P. If P is corrupt then add pk to CPK .

On (Compromise,P, pk) from A: [this query must be approved by the environment]

If pk ∈ PK cl
P then add pk to CPK .

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, role, pkP, pkCP) from P:

If pkP ∈ PK role
P and there is no prior session record 〈sid,P, ·, ·, ·, ·, ·〉 then:

– create session record 〈sid,P,CP, pkP, pkCP, role,⊥〉 marked fresh;
– if role = cl and pkCP 6∈ PK sr

CP then re-label this record as interfered;
– initialize random function Rsid

P : {0, 1}3 → {0, 1}κ;
– send (NewSession, sid,P,CP, role) to A.

On (Interfere, sid,P) from A:

If there is session 〈sid,P, ·, ·, ·, ·,⊥〉 marked fresh then change it to interfered.

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:

If ∃ session record rec = 〈sid,P,CP, pkP, pkCP, role,⊥〉 then:

– if rec is marked fresh: If ∃ record 〈sid,CP,P, pkCP, pkP, role′, k ′〉 marked fresh
s.t. role′ 6= role and k ′ 6= ⊥ then set k ← k ′, else pick k ←R {0, 1}κ;

– if rec is marked interfered then set k ← Rsid
P (pkP, pkCP, α);

– update rec to 〈sid,P,CP, pkP, pkCP, role, k〉 and output (NewKey, sid, k) to P.

Session-Key Query

On (SessionKey, sid,P, pk , pk ′, α) from A:

If ∃ record 〈sid,P, ·, ·, ·, ·, ·〉 and pk ′ 6∈ (PK \CPK ) then send Rsid
P (pk , pk ′, α) to A.

Fig. 2. FotkAKE: Functionality for key-hiding one-time key AKE
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session is fresh, i.e. it was not actively attacked, then the functionality picks its
output session key k as a random string. In other words, this key is secure
because there is no interface which allows the adversary to get any information
about it. If the adversary passively connects two sessions, e.g. Psid and CPsid,
by honestly exchanging their messages, then FotkAKE will notice at the NewKey
processing that there are two sessions (P, sid,CP, pkP, pkCP, role)
(CP, sid,P, pk ′P, pk ′CP, role′) that run on matching keys, i.e. pkCP = pk ′P and
pk ′CP = pkP, and complementary roles, i.e. role 6= role′, then FotkAKE sets the
key of the session that terminates last as a copy of the one that terminated
first. This is indeed as it should be: If two parties run AKE on matching inputs
and keys and their messages are delivered without interference they should
output the same key.

However, if session Psid has been actively attacked, hence it is marked
interfered, the session key k output by Psid is determined by the random
function Rsid

P . Specifically, the key will be assigned as the value of Rsid
P on a

tuple of three inputs: (1) P’s own key pkP, (2) the counterparty’s key pkCP

which P assumes, and (3) the protocol transcript α which w.l.o.g. is
determined by the adversary on this session. This is a non-standard way of
modeling KE functionalities, but it suffices for our applications and it allows
for inexpensive and communication-minimal implementations as we exhibit
with protocols 2DH and one-pass HMQV below. The intuition is that this
assures that for any protocol transcript the adversary chooses, each key pair
(pkP, pkCP) which P can use corresponds to an independent session key output
of P. Some of these keys can be computed by the adversary via interface
SessionKey: The adversary can use it to compute the key P would output on a
given transcript α and a given pair (pkP, pkCP) = (pk , pk ′) but only if pk ′ is
either compromised or it is an adversarial key, hence w.l.o.g. we assume the
adversary knows the corresponding secret key.

Here is also where our key-hiding one-time-key AKE diverges from the
key-hiding AKE notion of [25]: If session Psid runs with a client-role then its
session key output is guaranteed secure if their assumed counterparty’s key
pkCP is indeed an ephemeral key of the intended counterparty. Since such keys
cannot be compromised, a SessionKey query with pk ′ = pkCP will fail the
criterion that pk ′ is compromised or adversarial, hence the adversary has no
interface to learn P’s output session key. However, if the environment (i.e. the
higher-level application, like either of our compilers, which utilizes the otkAKE
subprotocol) asks Psid to run on pkCP which is not an ephemeral key of the
intended counterparty then FotkAKE treats such session as automatically
attacked, and marks it interfered. Such session’s output key will be computed
as k ← Rsid

P (pkP, pkCP, α), and whether or not the adversary can recompute
this key via the SessionKey interface depends on whether this (potentially
non-ephemeral) key pkCP is compromised or adversarial.

The security of our otkAKE protocols, 2DH and one-pass HMQV, are based
on hardness of Gap CDH problem. Recall that Gap CDH is defined as follows: Let
g generates a cyclic group G of prime order p. The Computational Diffie-Hellman
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(CDH) assumption on G states that given (X,Y ) = (gx, gy) for (x, y)←R (Zp)2

it’s hard to find cdhg(X,Y ) = gxy. The Gap CDH assumption states that CDH
is hard even if adversary has access to a Decisional Diffie-Hellman oracle ddhg,
which on input (A,B,C) returns 1 if C = cdhg(A,B) and 0 otherwise.

2.1 2DH as key-hiding one-time-key AKE

We show that key-hiding one-time-key AKE can be instantiated with a “one-
pass” variant of the 3DH AKE protocol. 3DH is an implicitly authenticated key
exchange used as the basis of the X3DH protocol [36] that underlies the Signal
encrypted communication application. 3DH consists of a plain Diffie-Hellman
exchange which is authenticated by combining the ephemeral and long-term key
of both peers. Specifically, if (a,A) and (b,B) are the long-term key pairs of
two communicating parties C and S, and (x,X) and (y, Y ) are their ephemeral
DH values, then 3DH computes the session key as a hash of the triple of Diffie-
Hellman values, (gxb , gay, gxy).

