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3 UIUC
4 Unaffiliated
5 IIT Bombay

Abstract. We put forth a new paradigm for program obfuscation, where
obfuscated programs are endowed with proofs of “well formedness.” In
addition to asserting existence of an underlying plaintext program with
an attested structure, these proofs also prevent mauling attacks, whereby
an adversary surreptitiously creates an obfuscated program based on
secrets which are embedded in other obfuscated programs. We call this
new guarantee Chosen Obfuscation Attacks (COA) security.

We show how to enhance a large class of obfuscation mechanisms to
be COA-secure, assuming subexponentially secure IO for circuits and
subexponentially secure one-way functions. To demonstrate the power of
the new notion, we also use it to realize:

– A new form of software watermarking, which provides significantly
broader protection than current schemes against counterfeits that
pass a keyless, public verification process.

– Completely CCA encryption, which is a strengthening of completely
non-malleable encryption.

1 Introduction

General-purpose program obfuscation (developed in [3,16,20,7,17,13] and many
other works) holds great promise for enhancing the security of software: Soft-
ware can be distributed and executed without fear of exposing sensitive design
secrets or keys hidden in the code. Furthermore, when executing obfuscated
software, all intermediate states are guaranteed to remain hidden, even when
both the hardware and the software components of the underlying platform are
adversarial.

⋆ Supported by the DARPA SIEVE project, contract No. #HR00112020023.
⋆⋆ Work done while at IST Austria; supported in part by ERC grant 724307.

⋆ ⋆ ⋆ Supported in part by DARPA SIEVE project contract No. #HR00112020024, a gift
from Visa Research, and a C3AI DTI award.

† Work done in part while at Boston University.
‡ Supported by a Ramanujan Fellowship and Joint Indo-Israel Project
DST/INT/ISR/P-16/2017 of Dept. of Science and Technology, India.



2 R. Canetti et al.

However, ubiquitous use of program obfuscation might actually make the se-
curity of software worse in other respects: Verifying properties of an obfuscated
program becomes harder - it is essentially reduced to black-box testing the pro-
gram. This is highly unsatisfactory, especially in situations where the source of
the program is untrusted. Indeed, the very property that makes obfuscation a
boon for software creators - namely the ability to hide secrets both in the code
and in the functionality - is a bane for users of the software, unless those users
put complete trust in the creators.

Another concern is that the use of program obfuscation makes it harder
to verify whether a given program depends on other programs in “illegitimate
ways”, where legitimacy (and lack thereof) relates to both structural and func-
tional dependence between programs. For instance, obfuscation might facilitate
software plagiarism by hiding the fact that program A runs some (potentially
proprietary) program B as a subroutine, without publicly disclosing this fact.
Furthermore, obfuscation might facilitate hiding the fact that program A is a
mauled version of B - i.e. that A’s functionality surrepetitiously depends on the
functionality of B. The latter can be a concern even regardless of how B is
implemented.6

We define and realize a new notion of program obfuscation that addresses the
above concerns. However, before we present the new notion and some applica-
tions, we point out prior approaches. To the best of our knowledge, the only ex-
isting general notion of obfuscation that provides the ability to verify properties
of obfuscated programs is Verifiable Indistinguishability Obfuscation [2]. How-
ever, that notion provides only limited hiding guarantees: indistinguishability of
the obfuscated versions of two functionally equivalent programs is guaranteed
only if there is a short witness of their equivalence. Furthermore, it provides no
guarantees against adversaries that maul honestly generated programs.

Mauling attacks have been considered in the context of non-malleability of
obfuscation. Thid has so far been studied only in the context of virtual black
box obfuscation of point functions and related functionalities [11,24] and is thus
susceptible to strong impossiblity results [4]. In particular, no generally viable
notion of non-malleable obfuscation has been proposed.

Defending against program plagiarism has been studied in the context of soft-
ware watermarking [4]. However, that line of work has concentrated on detecting
illicit programs that very closely preserve the functionality of the watermarked
program [12] (or else preseve some cryptographic use of it [18]), and does not
address more general forms of plagiarism – e.g., generating a seemingly legiti-

6 One might expect that existing notions of obfuscation, such as indistinguishability
obfuscation (IO), already defend against such mauling attacks. However, this expec-
tation fails for programs whose code includes random keys that affect the function-
ality. For instance, IO does not appear to rule out the possibility that an adversary,
given an obfuscated version of a puncturable pseudorandom function with a random
key k, manages to generate another obfuscated program that computes the same
function but with key (k + 1).
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mate obfuscated program that illicitly uses a given program as a subroutine, or
even changes some internal parameters while preserving the overall design.

1.1 Our Contributions

We first summarize our main contributions and then elaborate on each one.

