
Highly Efficient OT-Based Multiplication
Protocols

Iftach Haitner1,2, Nikolaos Makriyannis3, Samuel Ranellucci4, and Eliad
Tsfadia1,5

1 School of Computer Science, Tel Aviv University
Research supported by Israel Science Foundation grant 666/19

{iftachh,eliadtsf}@tau.ac.il
2 Member of the Check Point Institute for Information Security

3 Fireblocks, nikos@fireblocks.com
4 Coinbase, samuel.ranellucci@coinbase.com

5 Google Research

Abstract. We present a new OT-based two-party multiplication proto-
col that is almost as efficient as Gilboa’s semi-honest protocol (Crypto
’99), but has a high-level of security against malicious adversaries without
further compilation. The achieved security suffices for many applications,
and, assuming DDH, can be cheaply compiled into full security.

1 Introduction

In a two-party multiplication protocol, each party’s output is a random additive
share of the multiplication of the parties’ private inputs. Two-party multiplica-
tion is a fundamental building-block of arithmetic secure computation, holding
a role analogous to that oblivious transfer (OT) has in Boolean secure computa-
tion. We present a new, highly efficient (maliciously secure) OT-based two-party
multiplication protocol below, but first start with some background.

1.1 Background on OT-Based Two-Party Multiplication

There are a several known techniques to obtain two-party multiplication, histor-
ically falling in one of two categories: protocols based on homomorphic encryp-
tion (HE), or protocols based on (Boolean) OT. The two classes of protocols
offer different tradeoffs between efficiency and underlying security assumption;
HE-based protocols are typically more efficient communication-wise, while OT-
based are more efficient computation-wise. Also, HE-based protocols typically
require stronger assumptions. In recent years, new paradigms [14, 6, 4, 1, 5] have
emerged for realizing two-party multiplication,6 where the underlying “machin-
ery” is based on homomorphic [7, 8] or function [6] secret sharing. The two no-
tions may be viewed as analogues of respectively HE and functional encryption

6 Actually, most papers in the space focus on the related functionalities of OLE and
VOLE, discussed later on.

[3] in the secret sharing realm. In this paper, we focus on OT-based protocols,
and we refer the reader to Section 1.4 for further discussion on protocols that
do not rely on OT.

Recall that OT is the functionality that takes two inputs x0, x1 ∈ Zq from
the sender, a bit β from the receiver, and returns xβ to the receiver (and noth-
ing to the sender). To the best of our knowledge, there are essentially two basic
templates for honest-but-curious OT-based multiplication: the Gilboa [15] pro-
tocol, and the Ishai, Prabhakaran, and Sahai [19] protocol. We refer the reader
to Figure 1 for a side by side comparison of the two protocols. For clarity of
exposition, we focus our attention on multiplications over the field Zq = Z/qZ
for an odd prime q (i.e., the arithmetic field of integers modulo an odd prime).

Malicious Security. As far as we know, all OT-based multiplication protocols
only achieve honest-but-curious (passive) security.7 To achieve malicious secu-
rity, these protocols can be compiled in a number of generic ways, e.g., using
SNARKSs, cut-and-choose, and/or MPC-in-the-head techniques. For concrete
efficiency, however, it is often preferable to design tailor-made solutions [20, 14].
For instance, motivated by applications to MPC in the preprocessing model,
Keller et al. [20] (MASCOT) design various cut-and-choose techniques, on top
of Gilboa’s protocol, for maliciously realizing various useful functionalities in the
preprocessing model. We discuss MASCOT in detail in Section 1.3.

1.2 Our Contributions

We present a new OT-based two-party multiplication protocol that achieves a
high level of security against malicious adversaries. The protocol may be viewed
as a noisy generalization of Gilboa [15]’s protocol (or, alternatively, as a hybrid
between Gilboa [15] and Ishai et al. [19] protocols).

Let a, b ∈ Zq be the inputs of P1 and P2, respectively, and let n = dlog qe+κ
for a (statistical) security parameter κ. Our protocol requires no initialization
stage, and the parties make n parallel OT-calls. In the ith call, P2’s input index
is a random value ti ← {−1, 1} (i.e., we switch conventions regarding the OT-
receiver’s input),8 and P1’s input pair is (−a + δi, a + δi) for a random mask
δi ← Zq. Notice that this differs from Ishai et al. [19] protocol in which P1’s
input in for OT-calls depends on the vectors sent by P2. After these calls are
done, P2 uniformly samples v = (v1, . . . , vn) ← Znq subject to b =

∑
i viti, and

sends v, but not the ti’s, to P1. See Protocol 1 for a more detailed description.

Protocol 1 (Our OT-based multiplication protocol (P1,P2))

7 The OT-based protocol of Ghosh, Nielsen, and Nilges [14] does achieve malicious
security (without further compilation), but its security proof relies on an additional
hardness assumption (a rather non-standard coding assumption). Interestingly, the
security analysis in [14] is somewhat reminiscent of the security analysis of our
protocol.

8 The choice of {−1, 1} instead of {0, 1} significantly simplifies our security analysis,
but it is also what limits it to fields of characteristic greater than two (see Theorem 2).

2

Gilboa’s Protocol

– Init. Let ` = dlog qe.
P2 sets t1, . . . t` ∈ {0, 1} to the bit-decomposition of b =

∑
i ti · 2

i−1.

– OT. The parties make ` parallel OT-calls, P1 as sender, P2 as receiver.
In the ith call:
1. P1 uses input (δi, a+ δi), for δ ← Zq. (It receives no output).
2. P2 uses input index ti.

It receives output zi ∈ Zq.
– Outputs.

1. P1 outputs −
∑
i δi · 2

i−1.
2. P2 outputs

∑
i zi · 2

i−1.

Ishai et al.’s Protocol

– Init. Let ` = dlog qe and n = `+ κ.
1. P2 samples u0,u1 ← Znq and t← {0, 1}n, subject to b =

∑
i uti,i.

2. P2 sends (u0,u1) to P1.
– OT. The parties make n parallel OT-calls, P1 as sender, P2 as receiver.

In the ith call:
1. P1 uses input (au0,i + δi, au1,i + δi), for δi ← Zq. (It receives no output).
2. P2 uses input index ti.

It receives output zi ∈ Zq.
– Outputs.

1. P1 outputs −
∑
i δi.

2. P2 outputs
∑
i zi.

Fig. 1: Honest-But-Curious multiplication protocols between party P1, holding input
a ∈ Zq, and party P2, holding input b ∈ Zq. Gilboa’s protocol consists of ` = dlog(q)e
parallel OT-calls, where Ishai et al. [19]’ protocol consists on n = `+ κ calls, where κ
is a (statistical) security parameter. We remark that Gilboa’s protocol can be cast as
a variant of Ishai et al. [19]’ protocol, where the pair of vectors (u0,u1), which P2 uses
for encoding its input in Ishai et al. [19] are implicitly hardcoded as u0 = (0, . . . , 0)
and u1 = (1, 21, 22, . . . , 2`−1). Gilboa [15], however, dispenses of the communication
round prior to the OT, since the two vectors are known in advance to both parties,
and achieves perfect security (in the OT-hybrid model).

– Inputs. The parties hold common input 1κ. Party P1 holds private input a ∈ Zq,
and party P2 holds private input b ∈ Zq. Let n = dlog qe+ κ.

– OT. The parties makes n parallel OT-calls. In the i-th call:
1. P1, as the sender, inputs pair (−a+ δi, a+ δi) for a uniform δi ← Zq.

(It receives no output.)
2. P2, as the receiver, inputs index ti ← {−1, 1}, and receives output zi ∈ Zq.

– Outputs.
1. P2 samples v = (v1, . . . , vn)← Znq subject to b =

∑
i vi · ti. It sends v to P1.

3

2. P1 outputs −
∑
i δi · vi.

3. P2 outputs
∑
i zi · vi.

Before we discuss the merits of our protocol, we briefly touch on the correctness
and security analysis. It is easy to see that the protocol is correct (when invoked
by honest parties). Indeed,

s2 = 〈v, (z1, . . . , zn)〉 = 〈v, (δ1, . . . , δn)︸ ︷︷ ︸
δ

+a · (t1, . . . , tn)︸ ︷︷ ︸
t

〉

= a · 〈v, t〉+ 〈v, δ〉 = a · b− s1,

making s1 +s2 = a · b. Second, (similarly to Gilboa’s protocol mentioned earlier)
the protocol is fully secure for a malicious P2: the only way P2 may deviate from
the protocol is by choosing a different value for v (unrelated to b) at the last
stage of the protocol. This behavior, however, is equivalent to choosing a different
input, and thus does not violate the security of the protocol. The analysis for a
malicious P1 is more involved. Effectively, P1 is limited to choosing inconsistent
inputs for the OT-calls: instead of using (ai, a

′
i) of the form (δi − a, δi + a), a

corrupted P1 may choose pairs of inputs which are not consistent across different
OT-calls i.e., for some i 6= j, it holds that ai − a′i 6= aj − a′j , and it seems
this attack cannot be simulated using access to the (standard) multiplication
functionality.9 Instead, we show that it exhibits the following useful dichotomy:
depending on the number of inconsistent inputs in the OT-calls provided by
P1, either the execution can be simulated using the standard multiplication
functionality (with 2−κ/4 statistical-closeness), or, P2’s output has min-entropy
at least κ/4, when conditioning jointly on P2’s input and P1’s view. That is, P2’s
output is highly unpredictable, even when knowing its input. This property is
technically captured by the following informally stated theorem.

Theorem 2 (Security of our multiplication protocol, informal). For
adversary A corrupting P1, consider a random execution of Protocol 1 in the
presence of A, where P2 is holding input b, and let outA2 (b) denote P2’s output
and viewA(b) denote A’s view in this execution. Assume q ≥ 2κ/2, 10 then at
least one of the following holds (depending on its inputs to the OT-calls):

1. A can be simulated given access to the perfect (standard) multiplication func-
tionality. (By extracting the input to the perfect multiplication from A’s in-
puts to the OT-calls.)