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on (Init, cl) P2 on (Init, sr)

a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1, cl,A,B) P2 on (NewSession, sid,CP2, sr,B ,A)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx (abort if key B is not ephemeral)

-X

σcl ← Bx‖Ba σsr ← Xb‖Ab

kcl ← H(sid,P1,CP1, X, σcl) ksr ← H(sid,CP2,P2, X, σsr)
output kcl output ksr

Fig. 3. otkAKE protocol 2DH

This protocol was shown to realize the key-hiding AKE functionality in [25],
and here we show that a one-pass version of this protocol, which we call 2DH,
realizes the key-hiding one-time-key AKE functionality FotkAKE defined above.
In this modified setting key (b,B) is a one-time key of party S, and hence it
can play a double-role as S authenticator and its ephemeral DH contribution.
Therefore the only additional ephemeral key needed is the (x,X) value provided
by C, and 2DH will compute the session key as a (hash of) the pair of DH values,
(gxb , gab). See Figure 3 were we describe the 2DH protocol in more detail. In
that figure we assume that both C’s key (a,A) and S’s key (b,B) were created
prior to protocol execution, but we note that S’s key must be a one-time, i.e.
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ephemeral, key, so in practice it should be created just before the protocol starts
and erased once the protocol executes.

We capture the security property of 2DH in the following theorem:

Theorem 1. Protocol 2DH shown in Figure 3 realizes functionality FotkAKE,
assuming that the Gap CDH assumption holds on group G and H is a random
oracle.

The proof of the above theorem is a close variant of the proof given in [25]
that 3DH realizes the key-hiding AKE functionality (where both parties use
permanent keys). For the reason of space constraints we include this proof in
the full version of the paper [23].

2.2 One-Pass HMQV as key-hiding one-time-key AKE

Similiarly to the case of 3DH, we show that a one-pass version of the HMQV
protocol [35, 26] realizes functionality FotkAKE under the same Gap CDH
assumption in ROM. HMQV is a significantly more efficient AKE protocol
compared to 3DH because it replaces 3 variable-base exponentiations with 1
multi-exponentiation with two bases. Just like 3DH, HMQV involves both the
ephemeral sessions secrets (x, y) and the long-term keys (a, b), and computes
session key using a DH-like formula g(x+da)·(y+eb) where d and e are derived
via an RO hash of the ephemeral DH contributions, resp. X = gx and Y = gy.

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

P1 on Init, cl P2 on Init, sr

a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1, cl,A,B) P2 on (NewSession, sid,CP2, sr,B ,A)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx (abort if key B is not ephemeral)

-X

dcl ← H′(sid,P1,CP1, X) dsr ← H′(sid,CP2,P2, X)

σcl ← Bx+dcl·a σsr ← (X ·Adsr)b

kcl ← H(sid,P1,CP1, X, σcl) ksr ← H(sid,CP2,P2, X, σsr)
output kcl output ksr

Fig. 4. otkAKE protocol One-Pass HMQV

Gu et al. [25] showed that HMQV realizes the same key-hiding AKE
functionality as 3DH, and here we show that a one-pass HMQV realizes the

13



key-hiding one-time-key AKE functionality FotkAKE. Just like in 2DH, in
one-pass HMQV pair (b,B) is a one-time key of party S, which effectively
plays the role of both server’s public key and its ephemeral DH contribution.
Hence just as 2DH, the only ephemeral DH contribution needed is pair (x,X)
provided by C, and the session key can be derived as g(x+a)·b . The full protocol
is shown in Figure 4. As in 2DH we assume that the client and server keys are
created before protocol execution, but that the server’s key must be a one-time
key which is used once and erased afterwards.

We capture the security of one-pass HMQV in the following theorem:

Theorem 2. Protocol One-Pass HMQV shown in Fig 4 realizes FotkAKE if the
Gap CDH assumption holds on group G and H is a random oracle.

The proof of theorem 2 follows the template of the proof for the corresponding
theorem on 2DH security, i.e. Theorem 1. It is also a variant of the similar proof
shown in [25] which showed that the full HMQV realizes the permanent-key
variant of the key-hiding functionality FotkAKE defined therein. Because of space
constraints, we defer this proof to the full version of the paper [23].

3 Protocol OKAPE: asymmetric PAKE construction #1

In this section we show how any UC key-hiding one-time-key AKE protocol can
be converted into a UC aPAKE, with very small comunication and computational
overhead. We call this otkAKE-to-aPAKE compiler OKAPE, which stands for
One-time-Key Asymetric PakE, and we present it in Figure 5. As we discussed
in the introduction, protocol OKAPE is similar to protocol KHAPE of [25] which
is a compiler that creates an aPAKE from any UC key-hiding AKE where both
parties use permanent keys. As in KHAPE, the password file which the server S
stores and the password which the client C enters into the protocol, allow them
to derive AKE inputs (a,B) for C and (b,A) for S, where (a,A) is effectively a
client’s password-authenticated public key pair and (b,B) is a server’s password-
authenticated public key pair, and the authenticated key agreement then consists
of executing a key-hiding AKE on the above inputs. (The AKE must be key-
hiding or otherwise an attacker could link the keys used by either party to a
password they used to derive them.)

Protocol otkAKE follows the same general strategy but it differs from KHAPE
in (1) how these keys are derived from the client’s password and the server’s
password file, (2) in the type of key-hiding AKE it requires, and (3) whether or
not the AKE must be followed by key confirmation messages sent be both parties.
In KHAPE the server-side AKE inputs (b,A) were part of the server’s password
file, and the client-side AKE inputs (a,B) were password-encrypted using an
ideal cipher in an envelope e = IC.Epw (a,B) stored in the password file and sent
from S to C in each protocol instance. Finally, since both public keys were long-
term keys, the protocol required each party to send a key-confirmation message
and C needed to send its confirmation before S did or otherwise the protocol
would be subject to an offline dictionary attack. The first modification made
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Building blocks: (1) one-time-key Authenticated Key Exchange otkAKE; (2) ideal
cipher (IC∗.E, IC∗.D) on space PK of otkAKE public keys; (3) RO hash function
H : {0, 1}∗ → {0, 1}κ × {0, 1}κ; (4) pseudorandom function prf.

