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Abstract. The Cheon-Kim-Kim-Song (CKKS) scheme (Asiacrypt’17)
is one of the most promising homomorphic encryption (HE) schemes
as it enables privacy-preserving computing over real (or complex) num-
bers. It is known that bootstrapping is the most challenging part of
the CKKS scheme. Further, homomorphic evaluation of modular reduc-
tion is the core of the CKKS bootstrapping. As modular reduction is
not represented by the addition and multiplication of complex num-
bers, approximate polynomials for modular reduction should be used.
The best-known techniques (Eurocrypt’21) use a polynomial approxi-
mation for trigonometric functions and their composition. However, all
the previous methods are based on an indirect approximation, and thus
it requires lots of multiplicative depth to achieve high accuracy. This
paper proposes a direct polynomial approximation of modular reduction
for CKKS bootstrapping, which is optimal in error variance and depth.
Further, we propose an efficient algorithm, namely the lazy baby-step
giant-step (BSGS) algorithm, to homomorphically evaluate the approx-
imate polynomial, utilizing the lazy relinearization/rescaling technique.
The lazy-BSGS reduces the computational complexity by half compared
to the ordinary BSGS algorithm. The performance improvement for the
CKKS scheme by the proposed algorithm is verified by implementation
using HE libraries. The implementation results show that the proposed
method has a multiplicative depth of 10 for modular reduction to achieve
the state-of-the-art accuracy, while the previous methods have depths of
11 to 12. Moreover, we achieve higher accuracy within a small multi-
plicative depth, for example, 93-bit within multiplicative depth 11.

Keywords: Bootstrapping· Cheon-Kim-Kim-Song (CKKS) scheme· Fully
homomorphic encryption (FHE)· Privacy-preserving machine learning
(PPML)· Signal-to-noise ratio (SNR).
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1 Introduction

Homomorphic encryption (HE) is a specific class of encryption schemes that
enables computation over encrypted data. The Cheon-Kim-Kim-Song (CKKS)
scheme [12] is one of the highlighted fully homomorphic encryption (FHE) schemes
as it supports efficient computation on real (or complex) numbers, which are
the usual data type for many applications such as deep learning. As the other
HE schemes are designed for different domains, the CKKS scheme is known to
be the most efficient for real numbers. For example, Brakerski-Fan-Vercauteren
(BFV) [5, 6, 17] and Brakerski-Gentry-Vaikuntanathan (BGV) [4] schemes are
designed for integer messages in Zq, and FHEW/TFHE [13, 14, 15] are designed
for binary circuits.

Gentry’s blueprint of bootstrapping provides the idea of homomorphic re-
encryption of ciphertext. In CKKS bootstrapping, the modular reduction by an
integer is performed homomorphically. However, the modular reduction func-
tion is not represented by the addition and multiplication of complex numbers.
Hence, an approximate polynomial of trigonometric functions is used in prior
arts [3, 7, 9, 18, 24], which have two limitations in practice: i) these are indirect
approximations, which require larger multiplicative depths, and ii) the measure
of approximation error is minimax-base (minimizing the upper bound of the
approximation error). This paper shows that the minimax polynomial does not
guarantee the minimax bootstrapping error. We propose that the error variance
would be a better measure than the minimax error, especially for bootstrapping.

The CKKS scheme provides the trade-off between the efficiency and preci-
sion of messages as encrypted data of the CKKS scheme inherently has noise.
Errors in encrypted data are propagated and added along with homomorphic
operations. Hence, the error should be carefully measured when we design a cir-
cuit for efficiency and security in CKKS. Moreover, as attacks against CKKS
have recently been proposed [11, 26, 27], reducing errors of the CKKS scheme
becomes more crucial to mitigate the risk of the attacks.

1.1 Our Contributions

This paper contains contributions to the high-precision bootstrapping of the
CKKS scheme. We propose i) a method to find the optimal approximate poly-
nomial for the modular reduction in bootstrapping and ii) an efficient algorithm
for homomorphic evaluation of polynomials.

First, we propose the optimal approximate polynomial for CKKS bootstrap-
ping in the aspect of signal-to-noise ratio (SNR), which improves the precision
of CKKS bootstrapping. As a result, we can reserve more levels after bootstrap-
ping while achieving the best-known precision, where the level of a ciphertext
is defined as the number of successive multiplications that can be performed
to the ciphertext without bootstrapping. The proposed approximate polyno-
mial has the following three features: i) an optimal measure of error for CKKS
bootstrapping: we show that an approximate polynomial that achieves the least
error variance is also optimal for CKKS bootstrapping in the aspect of SNR.
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ii) a direct approximation: the approximate polynomial of modular reduction
is directly obtained from the whole polynomial space of degree n, i.e., Pn, us-
ing the error variance-minimizing method, and thus it has less multiplicative
depths compared to the previous methods (In other words, less bootstrapping is
required for the same circuit.) iii) reduction of error from noisy calculation: in
the polynomial evaluation over CKKS, each polynomial basis has an error. Un-
like previous bootstrapping methods, the proposed method minimizes the errors
introduced by noisy basis as well as the approximation error.

Second, we propose a novel variant of the baby-step giant-step (BSGS) algo-
rithm, called the lazy-BSGS algorithm, which reduces the number of relineariza-
tions by half compared to ordinary BSGS algorithms. The proposed lazy-BSGS
algorithm is more efficient for higher degree polynomial. The proposed approx-
imate polynomial has a high degree, while the previous methods use a com-
position of small-degree polynomials. Thus, the lazy-BSGS algorithm makes the
evaluation time of the proposed polynomial comparable to the previous methods.

Note for the First Contribution Previous methods utilized the minimax approx-
imate polynomial of modular reduction function for bootstrapping to reduce the
bootstrapping error [18, 24]. However, in CKKS bootstrapping, a linear trans-
formation on slot values, called SlotToCoeff, is performed, and its resulting
ciphertext is the sum of thousands of noisy values. Since many noisy values are
added, the upper bound on the final error value is loose. Hence, we propose to
minimize the error variance instead of the upper bound on the error.

Besides the approximation error, each polynomial basis also has an error in
CKKS, and it is amplified when we multiply large coefficients of the approximate
polynomial. The previous approximation method could not control these errors
with the approximate polynomial coefficients. Thus, they used the trigonometric
function and double angle formula instead, to make the approximation degree
small [3, 18, 24]. This indirect approximation results in larger multiplicative
depths. It is preferred to reserve more levels after bootstrapping as it can reduce
the number of bootstrapping in the whole system; moreover, the number of re-
maining levels after bootstrapping is also important for an efficient circuit design
of algorithms using CKKS, for example, in [23], the depth of activation layer is
optimized for the levels after bootstrapping. The proposed method minimizes
the basis error variance as well as the approximation error variance, so it has
less multiplicative depths compared to the previous composition of trigonomet-
ric functions. To the best of our knowledge, this is the first method to find the
optimal approximate polynomial that minimizes both the approximation error
and the error in the basis at the same time.

We show that from the learning with error (LWE) assumption, the input
of approximate polynomial follows a distribution similar to Irwin-Hall distri-
bution, regardless of the security. The proposed method exploits this property
to improve the approximation accuracy. Also, we derive an analytical solution
for our error variance-minimizing approximate polynomial, while the previous
minimax approximate polynomial was obtained by iterative algorithms [18, 24].
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Note for the Second Contribution As rescaling and relinearization introduce ad-
ditional errors, it is desirable to perform them as late as possible. In addition,
the number of rescalings/relinearizations is also reduced by reordering the oper-
ations to delay the relinearization/rescaling. This technique, the so-called lazy
rescaling/relinearization technique, has been applied to reduce the computa-
tional complexity in [1, 8, 22]. We propose a rigorous analysis on lazy rescaling
and relinearization in the BSGS algorithm. Moreover, we propose the algorithm
to find the optimal approximate polynomial, which fits the lazy-BSGS algorithm
for odd functions.

1.2 Related Works

Bootstrapping of the CKKS Scheme Since the CKKS bootstrapping was
firstly proposed in [9], the Chebyshev interpolation has been applied to the ho-
momorphic evaluation of modular reduction [7, 18]. Then, a technique for direct
approximation was proposed using the least squares method [25] and Lagrange
interpolation [19]. However, the magnitudes of coefficients of those approximate
polynomials are too large. The algorithm to find minimax approximate poly-
nomial using improved multi-interval Remez algorithm and the use of arcsin
to reduce approximation error of the modular reduction were presented in [24].
The bootstrapping for the non-sparse-key CKKS scheme was proposed, and the
computation time for homomorphic linear transformations was significantly im-
proved by using double hoisting in [3]. Julta and Manohar proposed to use sine
series approximation [20], but as there exists a linear transformation from sine

series {sin(kx)} to power of sine functions
{

sin(x)
k
}

, this method is also based

on trigonometric functions.