9 It is not too hard to get convinced that our protocol does not realize the multipli-
cation functionality with statistical security (in the OT-hybrid model), but we defer
the rather tedious proof of this fact to the next version of this paper. It seems plau-
sible, however, that under the right Subset-Sum hardness assumption, the protocol
does realize the multiplication functionality with computational security. Proving it
is an intriguing open question.

10 We discuss how our results extend to arbitrary fields of characteristic greater than
two in Section 2.

4

2. H∞
(
outA2 (b) | viewA(b), b

)
≥ κ/4. (i.e., P2(b)’s output is unpredictable from

A’s point of view, even if A knows b.)

We prove Theorem 2 by showing that our protocol realizes a “weak” ideal
multiplication functionality that formally captures the two conditions above (see
Section 4 for details). The above security guarantee makes our protocol very
desirable for a number of reasons, enumerated below.

1. First, via a simple reduction from (standard) designated-input multiplica-
tion to random-input multiplication, we can compile our protocol into a ma-
liciously secure protocol by performing an a posteriori check on the shares.
Such a check does not seem to exist for Gilboa [15], Ishai et al. [19] protocols.

2. Second, and more importantly, we claim that the security notion achieved
out-of-the-box by our protocol is sufficient for a number of applications, e.g.,
within protocols where some kind of correctness check is performed obliv-
iously on the parties’ outputs. For instance, in the threshold ECDSA of
Lindell and Nof [23], the output is released only after it is checked for cor-
rectness. Consequently our protocol can readily be used as a multiplication
protocol therein.

Batching. We show that our protocol enjoys the following performance im-
provement when performing m multiplications with P1 using the same input in
each instance; this task essentially corresponds to the important VOLE func-
tionality discussed in Section 1.3. Instead of running the protocol m times (and
thus paying m · n = m · (` + κ) OT’s), our protocol can be batched so that it
requires only κ + m · ` calls to the underlying OT functionality. The batched
version of our protocol exhibits a similar dichotomy to the non-batched version:
either the protocol is secure (with 2−κ/4 closeness to the ideal world), or, if not,
each one of the honest outputs has min-entropy at least κ/4, even when con-
ditioning on all of the honest party’s inputs (albeit there may be dependencies
between the outputs). For large m, our approach almost matches the number of
OT-calls from Gilboa’s honest-but-curious protocol, while achieving a stronger
security notion. Moreover, in the Random Oracle Model (ROM), it is possible to
also bring down the communication complexity of our protocol to match [15] by
instructing P2 to communicate v = (v1, . . . , vn) succinctly via the oracle, e.g.,
by sending a short seed instead of the entire vector. Furthermore, for malicious
security, it is enough to perform a single a posteriori check on the shares of only
one of the underlying multiplications (say the first multiplication). Indeed, our
dichotomy result guarantees that the check is successful only if the attack can
be simulated in the ideal world (and thus all outputs are well-formed).

As a concrete efficiency example, for a prime q for which there exists a q-size
group where DDH is assumed to hold (say secp256k1 – the Bitcoin curve – with
prime q ≈ 2256), we instantiate the correctness-check using El-Gamal commit-
ments (these commitments were thoroughly used in [23] in the context of thresh-
old ECDSA). We estimate that the correctness-check requires computational-
complexity of around 30 exponentiations in the group and communication-
complexity of 20 group elements (assuming the encodings of field elements and

5

group elements have essentially the same size). Since this penalty is independent
of the number of multiplications in the batch, performing a batch of m multi-
plications with (full) malicious security 2−κ/4 in the ROM incurs the following
cost:

OT’s Communication (bits) Computation (group exp.)
m · `+ κ (m+ 20) · ` bits 30

Hence, even with the correctness-check, the complexity-penalty of our protocol
compared to Gilboa’s honest-but-curious protocol is insignificant for large m.11

1.3 Applications

In this section, we discuss several applications where our protocol may be of
interest.

OLE & VOLE. The oblivious linear evaluation (OLE) functionality may be
viewed as a variant of two-party multiplication where one party (say P2) has
full control over its share. Namely, on input a for P1 and (b, σ) for P2, the func-
tionality returns ab + σ to party P1 and nothing to party P2. An important
generalization of OLE is vector oblivious linear evaluation (VOLE), where it is
now assumed that P2 holds a pair of vectors (b,σ) and P1 learns the combination
ab+ σ. There is a straightforward reduction from OLE and VOLE to multipli-
cation and batch-multiplication respectively and thus our protocol (compiled for
malicious security) can readily be used for this purpose.

MACs & Multiplication Triplets. Motivated by applications of arithmetic
MPC in the preprocessing model, i.e., generating function-independent corre-
lated random data that can be later used by the parties to achieve statistically
secure MPC for any functionality, there is a rich line of work ([2, 22, 13, 10, 11, 20]
to name but a few) for generating message authentication codes (MACs) and
authenticated multiplication triplets. For convenience, we recall the definition
of each notion. On secret input x from P1 (only one party provides input), the
two-party MAC functionality returns τ ∈ Zq to P1 and a pair (k, σ) ∈ Z2

q to P2

such that τ = x ·k+σ. Thus, a corrupted P1 is effectively committed to x which
can be authenticated by revealing the pair (x, τ). Notice that P2 accepts the de-
commitment if and only if τ = x · k+ σ which uniquely determines x (unless P1

can guess k, which happens with negligible probability). For reference, σ and τ
are referred to as the MAC shares and k is referred to as the MAC key. Next, we
define authenticated multiplication triplets. On empty inputs, the authenticated
multiplication triplets functionality (Beaver) returns (a1, b1, c1) and (a2, b2, c2)
to P1 and P2 respectively such that (a1 + a2) · (b1 + b2) = c1 + c2, together with
MAC keys and shares for all the relevant data, i.e., P2 holds a key k and shares

11 Without the oracle the penalty is rather noticeable, since there is a (` · m + κ)-
multiplicative blowup in the communication complexity.

6

σ, σ′, σ′′, and P1 holds τ, τ ′, τ ′′ as MAC data for the triplet (a1, b1, c1), and the
MAC data for P2’s triplet (a2, b2, c2) is analogously defined (where the parties’
roles are reversed). It goes without saying, our base protocol can be used to gen-
erate MACs and triplets in a straightforward way (explained further below). For
comparison, we briefly outline MASCOT [20], the only purely OT-based work
for generating triplets with malicious security.

MASCOT [20]. To realize the two functionalities described above in the pres-
ence of malicious adversaries, [20] employs a number of cut-and-choose tech-
niques on top of Gilboa’s protocol. Specifically, for the MAC functionality, the
authors propose the following process: P2 samples a random MAC key k and
the parties run Gilboa’s protocol twice; once with inputs (x, k) and once with
inputs (x0, k) where x0 denotes a random dummy input sampled by P1. At the
end of the protocol the parties (are supposed to) obtain MAC shares for both x
and x0 under key k. To verify that P1 behaved honestly (as we discussed earlier,
only P1 is capable of cheating), P1 is instructed to reveal a random combination
of x0 and x as well as the same random combination of its MAC shares. If P2

accepts, then, with all but negligible probability, P2 is holding the right MAC
data for x. The protocol for the Beaver functionality follows a similar template,
however the added redundancy and check procedure (to verify correctness) is
more involved. For brevity, we do not describe it here but we mention that it
requires 6 or 8 executions (depending on the target security) of Gilboa’s protocol
on top of the required runs to obtain the MAC data (In total, Gilboa’s protocol
is ran 18 or 20 times depending on the target security for a single authenticated
multiplication triple).

Using our protocol to generate MACs & Triplets maliciously. MAC-
generation essentially coincides with batch-multiplication (where a single k is
used as a MAC-key to authenticate many values x1, x2, . . .). Thus, our batch-
multiplication protocol (with the correctness-check) can readily be used for this
purpose. Next, we turn to the triplets.

Analogously to standard multiplication, if we allow for an a posteriori check
on the shares (more involved than the one presented earlier), we show how our
protocol can be used to generate triplets. In particular, a single triplet can be
generated by running our base protocol 2 times in its non-batched version (to
generate the triplet) and 2 times in the batched version with batches of size 3
(to generate all the MAC-data), and then performing a correctness-check on the
shares. For concreteness, we instantiate this check for prime q when there is an
accompanying group where DDH is hard. We estimate that the correctness-check
requires computational-complexity of around 90 exponentiations in the group
and communication-complexity of 60 group elements. In total, this process incurs
the following costs for generating a single triplet in the random oracle model.12

12 Since it is not the focus of our paper, we have not examined how to optimize the pro-
tocol or correctness-check when many triplets are being generated, and we speculate
that several optimizations are possible.

7

OT’s Communication (bits) Computation (group exp.)
4κ+ 8` 70` 90

As an example, for ` ≈ 512, our protocol is 53% cheaper in usage of the
underlying OT compared to MASCOT when aiming for security 2−64.

Comparison to 2PC Multiplication from [12]. We note that our mul-
tiplication protocol may also improve the efficiency of the threshold ECDSA
protocol of Doerner et al. [12]. In more detail, the core two-party multiplication
protocol in [12] is a variant of MASCOT where the parties multiply (random)
dummy values which are then opened in a cut-and-choose way to check for cor-
rectness. Specifically, for each (designated-input) multiplication, [12] instructs
the parties to perform two random multiplications using the OT. Our protocol
only prescribes one random multiplication and avoids this redundancy. Thus,
our protocol enjoys an x2 improvement in the underlying use of OT.13

1.4 Related Work

Multiplication from noisy encoding. Drawing from [24], Ishai et al. [19]
generalize their protocol so that it supports many types of encodings for P2

input. Thus, instead of the two u-vectors from Figure 1, P2 may use different
noisy encoding to encode its input prior to the OT. Under various coding as-
sumption (e.g., [21]), Ishai et al. [19] show that several coding schemes give rise
to honest-but-curious multiplication protocols with much improved complexity.
As mentioned earlier, this approach was later shown to be sufficient by [14] for
achieving malicious security under a specific coding assumption.