– Definitions: We show how to enhance a number of existing notions of pro-
gram obfuscation so as to provide a strong flavor of verifiability, combined
with mitigating malleability attacks. We call such enhancement “security
against chosen obfuscation attacks” (or, COA security). For sake of speci-
fity, we also formulate a self-contained notion of COA obfuscation which will
be used throughout this work.7

– Constructions: We construct COA obfuscation, assuming subexponentially
secure iO and one-way functions. More generally, we show how to enhance
(or, fortify) any one out of a class of measures of secure obfuscation to provide
COA security.

– Applications: COA-secure obfuscation is directly applicable in situations
where a user wishes to verify some properties regarding the structure and
functionality of a given obfuscated program. In addition, we use COA-secure
obfuscation to construct software watermarking mechanisms that provide a
new and powerful notion of security. Finally, we use COA-secure obfuscation
to construct a completely CCA-secure public-key encryption scheme, which is
a new notion of security that natually strengthens completely non-malleable
public-key encryption [14], which in turn augments non-malleablity to con-
sider mauling attacks against both the ciphertext and the public key.

1.2 Defining COA Obfuscation

The first main contribution of this work is in developing a security notion that
incorporates meaningful secrecy, verifiability, and non-malleability guarantees,
while still being realizable by general-purpose obfuscation algorithms. Several
challenges face such an endeavor.

First, to let the user verify various properties of the program, we would like
to emulate the effect of having a one message proof attached to the obfuscated
program. Since we do not have any cryptographic setup, such a proof cannot
be zero-knowledge. Still, we would like to ensure that this proof does not reveal
anything about the program that is to be hidden by the obfuscation. We thus
formulate a notion of hiding that’s intertwined with the functionality of the
obfuscated program.

Developing an appropriate notion of non-malleability proves equally challeng-
ing. In particular, it appears hard to effectively capture mauling attacks on the

7 We also define a somewhat weaker variant, which only guarantees verifiability with-
out any non-malleability guarantees. We then realize this variant with a simpler
construction than the one used to obtain COA security. See more details in [8].



4 R. Canetti et al.

functionality of programs without resorting to “simulation-based” formalisms
(as done in [11,24]), which would in turn be subject to general impossibility akin
to VBB-obfuscation [4]. Indeed, an indistinguishability-based notion that avoids
the need for a simulator appears to be warranted in order to preserve broad
applicability.

We get around this difficulty by extending the notion of CCA-secure com-
mitments (namely, commitments that are secure against chosen commitment
attacks [9]) to our setting. Indeed, our notion (which is, in turn, a natural ex-
tension of security against chosen ciphertext attacks for public-key encryption
[27,28] to the setting of obfuscation) provides the stongest-known viable form of
non-malleability for obfuscation schemes.

That is, we consider obfuscators O that take as input a program C along with
a predicate ϕ that represents some attestation on the structure and functionality
of C. Next, we augment the process of executing an obfuscated program with
an initial step aimed at verifying that this program “corresponds to a plaintext
program that satisfies ϕ.” Here, however, we somewhat relax the traditional
deterministic verification process, and instead allow for randomized verification
that, given a purported obfuscaed program Ĉ, outputs eiter a reject symbol,
or else a fully functional program C̃. We then require that: (a) whenever ϕ(C)
holds, V (O(C, ϕ), ϕ) = C̃, where C̃ is functionally equivalent to C, and (b) For
all strings Ĉ and predicates ϕ, the event where V (Ĉ, ϕ) = C̃ where C̃ ̸=⊥, and
there is no program C that is functionally equivalent to C̃ and such that ϕ(C)
holds, occurs only with negligible probability.

We stress that the above definition postulates a two-step randomized process
for generating a functional obfuscated program: the first step is carried out by O,
while the second is carried out by V . Furthermore, while obfuscating a legitimate
program C (i.e. ϕ(C) = 1) always results with a progam C̃ = V (O(C, ϕ), ϕ)
that is functionally equivalent to C, an adversarially generated string Ĉ might
result in a random variable C̃ = V (Ĉ, ϕ) where different draws from C̃ are
different programs with completely different functionalities. (Still ϕ(C̃) holds
almost always.)8

Finally, we would like to require that, for “sufficiently similar” programs
C0, C1, polytime adversaries be unable to distinguish O(C0, ϕ) from O(C1, ϕ),
even when given access to a de-obfuscation oracle O−1(·, ϕ). That is, we consider
adversaries that are given a challenge program C∗ = O(Cb, ϕ) for b ← {0, 1},
along with access to an oracle O−1(·) that operates as follows: If Ĉ = C∗ or
V (Ĉ, ϕ) =⊥, then O−1(Ĉ) =⊥. Else, O−1(Ĉ) = C, where C is the lexicograph-
ically first program that’s functionally equivalent to Ĉ and where ϕ(C) holds.
The verification guarantee implies that (w.h.p.) such a program exists when
V (Ĉ, ϕ) ̸=⊥.