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks s ←R {0, 1}κ, sets (h, a) ← H(pw , s), S generates otkAKE public key A
corresponding to a, stores file[uid, S]← (A, h, s), and discards all other values

C on (CltSession, sid,S, pw) S on (SvrSession, sid,C, uid)

(A, h, s)← file[uid, S]
(h, a)← H(pw , s) �e = IC∗.E(h,B), s

(b,B)← Key.Gen
B ← IC∗.D(h, e)

-(sid, S, cl, a,B) � (sid,C, sr, b,A)

otkAKE
� kcl -ksr

τ ← prf(kcl, 1) -τ
Ksr ← ⊥ if τ 6= prf(ksr, 1)

Kcl ← prf(kcl, 0) else Ksr ← prf(ksr, 0)
output Kcl output Ksr

Fig. 5. Protocol OKAPE: Compiler from key-hiding otkAKE to aPAKE

by OKAPE is that the client’s private key a is derived directly as a password
hash, and does not need to be encrypted in envelope e. Secondly, there is no
permanent server’s key (b,B). Instead S generates a one-time key pair (b,B) at
each protocol instance, and authenticates-and-encrypts its public key B under
a password by sending to C an envelope e = IC.Eh(B) where h is a password
hash stored in the password file. Since B is now a one-time key, we can replace
key-hiding AKE used in KHAPE with a key-hiding one-time-key AKE, which
as we saw in Section 2 can be realized with cheaper subprotocols.

More importantly, the IC-encryption of the one-time key B followed by
computing the otkAKE session key output by C given input B , implies implicit
password-authentication under a unique password: By the properties of the
ideal cipher a ciphertext e commits the sender to a single choice of key h (and
hence password pw from which h is derived) used to create this ciphertext on a
plaintext B chosen by the sender. Hence there can be at most one key h (and
thus at most one password pw) s.t. envelope e decrypts to a key B for which
the sender knows the corresponding secret key b, and thus can complete the
otkAKE protocol ran by C on the key B it decrypts from e. Whereas the
protocol still requires a key confirmation by C (otherwise a malicious C could
stage an offline dictionary attack once it learned S’s session key), the fact that
the envelope already implicitly authenticates S implies that it no longer needs
a subsequent key confirmation by S.

The main appeal of OKAPE compared to the KHAPE construction in [25]
comes from the last implication, i.e. from the fact that we achieve security
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without the explicit key confirmation from S. If the OKAPE subprotocol is
instantiated with either of the two key-hiding otkAKE protocols of Section 2,
the result is a 2-round aPAKE protocol if S is an initiator and a 3-round
protocol if C is an initiator (such concrete instantiation is shown in Figure 7 in
Section 5). Lastly, because S starts the protocol, protocol OKAPE can use
(publicly) salted password hash at no extra cost to such instantiations: A
random salt value s can be part of the password file, the password hash can be
defined as H(pw , s), and s can be delivered from S to C in S’s first protocol
message, together with envelope e.

This round-complexity improvement is “purchased” at the cost of two
trade-offs. First, in OKAPE server S is only implicitly authenticated to C, and
if C requires an explicit authentication of S before C uses its session key then
the round reduction no longer applies. Secondly, OKAPE can be slightly more
computationally expensive than KHAPE because S needs to generate envelope
e on-line, which adds an ideal cipher encryption operation to the protocol cost,
and current ideal cipher implementations for e.g. elliptic curve group elements
have small but non-negligible costs (see Section 6).

One additional caveat in protocol OKAPE is that because we want C to derive
its AKE private key a from a password hash, we must assume that OKAPE
generates private keys from uniformly random bitstrings. This is true about
any public key generator if that bitstring is treated as the randomness of the key
generator algorithm. For some public key cryptosystems, e.g. RSA, this would be
a rather impractical representation of the private key, but in the cryptosystems
based on Diffie-Hellman in prime-order groups this randomness can be simply
equated with the private key.

Theorem 3. Protocol OKAPE realizes the UC aPAKE functionality FaPAKE-cEA

if the AKE protocol realizes functionality FotkAKE, assuming that prf is a secure
PRF and IC∗ is an ideal cipher over the space of otkAKE ephemeral public keys.

Functionality FaPAKE-cEA is a standard UC aPAKE functionality extended
by client-to-server entity authentication. The functionality FaPAKE-cEA we use is
a modification of the UC aPAKE functionality given by [24], but with some
refinements we adopt from [25]. We include this functionality in Appendix A.
We provide an abridged version of the proof of Theorem 3 in Appendix B.
It describes our simulation strategy and contains the formal definition of our
two-part simulator. For a full version, including the intermediary games and
(negligible) bounds between the real and ideal-world interaction, we refer the
reader to the full proof in the Appendix of [23].