Attacks on the CKKS Scheme and High-Precision Bootstrapping An
attack to recover the secret key using the error pattern after decryption was
recently proposed by Li and Micciancio [26], and thus it becomes more crucial
to reduce the error in CKKS. One possible solution to this attack is to add
a huge error, so-called the noise flooding technique [16] or perform rounding
after decryption to make the plaintext error-free [26]. In order to use the noise
flooding technique, the CKKS scheme requires much higher precision, and the
bootstrapping error is the bottleneck of precision. Although a lot of research is
required on how to exploit the bootstrapping error for cryptanalysis of CKKS,
the high-precision bootstrapping is still an interesting topic [3, 20, 24, 25].

1.3 Organization of This Paper

The remainder of the paper is organized as follows. In Section 2, we provide the
necessary notations and SNR perspective on error. The CKKS scheme and its
bootstrapping algorithm are summarized in Section 3. We provide a new method
to find the optimal direct approximate polynomials for the CKKS scheme and
also show its optimality in Section 4. Section 5 provides the novel lazy-BSGS
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algorithm for the efficient evaluation of approximate polynomial for CKKS boot-
strapping. The implementation results and comparison for precision and timing
performance for the CKKS bootstrapping are given in Section 6. Finally, we
conclude the paper in Section 7.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted in boldface, such as v, and all vectors are column vectors.
Matrices are denoted by boldfaced capital letters, i.e., M. We denote the inner
product of two vectors by 〈·, ·〉 or simply ·. b·e, b·c, and d·e denote the rounding,
floor, and ceiling functions, respectively. [m]q is the modular reduction, i.e., the
remainder of m dividing by q. x ← D denotes the sampling x according to a
distribution D. When a set is used instead of distribution, x is sampled uniformly
at random among the set elements. Random variables are denoted by capital
letters such as X. E[X] and V ar[X] denote the mean and variance of random
variable X, respectively. For a function f , V ar[f(X)] can be simply denoted by
V ar[f ]. ‖a‖2 and ‖a‖∞ denote the L-2 norm and the infinity norm, and when
the input is a polynomial, those denote the norm of coefficient vector. We denote
the supreme norm of a function ‖f‖sup := supt∈D |f(t)| for a given domain D.

Let ΦM (X) be the M -th cyclotomic polynomial of degree N , and when M
is a power of two, M = 2N , and ΦM (X) = XN + 1. Let R = Z/ 〈ΦM (X)〉 be
the ring of integers of a number field S = Q/ 〈ΦM (X)〉 , where Q is the set of
rational numbers and we write Rq = R/qR. A polynomial a(X) ∈ R can be
denoted by a by omitting X when it is obvious. Since the multiplicative depth
of a circuit is crucial in CKKS, from here on, the multiplicative depth is referred
to as depth.

2.2 The CKKS Scheme

The CKKS scheme and its residual number system (RNS) variants [10, 18] pro-
vide operations on encrypted complex numbers, which are done by the canon-
ical embedding and its inverse. Recall that the canonical embedding Emb of
a(X) ∈ Q/ 〈ΦM (X)〉 into CN is the vector of the evaluation values of a at the
roots of ΦM (X) and Emb−1 denotes its inverse. Let π denote a natural projec-
tion from H = {(zj)j∈Z∗M : zj = z−j} to CN/2, where Z∗M is the multiplicative
group of integer modulo M . The encoding and decoding are defined as follows.

– Ecd(z;∆): For an (N/2)-dimensional vector z, the encoding returns

m(X) = Emb−1
(⌊
∆ · π−1(z)

⌉
Emb(R)

)
∈ R,

where ∆ is the scaling factor and b·eEmb(R) denotes the discretization into

an element of Emb(R).
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– Dcd(m;∆): For an input polynomial m(X) ∈ R, output a vector

z = π(∆−1 · Emb(m)) ∈ CN/2,

where its entry of index j is given as zj = ∆−1·m(ζjM ) for j ∈ T , ζM is the M -
th root of unity, and T is a multiplicative subgroup of Z∗M satisfying Z∗M/T =
{±1}. Alternatively, this can be basically represented by multiplication by

an N/2×N matrix U whose entries are Uji = ζij , where ζj := ζ5
j

M .

For a real number σ, DG(σ2) denotes the distribution in ZN , whose entries
are sampled independently from the discrete Gaussian distribution of variance
σ2. HWT (h) is the set of signed binary vectors in {0,±1}N with Hamming
weight h. Suppose that we have ciphertexts of level l for 0 ≤ l ≤ L.

The RNS-CKKS scheme performs all operations in RNS. The ciphertext

modulus Ql = q ·
∏l
i=1 pi is used, where pi’s are chosen as primes that satisfy

pi = 1 (mod 2N) to support efficient number theoretic transform (NTT). We
note that Q0 = q is greater than p as the final message’s coefficients should
not be greater than the ciphertext modulus q. For a faster computation, we use
the hybrid key switching technique in [18]. First, for predefined dnum, a small

integer, we define partial products
{
Q̃j

}
0≤j<dnum

=
{∏(j+1)α−1

i=jα pi

}
0≤j<dnum

,

for a small integer α = d(L+ 1)/dnume. For a ciphertext with level l and dnum′ =
d(l + 1)/αe, we define [18]

WDl(a) =

[a Q̃0

Ql

]
Q̃0

, · · · ,
[
a
Q̃dnum′−1

Ql

]
Q̃

dnum′−1

 ∈ Rdnum′
,

PWl(a) =

[a Ql

Q̃0

]
ql

, · · · ,
[
a

Ql

Q̃dnum′−1

]
ql

 ∈ Rdnum′
Ql

.

Then, for any (a, b) ∈ R2
Ql

, we have

〈WDl(a),PWl(b)〉 = a · b (mod Ql) .

Then, the operations in the RNS-CKKS scheme are defined as follows:

– KeyGen(1λ):
• Given the security parameter λ, we choose a power-of-two M , an integer
h, an integer P , a real number σ, and a maximum ciphertext modulus
Q, such that Q ≥ QL.

• Sample the following values: s← HWT (h).
• The secret key is sk := (1, s).

– KSGensk(s
′): For auxiliary modulus P =

∏k
i=0 p

′
i ≈ maxj Q̃j , sample a′k ←

RPQL
and e′k ← DG(σ2). Output the switching key

swk := (swk0, swk1) =({b′k}
dnum′−1
k=0 , {a′k}

dnum′−1
k=0 ) ∈ R2×dnum′

PQL
,

where b′k = −a′ks+ e′k + P · PW(s′)k (mod PQL).
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• Set the evaluation key as evk := KSGensk(s
2).

– Encsk(m): Sample a← RQL
and e← DG(σ2). The output ciphertext is

ct = (−a · s+ e+m, a) (mod QL) ,

where sk = (1, s). There is also a public-key encryption method [12], but
omitted here.

– Decsk(ct): Output m̄ = 〈ct, sk〉.
– Add(ct1, ct2): For ct1, ct2 ∈ R2

Ql
, output ctadd = ct1 + ct2 (mod Ql) .

– Mult(ct1, ct2): For ct1 = (b1, a1) and ct2 = (b2, a2) ∈ R2
Ql

, return

ctmult = (d0, d1, d2) := (b1b2, a1b2 + a2b1, a1a2) (mod Ql) .

– RLevk(d0, d1, d2): For a three-tuple ciphertext (d0, d1, d2) corresponding to
secret key (1, s, s2), return (d0, d1) + KSevk((0, d2)).

– cAdd(ct1,a;∆): For a ∈ CN/2 and a scaling factor ∆, output ctcadd = ct +
(Ecd(a;∆), 0).

– cMult(ct1,a;∆): For a ∈ CN/2 and a scaling factor ∆, output ctcmult =
Ecd(a;∆) · ct.

– RS(ct): For ct ∈ R2
Ql

, output ctRS =
⌊
p−1l · ct

⌉
(mod ql−1) .

– KSswk(ct): For ct = (b, a) ∈ R2
Ql

and swk := (swk0, swk1), output

ctKS =

(
b+

⌊
〈WDl(a), swk0〉

P

⌉
,

⌊
〈WDl(a), swk1〉

P

⌉)
(mod Ql) .

The key-switching techniques are used to provide various operations such as
complex conjugate and rotation. To remove the error introduced by approxi-
mate scaling factors, one can use different scaling factors for each level as given
in [21], or we can use the scale-invariant method proposed in [3] for polyno-
mial evaluation. We note that (FullRNS-)HEAAN and SEAL are (dnum = 1) and
(dnum = L+ 1) cases, respectively, and Lattigo supports for arbitrary dnum.

2.3 Signal-to-Noise Ratio Perspective of the CKKS Scheme

There has been extensive research on noisy media in many areas such as wireless
communications and data storage. In this perspective, the CKKS scheme can be
considered as a noisy media; encryption and decryption correspond to transmis-
sion and reception, respectively. The message in a ciphertext is the signal, and
the final output has additive errors due to ring-LWE (RLWE) security, rounding,
and approximation.