It remains to determine what makes programs C0, C1 “sufficiently similar”.
Here we consider a number of variants, that correspond to existing notions of

8 Our randomized verification step is borrowed from that of Non-Interactive Distribu-
tionally Indistinguishable (NIDI) arguments, as developed in [22]. Indeed, as there,
it appears to be an essential relaxation that is crucial for realizability.
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security for plain obfuscation. One natural option, corresponding to plain iO,
considers any pair C0, C1 of equal-size, functionally equivalent programs.

Another option, which turns out to be relatively simple to work in the con-
text of our applications, corresponds to a slight simplification of the notion of
obfucation of probabilistic circuits, specifically X-Ind-pIO [10]. That is, we con-
sider samplers that sample triples (C0, C1, z), where C0 and C1 are programs and
z is some auxiliary information. A sampler Samp is admissible for ϕ if both C0

and C1 satisfy ϕ, and in addition any poly size adversary A, given z and oracle
access to a program, can tell whether this program is C0 or C1 only with sub-
exponentially small advantage over 1/2, when (C0, C1, z)← Samp. An obfusator
(O, V ) is COA Secure with respect to predicate ϕ if any polytime adversary A′,
that’s given C∗ = O(Cb, ϕ), z, where ((C0, C1, z) ← Samp, as well as oracle
access to O−1(·), can guess b only with advantage that’s polynomially related to
that of A.

The intuiton for why COA security guarantees non-malleability is the same
as in the case of CCA commitment and CCA encryption: An adversary that
manages to “maul” its challenge progrom Ĉ into a program Ĉ ′ that passes
verification and such that the preimages of the resulting C̃ and C̃ ′ are related
in some non-trivial way, can readily use this ability to break COA security via
applying O−1(C̃ ′) to obtain the plaintext program that is related to the preimage
of its challenge C∗. It is stressed that here the “non trivial relation” may include
both structural and functional properties of the plaintext programs.

1.3 Applications of COA obfuscation

COA-secure obfuscation is clearly directly applicable in situations where a user
wishes to verify some properties regarding the structure and functionality of a
program that is otherwise obfuscated (hence “opaque”). We further demonstrate
the power of this notion via two applications: First, we define and construct a
new notion of program watermarking which, while being formally incomparble
with existing notions, significantly pushes the envelope of what’s obtainable in
this context. Second, we define and construct a new notion of completely-CCA
secure encryption, nametly encryption that remain secure even in the presence
of an oracle that decrypts adversarially chosen ciphertexts with respect to adver-
sarially chosen public keys. In both cases, our constructions rely on COA-secure
obfuscation in a crucial way.

A new approach to software watermarking. Existing formulations of watermark-
ing (e.g. [12,15]) concentrate on preventing the creation of “counterfeit” programs
that are close in functionality to the watermarked program and yet remain un-
marked. Instead, we propose a way to publicly detect any program that stands in
some pre-determined relation with the watermarked program, and is unmarked
(or carries a different mark than the watermarked program). The new notion is
incomparable with the existing ones: On the one hand, the proposed notion does
not rule out the possibility of creating “jail-broken programs”, it only guarantees
that these programs will be detectable. Still, the detection algorithm is fixed and
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keyless, hence detection is inherently public and universal. Furthermore, the new
notion identifies a significantly larger class of “software piracy” attackes, namely
those attacks where the “forbidden similarity” between the jail-broken program
and the original program may be defined via some predetemined relation that
considers both the structure and the functionality of the jail-broken program and
the watermarked program.

More specifically, our proposed notion of watermarking, with respect to a
family C of programs and a relation R(·, ·), postulates a marking algorithm M
and a (randomized) verification algorithm V with the following properties. The
watermarking party chooses a program C from the family C, along with a mark
m, and applies M to obtain a watermarked program Ĉ such that:
(a) V (Ĉ) = (C̃,m), where C̃ is functionally equivalent to C. (That is, Ĉ passes
verification, bears the mark m, and results in a program that’s functionally
equivalent to the original.)
(b) Any adversarially generated program Ĉ ′ where V (Ĉ ′) = (C̃ ′,m′) and such
that there exists a program C ′ that’s functionally equivalent to C̃ ′ and such that
R(C,C ′) holds, must have m′ = m except for negligible probability. (That is, if
Ĉ ′ passes verification and the resulting program C̃ has a functionally equivalent
”plaintext” program C ′ that stands in the specified relation with C, then Ĉ ′ has
to bear the mark m.)