4 Protocol aEKE: asymmetric PAKE construction #2

In Figure 6 we present an asymmetric PAKE protocol that we name asymmetric
encrypted key exchange (aEKE). It is a close variant of the otkAKE-to-aPAKE
compiler OKAPE described in Figure 5 in Section 3. The password file stored by
the server also contains client’s public key A and a password hash h (which are
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Building blocks: (1) one-time-key Authenticated Key Exchange otkAKE, with
a single message flow; (2) ideal cipher (IC∗.E, IC∗.D) on the space X0 = PK of
otkAKE public keys; (3) RO hash function H : {0, 1}∗ → ({0, 1}κ)3; (4) ideal
cipher IC1 on the space X1 = M of otkAKE messages

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h0, h1, a) ← H(S, uid, pw), generates AKE public key A corresponding to
a, stores file[uid, S]← (A, h0, h1), and discards all other values

C on (CltSession, sid, S, uid, pw) S on (SvrSession, sid,C, uid)

(h0, h1, a)← H(S, uid, pw) (A, h0, h1)← file[uid, S]

B ← IC∗.D(h0, e) �e = IC∗.E(h0,B)
(b,B)← Key.Gen

-(h1, (sid, S, cl, a,B)) �(h1, (sid,C, sr, b,A))

ICEIC1(otkAKE)

� kcl -ksr

output kcl output ksr

Fig. 6. Protocol aEKE: EKE-style compiler from key-hiding otkAKE to aPAKE

now split into two values h0, h1), the server again picks a one-time-key B and
sends it over to the client IC-encrypted under the partial password hash h0, the
client derives its private key a via a password hash as well, and the client and
server perform otkAKE on the same respective inputs (a,B) and (b,A).

However, the two compilers differ in three important aspects: First,
subprotocol otkAKE is not executed as a black box, but it is “IC-encrypted”
using the second part h1 of the password hash as the key. We describe what
IC-encrypted protocol is more formally below, but intuitively an IC-encrypted
protocol Π means that the two parties execute the protocol Π but they use the
ideal cipher to encrypt each outgoing message and decrypt each incoming
message. The second difference is that the protocol no longer needs C-to-S key
confirmation for its security, as was required by protocol OKAPE, which allows
for further reduction of round complexity in concrete instantiations.

Lastly, we eliminate the salt value s from the input of the password hash.
This last change is done chiefly so that our concrete instantiation of this compiler
produces a protocol which requires only a single simultaneous flow between the
two parties. This will be true as long as the otkAKE subprotocol involves only
one message, from C to S, and moreover this message can be generated prior to
client learning input B which C derives from the envelope received from S. Note
that this is true for our two otkAKE instantiations, namely one-pass HMQV and
2DH. Note that the protocol can be salted in a generic way, i.e. by S storing a
salt and sending it to C before the protocol starts, but this would add a S-to-C
round of interaction to the protocol (in particular C will need the salt value to
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generate h1 and encrypt its protocol message under it), at which point aEKE
would loose its round-complexity advantage over OKAPE.

In Figure 6, and in the security analysis of protocol aEKE, we assume a
restricted case of a single-flow (C-to-S) realization of subprotocol otkAKE. We
believe that the compiler works for multi-round otkAKE subprotocols as well,
but dropping this restriction would make the security argument singificantly
more complex since our security argument cannot treat the otkAKE subprotocol
entirely as a black box, and must explicitly process ideal cipher encryption and
decryption of each message in the underlying otkAKE subprotocol.

We stress that, as described in the introduction, even though we drop salting
in aEKE our functionality requires that offline password tests correspond to a
unique choice of pair (S, uid), and we enforce this by setting the password hash
as H(S, uid, pw).

The Ideal-Cipher-Encrypted protocol compiler. The IC-encrypted
protocol compiler, denoted ICE, takes an ideal cipher IC and any two-party
protocol Π and creates a new protocol Π ′ = ICEIC(Π), which proceeds by
running the original protocol Π and encrypting each of its outgoing messages
using the ideal cipher IC and decrypting any incoming messages using the same
cipher. More specifically, the input of P to protocol Π ′ is x′ = (k, x) where k is
a key of an ideal cipher IC and x is P’s input in protocol Π. P then runs
protocol Π on x, and whenever Π creates an outgoing message msgout then P
encrypts it as ciphout ← IC.E(k,msgout) and sends out ciphertext ciphout instead
of the original message msgout. Because P’s counterparty is assumed to follow
the same protocol, party P parses its incoming message as a ciphertext ciphin,
decrypts it as msgin ← IC.D(k, ciphin), and passes msgin as an incoming message
to protocol Π. Whenever Π terminates with some output this is also the
output of protocol Π ′.

Observe that the ICE compiler generalizes the Encrypted Key Exchange
(EKE) construction of Bellovin and Meritt [7]. The EKE protocol can be seen
as protocol EKE = ICEIC(KE), where KE is an unauthenticated Key Exchange,
and the password (or its hash) is used as the ideal cipher key. Protocol aEKE is
created using exactly the same compiler but applied to otkAKE instead of KE,
and it results in asymmetric PAKE instead of symmetric PAKE.

Below we define random-transcript property for single-flow protocol Π.
Clearly both 2DH and one-pass HMQV satisfy this property.

Definition 1. [random transcript single-flow protocol] Let M be the
message space of a single-flow protocol Π. We say that protocol Π has a
random transcript property if for any input x of Π, the message m which Π
generates on x is indistinguishable from a message uniformly sampled from M,
i.e. for any PPT adversary A and any x, there is a negligible function negl
such that:

|Pr[A(m0 ← Π(x)) = 1]− Pr[A(m1 ←R M) = 1]| ≤ negl(κ)

Theorem 4. Protocol aEKE realizes the UC aPAKE functionality FaPAKE if the
otkAKE protocol realizes functionality FotkAKE and (1) otkAKE protocol uses a
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single client-to-server message, (2) otkAKE protocol has the random-transcript
property, (3) IC∗ is an ideal cipher over message space of otkAKE public keys,
(4) IC1 is an ideal cipher over message space M of the single-flow otkAKE.

Because of space constraints the proof of Theorem 4 is deferred to the full version
of the paper [23].

5 Concrete aPAKE protocol instantiations

We include two concrete aPAKE protocols we call OKAPE-HMQV and
aEKE-HMQV. Protocol OKAPE-HMQV, shown in Figure 7, is an instantiation
of protocol OKAPE from Section 3 with one-pass-HMQV as the key-hiding
otkAKE (shown in Section 2.2). Protocol aEKE-HMQV, shown in Figure 8, is an
instantiation of aEKE from Section 4 with the same one-pass-HMQV. Both of
these protocols were shown in a simplified form in Figure 1 in the introduction,
but here we show both protocols with all details.