The SNR is the most widely-used measure of signal quality, which is defined
as the ratio of the signal power to the noise power as follows:

SNR =
E[S2]

E[N2]
,

where S and N denote the signal (message) and noise (error), respectively. As
shown in the definition, the higher SNR corresponds to the better quality.
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A simple way to increase SNR is to increase the signal power, but it would
be limited due to regulatory or physical constraints. The CKKS scheme has the
same problem; a larger scaling factor should be multiplied to the message to
increase the message power, but if one uses a larger scaling factor, the cipher-
text level decreases, or larger parameters should be used for security. Hence, to
increase SNR, it is beneficial to reduce the noise power in the CKKS scheme
rather than increasing the signal power.

Error estimation of the CKKS scheme so far has been focused on the high-
probability upper bound of the error after several operations [9, 12] and also
minimax for approximation [24]. However, the bound becomes quite loose as the
homomorphic operation continues, and its statistical significance may diminish.
Thus, we maximize SNR in this paper, which is equivalent to minimizing error
variance when the scaling factor is fixed.

3 Bootstrapping of the CKKS Scheme

3.1 Outline of the CKKS Bootstrapping

There are extensive studies for bootstrapping of the CKKS scheme [3, 7, 9, 18,
19, 20, 24, 25]. The CKKS bootstrapping consists of the following four steps:
ModRaise, CoeffToSlot, EvalMod, and SlotToCoeff.

Modulus Raising(ModRaise). ModRaise increases the ciphertext modulus
to a larger modulus. Let ct be the ciphertext satisfying m(X) = [〈ct, sk〉]q. Then
we have t(X) = 〈ct, sk〉 = qI(X) +m(X) ≡ m(X) (mod q) for I(X) ∈ R with a
high-probability bound ‖I(X)‖∞ < K = O(

√
h). The following procedure aims

to calculate the remaining coefficients of t(X) when dividing by q.
Homomorphic Evaluation of Encoding(CoeffToSlot). Homomorphic oper-

ations are performed in plaintext slots, but we need component-wise operations
on coefficients. Thus, to deal with t(X), we should put polynomial coefficients in
plaintext slots. In CoeffToSlot step, Emb−1 ◦π−1 is performed homomorphi-
cally using matrix multiplication [9], or FFT-like hybrid method [7]. Then, we
have two ciphertexts encrypting z′0 = (t0, . . . , tN

2 −1
) and z′1 = (tN

2
, . . . , tN−1)

(when the number of slots is small, we can put z′0 and z′1 in a ciphertext, see [9]),
where tj denotes the j-th coefficient of t(X). The matrix multiplication is com-
posed of three steps [9]: i) rotate ciphertexts, ii) multiply diagonal components
of matrix to the rotated ciphertexts, and iii) sum up the ciphertexts.

Evaluation of the Approximate Modular Reduction(EvalMod). An approxi-
mate evaluation of the modular reduction function is performed in this step. As
additions and multiplications cannot represent the modular reduction function,
an approximate polynomial for [·]q is used. For approximation, it is desirable to
control the message size to ensure mi ≤ ε · q for a small ε [9].

Homomorphic Evaluation of Decoding(SlotToCoeff). SlotToCoeff is
the inverse operation of CoeffToSlot. Since the matrix elements do not have
to be precise as much in CoeffToSlot, we can use a smaller scaling factor
here [3]. In SlotToCoeff, the ciphertext is multiplied by the CRT matrix
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U, whose elements have magnitudes of one. Thus, the N errors in slots are
multiplied by a constant of size one and then added.

3.2 Polynomial Approximation of Modular Reduction

Previous works approximated the modular reduction function as q
2π sin

(
2πt
q

)
[7,

9, 18]. Approximate polynomial of sine function is found by using Taylor expan-
sion of exponent function and eit = cos(t) + i · sin(t) in [9]. The Chebyshev
approximation of sine function improved the approximation in [7]. The modi-
fied Chebyshev approximation in cosine function and the double-angle formula
reduced the error and evaluation time in [18]. However, in these approaches,
the sine function is used, and thus there is still the fundamental approximation
error, that is, ∣∣∣∣m− q

2π
sin

(
2π
m

q

)∣∣∣∣ ≤ q

2π
· 1

3!

(
2π|m|
q

)3

.

Direct-approximation methods were proposed in [19, 25], but their coefficients
are large and amplify errors of polynomial basis. A composition with inverse sine
function that offers a trade-off between the precision and the remaining level
was proposed to remove the fundamental approximation error between the sine
function and the modular reduction [24]. However, the evaluation of inverse sine
function has a considerable multiplicative depth.

Those prior researches tried to find the minimax approximate polynomial pn,
which minimizes ‖f − pn‖sup, where f is the function to approximate, such as
sine function [7, 9, 18, 24]. Lee et al. proposed the multi-interval Remez algo-
rithm [24], which is an iterative method to find minimax approximate polynomial
of an arbitrary piece-wise continuous function.

3.3 Baby-Step Giant-Step Algorithms

There are several baby-step giant-step algorithms for a different purpose in the
context of HE. In this paper, BSGS only refers to the polynomial evaluation
algorithm proposed in [18] and its variants. The BSGS algorithm is presented
in Algorithm 1 composed of SetUp, BabyStep, and GiantStep. SetUp cal-
culates all the polynomial bases required to evaluate the given polynomial. The
GiantStep divides the input polynomial by a polynomial of degree 2ik and calls
GiantStep recursively for its quotient and remainder, where i ≤ blog(deg/k)c
for an integer k, and deg is the degree of the polynomial. When the given poly-
nomial has a degree less than k, it calls BabyStep, and it evaluates the given
polynomial of a small degree, namely a baby polynomial.

Originally, Han and Ki proposed to use a power-of-two k [18], and Lee et al.
generalized k to an arbitrary even number and proposed to omit even-degree
terms for odd polynomial,1 which reduces the number of ciphertext-ciphertext

1 This technique appears in their first version in Cryptology ePrint Archive.
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Algorithm 1 BSGS Algorithm [18, 24]

Instance: A ciphertext ct of t, a polynomial p(X) =
∑
i ci · Ti(X).

Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: procedure SetUp(ct, l, k)
3: cti ← encryption of Ti(t)
4: ct2ik ← encryption of T2ik(t) . for 0 ≤ i < l.
5: end procedure
6: procedure BabyStep(p(X), {cti} , k)
7: return

∑
j cj · ctj . baby polynomials.

8: end procedure
9: procedure GiantStep(p(X), {cti} , l, k)

10: if deg(p) < k then
11: return BabyStep(p(X), {cti} , k)
12: end if
13: Find q(X), r(X) s.t. p(X) = q(X) · T2ik(X) + r(X)
14: ctq ←GiantStep(q(X), {cti} , l, k)
15: ctr ←GiantStep(r(X), {cti} , l, k)
16: return ctq · ct2ik + ctr
17: end procedure

multiplications [24]. The number of ciphertext-ciphertext multiplications is given
as

k − 2 + l + 2l

in general, and
blog (k − 1)c+ k/2− 2 + l + 2l

for odd polynomials, where deg < k ·2l is satisfied. Also, Bossuat et al. improved
to do more recursion for high-degree terms [3] to optimize the multiplicative
depth. In the BSGS algorithm of Bossuat et al., we can evaluate a polynomial of
degree up to 2d−1 within multiplicative depth d by applying O(log k) additional
multiplications.

4 Optimal Approximate Polynomial of Modular
Reduction for Bootstrapping of the CKKS Scheme

This section proposes a new method to find the optimal approximate polynomial
of the modular reduction function for the CKKS bootstrapping, considering the
noisy computation nature of the CKKS Scheme. The optimality of the proposed
approximate polynomial is proved, and statistics of input for an approximate
polynomial are also analyzed to improve the approximation.

4.1 Error Variance-Minimizing Polynomial Approximation

We use the variance of error as the objective function for the proposed polyno-
mial approximation and show that it is also optimal for CKKS bootstrapping.
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As described later in the following subsections, the error in the noisy polynomial
basis, namely the basis error, might be amplified by coefficients of the approx-
imate polynomial. Thus, the magnitude of its coefficients should be small, and
using the generalized least square method, the optimal coefficient vector c∗ of
the approximate polynomial is obtained as

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
, (1)

where eaprx is the approximation error, and the constant values wi are determined
by the basis error given by CKKS parameters such as key Hamming weight,
number slots, and scaling factor.

We call the proposed approximate polynomial obtained by (1) as the error
variance-minimizing approximate polynomial, and we derived an analytic solu-
tion. We note that the optimized solution attempts to minimize the variance
of the approximation error as well as the variance of amplified basis error. The
error variance-minimizing approximate polynomial is described in detail by tak-
ing bootstrapping as a specific example in the following subsection. It is worth
noting that the approximation can be applied arbitrary function.

4.2 Optimality of the Proposed Direct Approximate Polynomial

In this subsection, we show that the proposed error variance-minimizing approx-
imate polynomial is optimal for CKKS bootstrapping in the following aspects.
First, we show that an approximate polynomial that minimizes the error vari-
ance after EvalMod also minimizes the bootstrapping error variance, and thus
it is optimal in terms of SNR. Next, we show that the direct approximation
to the modular reduction allows a more accurate approximation than previous
indirect approximations using trigonometric functions [3, 7, 9, 18, 24] for fixed
multiplicative depth.