We note that this notion is very general, and in particular prevents potential
plagiarism where the plagiarized program has very different functionality than
the watermarked one, and yet uses the watermarked program as a subroutine or
otherwise incorporates it in its code.

We then use subexponential COA obfuscation to construct watermarking
schemes for any function family C and relation R where:
(a) the description of a program C ← C is “one way” with respect to the func-
tionality of the program (i.e. the description is uniquely determined, yet hard
to effciently extract, given sufficiently many input-output pairs), and:
(b) R is such that whenever R(C,C ′) holds, knowledge of C ′ enables breaking
the one wayness of C. That is, there is an algorithm that computes the de-
scription of C, given only C ′ and oracle access to C. As a concrete example,
we consider watermarking a PRF, where the relation R holds only if two PRF
circuits use the same key; relying on a “key-injective” PRF, this can be extended
to a relation R that holds whenever two PRFs agree on their outputs for some
input.

Application to Completely CCA Encryption. We formulate a new notion of secu-
rity for public key encryption, which we call completely CCA (CCCA) secure en-
cryption. Our new notion of security provides a strong form of non-malleability
for encryption schemes, and is a stronger variant of the notion of completely
non-malleable encryption of Fischlin [14]. The latter notion of secure encryp-
tion scheme rules out non-malleability even when a man-in-the-middle adversary
”mauls” an honest (public-key, ciphertext) pair to produce a new public key and
a new ciphertext where the corresponding plaintext is related to the original
plaintext (according to some relation R).
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Informally, our notion of completely CCA security strengthens CCA security
(rather than plain non-malleability) by allowing the adversary to have access
to a strong decryption oracle. The adversary can query this decryption oracle
adaptively with different (possibly related) combinations of public keys and ci-
phertexts. The decryption oracle brute-force finds a message and randomness
string corresponding to the queried public-key/ciphertext pair (and if no such
pair exists, it it returns a ⊥). The security requirement is that the adversary
must not be able to break CPA-security for a challenge public-key ciphertext
pair even given unbounded queries to this oracle (as long as it does not query
the oracle on the challenge pair).

As shown by Fischlin [14], even his (weaker) notion of completely non-
malleable encryption is impossible to realize with respect to black-box simulation
in the plain model (i.e., without any trusted setup assumptions). In this work
we show, surprisingly, that it is possible to construct completely CCA-2 secure
encryption (and hence completely non-malleable encryption) in the plain model
from COA obfuscation. While the reduction is BB, the bound is avoided by the
fact that we need sub-exponential assumptions to construct COA obfuscation to
begin with.

Let us provide more detail about the new notion of CCCA encryption. We
first formulate a strong variant of completely non-malleable encryption in the
spirit of CCA-secure commitments. In this variant, the adversary has access to
a standard decryption oracle (with respect to adversarially generated ciphertext
and the original secret key), and also has access to an oracle that, essentially,
takes an adversarially generated public key pk and ciphertext c, and returns
a plaintext m such that c could potentiallby the result of encrypting m with
public key pk (and some random string). We note that this is a very strong
primitive, that in particular implies both completely non-malleable encryption
and CCA-secure commitment.

We then show that the Sahai-Waters CCA secure encryption [29], when the
obfuscation algorithm is COA-secure (with respect to a predicate ϕ that attests
for the correct structure of the obfuscated program), rather than plain iO, is
completely CCA secure.

We provide two alternative proofs of security of this scheme. One proof follows
a blueprint similar to that of [29], with one major difference: when the adversary
A queries the decryption oracle with a public-key ciphertext pair (p̃k, c) then:

– If p̃k matches the challenge public key, then there is a direct reduction to
the Sahai-Waters game.

– If p̃k is different from the challenge public key, then the reduction uses the
COA deobfuscation oracle to decrypt the ciphertext c. In more details, the
reduction first invokes cO.Ver on p̃k to obtain some program P̃ . The verifia-
bility property of cO guarantees that if P̃ ̸=⊥, then there must be a program
P ′ such that P̃ = iO(P ′; r). Since, we assume iO is injective, the reduction
can then use the deobfuscation oracle O−1 on P̃ to recover P ′. Now, from
this plaintext program P ′ it is possible to extract “secret” PRF keys (K1,K2)
by reading the description of P ′ (this is possible since our COA fortification
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is defined for circuits that have some PRF keys embedded). These secret
keys can then be used to decrypt c.