Building blocks: (1) group G of prime order p with generator g; (2) ideal cipher
(IC∗.E, IC∗.D) on space of G; (3) RO hash functions H,H′,H′′ with ranges resp.
{0, 1}κ × Zp , Zp , and {0, 1}κ; (4) pseudorandom function prf.

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks s ←R {0, 1}κ, sets (h, a)← H(pw , s), S generates AKE public key A← ga ,
stores file[uid,S]← (A, h, s), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

x←R Zp , X ← gx (A, h, s)← file[uid, S]

(h, a)← H(pw , s) �e = IC∗.E(h,B), s
b ←R Zp , B ← gb

B ← IC∗.D(h, e)

dC ← H′(sid,C, S, X) -X dS ← H′(sid,C, S, X)

σC ← Bx+dC·a σS ← (X ·AdS)b

kcl ← H′′(sid,C, S, X, σC) ksr ← H′′(sid,C,S, X, σS)

τ ← prf(kcl, 1) -τ
Ksr ← ⊥ if τ 6= prf(ksr, 1)

Kcl ← prf(kcl, 0) else Ksr ← prf(ksr, 0)

output Kcl output Ksr

Fig. 7. OKAPE with one-pass-HMQV: concrete aPAKE protocol OKAPE-HMQV

Protocol OKAPE-HMQV has 2 flows if the server initiates (and 3 if the
client does), while protocol aEKE-HMQV is non-interactive, i.e. each party can
send its message without waiting for the counterparty. Note that in both
protocols each party uses only 1 fixed-base exponentiation plus 1 variable-base
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Building blocks: (1) group G of prime order p with generator g; (2) ideal cipher
(IC∗.E, IC∗.D) on space of G; (3) RO hash functions H,H′,H′′ with ranges resp.
({0, 1}κ)3, Zp , and {0, 1}κ

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S sets (h1, h2, a) ← H(S, uid, pw), S generates AKE public key A ← ga , stores
file[uid,S]← (A, h1, h2), and discards all other values

C on (CltSession, sid,S, uid, pw) S on (SvrSession, sid,C, uid)

(h1, h2, a)← H(S, uid, pw) (A, h1, h2)← file[uid, S]

x←R Zp , X ← gx b ←R Zp ,B ← gb

-f = IC∗.E(h2, X) �e = IC∗.E(h1,B)

B ← IC∗.D(h1, e) X ← IC∗.D(h2, f )

dC ← H′(sid,C, S, X) dS ← H′(sid,C, S, X)

σC ← Bx+dC·a σS ← (X ·AdS)b

kcl ← H′′(sid,C, S, X, σC) ksr ← H′′(sid,C,S, X, σS)

output kcl output ksr

Fig. 8. aEKE with one-pass-HMQV: concrete aPAKE protocol aEKE-HMQV

(multi)exponentiation. In OKAPE-HMQV each party performs one ideal cipher
operation: S performs encryption and C decryption, while in protocol
aEKE-HMQV each party performs 1 encryption and 1 decryption.

The communication costs are as in Diffie-Hellman key exchange, with
one-sided key confirmation and a κ-bit salt value in the case of protocol
OKAPE-HMQV. (Recall that OKAPE is a salted aPAKE while aEKE is an
unsalted aPAKE.) Depending on the implementation of an Ideal Cipher
encryption on group G, the ciphertext e encrypting B , and in the case of
aEKE-HMQV also ciphertext f encrypting X, can introduce additional
bandwidth overhead of Ω(κ) bits, and they may also impose non-trivial
computational costs on operations IC∗.E and IC∗.D as well, see Sec. 6.

6 Curve Encodings and Ideal Cipher

Quasi bijections. Protocols OKAPE and aEKE use an Ideal Cipher (IC) on
values related to a key-hiding otkAKE subprotocol with which these compiler
constructions are instantiated. These values are the server’s otkAKE one-time
public key B , and in the case of aEKE these are also otkAKE protocol messages.
However, since in Section 4 we restrict our claims about aEKE only to the case
when subprotocol otkAKE is a single-flow protocol, the IC encryption will be
applied only to the client’s single otkAKE message. In both instantiations of
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otkAKE we exhibit, i.e. 2DH and one-pass HMQV shown in Sections 2.1 and 2.2,
the server’s public key B is a group element and so is the client’ single protocol
message X. Hence we need the ideal cipher on a message space which is group
G used in these otkAKE instantiations.

We use the same methodology for implementing an ideal cipher on a group
as in [25]. We briefly summarize it here and we refer for more details to [25].
We assume that we have an ideal cipher IC = (IC.E, IC.D) which works over
fixed-length bitstrings, i.e. space {0, 1}n for some n.5 Then, an ideal cipher on
G can be implemented by encoding plaintext m ∈ G as a bitstring of length
n, and then apply the ideal cipher IC to the resulting bitstring. The encoding
map : G → {0, 1}n must be injective, i.e. 1-1, so that there exists an (efficient)
inverse map map−1 : {0, 1}n → G. The encoding must also be surjective (or
close) so that every bitstring decodes into a group element, so that e.g. if e is an
encryption of g ∈ G under key k, the decryption of e under key k′ 6= k returns
another element in G. If G is an elliptic curve then we only know examples
of randomized encodings which satisfy these properties. Formally we define a
randomized encoding which is close to a bijection as in [25]:

Definition 2. [25] A randomized ε-quasi bijection map with domain A,
randomness space R = {0, 1}ρ and range B consists of two efficient algorithms
map : A×R→ B and map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;
2. map maps the uniform distribution on A×R to a distribution on B that is

(statistically) ε-close to uniform.