Error-Optimality of the Proposed Approximate Polynomial in CKKS
Bootstrapping Here, we show that error variance-minimizing approximate
polynomial guarantees the minimal error after bootstrapping in the aspect of
SNR, while the minimax approach in [3, 7, 9, 18, 24] does not guarantee the min-
imax error after bootstrapping. In EvalMod, the operations between different
slots do not happen, and thus we can assume that the error in each slot is in-
dependent. The SlotToCoeff is the homomorphic operation of decoding, and
the decoding of m(X) is given as (m(ζ0),m(ζ1), . . . ,m(ζN/2−1)). Hence, the er-

ror in the j-th slot after SlotToCoeff is given as eboot,j(ζj) =
∑N−1
i=0 emod,i ·ζij

which is the sum of thousands of independent random variables, where emod,i

denotes the error in the i-th slot after EvalMod and |ζj | = 1.
The minimax approximate polynomial minimizes ‖eaprx(t)‖sup [7, 24]. In this

case, we have emod,i = eaprx(ti) + enoise,i, where ti is the i-th slot value after
CoeffToSlot and enoise,i is the random error by the noisy polynomial basis
of CKKS. Hence, the minimax approximation minimizes max

(∣∣eaprx(ti) · ζij∣∣) =
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‖eaprx(ti)‖sup, not max (|eboot,j |). In other words, we observe that the final boot-

strapping error is eboot,j , and we have

max (|eboot,j |) = max

(∣∣∣∣∣
N−1∑
i=0

emod,i · ζij

∣∣∣∣∣
)

= max

(∣∣∣∣∣
N−1∑
i=0

(eaprx(ti) + enoise,i) · ζij

∣∣∣∣∣
)

≤ max

(∣∣∣∣∣
N−1∑
i=0

eaprx(ti) · ζij

∣∣∣∣∣
)

+ max

(∣∣∣∣∣
N−1∑
i=0

enoise,i · ζij

∣∣∣∣∣
)
, (2)

where

max

(∣∣∣∣∣
N−1∑
i=0

eaprx(ti) · ζij

∣∣∣∣∣
)
≤
∥∥ζ0j · eaprx∥∥sup + · · ·+

∥∥∥ζN−1
j · eaprx

∥∥∥
sup
.

Hence, the minimax approximate polynomial does not guarantee the minimum
infinity norm of bootstrapping error but provides an upper bound only for the
approximation error term. Besides, it is challenging to optimize polynomial co-
efficients for noisy basis in the existing minimax approximation.

In contrast, the proposed error variance-minimizing approximate polynomial
minimizes V ar[emod,j ]. Thus, it also minimizes the final bootstrapping error
V ar[eboot,j ], as

V ar[eboot,j ] = V ar[emod,0 · ζ0j ] + · · ·+ V ar[emod,N−1 · ζ(N−1)j ].

The above equation implies that minimizing the variance of the approximate
error is optimal to reduce the bootstrapping error of the CKKS scheme in the
aspect of SNR. Due to the characteristics of SlotToCoeff, we have the tight
value of the variance of bootstrapping error, while the minimax provides an
upper bound of infinity norm. In other words, we can optimize our objective
function by the proposed error variance-minimizing approximate polynomial,
whereas the minimax approach optimizes an upper bound (the right-hand side
of (2)) instead of the bootstrapping error (the left-hand side of (2)).

Depth Optimality of Direct Approximation As shown in (1), the proposed
method approximates the objective function directly, while the prior works ap-
proximate trigonometric functions [3, 7, 9, 18, 24]. Let Pdeg ⊂ C[X] be the set
of all polynomials whose degree is less than or equal to deg. When we perform
a direct approximation, the algorithm finds an approximate polynomial among
all elements of Pdeg, and its multiplicative depth is dlog(deg)e.

When we use the approximation of trigonometric function, the search space
of the approximation algorithm is much more limited. For example, as in [3, 24],
suppose that we use the double angle formula twice and approximate polynomial
for cosine and arcsine of degree deg1 and deg2, respectively. Then the search space
is {

f2 ◦ g ◦ f1|f1 ∈ Pdeg1 , f2 ∈ Pdeg2 , and g(x) = (x2 − 1)2 − 1
}
.

We can see that the search space is much smaller than P4deg1deg2 , and its multi-
plicative depth is dlog(deg1 + 1)e+ 2 + dlog(deg2 + 1)e ≥ dlog(4deg1deg2 + 1)e.



High-prec. bootstrapping for approx. HE by error variance minimization 13

Hence, the direct approximation in P4deg1deg2 has more chance to find a better
approximation as well as it has less multiplicative depth.

4.3 Noisy Polynomial Basis and Polynomial Evaluation in the
CKKS Scheme

Let {φ0(x), φ1(x), . . . , φn(x)} denote a polynomial basis of degree n such that
every φk(t) is odd for an odd k. When a polynomial p(x) =

∑
ciφi(x) is evaluated

homomorphically, it is expected that the result is p(x) + e for a small error e. In
the CKKS scheme, there exists an error in encrypted data, and thus, each φi(x)
contains independent ebasis,i, namely the basis error. Thus, the output is∑

ci(φi(x) + ebasis,i) = p(x) +
∑

ciebasis,i.

In general,
∑
ciebasis,i is small as ebasis,i are small. However, when |ci| are much

greater than p(x),
∑
ciebasis,i dominates p(x).

The basis errors, ebasis,i are introduced by rescaling, key switching, and en-
cryption errors, which are independent of the message. Each φi(x) is usually
obtained from smaller-degree polynomials, and thus there may be some corre-
lation between ebasis,i’s. If we assume that each ebasis,i is independent, then the
variance of

∑
ci · ebasis,i becomes

∑
c2i ·V ar(ebasis,i) and wi in (1) corresponds to

V ar(ebasis,i). The experiments in Section 6 support that our approximation with
this independence assumption obtains accurate approximations for bootstrap-
ping in practice. In other words, we do not need exact distributions of ebasis,i in
practice.

In conclusion, the magnitude of ci’s should be controlled when we find an
approximate polynomial. A high-degree approximate polynomial for modular
reduction and piece-wise cosine function has large coefficients magnitude in pre-
vious works [19, 24]. There have been series of studies in approximate polyno-
mials in the CKKS scheme [3, 7, 12, 18, 19, 24, 25], but the errors amplified by
coefficients were not considered in the previous studies.

4.4 Optimal Approximate Polynomial for Bootstrapping and the
Magnitude of Its Coefficients

The most depth-consuming and noisy part of bootstrapping is EvalMod. In
this subsection, we show how to find the optimal approximate polynomial for
EvalMod in the aspect of SNR. By scaling the modular reduction function [·]q
by 1

q , we define

fmod :

K−1⋃
i=−K+1

Ii → [−ε, ε] , that is, fmod(t) = t− i if t ∈ Ii,

where Ii = [i− ε, i+ ε] for an integer −K < i < K . Here, ε denotes the ratio of
the maximum coefficient of the message polynomial and the ciphertext modulus,
that is, |mi/q| ≤ ε, where mi denotes a coefficient of m(X). Let T be the random
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variable of input t of fmod(t). Then, T = R+ I, where R is the random variable
of the rational part r, and I is the random variable of the integer part i. We
note that PrT (t) = PrI (i) · PrR (r) is satisfied for t = r + i as i and r are
independent and

⋃
i Ii = [−ε, ε] × {0,±1, . . . ,±(K − 1)}, where PrT ,PrI , and

PrR are the probability mass functions or probability density functions of T, I,
and R, respectively.

The approximation error for t is given as

eaprx(t) = p(t)− fmod(t) = p(t)− (t− i),

where a polynomial p(t) =
∑
ciφi(t) approximates fmod(t). We can set p(t) as

an odd function because fmod(t) is odd. Then the variance of eaprx is given as

V ar[eaprx] = E[e2aprx] =

∫
t

eaprx(t)
2 · PrT (t) dt

=
∑

−K<i<K

PrI (i)

∫ i+ε

t=i−ε
eaprx(t)

2 · PrR (t− i) dt,

where the mean of eaprx is zero by assuming that PrT (t) is even. It is noted that
the integral can be directly calculated or approximated by the sum of discretized
values as in [25].

The basis error
∑
c2i · V ar(ebasis,i) is also added as discussed in Subsection

4.3. We generalize V ar(ebasis,i) by wi. Then, we find c∗ such that

c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
, (3)

and its solution satisfies

∇c

(
V ar[eaprx] +

∑
wic

2
i

)
= 0,

where c = (c1, c3, . . . , cn) and w = (w1, w3, . . . , wn) are coefficient and weight
constant vectors, respectively. We note that the objective function is convex.

It is noted that V ar(ebasis,i) may differ by i, and thus, a precise adjustment
of the magnitude of polynomial coefficients can be made by multiple weight
constants, wi’s. The following theorem states that we can find the approximate
polynomial for p(t) efficiently; the computation time of solving this system of lin-
ear equations is the same as that of finding an interpolation polynomial for given
points. It will be faster than the improved multi-interval Remez algorithm [24],
as the Remez algorithm requires an interpolation per each iteration.