The second proof directly uses the notion of COA-secure obfuscation: We
formulate an admissible sampler where each sample consists of two instances of
the encryption progeam in the public key, along with an auxiliary input that
enables the adversary to obtain a challenge ciphertext c∗ where embedded in
c∗ depends on whether one has access to the first or the second instance of the
encryption program. We then argue that:
(a) when the encryption programs are given as oracles, it is infeasible to distin-
guish the two cases, thus the sampler is admissible. (Here we essentially use the
fact that the underlying symmetric encryption scheme is CCA.) We conclude
that a even a COA adversary, that has access to the COA-obfuscated version of
one of the two copies of the encryption algorithm, along with the same auxiliary
input a de-obfuscation oracle, is still unable to distinguish the two cases.
(b) On the other hand, A CCCA attack against the scheme can be simulated by
a COA adversary that has access to a COA-secure obfuscation of one of the two
instances of the encryption algorithm, to the same auxiliary input as before, and
to a de-obfuscation oracle that’s used to respond to the de-encryption quesries
of the CCCA attacker. This means that such CCCA attack must fail.

1.4 Constructing COA obfuscation

Before sketching our construction for COA obfuscation, it will be helpful to set
aside the non-malleability requirement, and consider only the simpler question of
fortifying an obfuscation scheme to obtain verifiability. Let O be an obfuscator,
and let ϕ be an efficiently computable predicate on programs. Recall that the ver-
ifiable version of O with respect to ϕ is a pair of algorithms (vO.Obf, vO.Verify)
such that the following holds:

– Correctness: For any program C such that ϕ(C) holds, if Ĉ ← vO.Obf(C)

and C̃ ← vO.Verify(Ĉ), then we have that C̃ and C are functionally equiva-

lent. That is, vO.Verify ”accepts” Ĉ as C̃.

– Verifiability: Conversely, if C̃ is the result of vO.Verify(Ĉ) for some string Ĉ,
then, except with negligible probability, there exists a program C such that
ϕ(C) holds and C̃ is functionally equivalent to C, or more precisely, that C̃
is in the image of O(C).

– Obfuscation: vO guarantees the same level of indistinguishability as O.
That is, there exists an efficient transformation from distinguishers between
vO.Obf(C1) and vO.Obf(C2), to distinguishers between O(C1) and O(C2),
for any distribution over pairs of programs C1, C2 ∈ F that satisfy ϕ.
(The formal definition considers distribution over (C1, C2, z) where z is aux-
iliary information that will be given to the distinguishers. Also, we shall
permit the transformation to suffer a (possibly sub-exponential) quantita-
tive loss in the level of indistinguishability.)
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A useful interpretation of the pair of algorithms (vO.Obf, vO.Verify) is that
they together implement O. An intriguing side-effect of this is that the honest
vO obfuscator (who runs vO.Obf) does not necessarily know the final obfuscated

program C̃ generated by vO.Verify, though it knows that it is of the form O(C).
On the other hand, if the obfuscator is malicious, it could control the outcome
of vO.Verify to be fixed, or alternately, ensure that different runs of vO.Verify
results in obfuscations of different programs (without violating the verifiabil-
ity condition). These “relaxations” of vO may appear inconsequential, since an
honest obfuscator is only interested in fixing the functionality, and on the other
hand, a malicious obfuscator could have randomly chosen the program it wants
to obfuscate. But as we see below, these relaxations are crucial to realizing ver-
ifiability fortification.

Exploiting NIDI for Verifiability. A natural approach to obtaining verifiability
would be to attach some form of a non-interactive proof to the obfuscated pro-
gram, proving that it was constructed as O(C) for some C such that ϕ(C) holds.
Unfortunately, NIZK is impossible without a trusted setup. The next best op-
tion would be to use a non-interactive witness indistinguishable (NIWI) proof
system, which can indeed be realized without a setup [5,19,6], under a variety
of assumptions. Indeed, this was the approach taken in [2]. However, since a
NIWI proof can hide a witness only if alternate witnesses are available, attach-
ing a NIWI to O(C) directly does not suffice; instead, [2] cleverly combines three
obfuscations with a NIWI which only proves that two of them correspond to func-
tionally equivalent programs, both satisfying the predicate (this necessitates the
verifiable-equivalence restriction). By evaluating the three programs and taking
the majority, the user is assured that they are using a valid O(C). Also, the
variable witnesses introduced suffices to prevent the NIWI from breaking the
indistinguishability guarantee that iO provides for pairs of functionally equiva-
lent circuits. Unfortunately, this approach is closely tied to the specific hiding
guarantee of iO, limited to functionally equivalent circuits, and further adds a
technical requirement that there should be a short witness to the equivalence.