We say that map is a quasi bijection without specifying ε when it is an ε-quasi
bijection for negligible ε. Given such encoding a (randomized) ideal cipher IC∗ =
(IC∗.E, IC∗.D) on G can be implemented as IC∗.E(k,m) = IC.E(k,map(m; r))
for random r and IC∗.D(k, c) = map−1(IC.D(k, c)). However, rather than define
a new notion of randomized ideal cipher, in protocols OKAPE and aEKE we
assume that the ideal cipher on G is implemented using the above construction
IC∗ and we argue directly based on the properties of quasi-bijective encoding
map and the bitstring ideal cipher IC.

Elliptic curve encodings. There are many well-studied quasi-bijective
encodings for elliptic curves in the literature (cf. [40, 14, 22, 9, 42]). We briefly
introduce two representative examples and refer to [25] for more details. The
Elligator-squared method [42, 33] applies to most elliptic curves and
implements quasi bijection for the whole group G of prime order q. It encodes
curve points m ∈ G as pair of field elements (u, v) ∈ Z2

q using a deterministic
function f : Zq → G s.t. map−1(u, v) = m iff m = f(u) + f(v). Since u, v are
field elements, a further quasi bijection is needed to represent such pair as a
bitstring unless q is close to a power of 2. The performance of map−1 used in

5 For n = 128 one can assume that e.g. AES is an ideal cipher, while for larger
values one has to use domain-extension techniques, e.g. [16, 20, 27, 17] or direct
constructions, e.g. [19, 5, 21, 11, 10, 18].
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IC∗.D depends on function f whose cost is typically dominated by 1 base-field
exponentiation, which costs ≈10-15% of a scalar multiplication (a.k.a. a
“variable-base exponentiation” in G). The randomized map map used in IC∗.E
can cost e.g. 3 base-field exponentiations on some curves [42]. The Elligator2
method [9] is more restrictive, and defines an injective mapping from half of
the domain G to integer range [0, (q − 1)/2]. The advantages of Ellligator2 is
that it uses a single field element to represent a group element (thus reducing
bandwidth), and that both directions of the map are very efficient, each costing
about 1 base-field exponentiation. The disadvantage is that message m ∈ G
(i.e. S’s message B or C’s message X) has to be resampled until it lies in the
Elligator2 domain.6 Finally, in a recent work of McQuoid et al. [37] show a
“one-time” variant of a randomized ideal cipher on a group, called
Programmable Once Public Function (POPF) therein, which utilizes a single
RO-indistinguishable hash onto group G in both encryption and decryption
directions, and as McQuoid et al. show suffices as a replacement for an ideal
cipher in the proof that EKE realizes UC PAKE functionality [37]. Because of
the similarities between our aPAKE’s and EKE, the same POPF notion could
suffice in the context of our aPAKEs as well, leading to another method for
instantiating the group ideal cipher IC∗, but we leave formal verification that
this is the case to future work.
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Password Registration

– On (StorePwdFile, uid, pw) from S create record 〈file, S, uid, pw〉 marked fresh.

Stealing Password Data [these queries must be approved by the environment]

– On (StealPwdFile, S, uid) from A, if there is no record 〈file, S, uid, pw〉, return
“no password file”. Otherwise mark this record compromised, and if there is a
record 〈offline, S, uid, pw〉 then send pw to A.

– On (OfflineTestPwd, S, uid, pw∗) from A, then do:

• If ∃ record 〈file, S, uid, pw〉 marked compromised, do the following:
If pw∗ = pw then return “correct guess” to A else return “wrong guess.”

• Else record 〈offline, S, uid, pw∗〉

Password Authentication

– On (CltSession, sid, S, uid , pw) from C, if there is no record 〈sid,C, ...〉 then

save 〈sid,C, S, uid , pw , cl〉 marked fresh, send (CltSession, sid,C, S, uid ) to A.

– On (SvrSession, sid,C, uid) from S, if there is no record 〈sid, S, ...〉 then retrieve

record 〈file,S, uid, pw〉, and if it exists then save 〈sid,S,C, uid , pw , sr〉 marked
fresh and send (SvrSession, sid, S,C, uid) to A.

Active Session Attacks

– On (TestPwd, sid,P, uid , pw∗) from A, if ∃ record 〈sid,P,P′, uid , pw , role〉
marked fresh, then do: If pw∗ = pw then mark it compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess.”

– On (Impersonate, sid,C, S, uid) from A, if ∃ record rec = 〈sid,C, S, uid , pw , cl〉
marked fresh, then do: If ∃ record 〈file,S, uid, pw〉 marked compromised then
mark rec compromised and return “correct guess” to A; else mark it interrupted
and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid,P,K ∗) from A, if ∃ record rec = 〈sid,P,P′, uid , pw , role〉 not
marked completed, then do:

1. If rec is marked compromised set K ← K ∗;
2. Else if rec is fresh and there is record 〈sid,P′,P, uid , pw , role′〉 for role′ 6=

role and FaPAKE sent (sid,K ′) to P′ when this record was fresh, set K ← K ′;
3. Else set K ←R {0, 1}`.

Finally, mark rec as completed and send output (sid,K ) to P.

Note: Modifications from FaPAKE defined in [25] are marked like this . They
consist of assumping input uid in CltSession and TestPwd and enforcing uid-
equality between client and server sessions in NewKey processing.

Fig. 9. FaPAKE: asymmetric PAKE functionality adapted from [25]
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Queries StorePwdFile from S, StealPwdFile or OfflineTestPwd from A, CltSession
from C, SvrSession from S, and TestPwd or Impersonate from A, functionality
FaPAKE-cEA acts as FaPAKE of Figure 9, except it omits all parts marked uid (i.e. it
does not require uid input for C and does not enforce uid-equality for C and S).

Below we mark like this parts of NewKey processing which differ from FaPAKE.

Key Generation and Authentication

– On (NewKey, sid,P,K ∗) from A, if there is a record rec = 〈sid,P,P′, pw , role〉
not marked completed, then do:

1. If rec is marked compromised set K ← K ∗;
2. Else if rec is fresh , role = sr, and there is record 〈sid,P′,P, pw , cl 〉 s.t.