Theorem 1. There exists a polynomial-time algorithm that finds the odd poly-
nomial p(t) =

∑
ciφi(t) satisfying

arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
,

when PrT (t) is an even function.
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Proof. By substituting p(t) =
∑
ciφi(t) from V ar[eaprx] = E[e2aprx] = E[fmod(t)

2]−
2E[fmod(t) · p(t)] + E[p(t)2], we have

∂

∂cj
V ar[eaprx] = −2E[fmod(t)φj(t)] + 2

∑
i

ci · E[φi(t)φj(t)].

Therefore, one can find c∗ = arg minc

(
V ar[eaprx] +

∑
wic

2
i

)
by solving the fol-

lowing system of linear equations:

(T + wI) · c = y, (4)

where w is a diagonal matrix where wii = wi,

T =


E[φ1 · φ1] E[φ1 · φ3] . . . E[φ1 · φn]

E[φ3 · φ1] E[φ3 · φ3] . . .
...

...
. . .

...
E[φn · φ1] E[φn · φ3] . . . E[φn · φn]

 , and y =


E[fmod · φ1]
E[fmod · φ3]

...
E[fmod · φn]

 .
E[φi ·φj ] and E[fmod ·φi] are integral of polynomials, which are easily calculated.
Also, the equation can be simplified by the linear transformation from monomial
basis to φ, and thus, the approximation of other functions is readily obtained.

ut

4.5 Statistical Characteristics of Modular Reduction

The input distribution of the proposed approximate polynomial, represented by
PrI and PrR, is required to find T and y. Unfortunately, in HE, it is not always
possible to utilize the message distribution as it might be related to security.
However, we observe and analyze that the major part of the input distribution
of approximate polynomial is unrelated to the security.

After ModRaise, the plaintext in the ciphertext ct = (b, a) is given as

t(X) = q · I(X) +m(X) = 〈ct, sk〉
(
mod XN + 1

)
,

where sk has Hamming weight h and each coefficient of a ciphertext (b, a) is an
element of Zq. The RLWE assumption states that a ciphertext is uniformly dis-
tributed over R2

q, and thus each coefficient of b and a is distributed uniformly at
random. In other words, coefficients of b+ a · s follow the well-known Irwin–Hall
distribution. Especially, it is a sum of h + 1 independent and identically dis-
tributed uniform random variables.

We note that one can exploit the distribution of I without security con-
cerns. This is because the probability distribution PrI is given by the RLWE
assumption (that b and a are uniformly distributed), regardless of the message
distribution. Also, the implementation results in Section 6 show that we can
achieve high approximation accuracy of the proposed approximate polynomial
using PrI even if we set to the worst-case of PrR.
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Table 1. Experimental result and theoretical probability mass function of I when
h = 192

i
PrI (i)

i
PrI (i)

i
PrI (i)

experiment theory experiment theory experiment theory

0 9.94·10−2 9.91·10−2 ±8 1.36·10−2 1.37·10−2 ±16 3.34·10−5 3.48·10−5

±1 9.64·10−2 9.61·10−2 ±9 8.02·10−3 8.10·10−3 ±17 1.16·10−5 1.23·10−5

±2 8.78·10−2 8.76·10−2 ±10 4.44·10−3 4.50·10−3 ±18 3.84·10−6 4.09·10−6

±3 7.52·10−2 7.51·10−2 ±11 2.30·10−3 2.34·10−3 ±19 1.20·10−6 1.27·10−6

±4 6.05·10−2 6.05·10−2 ±12 1.12·10−3 1.15·10−3 ±20 3.40·10−7 3.71·10−7

±5 4.58·10−2 4.58·10−2 ±13 5.15·10−4 5.26·10−4 ±21 9.41·10−8 1.01·10−7

±6 3.25·10−2 3.26·10−2 ±14 2.20·10−4 2.27·10−4 ±22 - 2.58·10−8

±7 2.17·10−2 2.18·10−2 ±15 8.84·10−5 9.15·10−5 ±23 - 6.15·10−8

We can numerically obtain the distribution of I or analytically derive its
distribution. Table 1 is the probability mass function of I, obtained numerically
using SEAL and analytically derived by using Irwin-Hall distribution. It is shown
that the experimental results and our probability analysis using the Irwin-Hall
distribution agree. In previous researches, a heuristic assumption is used, and
a high-probability upper bound K = O(

√
h) for ‖I‖∞ is used for polynomial

approximation [3, 9, 18, 24], but they could not utilize the distribution of I.
For PrR, we can set the worst-case scenario; message m(X) is uniformly

distributed over ‖m‖∞ < ε · q, as it results in the most significant entropy
of the message. The experimental results in Section 6 show that even though
the worst-case scenario is used and the distribution of m(X) is different from
the actual one, the error value in the proposed method is comparable to the
prior arts [3, 24] while consuming less depth. Also, in the experiment of [3], a
uniformly distributed message is used to simulate the bootstrapping error and
utilized the fact that m(X) is highly probable to be in the center to use a small-
degree arcsine Taylor expansion. We note that we can also heuristically assume
a specific distribution in our bootstrapping when we specify PrR for (1) and
improve the precision.

5 Lazy Baby-Step Giant-Step Algorithm

This section proposes error and complexity optimization when evaluating the
error variance-minimizing approximate polynomial in bootstrapping. There are
two optimizations: First, we show that the error variance-minimizing approxi-
mate polynomial is odd, and thus, we can ignore the even-degree terms. Second,
we propose a novel evaluation algorithm, namely the lazy-BSGS algorithm, to
reduce the computational complexity of EvalMod.

5.1 Reducing Error and Complexity Using Odd Function Property

When the approximate polynomial is an odd function, we can save time for both
homomorphically evaluating and finding the polynomial. Moreover, by omitting
the even-degree terms, we can reduce the approximate error and basis errors.
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Error Variance-Minimizing Polynomial for an Odd Function This sub-
section shows that the variance-minimizing polynomial is an odd function, where
PrT (t) is even. Using an odd polynomial, we can reduce the approximation error
and the computation time to find the proposed approximate polynomial. First
of all, we only need to integrate over the positive domain when obtaining each
element of (4). Second, the number of operations to evaluate the approximate
polynomial can also be reduced by omitting even-degree terms when using the
lazy-BSGS algorithm Algorithm 2 in the following subsection. Finally, the basis
error is also reduced as only half of the terms are added.

The following theorem shows that when the objective of polynomial approx-
imation such as fmod(t) is odd and the probability density function is even, the
error variance-minimizing approximate polynomial is also an odd function.

Theorem 2. If PrT (t) is an even function and f(t) is an odd functions, the
error variance-minimizing approximate polynomial for f(t) is an odd function.

Proof. Existence and uniqueness: Equation (3) is a quadratic polynomial for the
coefficients c, and thus there exists one and only solution.
Oddness: Let Pm be the subspace of the polynomials of degree at most m and
fm(t) denote the unique element in Pm that is closest to f(t) in terms of the
variance of difference. Then, V ar[−f(−t) − p(t)] +

∑
wic

2
i is minimized when

p(t) = −fm(−t), because

V ar [−f(−t)− p(t)] =

∫
t

(−f(−t)− p(t))2 · Pr(t)dt

=

∫
−u
−(f(u) + p(−u))2 · Pr(−u)du

=

∫
u

(f(u)− (−p(−u)))
2 · Pr(u)du

= V ar [f(t)− (−p(−t))] ,

and the squares of coefficients of fm(t) and −fm(−t) are the same. As the error
variance-minimizing approximate polynomial is unique, we conclude fm(t) =
−fm(−t).

ut

5.2 Lazy Baby-Step Giant-Step Algorithm

In this subsection, we propose a new algorithm that efficiently evaluates ar-
bitrary polynomials over the CKKS scheme, namely the lazy-BSGS algorithm
in Algorithm 2, and we extend it to the odd polynomials. We apply the lazy
relinearization and rescaling technique [1, 2, 8, 22] to the BSGS algorithm to
improve its time complexity and error performance. For example, when we eval-
uate a polynomial of degree 711 by using the ordinary BSGS algorithm in [18],
58 non-scalar multiplications are required; however, when we use the odd-BSGS
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Algorithm 2 Lazy-BSGS Algorithm

Instance: A ciphertext ct of t, a polynomial p(X) of degree deg.
Output: A ciphertext encrypting p(t).