The relaxations we build into vO enable an alternative. Specifically, instead
of attaching a proof to (one or more) programs, vO.Verify is allowed to sample
a program and a proof. This enables us to use a proof system which lets the
verifier sample a statement and a proof together, where the statement comes
from a distribution determined by the prover. Such a proof system was recently
introduced in [22], under the name of Non-Interactive Distributionally Indis-
tinguishable (NIDI) arguments. The hiding property that NIDI offers is that
as long as two statement distributions are indistinguishable from each other,
then adding the proofs does not break the indistinguishability (by more than a
sub-exponential factor). With a statement distribution corresponding to O(C),
we can directly use the prover and verifier in a NIDI argument as vO.Obf and
vO.Verify.

COA Security Fortification. For defining COA-security fortification, we consider
an injective obfuscator O, where injectivity means that the obfuscator does not
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map two distinct programs to the same obfuscated program. While this property
may naturally be present in obfuscators with perfect functionality preservation,
it is easy to add this to an obfuscator (without affecting hiding properties) by
simply attaching a perfectly binding commitment of a program to the obfusca-
tion. The reason we shall consider the given obfuscator O to be injective is so
that we will be able to unambiguously refer to a de-obfuscation oracle.

Given an injective obfuscator O, a COA fortification of O, denoted cO =
(cO.Obf, cO.Ver) is a pair of efficient algorithms satisfying the following proper-
ties:

– Correctness: This is similar to that in the case of verifiability fortification,
except that there is no requirement for the obfuscated to satisfy any pred-
icate. That is, for any program C, if Ĉ ← cO.Obf(C), then we have that

C̃ ← cO.Ver(Ĉ) such that C̃ is functionally equivalent to C.

– Verifiability: Again, this property is similar to that in the case of verifiability
fortification, except for the predicate. That is, if C̃ ← cO.Ver(Ĉ) then, except

with negligible probability, C̃ is in the codomain of O(C).

– COA-secure obfuscation: COA-security is defined analogous to how CCA se-
curity is defined for encryption or (more appropriately) commitment. Con-
sider an adversary who tries to guess b ← {1, 2} from Ĉ, where Ĉ ←
cO.Obf(Cb), and (C1, C2) are a pair of programs. In a chosen obfuscation
attack (COA), the adversary can create purported obfuscations Ĉ ′ ̸= Ĉ and
have them de-obfuscated as O−1(cO.Ver(Ĉ ′)). Note that we require O to
be injective so that O−1 is well-defined (it outputs ⊥ if the input is not in
the codomain of O). Any advantage that the adversary has in guessing b
with access to this deobfuscation oracle should translate to a distinguishing
advantage between O(C1) and O(C2) (without a deobfuscation oracle).

COA-Security Fortification from Robust NIDI. Our COA-security fortification
uses non-interactive CCA-secure commitments, as well as NIDI arguments. CCA-
secure commitments were introduced by [9], and a non-interactive construction
based on NIDI arguments was given in [22], which suffices for our purposes.
However, for the NIDI arguments used in our construction, we need a stronger
security guarantee than in [22], namely robustness – a term that we borrow from
[9] where it was used in a similar sense. A robust NIDI w.r.t. an oracle O re-
tains its indistinguishability preservation guarantee for distinguishers that have
access to O. We discuss the construction of robust NIDI soon after describing
COA fortification.

Our COA-security fortification cO uses a non-interactive CCA-secure com-
mitment scheme com and NIDI arguments for NP that are robust against the
decommitment oracle for com. The obfuscation cO.Obf(C) generates a robust

NIDI proof Ĉ for the language consisting of pairs (C̃, c) where C̃ ← O(C) and

c← com(C). Note that C is fixed, but only the distribution over (C̃, c) is deter-

mined by the NIDI prover (obfuscator). The verifier cO.Ver(Ĉ) runs the NIDI

verifier to transform Ĉ into a pair (C̃, c) (or rejects it), and then outputs C̃. Note
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that the CCA-secure commitment c is simply discarded by the verifier. The role
of this commitment is, in the proof of security, to allow running a COA adversary
– which expects access to the oracle O−1 ◦ cO.Ver – using the decommitment
oracle for com.

Constructing Robust NIDI. Our construction of a robust NIDI follows the outline
in [22], except that we instantiate all primitives with those that retain their
security guarantees in the presence of the oracle O. In what follows, we outline
this construction.

In a nutshell, a NIDI consists of an iO-obfuscated program that obtains as
input the first message of an appropriate two-message proof system (satisfying
ZK with superpolynomial simulation), and outputs a statement sampled from
the input distribution, together with a proof. In [22], it was shown that the
resulting system hides the distribution from which statements are sampled. Our
construction of robust NIDIs modifies this template by requiring the underlying
iO and ZK proof to be secure in the presence of the oracle O. For any oracle
with a finite truth table, we achieve this by assuming subexponential security of
the underlying primitives, eg., by setting the iO security parameter large enough
such that iO becomes secure against adversaries that store the underlying truth
table.