Non OT-based multiplication. Here we distinguish between HE-based and
the more recent approaches based on homomorphic and function secret sharing.
HE-Multiplication can be based on either somewhat homomorphic encryption
or fully homomorphic encryption. We refer the reader to [25] for a discussion
on HE-based multiplication in the context of a specific general-purpose MPC
(the SPDZ protocol [11]). The work on the two newer notions (homomorphic
and function secret sharing) is motivated by applications to correlated data gen-
eration in the prepossessing model (in the spirit of multiplication triplets). For
instance, Boyle et al. [5] show how to generate OLE-correlations using homo-
morphic secret sharing (under various coding assumptions), and Boyle et al. [4]
show how to generate long VOLE instances (again under various coding assump-
tions). These new approaches offer improvements over previous ones, especially
in communication costs.

13 When using OT-extensions, this improvement automatically translates into an x2
improvement in communication complexity, which is the most expensive resource in
[12].

8

Paper Organization

In Section 2, we describe the high-level approach for analyzing the security of
P2 in Protocol 1, as stated in Theorem 2. Notations, definitions and general
statements used throughout the paper are given in Section 3. Theorem 2 is
formally stated and proved in Section 4, and its batching extension is formally
stated in Section 5. Finally, in Section 6, we show how to compile our protocol
generically for a number of applications (including, e.g., perfect multiplication).
We note that we also provide (non-generic) group-theoretic instantiations in the
supplementary material.

2 Our Techniques

In this section, we describe the high-level approach for analyzing the security of
P2 in Protocol 1, as stated in Theorem 2. For the formal proof of this theorem
see Section 4.

Recall that a malicious A corrupting P1 can deviate from the protocol by
providing inputs to the OT-calls that are not consistent with any a ∈ Zq. Our
security proof consist of a case-by-case analysis depending on how “far from
consistent” A’s inputs to the OT are. Let (w−i , w

+
i) denote the inputs that A

uses in the ith OT-call, let ai = (w+
i − w

−
i)/2 and let δi = w+

i − ai. Let â be
the value that appears the most often in a = (a1, . . . , an), and let d = a− â · 1.
Intuitively, the hamming distance of d from 0 measures how much A deviates
from honest behaviour. In particular, d = 0 if P1 uses the same a in all OT-calls,
and the hamming weight of d is n− 1 if P1 never uses the same input twice. Let
t = (t1, . . . , tn), z = (z1, . . . , zn) and v be the values that are sampled/obtained
by P2 in the execution, and let s2 denote its final output. By definition, it holds
that

s2 = 〈v, z〉 = 〈v, δ + a ∗ t〉 = 〈v, δ + â · t〉+ 〈v,d ∗ t〉
= (〈v, â · t〉+ 〈v, δ〉) + 〈v,d ∗ t〉
= (â · b+ 〈v, δ〉) + 〈v,d ∗ t〉,

letting ∗ stand for point-wise multiplication and δ = (δ1, . . . , δn). The last equa-
tion holds by the definition of v. Thus, given P1’s view along with the value of
b, notice that the value of s2 is the addition of the following two summands: the
constant14 (â · b+ 〈v, δ〉) (viewed as a single summand) and 〈v,d ∗ t〉.

We say that a ∈ Znq is m-polychromatic, if for every y ∈ Zq it holds that
Ham(d, yn) ≥ m (e.g., (0, 1, 2, 3, 0) is 3-polychromatic but not 4-polychromatic).
We show that if a is not κ/2-polychromatic, hereafter almost monochromatic,
then the execution of the protocol can be simulated using oracle-access to the
perfect (i.e., standard) multiplication functionality (which provides the right
share to each party, without any offset). Otherwise, if a is κ/2-polychromatic,

14 given P1’s view and P2’s input

9

hereafter polychromatic, then 〈v,d∗ t〉 has high min-entropy, given A’s view and
the value of b.

Before we further elaborate on each of the above two cases, we introduce the
following notation. To distinguish between the values fixed adversarially by A
and those sampled (honestly) by P2, in the remainder we treat the adversary’s
inputs as fixed values and the honest party’s input as random variables. Namely,
it is assumed that a ∈ Znq is fixed (and thus also the vector d), and we let V
and T denote the random variables where v and t are drawn from (i.e., uniform
distribution over Znq and {−1, 1}n, respectively).

Almost-Monochromatic a yields statistical security. We prove this part
by showing that, given V , the value of 〈V ,d ∗ T 〉 is close to being independent
of b. Namely, for any b, b′ ∈ Zq,

SD
(
(V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,d∗T 〉=b′

)
≤ 2−κ/4 (1)

Equation (1) yields that the simulation of P2 in the ideal world, given access to
the perfect multiplication functionality, can be simply done by emulating P2 on
an arbitrary input.

To see why Equation (1) holds, let I := {i ∈ [n] : di 6= 0}, and assume T I
(the value of T in the coordinate of I) is fixed to some s ∈ {−1, 1}|I|. Since,
given this fixing, 〈V ,d ∗ T 〉 = 〈V I ,dI ∗ s〉 is a deterministic function of V ,
proving the monochromatic case is reduced to proving that

SD(V |〈V ,T 〉=b,V) ≤ 2−κ/4 (2)

Since d is almost-monochromatic, then, given the above fixing of T I , it still
holds that H∞(T) ≥ n− |I| ≥ dlog qe+ κ/2. Thus, by the leftover hash lemma

SD((V , 〈V ,T 〉), (V , U)) ≤ 2−κ/4 (3)

for a uniformly sampled U ← Zq. In other words, the value of V is 2−κ/4-close to
uniform given 〈V ,T 〉, and Equation (2) follows by a not-too-complicated chain
of derivations (see proof of Lemma 3).

Polychromatic a yields unpredictable offset. Fix b ∈ Zq, and for t ∈
{−1, 1}n let W t be the indicator random variable of the event {〈V , t〉 = b}, and
let W :=

∑
t∈{−1,1}n W

t. In addition, for t ∈ {−1, 1}n and x ∈ Zq, let Ztx be

the indicator random variable of the event {〈V b, t〉 = b ∧ 〈V ,d ∗ t〉 = x}, and
let Zx :=

∑
t∈{−1,1}n Z

t
b . We show that for a polychromatic a, with probability

1− 2−κ/4 over V it holds that

Zx/W ≤ 2−κ/4 (4)

for every x ∈ Zq (simultaneously). It follows that for such vector a, with high
probability over V , the probability that 〈V ,d ∗ T 〉 = x, for any value of x, is
small. In other words, 〈V ,d ∗ T 〉 has high min-entropy given (V , b).15

15 Actually, since the value of v sent to P1 is not uniform, but rather distributed
according to V b := V |〈V ,T 〉=b, to argue about the security of the protocol one needs

10

We prove Equation (4) by upper-bounding E[W 3] and E[Z3
x], for any x, and

then we use a third moment concentration inequality to derive Equation (4). The
harder part is bounding E[Z3

x]. To get the gist of this bound, we give the intuition
for bounding E[Z2

x]. This bound is derived by proving that the number of pairs
(t, t′) with E[Ztx · Zt

′

x] > 1/q4 is small. These pairs are identified by relating
the correlation of the indicator random variables of the events {〈V , t〉 = b},
{〈V , t′〉 = b}, {〈V ,d ∗ t〉} and {〈V ,d ∗ t〉} to the dimension of space spanned
by the vectors in St,t′ := {t, t′,d ∗ t,d ∗ t′}. In particular, it is not hard to see
that

rank(St,t′) = j =⇒ E[Ztx · Zt
′

x] ≤ 1/qj

Hence, upper-bounding E[Z2
x] reduces to upper-bounding to number of pairs

(t, t′) with rank(St,t′) < 4. Upper-bounding the number of such pairs is done
using linear algebra arguments, exploiting the fact that d has at least κ/2 non-
zero elements (since it is polychromatic). Specifically, we show that the number
of pairs (t, t′) with E[Ztx ·Zt

′

x] < 1/q4 decreases exponentially with the weight of
d. This bound is sufficient for calculating the second moment of Zx (deducing a
weaker bound than Equation (4), cf., Section 4.2). Calculating the third moment
of Zx, however, for deriving Equation (4) is more involved, and requires a more
detailed case-by-case analysis in the counting argument, cf., the full version of
this paper [17].

Extension to Arbitrary Fields. Our results extend trivially to large finite
fields (i.e., of size greater than 2κ/2). Next, we briefly explain how to use our
protocol for multiplying in a small field, denoted F. Unfortunately, as is, the
protocol does not enjoy the same unpredictability under attack since the entropy
of the offset is constrained by the size of the field, i.e., the offset has min-entropy
at most log(|F|). To circumvent this issue, we instruct the parties to embed F
into a larger field H of size 2κ/2 and perform the multiplication in H (of course,
the parties’ shares then reside in the larger field).

To obtain additive shares over the smaller field F, it is enough to perform
a local transformation to the output. This way, we enjoy the unpredictability
under attack (and thus the correctness-check can be performed over the larger
field) and we obtain correct shares of the output in F.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, low-
ercase for values and functions, and boldface for vectors. All logarithms con-
sidered here are in base 2. For a vector v = (v1, . . . , vn) and a set I ⊆ [n],
let vI be the ordered sequence (vi)i∈I , let v−I := v[n]\I , and let v−i := v−{i}

to argue about the min-entropy of 〈V b,d ∗T 〉 given (b,V b). We ignore this subtlety
in this informal exposition.