1: Let l be the smallest integer satisfying 2lk > n for an even number k.
2: procedure SetUpLazy(ct, l, k)
3: for i = 2; i < k; i← 2i do
4: cti ← 2 · cti/2cti/2 − 1
5: cti ← RL(cti)
6: end for
7: for i = 3; i < k; i← i+ 1 do
8: i0, i1 ← 2blog ic, i− 2blog ic

9: cti0 ← RL(cti0)
10: cti ← 2 · cti0cti1 − cti0−i1
11: end for
12: if k/2 is even then . To reduce the error, see Fig. 2
13: ctk ← 2 · ctk/2+1ctk/2−1 − ct2
14: else
15: ctk ← 2 · ctk/2ctk/2 − 1
16: end if
17: ctk ← RL(ctk)
18: for i = 2k; i < deg; i← 2i do
19: i0, i1 ← 2blog ic, i− 2blog ic

20: cti ← 2 · cti/2cti/2 − 1
21: cti ← RL(cti)
22: end for
23: {cti} ← encryptions of Ti(t)
24: {ct2ik} ← encryptions of T2ik(t)
25: end procedure
26: procedure GiantStepLazy(p(X), {cti} , l, k)
27: if deg(p) < k then
28: return BabyStep(p(X), {cti} , k)
29: end if
30: Find q(X), r(X) s.t. p(X) = q(X) · T2ik(X) + r(X)
31: ctq ←GiantStep(q(X), {cti} , l, k)
32: ctr ←GiantStep(r(X), {cti} , l, k)
33: ctq ← RL(ctq)
34: return ctq · ct2ik + ctr
35: end procedure

algorithm [24], 46 non-scalar multiplications are required. Moreover, the lazy
relinearization method reduces the number of relinearizations to 33, which is
the same number of relinearizations for a polynomial of degree 220 using the
ordinary BSGS algorithm.

The relinearization and rescaling introduce additional errors in the CKKS
scheme, and the error propagates along with homomorphic operations. Hence, we
should delay the relinearization and rescaling to reduce the error of the resulting
ciphertext. Moreover, those operations, especially relinearization, require many
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NTTs, and thus it requires lots of computation. For some circuits, we can reduce
the numbers of relinearizations and rescalings by delaying them. We observe that
we can perform plaintext addition, ciphertext addition, and scalar multiplication
to a ciphertext before relinearization.

A ciphertext is a three-tuple (d0, d1, d2) ∈ R3
qL such that

〈
(d0, d1, d2), (1, s, s2)

〉
= m + e. A plaintext u ∈ R can be multiplied homomorphically by calculating
(u · d0, u · d1, u · d2), but we note that the error is amplified by the magnitude
of u. When we add a ciphertext (b, a) to (d0, d1, d2), we get (d0 + b, d1 + a, d2).
However, as the scaling factor of ciphertext is changed along with homomorphic
operations, we should make sure that the scaling factors of the two ciphertexts
are identical when we add two ciphertexts. If not, we can multiply a constant,
∆1/∆2, to a ciphertext which has a smaller scaling factor and then add, where
∆1 is the larger scaling factor, and ∆2 is the smaller scaling factor. Alternatively,
we can use the scaling factor management technique proposed in [21].

We propose the lazy-BSGS algorithm, which reduces the numbers of rescal-
ings and relinearizations, and we analyze its computational complexity. Here,
we rigorously analyze the number of relinearizations as its complexity is much
higher than other operations, and we note that the number of rescalings is also
similar. As we use the Chebyshev polynomial of the first kind as the polynomial
basis, we explain the lazy-BSGS algorithm with Chebyshev polynomial. For the
sake of brevity, we denote ciphertext-ciphertext multiplication by ·, and the ci-
phertext of Tj(t0) is denoted by ctj , where Tj is Chebyshev polynomial of the
first kind with degree j.

SetUp finds all the Chebyshev polynomials of degree less than or equal to
k, and T2ik for i < l, for given parameter k and l. We use Ta = 2 · T2i · Ta−2i −
T2i+1−a to find cta, where i = blog(a)c. We note that one can alternatively
use multiplication of odd degree polynomials to reduce the basis error, which is
presented in Subsection 5.4.

First, we find ct2i for i < k, and these are used to find other Chebyshev
bases with degrees less than k. Thus, we rescale and relinearize them, which
requires blog(k − 1)c rescalings and relinearizations. When calculating cta =
2 · ct2i · cta−2i − ct2i+1−a, if cta−2i is a three-tuple ciphertext, we relinearize
it (and rescale it if needed.) We note that the lazy rescaling makes it possible
to accurately subtract ct2i+1−a from 2 · ct2i · cta−2i without level consumption
as follows. We do not rescale ct2i · cta−2i here, and thus the scaling factor of
2 · ct2i · cta−2i is maintained as ≈ q2. Obviously, the level of ct2i+1−a is larger
than that of ct2i · cta−2i . When their scaling factors are different, we multiply
(∆2i ·∆a−2i) · pl/∆2i+1−a to ct2i+1−a and rescale if ∆2i+1−a ≈ q2, or multiply
(∆2i ·∆a−2i) /∆2i+1−a if ∆2i+1−a ≈ q, where ∆j denotes the scaling factor of
ctj , and pl is the last prime of modulus chain for cta−2i . Now, the scaling factors
of ct2i+1−a and 2ct2i ·cta−2i are the same, and thus we can subtract them without
additional error from the difference of scale.

To evaluate ct2i · cta−2i , we need to relinearize cta−2i if it is not relinearized
yet. Hence, we need relinearized ctj ’s for j < 2blog k−1c−1 to find cti for all
i < 2blog k−1c. Moreover, if k ≥ 2blog k−1c + 2blog k−1c−1, we need k− 2blog k−1c +
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2blog k−1c−1 more relinearizations. Each ct2ik should be relinearized as it is used
for multiplication in GiantStep, which requires l relinearizations. In conclusion,
we do

blog(k − 1)c+ (2blog k−1c−1 − 1) + l

relinearizations in SetUp. If k ≥ 2blog k−1c + 2blog k−1c−1,
(
k − 3 · 2blog k−1c−1

)
additional relinearizations are required.

BabyStep performs only plaintext multiplication and addition. Hence, it
does not require relinearization in our lazy-BSGS algorithm, but the scale for
baby-step polynomial coefficients should be adequately scaled to make the added
ciphertexts have identical scaling factors, but this process does not involve ad-
ditional computation at all. Note that the resulting ciphertext of BabyStep is
not relinearized, i.e., it has size 3.

In GiantStep, the ctq is relinearized before multiplied to ct2ik. Hence, the
number of relinearizations is 2l−1 + 2l−2 + · · · + 1 = 2l − 1, and the final re-
sult is not relinearized. Thus, we perform relinearization once more right before
SlotToCoeff.

Finally, the number of relinearizations in lazy-BSGS is

blog(k − 1)c+ (2blog k−1c−1 − 1) + l + 2l

if k < 2blog k−1c + 2blog k−1c−1 and otherwise

blog(k − 1)c+
(

2blog k−1c−1 − 1
)

+ l + 2l +
(
k − 3 · 2blog k−1c−1

)
.

Lazy-BSGS for Odd Polynomial We can naturally extend the lazy-BSGS
for the odd polynomials. Here, SetUp finds all the odd-degree Chebyshev poly-
nomials of degrees less than k. To find an odd-degree Chebyshev polynomial, we
need an even-degree Chebyshev polynomial because the multiplication of odd-
degree Chebyshev polynomials is not an odd-degree polynomial. Hence, we use
T2i to find cta, where i = blog(a)c, and thus we rescale and relinearize them,
which requires blog(k − 1)c rescaling and relinearization. Thus, the number of
relinearizations in lazy-BSGS for odd polynomial is

blog(k − 1)c+ (2blog k−1c−1/2− 1) + l + 2l

if k < 2blog k−1c + 2blog k−1c−1 and otherwise

blog(k − 1)c+
(

2blog k−1c−1/2− 1
)

+ l + 2l +
(
k − 3 · 2blog k−1c−1

)
/2.

Using the error variance-minimizing approximate polynomial in bootstrap-
ping requires evaluating a polynomial with a higher degree than the previous
composition methods. However, the lazy-BSGS algorithm reduces the time com-
plexity by half, compared to ordinary BSGS mentioned in Section 2. As a result,
the lazy-BSGS algorithm makes the time complexity of evaluating our poly-
nomial comparable to the previous algorithm. Fig. 1 compares our lazy-BSGS
algorithm, odd-BSGS algorithm[24], and the original BSGS algorithm[18].
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Fig. 1. Number of relinearizations for the variants of BSGS algorithms.

The lazy-BSGS algorithm is given in Algorithm 2 in detail. We note that
the methods in [3] should be applied for optimal depth and scale-invariant eval-
uation, but we omit it for the sake of brevity. However, we note that Fig. 1
considers the depth optimization in [3], and thus, the number of relinearizations
is high when the degree is close to a power of two. The BSGS coefficients are
pre-computed for optimal parameters k and l to minimize the complexity.

5.3 Error Variance-Minimizing Approximate Polynomial for BSGS
Algorithm

In this subsection, we propose a method to find the variance-minimizing approx-
imate polynomial for the odd-BSGS algorithm. We generalize the amplified basis
error and find the variance-minimizing coefficients for the odd-BSGS algorithm.
The numerical method to select the weight constantly is also proposed.