2 Preliminaries

We use x ← S to denote uniform sampling of x from the set S. [n] is used to
denote the set {1, 2, . . . n}. For x, y ∈ {0, 1}n, x ◦ y denotes the inner product of
x, y, i.e. if x = x[1 . . . n], y = y[1 . . . n], x ◦ y =

⊕
i∈[n] xi · yi. Functional equiv-

alance of two circuits C1, C2 is denoted by C1 ≡ C2. We refer to a circuit class
as C = {Cκ}κ∈N, where Cκ consists of a set of circuits. In addition, whenever we
consider a circuit class, we assume that it has a corresponding efficient predicate
to check membership in the class, i.e. for circuit class C = {Cκ}κ∈N, there is a
corresponding efficient predicate ϕC s.t. ϕC(κ,C) = 1 if C ∈ Cκ and 0 otherwise.
For a distribution D on domain X , Supp(D) denotes the support of D on X . We
define puncturable PRFs and key-injectivity for puncturable PRFs below:

Definition 1 (Puncturable PRF). For sets {0, 1}n and {0, 1}m, a punc-
turable PRF with key space K consists of a tuple of algorithms (PRF.Eval,
PRF.Puncture,PRF.pEval) that satisfy the following two conditions.

– Functionality preserving under puncturing. For every x∗ ∈ {0, 1}n,
every x ∈ {0, 1}n \ {x∗}, and all K ∈ K, we have: PRF.Eval(K,x) =
PRF.pEval(K{x∗}, x), where K{x∗} ← PRF.Puncture(K,x∗).

– Pseudorandomness at punctured points. For every x∗ ∈ {0, 1}n, every
x ∈ {0, 1}n \ {x∗}, and any PPT adversary A, it holds that∣∣∣Pr [A(K{x∗},PRF.Eval(K,x∗)) = 1]− Pr[A(K{x∗}, Uk) = 1]

∣∣∣ = negl(κ),

where K ← K,K{x∗} ← PRF.Puncture(K,x∗), and Uk is the uniform dis-
tribution over {0, 1}k.
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2.1 Non-Interactive Distributionally Indistinguishable (NIDI)
Arguments.

In a NIDI argument [22] for an NP language L, the prover algorithm P is given a
distribution D for sampling member-witness pairs, and it generates a program π
which can be used (by the verifier algorithm V) to verifiably generate a member
of the language L. The hiding property of a NIDI is that if two distributions D1

and D2 are such that the members they generate are indistinguishable from each
other (when the witnesses are held back), then the program π generated by the
NIDI prover remains similarly indistinguishable, upto a “gap” ϵ. We formally
recall the definition of this primitive from [22] below.

Definition 2 (Non-Interactive Distributionally-Indistinguishable (NIDI)
Arguments). A pair of PPT algorithms (P,V) is a non-interactive distributionally-
indistinguishable (NIDI) argument for NP language L with associated relation
RL if there exist non-interactive algorithms P and V that satisfy:

– Completeness: For every poly(κ)-sampleable distribution9 D = (X ,W)
over instance-witness pairs in RL such that Supp(X ) ⊆ L,

π ∈ Supp (P(1κ,D)) =⇒ V(1κ, π) ∈ Supp(X ).

– Soundness: For every ensemble of polynomial-length strings {πκ}κ there
exists a negligible function µ such that

Pr
x←V(1κ,πκ)

[
(x ̸= ⊥) ∧ (x ̸∈ L)] ≤ µ(κ).

– ϵ-Gap Distributional Indistinguishability: There exists an efficient
transformation T on distinguishers such that for every poly(κ)-sampleable
pair of distributions D0 = (X0,W0) and D1 = (X1,W1) over instance-witness
pairs in RL where Supp(X0)∪Supp(X1) ⊆ L, and every distinguisher D with∣∣∣Pr[D(P(1κ,D0)) = 1]− Pr[D(P(1κ,D1)) = 1]

∣∣∣ = ν(κ)

the distinguisher D′ = T (D) satisfies:∣∣∣Pr[D′(X0) = 1]− Pr[D′(X1) = 1]
∣∣∣ ≥ ϵ(κ) · ν(κ).

We have the following theorem from [22].

Theorem 1. Assuming the existence of sub-exponentially secure one-way func-
tions and sub-exponentially secure indistinguishability obfuscation, there exist
NIDI arguments satisfying ϵ-gap distributional indistinguishability, for every ϵ(κ) =
2−o(log

c κ), for a constant c > 1.