FaPAKE-cEA sent (sid,K ′) to P′ when this record was fresh, set K ← K ′;

3. Else if role = cl set K ←R {0, 1}` , and if role = sr set K ← ⊥ .

Finally, mark rec as completed and send output (sid,K ) to P.

Fig. 10. FaPAKE-cEA: asymmetric PAKE with explicit C-to-S authentication

defined by Gentry, Mackenzie, and Ramzan [24], but it adopts few notational
modifications introduced by Gu et al. [25]. These include naming what amounts
to user accounts explicitly as uid instead of generic-sounding sid, using sid instead
of ssid as a session-identifier for on-line authentication attempts, and using only
pairs (S, uid) to identify server password files and not (S,U, uid) tuples as in [24].

Because in this paper we differentiate between unsalted and (publicly)
salted aPAKE’s, an explicit support for unsalted aPAKE’s is reflected in
aPAKE functionality FaPAKE by introducing a slight modification in the
functionality of [25]. These modifications are highlighted in Figure 9, and they
all concern a client-side usage of the user account field uid. As we mention in
the introduction, the round-minimal protocol aEKE is unsalted, and to enforce
the aPAKE contract defined by [24], which is that a single real-world offline
dictionary attack operation must correspond not only to a single password
guess but also to a unique user password file, identified by a unique pair
(S, uid), the client must get as environment’s inputs both the server identifier S
and the user account identifier uid. This is reflected in including uid in the
inputs to CltSession command in Figure 9. However, since the client now
performs computation on a fixed uid, honest client and server sessions will not
agree on the same output key unless they run not only on the same password
pw but also on the same uid. Hence the NewKey processing now includes
uid-equality enforcement. Finally, for the same reason, an online password test
TestPwd must specify the uid field in addition to password guess pw∗.

Functionality FaPAKE currently allows both the server and the client sessions
to leak the account identifier uid input to the adversary. The server-side leakage
of this information was inherent (although not immediate to observe) in the
original aPAKE functionality of [24], and it was adopted by subsequent works,
including e.g. [30, 25]. Now, however, we also introduce client-side leakage of the
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same information. The uid has to be transmitted from the client to the server
before the protocol starts, but it is not clear that the cryptographic protocol
should leak it. We leave plugging this leakage and/or verifying whether it is
necessary in known aPAKEs, including ours, to future work.

Client-to-server entity authentication. Since our protocol OKAPE shown
includes client-to-server authentication (it is not optional, and the protocol is
insecure without it), it realizes an aPAKE functionality amended by
client-to-server entity authentication. We use FaPAKE-cEA to denote the variant
of aPAKE functionality with uni-directional client-to-server entity
authentication, and we include it in Figure 10. Since protocol OKAPE is a
salted aPAKE, it does not need the uid input on the client side, so the
FaPAKE-cEA functionality in Figure 10 incorporates all the code of functionality
FaPAKE but without the uid-related modifications. To simplify NewKey
processing functionality FaPAKE-cEA in Figure 10 assumes that the client party
terminates first, so if two honest parties are connected then the client party
computes its session key output first, and it is always the server party which
can potentially get the same key copied by the functionality. One could define
it more generally but we expect that in most aPAKE protocols with unilateral
client-to-server explicit authentication the server will indeed be the last party
to terminate.

B Simulator for proof of Theorem 3

Because of space constraints, we refer the reader to [23] for a complete proof
of Theorem 3, and provide here an abridged version containing only the overall
proof strategy and the description of the simulator.

To prove the theorem we need to construct a simulator, denoted SIM, such
that the environment’s view of the real-world security game, i.e. an interaction
between the adversary A (whom we consider as a subprocedure of the
environment Z) and honest parties following protocol OKAPE, is
indistinguishable from the environment’s view in the ideal-world interaction
between A, SIM, and the functionality FaPAKE-cEA.

Simulator construction. We show an overview of our simulation strategy in
Fig 11, which gives the top-level view of the real world execution compared to the
ideal world execution which involves the simulator SIM shown in Figures 12-13
as well as the simulator SIMAKE for the otkAKE subprotocol. The description of
simulator SIM is split into two parts as follows: Figure 12 contains the SIM pt.1
part of the diagram in Fig 11, i.e. it deals with adversary’s ideal cipher and hash
queries, and in addition with the compromise of password files. Figure 13 contains
the SIM pt.2 part of the diagram in Fig 11 dealing with on-line aPAKE sessions.
We rely on the fact that protocol otkAKE realizes functionality FotkAKE, so we can
assume that there exists a simulator SIMAKE which exhibits this UC-security of
otkAKE. Our simulator SIM uses simulator SIMAKE as a sub-procedure. Namely,
SIM hands over to SIMAKE the simulation of all C-side and S-side AKE instances
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Fig. 11. real-world (left) vs. simulation (right) for protocol OKAPE

where parties run on either honestly generated or adversarial AKE keys. SIM
employs SIMAKE to generate such keys - in H queries, password file compromise
and in IC decryption queries - see Figure 12, and then it hands off to SIMAKE

the handling of all AKE instances that run on such keys, see Figure 13.
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Initialization
Initialize simulator SIMAKE, empty tables TIC and TH, empty lists PK ,CPK
Notation: ThIC.X

′ = {x′ | ∃y (h, x′, y) ∈ TIC}, ThIC.Y = {y | ∃x′ (h, x′, y) ∈ TIC}.
Convention: First call to SvrSession or StealPwdFile for (S, uid) sets suid

S ←R {0, 1}κ.