11

(i.e., (v1, . . . , vi−1, vi+1, . . . , vn)). For two vectors u = (u1, . . . , un) and v =
(v1, . . . , vn), let u ∗ v := (u1 · v1, . . . , un · vn), and let 〈u,v〉 :=

∑n
i=1 uivi.

Let bn denote the the n-size all b vector, or just b when the size is clear
from the context. For a field F and a sequence of vectors v1, . . . ,vm ∈ Fn, let
span{v1, . . . ,vm} := {

∑m
j=1 λjvj : λ1, . . . , λm ∈ F} (i.e., the vector space that is

spawn by vectors v1, . . . ,vm), and let rank{v1, . . . ,vm} denote the dimension of
span{v1, . . . ,vm}. For a function f taking 1κ ∈ N as its first input, we let fκ(·)
stand for f(1κ, ·). Let ppt stand for probabilistic polynomial time, and pptm
stand for ppt (uniform) algorithm Turing Machine).

3.2 Distributions and Random Variables

The support of a distribution P over a finite set S is defined by Supp(P) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D, let d ← D denote
that d is sampled according to D. Similarly, for a set S, let x ← S de-
note that x is drawn uniformly from S. The statistical distance (also known
as, variation distance) of two distributions P and Q over a discrete domain
X is defined by SD(P,Q) := maxS⊆X |P (S)−Q(S)| = 1

2

∑
x∈S |P (x)−Q(x)|.

The min-entropy of a distribution P over a discrete domain X is defined by
H∞(P) := minx∈Supp(P){log(1/P (x))}.

3.3 Two-Party Protocols and Functionalities

A two-party protocol consists of two interactive Turing Machines (TMs). In
each round, only one party sends a message. At the end of protocol, each party
outputs some value. This work focuses on static adversaries: before the beginning
of the protocol, the adversary corrupts one of the parties that from now on may
arbitrarily deviate from the protocol. Thereafter, the adversary sees the messages
sent to the corrupted party and controls its messages. A party is honest, with
respect to a given protocol, if it follows the prescribed protocol. A party is semi-
honest, if it follows the prescribed protocol, but might output additional values.

We mark inputs to protocols and functionalities as optional, if they do not
have to be defined by the caller, and in this case they are set to ⊥.

3.3.1 Security We define the security of our two-party protocols in the real
vs. ideal paradigm [9, 16]. In this paradigm, the real-world model, in which pro-
tocols is executed, is compared to an ideal model for executing the task at hand.
The latter model involves a trusted party whose functionality captures the secu-
rity requirements of the task. The security of the real-world protocol is argued by
showing that it “emulates” the ideal-world protocol, in the following sense: for
any real-life adversary A, there exists an ideal-model oracle-aided adversary (also
known as, simulator) S, such that the global output of an execution of the proto-
col with A in the real-world model is distributed similarly to the global output of
running SA in the ideal model. In the following we only consider non-reactivate
functionalities, i.e., random functions.

12

The ideal model. In the ideal execution model, the parties do not interact,
but rather make a single joint call to a two-party functionality. An ideal execution
of a two-party functionality f with respect to an adversary A taking the role of
P1 and inputs (1κ, x1, x2), denoted by IDEALfP1

(A, κ, x1, x2), is the output of A
and that of the trusted party, in the following experiment (the case of malicious
P2 is analogously defined):

Experiment 3 (Ideal execution)

1. On input (1κ, x1), A sends an arbitrary message x̂1 to the trusted party.
2. The trusted party computes (y1, y2) = f(1κ, x̂1, x2) and sends y1 to A(1κ, x1).
3. A sends the message Continue/ Abort to the trusted party, and locally outputs

some value.
4. If A instructs Abort, the trusted party outputs ⊥. Otherwise, it outputs y2.

. .

The real model. We focus on security of protocols in the g-hybrid model, in
which the parties are given access to two-party functionality g. In executions
of such protocols, a malicious party can instruct the functionality g to abort
after seeing its output (which it gets first). Let Π = (P1,P2) be an two-party
protocol in the g-hybrid model, and let A be an adversary controlling party P1

(the case of malicious P2 is analogously defined). We define REALΠP1
(A, κ, x1, x2)

as the output of A (i.e., without loss of generality its view: its random input, the
messages it received, and the output of the g calls) and the prescribed output of
P2, in a random execution of (Ag(x1),Pg2(x2))(1κ).

Hybrid-model security.

Definition 1 (α-security). A two-party protocol Π = (P1,P2) (black-boxly)
α-computes a two-party functionality f in the g-hybrid model with respect to input
domain D1×D2, if there exists a ppt oracle-aided algorithm S (simulator), such
that for every adversary A, κ ∈ N and inputs (x1, x2) ∈ D1 ×D2, it holds that

SD
(

REALΠP1
(A, κ, x1, x2)), IDEALfP1

(
SA, κ, x1, x2

))
≤ α(κ).

Furthermore, if A is semi-honest then so is SA: it sends its (real) input to the
trusted party, and does not ask to abort. Security is defined analogously for P2.

Extension to UC security. The above security notions are defined in the
so-called “standalone” model. However, we mention that the security analysis
for our main results (realizing WeakMult and WeakBatch) as well as for our
applications (e.g. Realizing PerfectMult from WeakMult and auxiliary “helper”
functionalities) uses straightline simulators exclusively, i.e., the simulator does
not rewind the adversary at any point of the simulation. Therefore, our results
can be extended to the UC setting.

13

3.3.2 Oblivious Transfer (OT) We use the (perfect) one-out-two oblivious
transfer functionality (OT) defined as follows: on input (σ−1, σ1) sent by the first
party (the sender), and input i ∈ {−1, 1} sent by the second party (the receiver),
it sends σi to the receiver. The functionality gets no security parameter.

3.3.3 Two-Party Multiplication In multiplication over the field Zq =
Z/qZ, where q is an odd prime, party P1 holds private input a ∈ Zq, party
P2 holds private input b ∈ Zq, and the goal is to securely computes random
shares s1, s2 ∈ Zq for P1 and P2 (respectively), such that s1 + s2 = a · b (for
the ease of notation, we assume that operations are made over the field Zq,
i.e., modulo q). The following is what we address as the perfect multiplication
functionality.

Functionality 4 (PerfectMult)
P1’s input: a ∈ Zq.
P2’s input: b ∈ Zq and optional s2 ∈ Zq.
Operation:

1. If s2 =⊥, sample s2 ← Zq.
2. Output (s1, s2) for s1 ← a · b− s2.

Note that it is always holds that s1 + s2 = a · b. Also note that an adversary
controlling P1 can do no harm, and adversary controlling party P2 may choose
the value of its share s2, but no information about the other party’s input is
leaked. It seems that allowing one party to control its output is unavoidable,
and is also harmless fo all the applications we are aware of.

3.3.4 Batching In a batch-multiplication, a single input provided by one party
is multiplied with several inputs provided by the other party. Such multiplication
is interesting if the batching is more efficient than parallel executions of the
(single input per party) multiplication protocol. For this case, we define the
perfect batch-multiplication functionality below.

Functionality 5 (PerfectMultBatching)
P1’s input: a ∈ Zq.
P2’s input: b = (b1, . . . , bm) ∈ Zmq and optional (s12, . . . , s

m
2) ∈ Zmq .

Operation:

1. If (s12, . . . , s
m
2) = ⊥, sample (s12, . . . , s

m
2)← Zmq .

2. Output (s11, . . . , s
m
1) to P1 and (s12, . . . , s

m
2) to P2 for (s11, . . . , s

m
1) ← a · b −

(s12, . . . , s
m
2).

3.4 Some Inequalities

We use the following inequalities.

14

Lemma 1 (Chebyshev’s inequality). Let X be a random variable with
E[X] ∈ (−∞,∞) and Var(X) ∈ (0,∞). Then

∀k > 0 : Pr[|X − E[X]| ≥ k] ≤ Var(X)/k2.

Definition 2 (Universal hash functions). A family H = {h : D → R} of
(hash) functions is called universal if for every x, y ∈ D with x 6= y,

Prh←H[h(x) = h(y)] ≤ 1/|R|.

Lemma 2 (The leftover hash lemma [18]). Let X be a random variable
over a universe D, let H = {h : D → R} be a universal hash family. Then for
H ← H it holds that

SD((H,H(X)), (H,U)) ≤ 2−(H∞(X)−log|R|)/2,

where U ← R (independent of H).

The following lemma is similar both in statement and proof to [19, Lemma
1]. It states that for a uniform universal hash function H conditioned on its
output for a uniform input X, does not affect its distribution by much. This is
in a sense the converse of the leftover hash lemma that states that (H,H(X)) is
close to uniform. For simplicity, we only state the lemma for the inner-product
hash family.

Lemma 3. Let (R,+, ·) be a finite ring of size r, let n = dlog re+κ, let d ∈ Rn,
let ` = dist(d, 0n) and let V ← Rn and T ← {−1, 1}n be two independent
random variables. Then for every x ∈ R it holds that:

SD(V ,V |〈V ,T 〉=x) ≤ 2−(κ−1)/2.

The proof of the above can be found in the full-version of this paper [17].

4 Multiplication with Unpredictable Output Under
Attack

In this section, we formally describe our “weak” OT-based multiplication proto-
col introduced in Section 1; we state and analyze its security guarantee. We show
that our protocol securely realizes a multiplication functionality that guarantees
unpredictable honest-party output under attack, which, for lack of a better short
name, we will address as WeakMult. Intuitively, WeakMult allows the adversary
to either act honestly, or to induce an unpredictable offset on the honest party’s
output. As discussed in the introduction, such a security guarantee suffices in
many settings where “secure multiplication” is needed, and, with some additional
effort (see Section 6), can be compiled into perfect i.e., standard multiplication.