BSGS Algorithm Coefficients and Minimizing the Approximation Er-
ror Variance In the lazy-BSGS algorithm, we divide the given polynomial by
T2ik and evaluate its quotient and remainder. Hence, each polynomial basis is
multiplied by a divided coefficient, not ci. We define d by the vector of coefficients
multiplied to the basis in BabyStep, in other words, we have 2l polynomials in
BabyStep such that pbabyi (t) =

∑
j∈{1,3,...,k−1} di,jTj(t) for i = 0, 1, . . . , 2l − 1,

and d = (d0,1, d0,3, . . . , d2l−1,deg−k·2l−1).

We should reduce the magnitude of d, to reduce the basis error. Let p(t) =∑
ciTi(t),and then, c and d have the following linearity:

c = L · d =
[
A2l−1k

]
·
[
A2l−2k 0

0 A2l−2k

]
· · ·

Ak

. . .

Ak

 · d, (5)
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where

Ak =

[
Ik/2

1
2Jk/2

0 1
2Ik/2

]
,

Ik/2 is the k/2×k/2 identity matrix, and Jk/2 is the k/2×k/2 exchange matrix.
Hence, the linear equation to find the error variance-minimizing approximate
polynomial (4) is modified for the BSGS algorithm as

(LᵀTL + wI) · d = y. (6)

Generalization of Weight Constant Let Ep be a function of d, which is
the variance of basis error amplified by the BSGS algorithm. We simplify Ep
by a heuristic assumption that Ti’s are independent and the encryptions of
Tk(t), . . . , T2l−1k(t) have small error. Let T̂i be the product of all T2jk’s mul-
tiplied to pi in the giant step, for example, T̂0 = 1 and T̂3 = TkT2k. Considering
the error multiplied by di,j , ej · T̂i is the dominant term as Ti has zero mean for
odd integer i as it is an odd polynomial. Thus, we can say that

Ep ≈
∑
i

∑
j

d2i,jE[T̂ 2
i ]V ar[ebasis,j ],

a quadratic function of d. In other words, we have Ep = dᵀHd, where H is a

diagonal matrix that Hki+j,ki+j = E[T̂ 2
i ]V ar[ebasis,j ]. Thus, (3) is generalized as

c∗ = arg minc (V ar[eaprx] + Ep) .

Equation (5) gives us that the optimal coefficient d∗ satisfies

(LᵀTL + H)d∗ = Lᵀy. (7)

Numerical Method of Finding Optimal Approximate Polynomial In-
stead of finding Ep, a simple numerical method can also be used. In practice,
the numerical method shows good error performance in the implementation in
Subsection 6.1. We can let wi = w for all i and find w numerically. When w
increases, the magnitude of coefficients decreases, and V ar[eaprx] increases, and
thus its sum is a convex function of w. The magnitude of the basis errors that are
amplified by coefficients d has the order of the rescaling error whose variance is
2n(h+1)
12·q2 , where n is the number of slots. In other words, we adjust w to minimize

V ar[eaprx] + w · ‖d‖22, (8)

where w ≈ 2n(h+1)
12·q2 . The odd-BSGS coefficients d, which minimize (8), satisfy

(LᵀTL + wI)d = Lᵀy.

Lemma 1 (Rescaling error [9]). The error variance of rescaling error is
2n(h+1)

12 , where h is key Hamming weight and n is the number of slots.

We can fine-tune w by a numerical method of performing bootstrapping and
measure the bootstrapping error variance, and then adjust w. Once we decide
on d, it becomes just part of the implementation; one can even hard-wire it.
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Fig. 2. Variance of basis error in Ti(t) for even i using HEAAN (a) and SEAL (b) libraries
with various parameters, where h = 64.

5.4 Basis Error Variance Minimization for Even-Degree Terms

In this subsection, we show that the even-degree Chebyshev polynomials in
CKKS have huge errors and propose a method to find a small-error Chebyshev
polynomial. In the BSGS algorithm, we use even-degree Chebyshev polynomials,
namely, T2ik(t). For depth and simplicity, we usually obtain Ta(t) by using

Ta(t) = 2 · T2i(t) · Ta−2i(t)− T2i+1−a(t),

where i = blog(a)c. Let cti be the ciphertext of message Ti(t) with scaling
factor ∆, and it contains error ebasis,i. Then, the error in cti+j obtained by
cti+j = 2cti · ctj − ct|i−j| is given as

(2Ti(t)ebasis,j + 2Tj(t)ebasis,i)∆+ 2ebasis,iebasis,j − ebasis,|i−j|. (9)

As ∆� ebasis,i, ebasis,j , the dominant term of error variance in (9) is

V ar[2Ti(t)ebasis,j + 2Tj(t)ebasis,i]

≈ 4E[Ti(t)
2]V ar[ebasis,j ] + 4E[Tj(t)

2]V ar[ebasis,i]. (10)

As a simple example, it is shown that E[Ti(t)
2] is close to one when i is an

even number for low-degree polynomials, where t is a value after CoeffToSlot.
Meanwhile, E[Ti(t)] is zero and V ar[Ti(t)] is a small value when i is odd. Thus,
following to (10), the error remains large when it is multiplied by an even-degree
Chebyshev polynomial in the calculation of the next Chebyshev polynomial.
Therefore, when a is even, cta should be calculated by cta = 2ct2i−1 · cta+1−2i −
ct2i+1−2−a rather than cta = 2ct2i · cta−2i − ct2i+1−a. Also, it is noted that, for
the above reasons, the power-of-two polynomials should have a large basis error.

Fig. 2 shows the experimental results of the variance of error in encryption
of Ti(t) for even i’s, where t is the output value of CoeffToSlot. Square mark
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Table 2. The second moment of Ti(t) when t is value after SlotToCoeff and N = 215

i 0 1 2 3 4 5 6 7 8 9

E[Ti(t)
2]

h = 192 1.00 0.035 0.905 0.187 0.718 0.361 0.579 0.457 0.520 0.491

h =
√
N 1.00 0.013 0.950 0.105 0.828 0.239 0.696 0.358 0.596 0.426

and x mark legends are the results with and without operation reordering, respec-
tively. In other words, Square marks are results from cta = 2ct2i−1 · cta−2i+1 −
ct2i+1−2−a for even a. The experimental result in Fig. 2 supports our argument
that multiplying even-degree Chebyshev polynomials amplifies the error. We can
see that the basis error is significantly improved by reordering operations. For
example, the variance of error in ct74 is reduced to 1/1973 compared to that of
without reordering.

6 Performance Analysis and Comparison

In this section, several implementation results and comparisons for the previous
bootstrapping algorithms are presented. The bootstrapping using the proposed
approximate polynomial is implemented on the well-known HE library Lattigo,
as Lattigo is the only open-source library that supports bootstrapping of RNS-
CKKS at the time of writing. We also provide a proof-of-concept implementation
of bootstrapping with high precision such as 93 bits, based on the HEAAN library.

6.1 Error Analysis

Weight Parameter and Approximation Error In Subsection 5.3, we dis-
cussed analytic and numerical solutions for error variance-minimizing approxi-
mate polynomial. In this subsection, these methods are implemented and veri-
fied. We confirm that the numerical method in Section 5.3 finds a polynomial
that is very close but has a slightly larger error than that of the optimal one,

and w ≈ (h+1)2n
q212 , where n is the number of slots.

The experimental results are shown in Fig. 3 with parameters N = 216, h =
64, and the slot size n = 23. The blue lines with triangular legend show the
error by polynomial approximation as 2n · q2 · V ar[eaprx]. The green lines with
x mark legend show the amplified basis errors as 2n · q2 · Ep, and the red lines
with square legend are for the mean square of bootstrapping errors without scale
obtained by experiments using the proposed approximate polynomial in (8). The
gray dot line is the variance of bootstrapping error without scale, achieved by
the analytic solution of the error variance-minimizing approximate polynomial
(7) of the same degree, which is the lower bound of bootstrapping error variance.
The reason for multiplying the above result by 2n is because of SlotToCoeff
as discussed in Subsection 4.2. For the worst-case assumption, we assume that
m is distributed uniformly at random.

In Fig. 3, the sum of blue lines with triangular legend and green lines with x
mark legend meets the red lines with the square legend. In other words, it shows
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Fig. 3. The theoretical variance of the approximation error, amplified basis error, and
experimental results implemented in HEAAN. Polynomials of degree 81 are used.

that the theoretical derivation and experimental results are agreed upon. It can
also be seen that it is possible to obtain an approximate polynomial with a small
error with the proposed numerical method, but the error is slightly larger than
that of the analytical solution. It is noted that the optimal w is close to the

variance of the rescaling error (h+1)2n
q212 .

Polynomial Degree and Minimum Error This subsection presents the
experimental result of the approximate error variance of the proposed error
variance-minimizing approximate polynomial for the given degree and constant

w. In the above paragraphs, we show that when w ≈ (h+1)2n
q212 , the variance of

approximation error achieves the optimality. Unlike the previous methods that
find the approximate polynomial without considering the CKKS parameters, the
proposed approximation algorithm finds an approximate polynomial that is op-
timal for the given parameter of the CKKS scheme, such as the number of slots,
key Hamming weight, and scaling factor.