On query (pw , s) to random oracle H
send back (h, a) if ∃ 〈(pw , s), (h, a)〉 ∈ TH, otherwise do:

1. If s 6= suid
S for all (S, uid) then h←R {0, 1}κ, init. key A via (Init, clts, cl) call

to SIMAKE, send (Compromise, A) to SIMAKE, define a as SIMAKE’s response,
add A to CPK

2. If s = suid
S for some (S, uid) send (OfflineTestPwd, S, uid, pw) to FaPAKE-cEA and:

(a) if FaPAKE-cEA sends “correct guess” then set A← Auid
S and h← huid

S

(b) else inititalize key A via call (Init, clts, cl) to SIMAKE, add A to PK , pick
h← {0, 1}κ

In either case send (Compromise, A) to SIMAKE, define a as SIMAKE’s response,
add A to CPK , set infouid

S (pw)← (A, h)

In all cases add 〈(pw , s), (h, a)〉 to TH and send back (h, a)

Ideal Cipher IC queries

– On query (h, x′) to IC.E, send back y if (h, x′, y) ∈ TIC, otherwise pick y ←R

Y \ ThIC.Y , add (h, x′, y) to TIC, and send back y
– On query (h, y) to IC.D, send back x′ if (h, x′, y) ∈ TIC. Otherwise if there

exists (S, uid) and (A, pw) such that y = esid
S,uid and infouid

S (pw) = (A, h) then
set id = S, else set id = null. Initialize key B via call (Init, id, sr) to SIMAKE

and add B to PK . Set x′ ←R map(B), add (h, x′, y) to TIC and send back x′

Stealing Password Data
On Z’s permission to do so send (StealPwdFile, S, uid) to FaPAKE-cEA. If FaPAKE-cEA

sends “no password file,” pass it to A, otherwise do the following:

1. if FaPAKE-cEA returns pw , set (A, h)← infouid
S (pw)

2. else init. A via call (Init, clts, cl) to SIMAKE, add A to PK , pick h← {0, 1}κ

Set (Auid
S , huid

S )← (A, h), return file[uid, S]← (Auid
S , huid

S , suid
S ) to A.

Fig. 12. Simulator SIM showing that protocol OKAPE realizes FaPAKE-cEA: Part 1
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Starting AKE sessions

On (SvrSession, sid,S,C, uid) from FaPAKE-cEA, initialize random function Rsid
S :

({0, 1}∗)3 → {0, 1}κ, pick esid
S,uid ←R Y , set flag(Ssid)← hbc, send (esid

S,uid, s
uid
S ) to

A as a message from Ssid, and send (NewSession, sid, S,C, sr) to SIMAKE

On (CltSession, sid,C,S) from FaPAKE-cEA and message (e ′, s ′) sent by A to Csid,
initialize random function Rsid

C : ({0, 1}∗)3 → {0, 1}κ, and:

1. If ∃ uid s.t. (e ′, s ′) = (esid
S,uid, s

uid
S ), set flag(Csid)← hbcuidS , go to 5.

2. If ∃ x′, uid s.t. s ′ = suid
S and e ′ was output by IC.E on (huid

S , x′), send
(Impersonate, sid, C, S, uid) to FaPAKE-cEA and:
(a) If FaPAKE-cEA returns “correct guess”, flag(Csid)←(actuidS ,Auid

S ,map−1(x′))
(b) If it returns “wrong guess”, set flag(Csid)← rnd.
Either case, go to 5.

3. If ∃ (x′, h, a, pw) s.t. e ′ was output by IC.E on (h, x′) and 〈(pw , s ′), (h, a)〉 ∈ TH

(SIM aborts if tuple not unique), send (TestPwd, sid,C, pw) to FaPAKE-cEA and:
(a) If FaPAKE-cEA returns “correct guess”, flag(Csid)←(actuidS , A,map−1(x′))

where A is the public key generated from a.
(b) If it returns “wrong guess”, set flag(Csid)← rnd.
Either case, go to 5.

4. In all other cases set flag(Csid)← rnd, go to 5.
5. Send (NewSession, sid,C, S, cl) to SIMAKE

Responding to SIMAKE messages to FotkAKE emulated by SIM
SIM passes otkAKE protocol messages between SIMAKE and A, but when SIMAKE

outputs queries to (what SIMAKE thinks is) FotkAKE, SIM reacts as follows:

If SIMAKE outputs (Interfere, sid, S) set flag(Ssid)← act

If SIMAKE outputs (Interfere, sid,C) and flag(Csid) = hbcuidS then set flag(Csid)← rnd

If SIMAKE outputs (NewKey, sid,C, α):

1. If flag(Csid) = (actuidS , A,B) then k ← Rsid
C (A,B, α), output τ ← prf(k , 1) and

send (NewKey, sid,C, prf(k , 0)) to FaPAKE-cEA

2. Else output τ ←R {0, 1}κ and send (NewKey, sid,C,⊥) to FaPAKE-cEA

If SIMAKE outputs (NewKey, sid,S, α) and A sends τ ′ to Ssid:

1. If flag(Ssid) = hbc and τ ′ was generated by SIM for Csid s.t. flag(Csid) = hbcuidS ,
then send (NewKey, sid, S,⊥) to FaPAKE-cEA

2. If flag(Ssid) = act and ∃ (pw , B) s.t. τ ′= prf(k ,1) for k = Rsid
S (B,A, α) where

(A, h) = infouid
S (pw) and (h,map(B), esid

S,uid) ∈ TIC (SIM aborts if tuple not
unique), send (TestPwd, sid, S, pw) and (NewKey, sid, S, prf(k , 0)) to FaPAKE-cEA

3. In any other case send (TestPwd, sid, S,⊥) and (NewKey, sid,S,⊥) to FaPAKE-cEA

If SIMAKE outputs (SessionKey, sid,P, pk , pk ′, α):
If pk ′ 6∈ (PK \ CPK ) send Rsid

P (pk , pk ′, α) to A

Fig. 13. Simulator SIM showing that protocol OKAPE realizes FaPAKE-cEA: Part 2
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