In Section 4.1, we define the WeakMult functionality and analyze the security
guarantee it provides. In Section 4.2, we formally define our OT-based multi-
plication protocol, and we prove that it securely realizes WeakMult. Hereafter,
we fix q ∈ PRIMES>2 (i.e., the size of the field), and all arithmetic operations
are done over the field Zq = Z/qZ (i.e., modulo q). Let Ham(x,y) stand for the
hamming distance between the vectors x and y.

15

4.1 The Ideal Functionality

We start by describing the ideal functionality WeakMult. Recall that PerfectMult
is the perfect (standard) multiplication functionality defined in Section 3.3.3.

Definition 3 (polychromatic vector). A vector d ∈ Znq is m-polychromatic
if for every y ∈ Zq it holds that Ham(d, yn) ≥ m.

Functionality 6 (WeakMult)
Common input: a security parameter 1κ. Let n = dlog qe+ κ.
P1’s input: a ∈ Zq, and optional d ∈ Znq .
P2’s input: b ∈ Zq, and optional s2 ∈ Zq.
Operation:

If d is not κ/2-polychromatic (or d = ⊥), act according to
PerfectMult(a, (b, s2)).

Else:

1. Sample (v, t)← Znq × {−1, 1}n such that 〈v, t〉 = b. 16

2. Sample s2 ← Zq.
3. Output ((s1,v), s2) for s1 = a · b− s2 + 〈v,d ∗ t〉.

It is clear that WeakMult outputs the shares of a · b correctly on a non κ/2-
polychromatic d. The following lemma states the security guarantee of WeakMult
against a “cheating” P1 that uses a κ/2-polychromatic vector d.

Lemma 4. Let q ∈ PRIMES>2, κ ∈ N and n := dlog qe + κ. Let d ∈ Znq , let
` = miny∈Zq

{Ham(d, yn)}, let λ := min{`, κ − 5, log q, n/3}, and let (V ,T) ←
Znq × {−1, 1}n. Then for every b ∈ Zq, with probability 1 − 2−λ/2+3 over v ←
V |〈V ,T 〉=b, it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/2− 4.

When λ ≥ κ/2 (by the definition of λ this happens when the field is not too
small), for a κ/2-polychromatic d, Lemma 4 yields that for such d, conditioned
on 〈v,T 〉 = b, the min-entropy of 〈v,d∗T 〉 is at least κ/4−4. The rather tedious
proof of Lemma 4 is given in the full version of this paper [17]. Below, we state
and prove a weaker, but easier to read, variant.

Lemma 5 (A weak variant of Lemma 4). Let κ, n,d, `,V ,T be as in
Lemma 4, and let λ := min{`, κ, log q, n/3}. Then for any b ∈ Zq, with prob-
ability 1− 2−λ/3+2 over v ← V |〈V ,T 〉=b, it holds that

H∞(〈v,d ∗ T 〉 | 〈v,T 〉 = b) ≥ λ/3− 4.

In words, compared to Lemma 4, Lemma 5 yields a slightly smaller min-entropy
guarantee which occurs with a slightly smaller probability.

16 This sampling can be done efficiently by sampling the two item uniformly, and then
adjusting one coordinate of v.

16

Proof. We assume without loss of generality that

argmax
x∈Zq

|{i ∈ [n] : di = x}| = 0,

i.e., 0 is the most common element in d. (Otherwise, we prove the lemma for
the vector d′ = d − yn, where y ∈ Zq be the most common element). We also
assume that d is not the all-zero vector, as otherwise the proof trivially holds.

Let κ, n,d, `, λ,V ,T be as in Lemma 4, and fix b ∈ Zq. In addition, for
t ∈ {−1, 1}n, let W t be the indicator random variable for the event {〈V , t〉 = b},
and let W :=

∑
t∈{−1,1}n W

t. For t ∈ {−1, 1}n and x ∈ Zq, let Ztx be the

indicator random variable for the event {〈V , t〉 = b ∧ 〈V ,d ∗ t〉 = x}, and let
Zx :=

∑
t∈{−1,1}n Z

t
x. We start by proving that with high probability over V ,

for every x ∈ Zq, it holds that

Zx/W ≤ 2−λ/3+4 (5)

and we will complete the proof of the lemma by showing that the above inequality
still holds when defining Zx and W with respect to the random variable V b :=
V |〈V ,T 〉=b (rather than with respect to V). We prove Equation (5) by bounding
the variance of W and Zx, and then use Chebyshev’s inequality (Lemma 1).
Specifically, we use the following claims (proven below).

Claim 7 For every x ∈ Zq : E[Zx] = 2n/q2 and Var(Zx) ≤ 22n−λ+4/q3.

Claim 8 E[W] = 2n/q and Var(W) ≤ 2n+1/q.

By Chebyshev’s inequality and Claim 7, for every x ∈ Zq:

Pr
[∣∣Zx − 2n/q2

∣∣ ≥ 2n−λ/3+2/q
]
≤ q2 ·Var(Zx)

22n−2λ/3+4
≤ 2−λ/3

q
,

and thus by a union bound

Pr
[
∃x s.t.

∣∣Zx − 2n/q2
∣∣ ≥ 2n−λ/3+2/q

]
≤ 2−λ/3. (6)

Applying Chebyshev’s inequality with respect to Claim 8, we get that

Pr
[
W ≤ 2n−1/q

]
≤ Pr

[
|W − 2n/q| ≥ 2n−1/q

]
≤ q2 ·Var(W)

22n−2
≤ 2−κ+3, (7)

where the last inequality holds since, be definition, n ≥ log q + κ. Combining
Equations (6) and (7) yields that with probability at least 1−(2−λ/3 +2−κ+3) ≥
1− 2−λ/3+1 over v ← V , it holds that:

1. ∀x ∈ Zq : Zx ≤ 2n−λ/3+3/q, and

2. W ≥ 2n−1/q.

17

Note that for every v satisfying Items 1 and 2, and every x ∈ Zq, it holds that

Pr[〈v,d ∗ T 〉 = x | 〈v,T 〉 = b] =
Pr[〈v,d ∗ T 〉 = x ∧ 〈v,T 〉 = b]

Pr[〈v,T 〉 = b]
(8)

=
Zx
W
|V =v

≤ 2−λ/3+4.

We now turn to the distribution V b = V |〈V ,T 〉=b. Applying Lemma 3 with
respect to the ring R = Zq with addition and multiplication modulo q, yields
that

SD(V ,V b) ≤ 2−(κ−1)/2 (9)

It follows that Equation (8) holds with probability at least 1 − 2−λ/3+1 −
2−(κ−1)/2 ≥ 1− 2−λ/3+2 over v ← V b, as required.

4.1.1 Proving Claim 8

Proof. Recall that W :=
∑
t∈{−1,1}n W

t for W t being the indicator random

variable for the event {〈V , t〉 = b}. Therefore, it is clear that E[W] = 2n/q, and
a simple calculation yields that

Var(W) = Var

 ∑
t∈{−1,1}n

W t

 (10)

=
∑

t∈{−1,1}n
(E[(W t − 1/q)2] + E[(W t − 1/q) · (W−t − 1/q)])

≤ 2 ·
∑

t∈{−1,1}n
Var(W t)

≤ 2n+1/q,

as required. The second equality holds since for every t, t′ with t′ /∈ {−t, t}, the
random variables W t and W t′ are independent (because t and t′ are linearly
independent).

4.1.2 Proving Claim 7 Recall that Zx :=
∑
t∈{−1,1}n Z

t
x for Ztx being the

indicator random variable for the event {〈V , t〉 = b ∧ 〈V ,d ∗ t〉 = x}. For any
t ∈ {−1, 1}n, since the vectors t and d∗ t are linearly independent (recall that d
contains zero and non-zero elements) it holds that E[Ztx] = 1/q2, and therefore,
E[Zx] = 2n/q2. It is left to bound Var(Zx). For j ∈ [4], let

Bj := {(t, t′) ∈ {−1, 1}2n : rank{t, t′,d ∗ t,d ∗ t′} = j}

18

Note that the only possible values for E[Ztx · Zt
′

x] are {0} ∪ {1/qj}4j=1, where

E[Ztx ·Zt
′

x] = 1/qj =⇒ (t, t′) ∈ Bj . We relate Var
(∑

t∈{−1,1}n Z
t
x

)
to size {Bj}

as follows:

Var(Zx) =
∑

t,t′∈{−1,1}n
E[(Ztx − 1/q2)(Zt

′

x − 1/q2)] (11)

≤
∑

t,t′∈{−1,1}n
E[Ztx · Zt

′

x]

≤
4∑
j=1

|Bj |/qj .

We complete the proof by bounding the size of Bj for each j ∈ [3] (for B4 we use
the trivial bound |B4| ≤ 22n).

Claim 9 |B1| = 0.

Proof. Since d contains zeros and non-zeros elements, the vectors t and d ∗ t,
for any t ∈ {−1, 1}n, are linearly independent over Znq , yielding that |B1| = 0.

Claim 10 |B2| ≤ 2n+2.

Proof. Since there are exactly 2n+1 linearly dependent pairs (t, t′), i.e., the pairs
∪t∈{−1,1}n{(t, t), (t,−t)}, we deduce the bound by proving that there are at most
2n+1 independent pairs (t, t′) in B2.

Fix an independent pair (t, t′) ∈ B2, let E = {i ∈ [n] : ti = t′i} and let
N = [n] \ E . Up to reordering of the coordinates, we can write t = (tE , tN),
t′ = (tE ,−tN) and d = (dE ,dN). It is easy to verify that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN), (dE ∗ tE ,0), (0,dN ∗ tN)}.