In Fig. 4, we represent the variance of approximation error with w = (h+1)2n
q212 ,

where ‖m/q‖∞ < 2−5. w = 2−104 corresponds to q ≈ 260 and slot size n = 214.
w = 2−200 corresponds to q ≈ 2109 for the same slot size. In this figure, we can
see that the proposed method approaches the maximal accuracy of polynomial
approximation for q ≈ 260 within depth 10. Moreover, we can see that the pro-
posed error variance-minimizing approximate polynomial achieves approximate
error variance 2−209 within depth only 11.

6.2 Comparison of Bootstrapping and High-Precision Bootstrapping

Experimental Result of Bootstrapping Error The proposed method is im-
plemented using Lattigo, and it is compared with the most accurate bootstrap-
ping techniques in the literature [3, 24] in Table 3. In this table, the proposed
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Table 3. Comparison of the variance of bootstrapping error of the proposed error
variance-minimizing polynomial and prior arts. Columns “cos” and “sin−1” are for the
degree of the approximate polynomial of each, and “double” is for the number of double
angle formulas of cosine applied. The proposed method uses direct approximation, so
the degree of the approximate polynomial is indicated by fmod.

algorithm h N n logQPL λ log q log p log ‖r‖∞
EvalMod

V ar[eboot] bit prec. runtime(s)
cos double sin−1 depth #relin

[24] 192 216 214 1553 ≈ 128 60 50 −10 68 2 5 12 24 2−64.5 32.6 451.5

[3] 192 216 214 1547 ≈ 128 45 60 −5 62 2 7 11 24 2−62.6 31.6 22.8
1547 ≈ 128 45 60 −5 62 2 3 10 22 2−44.4 22.4 25.3

proposed 192 216 214 1487 > 128 45 60 −5 fmod: 711 10 33 2−62.1 31.4 28.3

proposed
(high prec2.)

192 217 212 - - 102 115 −5
fmod: 1625 11 46

2−185.4 93.03 -
192 217 23 - - 106 115 −5 2−199.0 100.11 -

error variance-minimizing polynomial directly approximates fmod, and the previ-
ous methods approximate the cosine function and use the double-angle formula.
For a high precision achieved in [3, 24], approximate polynomials of 1

2π arcsin (t)
by multi-interval Remez algorithm and Taylor expansion are evaluated, respec-
tively, and the evaluation of those algorithms consumes three more levels. For
a fair comparison, we fix the message precision as ≈ 31-bits and compare the
depth of modular reduction. The timing result is measured using Intel Xeon Sil-
ver 4210 CPU @ 2.20GHz, single core. The scale-invariant evaluation [3] is also
applied for a precise evaluation. The same parameter set as [3] is used for the
proposed method, and thus the same levels are consumed for CoeffToSlot
and SlotToCoeff.

In the experiment, we sample each slot value a + bi ∈ C, where a and b
are uniformly distributed over [−1, 1], and thus, from the central limit theo-
rem, the coefficient of the encoded plaintext follows a Gaussian distribution. On
the other hand, the proposed error variance-minimizing approximate polynomial
is obtained under assumption that the coefficients of plaintext are distributed
uniformly at random, that is, PrR (r) = 1

2ε for all r ∈ [−ε, ε] as a worst-case
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assumption discussed in Section 4. We note that the difference of message dis-
tribution for approximation and actual experiment is a harsh environment for
the proposed error variance-minimizing approximate polynomial.

The first three rows of Table 3 show that the proposed method requires less
depth compared to the prior arts. This is due to the indirect approximation
using trigonometric functions of previous methods. Compared to the previous
method with the same depth of 10, our method has 9-bit higher precision. In an-
other aspect, the proposed approximate polynomial achieves the same precision
as the previous methods by only the depth of 10. The proposed bootstrapping
consumes one to two fewer levels in EvalMod, thus we used smaller param-
eters in the experiment which improves security. We can utilize the additional
level depending on the application, for example, one can exploit it for efficient
circuit design to reduce the total number of bootstrapping of the whole system
(e.g., inference of privacy-preserving deep learning [23],) or we might speed up
CoeffToSlot or SlotToCoeff using this remaining level. However, in terms
of bootstrapping runtime for ≈ 31-bit precision, our method is slower than pre-
vious methods due to the evaluation of high-degree polynomial. Our algorithm
is more advantageous for higher precision as it is efficiently scalable, which is
discussed in the next subsection.

Comparison of Numerical and Analytical Error Experiments in Fig. 3 show
that the error variance-minimizing approximate polynomial has V ar[eaprx] +∑
wid

2
i = 2−103.33 when w = 2−104. We can easily find the expected boot-

strapping error variance with this value. The error variance is multiplied by
2n in SlotToCoeff; thus, the error variance after SlotToCoeff should be
2−88.33. The scaling factor in bootstrapping is ≈ q, and thus, the error without
scaling is 2−88.33 · q2 ≈ 231.67. The scaling factor of a message is ≈ 245, and thus
the expected bootstrapping error variance is 231.67/p2 ≈ 2−58.33. Compared with
the experimental result in Table 3, 2−61.12, we can see that the numerical result
roughly meets the analysis. The difference seems to be due to various methods
to reduce the error introduced in Section 5.

Scalability and High-Precision Bootstrapping The last two rows in Ta-
ble 3 represent the proof-of-concept implementation of high-precision CKKS
bootstrapping2. In the table, we can see that the proposed method achieves
high precision such as 93-bit with 212 slots. It is worth noting that our method
uses the same depth as previous methods [3, 24], but achieves much higher ac-
curacy. We use the variance-minimizing approximate polynomial of degree 1625
with parameter w = 2−200 which minimizes (8) (the minimum value is ≈ 2−209),

2 It is implemented using a multi-precision CKKS library HEAAN which supports rescal-
ing by an arbitrary-length integer. As this proof-of-concept implementation is only
interested in high precision, we omitted runtime and parameter QPL (as a side note,
(h,N, logQPL) = (192, 217, 3069) achieves 128-bit security [3].) We note that the
implementation is slow due to the non-RNS nature of HEAAN and has less level due
to the use of dnum = 1.
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as shown in Fig. 4. We can also say that bottleneck of bootstrapping error is the
scaling factor, not the approximation.

The previous bootstrapping methods so far cannot achieve such high ac-
curacy, and even if so, it will have a huge multiplicative depth to perform a
high-degree polynomial approximation. Julta and Manohar proposed sine series
approximation and 100-bit accuracy CKKS bootstrapping using their approxi-
mation which consumes modulus of 22157 (see Table 1 in [20]). In contrast, due
to the direct approximation of the proposed method, it has much less depth
compared to indirect approximations, and thus we can achieve the same ac-
curacy (shown in the last row or Table 3) with modulus about 21495, which
corresponds to 6 more levels after bootstrapping. Also, the proposed lazy-BSGS
algorithm reduces the number of relinearizations; the previous BSGS algorithm
for odd polynomial [24] requires 66 relinearizations to evaluate polynomial of
degree 1625.

This high accuracy is essential in the presence of the Li-Micciancio attack [26].
The “noise flooding” method is currently the only known way to make CKKS
provably secure against Li-Micciancio attack, but it was impractical with boot-
strapping as it makes CKKS noisy by losing about 30-40 bits of accuracy [26].
Although a lot of research is required on how to exploit the bootstrapping error
for cryptanalysis, at least, we can directly apply the noise flooding technique [16]
with the high-precision bootstrapping.

7 Conclusion

In this paper, we have two contributions for accurate and fast bootstrapping of
CKKS scheme, that is, we proposed i) a method to find the optimal approximate
polynomial of modular reduction for bootstrapping and its analytical solution,
and ii) a more efficient algorithm to homomorphically evaluate a high-degree
polynomial. The proposed error variance-minimizing approximate polynomial
guarantees the minimum error after bootstrapping in the aspect of SNR; in con-
trast, the previous minimax approximation does not guarantee the minimum
infinity norm of the bootstrapping error. Moreover, we proposed an efficient al-
gorithm, the lazy-BSGS algorithm, to evaluate the approximate polynomial. The
lazy-BSGS algorithm reduces the number of relinearizations by half compared
to the ordinary BSGS algorithm, and the error is also reduced. We also proposed
the algorithm to find the error variance-minimizing approximate polynomial de-
signed for the lazy-BSGS algorithm.

The proposed algorithm reduces the level consumption of the most depth-
consuming part of bootstrapping, approximate modular reduction. Thus we can
reserve more levels after bootstrapping or we can use the level to speed up
bootstrapping. The number of the levels after bootstrapping is significant for
efficient circuit design of algorithms using CKKS [23], as well as it reduces the
number of bootstrappings.

The bootstrapping performance improvement by the proposed algorithm was
verified by an implementation. The implementation showed that we could reduce
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the multiplicative depth of modular reduction in CKKS bootstrapping while
achieving the best-known accuracy. Also, we discussed that the proposed method
achieves the CKKS bootstrapping with very high accuracy, so we can directly
apply the noise flooding technique to the CKKS scheme for IND-CPAD security.
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