Since (t, t′) are independent and rank{t, t′,d ∗ t,d ∗ t′} = 2, the above yields
that

dE ∈ span{1} ∧ dN ∈ span{1} (12)

Since, by assumption, d is d is not the all-zero vector, Equation (12) yields that
(dE ,dN) = (u · 1,0) or d = (0, u · 1), for some u ∈ Zq \ {0}.

Assuming that B2 contains an independent pair, otherwise we are done, the
above yields that the non-zero coordinates of d are all equal to some u ∈ Zq\{0}.
It follows that for each vector t ∈ {−1, 1}n there are at most two vectors t1 and
t2, such that (t, tj) is an independent pair in B2 (actually, each t has exactly
two such vectors, with t1 = −t2). We conclude that the number of independent
pairs (t, t′) ∈ B2 is at most 2n+1.

Claim 11 |B3| ≤ 22n−min{n/3,`}+2 (recall that ` = Ham(d,0)).

19

Proof. Let µ := min{n/3, `}, fix (t, t′) ∈ B3, let E = {i ∈ [n] : ti = t′i} and let
N = [n] \ E . Up to reordering of the coordinates, we can write t = (tE , tN),
t′ = (tE ,−tN) and d = (dE ,dN). It holds that

span{t, t′,d ∗ t,d ∗ t′} = span{(tE ,0), (0, tN), (dE ∗ tE ,0), (0,dN ∗ tN)}.

Since the assumed dimension is 3, then

dE ∈ span{1} ∨ dN ∈ span{1} (13)

We next show how to partition the coordinates of d into sets I0 and I1, each
of size at least µ, such that for all i ∈ I0 it holds that di /∈ {dj : j ∈ I1} and vice
versa. If ` ≤ n−µ, then we are done by taking I0 = {i : di = 0} and I1 = [n]\I0.
Assume that ` > n − µ, which implies that µ ≤ n − 2µ < 2` − n. For α ∈ Zq
define Jα = {i : di = α} and notice that |Jα| < (n− µ)/2 because otherwise

|Jα| ≥ (n− µ)/2 > (n− (2`− n))/2 = n− `

which contradicts the definition of ` (recall that 0 is the element with maximal
number of appearances in d, and there are exactly n − ` zero coordinates).
Finally, define s ∈ Zq to be the minimal value such that ∪sα=0Jα ≥ µ and let
I0 = ∪sα=0Jα and I1 = [n]\I0. By definition, I0 is bigger than µ and it remains
to show that I1 ≥ µ. It holds that

|I1| = n− |I0| = n−
∣∣∪s−1α=0Jα

∣∣− |Js| ≥ n− µ− (n− µ)/2 ≥ µ.

Back to the proof, Equation (13) yields that either E ⊆ I0, or E ⊆ I1, or
N ⊆ I0, or N ⊆ I1. Since |I0|, |I1| ≥ µ, the number of pairs (t, t′) ∈ {−1, 1}n
that satisfy this condition is at most 4 ·22n−µ, which ends the proof of the claim.

Putting it together. Given the above claims, we are ready to prove Claim 7.

Proof (Proof of Claim 7). Recall that λ := min{`, κ, log q, n/3}. By Equa-
tion (11) and Claims 9 to 11, we conclude that

Var(Zx) ≤
4∑
j=1

|Bj |/qj

≤ 2n+2/q2 + 22n−λ+2/q3 + 22n/q4

≤ 22n−λ+4/q3,

as required. The last inequality holds since λ ≤ κ implies that 2n+2/q2 ≤
22n−λ+2/q3, and λ ≤ log q implies that 22n/q4 ≤ 22n−λ+2/q3.

4.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the functionality
WeakMult. Recall that throughout this section we fix a field size q > 2 and
assume that all operation are made over the field Zq = Z/qZ (i.e., modulo q).

20

Protocol 12 (Π = (P1,P2))
Oracle: (one-out-of-two) OT.
Common input: security parameter 1κ. Let n = dlog qe+ κ.
P1’s private input: a ∈ Zq.
P2’s private input: b ∈ Zq.
Operations:

1. For each i ∈ [n], in parallel:
(a) P1 samples δi ← Zq, and P2 samples ti ← {−1, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti).

Let zi be the output obtained by P2 in this call.
2. P2 samples v ← Znq such that 〈v, (t1, . . . , tn〉)) = b, samples σ ← Zq,

and sends (v, σ) to P1.
3. P1 outputs s1 := −〈v, δ〉 − σ.
4. P2 outputs s2 := 〈v, (z1, . . . , zn)〉+ σ.

Note that, unlike in the simplified version of the protocol presented in the in-
troduction, party P2 in the above adds an additional mask σ to the shares.
The role of this additional mask is rather technical, but it appears necessary for
simulating of the above protocol using WeakMult (Functionality 6).

Lemma 6 (Security). Protocol 12 (α(κ) := 2−κ/4+1.5)-computes WeakMult
in the OT-hybrid model with respect to input domain Zq × Zq. Furthermore, if
both parties act honestly, then their joint output equals the output of WeakMult
on their joint inputs.

Proof. We start with proving correctness (correct output when acting honestly).
Indeed, for any possible values of a, b, κ, s2, δ = (δ1, . . . , δn), t = (t1, . . . , tn), z =
(z1, . . . , zn),v an σ in a honest execution of Π(a, b)(1κ), it holds that

s2 = 〈v, z〉+ σ = 〈v, δ + a · t〉+ σ = a · 〈v, t〉+ 〈v, δ〉+ σ = a · b− s1,

and thus s1 + s2 = a · b.
For security, fix a security parameter κ ∈ N and inputs a, b ∈ Zq.
We only prove security for corrupted P1 (the proof for corrupted P2 is

straightforward and can be found in the full version of this paper [17]).

Corrupted P1: Given an oracle access to (the next-message function of) an
interactive adversary A controlling P1, its ideal-model simulator S, which uses
the functionality WeakMult, is described as follows:

Algorithm 13 (Ideal-model S)
Inputs: 1κ and a ∈ Zq.
Oracles: (real-model) attacker A.
Operations:

1. Simulate a random execution of (A(a),P2(0))(1κ) till the end of Step 1.

21

2. If the simulation ends prematurely (e.g., on invalid behavior), send Abort to
WeakMultκ, output A’s output and halt the execution.

3. Let (w−i , w
+
i) and ti denote the inputs that A and P2 use (respectively) in

the ith OT execution of the simulation (Step 1b). Let ai = (w+
i − w

−
i) · 2−1

(where 2−1 stands for the inverse of 2 in Zq), let a = (a1, . . . , an), let δ =
(w+

1 − a1, . . . , w+
n − an), let â ∈ Zq denote the value that appears the most

often in a, and let d = a− â · 1.

4. If Ham(d, 0n) < κ/2:

(a) Send (â,d) to WeakMultκ.

(b) Receive s1 from WeakMultκ.

(c) Sample v ← Znq such that 〈v, (t1, . . . , tn)〉 = 0, and send (v, σ :=
−〈v, δ〉 − 〈v,d ∗ t〉 − s1) to A.

5. Else:

(a) Send (â,d) to WeakMultκ.

(b) Receive (s1, v̂) from WeakMultκ.

(c) Send (v̂, σ := −s1 − 〈v̂, δ〉) to A.

6. Output A’s output in the simulation.

It is clear that S is efficient. We next bound the statistical distance be-
tween REALΠP1

(A, κ, a, b) and IDEALWeakMult
P1

(SA, κ, a, b). Assuming without loss
of generality that A is deterministic (a randomized adversary is just a convex
combination of deterministic adversaries), the values of d, â and δ that it uses
are fixed, and it either uses an κ/2-polychromatic d, or not (i.e., an almost all-
zeros d). We handle each of these cases separately. In the following let V ← Znq ,
T ← {−1, 1}n and S1 ← Zq be independent random variables.

Polychromatic d. If A uses an κ/2-polychromatic d, then REALΠP1
(A, κ, a, b),

the view of A and the output of P2 in the real execution (A(a),P2(b))(1κ), are
jointly distributed according to

((V ,−S1 − 〈V , δ〉), â · b− S1 + 〈V ,d ∗ T 〉)|〈V ,T 〉=b (14)

Let (v̂, t̂) be the pair that is sampled in Step 1 of WeakMultκ. Since this pair
is sampled according to (V ,T)|〈V ,T 〉=b, in the ideal execution it holds that

IDEALWeakMult
P1

(SA, κ, a, b) (A’s view and the output of the trusted party in the
ideal execution) are jointly distributed according to Equation (14). This con-
cludes the proof of this case.

Almost-monochromatic d. Assume A uses a non κ/2-polychromatic vector
d, i.e., `, the hamming distance of d from 0n, is less than κ/2. In this case, A’s
view in the real execution, i.e., the pair (v, σ), and the output s2 of P2, are jointly
distributed according to ((V , Σ), â·b−S1)|〈V ,T 〉=b, for Σ = −S1−〈V , δ〉−〈V ,d∗
T 〉. On the other hand, the output of SA and that of the trusted party in the

22

ideal execution, are jointly distributed according to ((V , Σ), â · b− S1)|〈V ,T 〉=0

(i.e., now the conditioning is over 〈V ,T 〉 equals 0 and not b). Therefore

SD
(

REALΠP1
(A, κ, a, b), IDEALWeakMult

P1
(SA, κ, a, b)

)
(15)

= SD
(
((V , Σ), â · b− S1)|〈V ,T 〉=b, (((V , Σ), â · b− S1)|〈V ,T 〉=0

)
≤ SD

(
(V , 〈V ,d ∗ T 〉)|〈V ,T 〉=b, (V , 〈V ,d ∗ T 〉)|〈V ,T 〉=0

)
.

The inequality holds since each pair is a randomized function of V and 〈V ,d ∗
T 〉 (recall that â, b, δ are fixed, S1 is independent, and Σ is a function of S1,
〈V ,d ∗ T 〉 and 〈V , δ〉). Recall that ` = Ham(d, 0n) < κ/2, and let I := {i ∈
[n] : di 6= 0}. Since 〈V ,d ∗T 〉 is a deterministic function of V and T I , it suffices
to prove that

SD((V ,T I)|〈V ,T 〉=b, (V ,T I)|〈V ,T 〉=0) ≤ 2−(κ−`−3)/2 (16)

Since I ([n], for every x ∈ Zq it holds that

(V I ,T I)|〈V ,T 〉=x ≡ (V I ,T I) (17)

Hence, it suffices to prove that Equation (16) holds for every fixing of (V I ,T I) =
(vI , tI). Indeed,

SD(V −I |〈V −I ,T−I〉=x, V −I |〈V −I ,T−I〉=x′)
≤ SD(V −I , V −I |〈V −I ,T−I〉=x) + SD(V −I , V −I |〈V −I ,T−I〉=x′)
≤ 2 · 2−(κ−`−1)/2

= 2−(κ−`−3)/2.

The second inequality holds by applying Lemma 3 with a vector size ñ = n−` =
dlog qe+ (κ− `), over the ring R = Zq with addition and multiplication modulo
q.

5 Batching

In this section we consider the case that the parties P̂1 and P̂2 would like to
perform m > 1 multiplications, where P̂1 uses the same input a ∈ Zq and P̂2

uses different inputs b1, . . . , bm ∈ Zq. A naive solution is to perform m indepen-
dent executions of our single multiplication protocol Π (Protocol 12), where the
overall cost is m · (log q + κ) OT calls. In this section we present our batching
protocol which performs m such multiplications using only m · log q+κ OT calls,
at the cost of relaxing the security requirement. In Section 5.1 we describe the
relaxed ideal functionality WeakBatch that we consider for our batching task,
and in Section 5.2 we describe our OT-Based implementation (Protocol 15).

23

5.1 The Ideal Functionality

In the following we describe the ideal functionality WeakBatch.

Functionality 14 (WeakBatch)
Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.

Let n := dm · log qe+ κ.

P̂1’s input: a ∈ Zq, and optional d ∈ Znq .

P̂2’s input: b = (b1, . . . , bm) ∈ Zmq , and optional s2 = (s12, . . . , s
m
2) ∈ Zmq .

Operation:
If d is not κ/2-polychromatic (or d = ⊥), act according to

PerfectMultBatching(a, (b, s2)).

Else:
1. Sample (v1, . . . ,vm, t)← (Znq)m×{−1, 1}n such that ∀i ∈ [m] : 〈vi, t〉 = bi.
2. Sample s2 = (s12, . . . , s

m
2)← Zmq .

3. Output ({(si1,vi)}mi=1, {(si2)}mi=1) for si1 = a · bi − si2 + 〈vi,d ∗ t〉.

Note that for m = 1, WeakBatch is identical to WeakMult (Section 4.1).
For m > 1, WeakBatch achieves perfect correctness and security whenever d
is not κ/2-polychromatic. In particular, when P̂1 is honest (i.e., d =⊥), the

functionality is perfectly secure against a cheating P̂2. As in WeakMult, the
more complicated security guarantee is against a cheating P̂1, which may use a
κ/2-polychromatic vector d.

The security guarantee against a cheating P̂1 that chooses an κ/2-
polychromatic d is characterized by the following result.

Lemma 7. Let q ∈ PRIMES>2, κ ∈ N, m ∈ N and n := dm · log qe + κ. Let
d ∈ Znq , let ` := miny∈Zq

{Ham(d, yn)} and let λ := min{`, κ− 5, log q, n/3}. Let

(V = (V 1, . . . ,V m),T) ← (Znq)m × {−1, 1}n. Then for any b1, . . . , bm ∈ Zq,
w.p. 1−m · 2−λ/2+3 over v = (v1, . . . ,vm)← V |∀j∈[m] : 〈V j ,T 〉=bj , it holds that

∀i ∈ [m] : H∞(〈vi,d ∗ T 〉 | ∀j ∈ [m] : 〈vj ,T 〉 = bj) ≥ λ/2− 4.

We remark that the security guarantee that is obtained by Lemma 7
is weaker than m independent calls to WeakMult, i.e., the functionality
WeakMultsm,κ((a,d), (b, s2)) := (WeakMultκ((a,d), (bi, s

i
2)))mi=1. The reason is

that Lemma 7 does not guarantee independence between the m shares of P̂2.
While each share, without knowing the other shares, has high min-entropy, it
might be that this is not the case when revealing some of the other shares.

The proof of Lemma 4 is given in the full version of this paper [17].

5.2 The OT-Based Protocol

In the following we describe our OT-based implementation of the function-
ality WeakBatch. We remind that throughout this section we fix a field size
q ∈ PRIMES>2 and assume that all operation are made over the field Zq = Z/qZ
(i.e., modulo q).

24

Protocol 15 (Γ = (P̂1, P̂2))

Oracles: One-out-of-two OT protocol OT.

Common inputs: m ∈ N and 1κ for κ ∈ N. Let n = dm · log qe+ κ.

P̂1’s private input: a ∈ Zq.

P̂2’s private inputs: b1, . . . , bm ∈ Zq.
Operations:

1. For each i ∈ [n], in parallel:

(a) P̂1 samples δi ← Zq, and P̂2 samples ti ← {−1, 1}.
(b) The parties jointly call OT((δi − a, δi + a), ti). .

Let zi be the output obtained by P̂2 in this call.

2. P̂2 samples v1, . . . ,vm ← Znq such that ∀i ∈ [m] : 〈vi, t〉 = bi, samples

σ1, . . . , σm ← Zq, and sends (v1, σ1), . . . , (vm, σm) to P̂1.

3. P̂1 outputs (s11, . . . , s
m
1) for si1 = −〈vi, δ〉 − σi.

4. P̂2 outputs (s12, . . . , s
m
2) for si2 = 〈vi, z〉+ σi.

Namely, as in Protocol 12 (single multiplication), P̂1 samples random values

(δ1, . . . , δn) and P̂2 samples random values (t1, . . . , tn), and the OT calls (i.e.,
Step 1) are performed the same (except from the fact that in Protocol 15, the
value of n is larger than the one used in Protocol 12). But now, in Step 2,

instead of sampling a single vector v a single σ, P̂2 now samples m independent
random vectors v1, . . . ,vm, where each vi satisfy 〈vi, t〉 = bi, and samples m
independent random offsets σ1, . . . , σm (instead of a single one).

Lemma 8 (Security). For every m ∈ N, Γm = (P̂1, P̂2)(m, ·) (Protocol 12)
(α(κ) := 2−κ/4+1.5)-computes WeakBatchm = WeakBatch(m, ·, ·, ·) in the OT-
hybrid model, with respect to input domain Zq×Zmq . Furthermore, if both parties
act honestly, then their joint output equals WeakBatchm’s output on their joint
input.

The proof of Lemma 8 is given in the full version of this paper [17].

6 Applications

In this section, we show how our protocol can be used in several applications. To
be more precise, we show how to realize several functionalities of interest (Perfect
Multiplication, OLE, VOLE, MACs, Authenticated Triplets) in a hybrid model
with oracle access to the functionality WeakMult, which can be compiled into
a real-world protocol by substituting the oracle with our protocol (as per the
composition theorem of Canetti [9]).

25

6.1 Realizing Perfect Multiplication

We begin by showing how to realize perfect batch-multiplication maliciously
where the definition of perfect batch-multiplication is according Functionality 5
(It is stressed that perfect multiplication is simply a special case). We will dis-
tinguish between large and small fields (where a field F is small if |F| < 2κ/2).
Thus, we will assume here that q ≥ 2κ/2. In the full version of this paper [17] we
discuss the technicalities for small fields (it is stressed that our results extend
trivially to large fields that are not prime order).

To realize malicious security for Functionality 5, we will be needing the
following “helper” functionalities: One commitment functionality denote Fcom

(Functionality 16) that allows the parties to commit to certain values that can
be revealed at a later time, and another functionality ShareCheck (Functional-
ity 17) that enables the parties to verify whether their shares where computed
correctly. In Section 6.1.2 we define our protocol in the hybrid model with ideal
access to WeakBatch, ShareCheck and Fcom and we prove that it realizes Per-
fectMultBatching.17 In the full version of this paper [17], we show how to realize
ShareCheck cheaply using group-theoretic cryptography. A real world protocol
with minimal overhead can thus be derived by substituting the oracles with the
relevant protocols herein.18

6.1.1 Ideal Commitment & Share-Correctness Functionalities The
functionality below receives one input from each party. These values are revealed
at a later time once the functionality receives approval by both parties.

Functionality 16 (Commitment Functionality Fcom)
– P1’s input: α ∈ Zq.
– P2’s input: β ∈ Zq
– Operation: Upon receiving continue from both parties, Fcom outputs β to P1

and α to P2.

The functionality below receives one input and one share from each party. It
simply checks whether the additive shares sum up to the product of the inputs.

Functionality 17 (ShareCheck)
P1’s input: (x1, s1) ∈ Z2

q.
P2’s input: (x2, s2) ∈ Z2

q

Operation: Output 1 if x1 · x2 = s1 + s2 and 0 otherwise.

6.1.2 Secure Multiplication Protocol

Protocol 18 (Ψ = (P1,P2))
Oracles: WeakBatch and ShareCheck

17 We note that the definition of Fcom is reactive. This feature does not interfere with
composition [9].

18 Typically, Fcom is realized via a hash function modelled as a random oracle.

26

Parameters: Multiplications number m ∈ N and a security parameter κ ∈ N.
Let n := dm · log qe+ κ.

P1’s input: a ∈ Zq.
P2’s input: b = (b1, . . . , bm) ∈ Zmq .
Operations:

1. P1 samples x← Zq, sets α = a− x and sends α to Fcom.
2. P2 samples y ← Zq, sets β = b1 − y and sends β to Fcom.
3. P1 and P2 invoke WeakBatch on inputs (1κ, x) and (1κ, y, b2, . . . , bm) respec-

tively. Let (ŝ11, . . . , ŝ
m
1), (ŝ21, . . . , ŝ

m
2) denote the respective outputs.

4. P1 and P2 invoke ShareCheck on inputs (1κ, x, ŝ11) and (1κ, y, ŝ12) respectively.
5. P1 and P2 send continue to Fcom.
6. P1 locally outputs (x · β + ŝ11, ŝ

2
1, . . . , ŝ

m
1) and P2 locally outputs (b1 · α +

ŝ12, . . . , bm · α+ ŝm2).

Theorem 19. Protocol 18 α-computes PerfectMultBatching (Functionality 5)
for

α(κ) = 2−κ/4+4.

The proof of Theorem 19 can be found in the suplementary material.

6.1.3 Realizing OLE & VOLE Recall that in VOLE (OLE is just single-
instance VOLE), P1 holds an input a and P2 holds b,σ ∈ Zmq , and the function-
ality returns ab+σ to P1 and nothing to P2. Using a straightforward reduction
from VOLE to batch-multiplication, it is enough to run Protocol 18 with parties
using inputs a and b respectively. Then, once the protocol concludes, we instruct
P2 to add σ to its output and reveal the result to P1. The resulting protocol is
a secure realization of VOLE (or OLE for m = 1). We omit the formal details
since they are rather straightforward.

6.2 Generating Correlated Data in the Preprocessing Model

In this section, we show how to use our protocol for generating correlated prepro-
cessed data for general purpose MPC (namely MACs and Beaver Triplets). For
an informal discussion of the two concepts, we refer the reader to the introduc-
tion (Section 1.3). Since MACs are just a special instance of batch-multiplication
(and thus Protocol 18 can readily be used for this purpose) we only focus here on
Beaver triplets. Similarly to PerfectMult, we will be using another “helper” func-
tionality denote BeaverCheck which is analogous the ShareCheck, except that it is
more complicated because it involves many more checks. Still, in the full version
of this paper [17], we show that it can be cheaply realized using group-theoretic
cryptography.

Functionality 20 (Beaver)
Inputs: Empty for both parties with the following optional inputs.

27

1. P1’s optional input opt1: (x11, x
2
1, x

3
1, k1) ∈ Z2

q and (σi1, τ
i
1) ∈ Z2

q for i ∈ [3].

2. P2’s optional input opt2: (x12, x
2
2, x

3
2, k2) ∈ Z2

q and (σi2, τ
i
2) ∈ Z2

q for i ∈ [3].

Operation:

– Verify opt1 =⊥ or opt2 =⊥, otherwise abort (wlog say opt1 6=⊥).
– Sample (x12, x

2
2, k2)← Z3

q.
– Output (x1i , x

2
i , x

3
i , ki, σ

1
i , σ

2
i , σ

3
i , τ

1
i , τ

2
i , τ

3
i) to Pi where unassigned values are

set subject to{
(x11 + x12)(x21 + x22) = x31 + x32
τ ji = k3−ix

j
i + σj3−i for i ∈ {1, 2}, j ∈ {1, 2, 3}

.

Functionality 21 (BeaverCheck)
Common input: 1κ for a security parameter κ ∈ N.
P1’s input: (x11, x

2
1, x

3
1, k1) ∈ Z2

q and (σi1, τ
i
1) ∈ Z2

q for i ∈ {1, 2, 3}.
P2’s input: (x12, x

2
2, x

3
2, k2) ∈ Z2

q and (σi2, τ
i
2) ∈ Z2

q for i ∈ {1, 2, 3}.
Operation: Output 1 if the inputs satisfy the following (output 0 otherwise){

(x11 + x12)(x21 + x22) = x31 + x32
τ ji = k3−ix

j
i + σj3−i for i ∈ {1, 2}, j ∈ {1, 2, 3}

.

6.2.1 Authenticated (Beaver) Triplets Protocol As mentioned in the
introduction, the protocol below simply preforms two weak multiplications to
calculate the triplet and two (weak) batch-multiplications each to obtain all the
MAC data. In the end, the parties perform the correctness-check on their shares.

Protocol 22 (Φ = (P1,P2))
Oracles: WeakMult, WeakBatch and BeaverCheck.
Inputs: Statistical parameter κ.
Operations:

1. Each Pi samples ki, ai, bi ← Zq.
2. P1 and P2 invoke WeakMult (a1, b2) and WeakMult (b1, a2).

Write γ1, δ1 and γ2, δ2 for their respective outputs.

3. Each Pi sets ci = aibi + γi + δi.
4. P1 and P2 invoke WeakBatch(k1, (a2, b2, c2)) and WeakBatch(k2, (a1, b1, c1)).

Write (τi, τ
′
i , τ
′′
i), and (σi, σ

′
i, σ
′′
i) for Pi’s outputs in each execution.

5. P1 and P2 invoke BeaverCheck on the relevant inputs.
6. Pi outputs (ai, bi, ci, ki, τi, τ

′
i , τ
′′
i , σi, σ

′
i, σ
′′
i).

Theorem 23. Protocol 22 α-computes Beaver (Functionality 20) for

α(κ) = 2−κ/4+4.

The proof of the above is very similar to the proof of Theorem 19 and it is
ommited.

28

Bibliography

[1] Baum, C., Escudero, D., Pedrouzo-Ulloa, A., Scholl, P., Troncoso-Pastoriza,
J.R.: Efficient protocols for oblivious linear function evaluation from ring-
lwe. In: Security and Cryptography for Networks - 12th International Con-
ference, SCN 2020. vol. 12238, pp. 130–149. Springer (2020)

[2] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference. vol. 576, pp. 420–432. Springer (1991)

[3] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and
challenges. In: Ishai, Y. (ed.) Theory of Cryptography - 8th Theory of Cryp-
tography Conference, TCC 2011. vol. 6597, pp. 253–273. Springer (2011)

[4] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018. pp. 896–912. ACM (2018)

[5] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure compu-
tation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019. pp. 291–308. ACM (2019)

[6] Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. vol. 9057,
pp. 337–367. Springer (2015)

[7] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference. vol. 9814, pp. 509–539.
Springer (2016)

[8] Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices
without FHE. In: Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. vol. 11477, pp. 3–33. Springer (2019)

[9] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. Journal of Cryptology 13(1), 143–202 (2000)

[10] Damgard, I., Orlandi, C.: Multiparty computation for dishonest majority:
From passive to active security at low cost. In: Advances in Cryptology -
CRYPTO 2010, 30th Annual Cryptology Conference. vol. 6223, pp. 558–
576. Springer (2010)

[11] Damgard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference. vol. 7417, pp. 643–
662. Springer (2012)

[12] Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: The multiparty case. In: 2019 IEEE Symposium on Security

and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. pp. 1051–
1066. IEEE (2019)

[13] Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC - maliciously se-
cure multiparty computation from homomorphic commitments. In: Public-
Key Cryptography - PKC 2018 - 21st IACR International Conference on
Practice and Theory of Public-Key Cryptography. vol. 10769, pp. 587–619.
Springer (2018)

[14] Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear func-
tion evaluation with constant overhead. In: Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security. vol. 10624, pp. 629–659.
Springer (2017)

[15] Gilboa, N.: Two party RSA key generation. In: Advances in Cryptology -
CRYPTO ’99, 19th Annual International Cryptology Conference. vol. 1666,
pp. 116–129. Springer (1999)

[16] Goldreich, O.: Foundations of Cryptography – VOLUME 2: Basic Applica-
tions. Cambridge University Press (2004)

[17] Haitner, I., Makriyannis, N., Ranellucci, S., Tsfadia, E.: Highly efficient
ot-based multiplication protocols. Cryptology ePrint Archive, Report
2021/1373 (2021), https://ia.cr/2021/1373

[18] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions. In: Proceedings of the twenty-first annual ACM sympo-
sium on Theory of computing. pp. 12–24 (1989)

[19] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Theory of Cryptography, 6th Theory of Cryptogra-
phy Conference, TCC 2009. vol. 5444, pp. 294–314. Springer (2009)

[20] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic
secure computation with oblivious transfer. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp.
830–842. ACM (2016)

[21] Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of
reed-solomon codes. IEEE Trans. Inf. Theory 54(6), 2752–2769 (2008)

[22] Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic
circuits with malicious adversaries and an honest-majority. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017. pp. 259–276. ACM (2017)

[23] Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018. pp. 1837–1854. ACM (2018)

[24] Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput.
35(5), 1254–1281 (2006)

[25] Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively
secure setup for SPDZ. IACR Cryptol. ePrint Arch. p. 1300 (2019)

30

https://ia.cr/2021/1373

	Highly Efficient OT-Based Multiplication Protocols
	Introduction
	Background on OT-Based Two-Party Multiplication
	Our Contributions
	Applications
	Related Work

	Our Techniques
	Preliminaries
	Notations
	Distributions and Random Variables
	Two-Party Protocols and Functionalities
	Security
	Oblivious Transfer (OT)
	Two-Party Multiplication
	Batching

	Some Inequalities

	Multiplication with Unpredictable Output Under Attack
	The Ideal Functionality
	Proving clm:Wvar
	Proving clm:pairvar

	The OT-Based Protocol

	Batching
	The Ideal Functionality
	The OT-Based Protocol

	Applications
	Realizing Perfect Multiplication
	Ideal Commitment & Share-Correctness Functionalities
	Secure Multiplication Protocol
	Realizing OLE & VOLE

	Generating Correlated Data in the Preprocessing Model
	Authenticated (Beaver) Triplets Protocol