9 Here, we slightly abuse notation and use D to also denote a circuit that on input
uniform randomness, outputs a sample from the distribution D.
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2.2 CCA Commitments

A chosen-commitment attack (CCA) secure commitment scheme [9] is a com-
mitment scheme, which remains hiding for commitments even in the presence of
a (computationally inefficient) “decommitment oracle” cca.DeCom that opens
all commitments that do not match the challenge commitment. For the de-
commitment oracle to be well-defined, we shall require that the commitment is
perfectly binding: for all r0, r1 and m0 ̸= m1 we have that cca.Com(m0; r0) ̸=
cca.Com(m1; r1).

A CCA secure commitment scheme is parameterized by a message length
M = M(κ); we shall consider the message space to be {0, 1}M , where M is
polynomial. As defined below, a non-interactive CCA commitment scheme con-
sists of an efficient randomized algorithm cca.Com (with an implicit “canoni-
cal opening”). We let cca.DeCom denote the function that maps an output of
cca.Com to the message underlying it (or ⊥ if no such message exists).

Definition 3. An ϵ(κ)-secure non-interactive CCA commitment scheme over

a message space {0, 1}M(κ)
consists of a randomized algorithm cca.Com and a

deterministic algorithm cca.DeCom, satisfying the following.

– Correctness. For all m ∈ {0, 1}M and r ∈ {0, 1}∗ we have that

cca.DeCom(cca.Com(1κ,m; r)) = m.

(This implies perfect binding.)
– Efficiency. cca.Com runs in time poly(κ), while cca.DeCom runs in time

2O(κ).
– ϵ(κ)-Security. For a message m ∈ {0, 1}M and a distinguisher D, let

pccaD,m = Pr
c←cca.Com(1κ,m)

[Dcca.DeCom ◦ Filtc(1κ, c) = 1],

where Filtc is the identity function on all inputs except c, on which it outputs
⊥. Then, for all polynomials s there is a negligible function ν such that, for
all m1,m2 ∈ {0, 1}M and all distinguishers D of size at most s(κ),∣∣∣pccaD,m1

− pccaD,m2

∣∣∣ ≤ ϵ(κ)ν(κ).

We rely on a recent construction of non-interactive CCA commitments from [22].

Theorem 2 ( [22]). Assuming sub-exponentially secure indistinguishability ob-
fuscation and either

– Sub-exponential (classical) hardness of DDH and sub-exponential quantum
hardness of LWE (as used in [21]), or

– Sub-exponential time-lock puzzles based on the RSW assumption (as used
in [26])

there exist non-interactive CCA commitments satisfying Definition 3.

The assumptions in the aforementioned theorem can also be reduced by using
time-lock puzzles based on iO and the existence of hard-to-parallelize languages.
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2.3 Obfuscation

An obfuscator O is a randomized program that probabilistically maps a circuit
from some family {Cκ}κ∈N to another functionally equivalent circuit. We shall
require an obfuscator to satisfy the following correctness and efficiency properties
(with probability 1):

Functionality Preservation. For all κ ∈ N and all C ∈ Cκ, O(1κ, C) ≡ C
(where ≡ indicates that the two circuits are functionally equivalent).

Polynomial Slowdown. There exists a polynomial p such that for all κ ∈ N
and all C ∈ Cκ, |O(1κ, C)| ≤ p(|C|) (where | · | denotes the size of a circuit).

Efficient Obfuscation. O is a polynomial time algorithm. Generally, we shall
also assume that the circuits in Cκ are of size at most polynomial in κ.

Security. For a sampler Samp and a distinguisher D, we define, for b ∈ {1, 2},

pSamp,b
O,D := Pr

(C1,C2,z)←Samp(1κ)

C̃←O(1κ,Cb)

[
D(C̃, z) = 1

]
and AdvSamp

O,D :=
∣∣∣pSamp,1
O,D − pSamp,2

O,D

∣∣∣ (1)

Then, an obfuscator O is said to be (S,D) secure, if for all Samp ∈ S and D ∈ D,
AdvSamp

O,D is negligible. In particular, for indistinguishability obfuscation (iO), S is
the class of samplers which output (C1, C2, z) where C1 ≡ C2 and z = (C1, C2),
and D consists of all PPT distinguishers.

Following [10],10 below we define a class of samplers, called admissible sam-
plers, that only requires that it is (very) hard for a PPT adversary to distinguish
between oracle access to C1 and to C2. Here the distinguishing probability is re-
quired to be negligible even after amplifying by a factor of 2κ, with κ being the
number of bits of inputs for the circuits.

Definition 4 (Admissible Samplers). For any adversary A, and b ∈ {1, 2},
let

pSamp,b,κ
A := Pr

(C1,C2,z)←Samp(1κ)

[
ACb(z) = 1

]
and AdvSamp,κ

A :=
∣∣∣pSamp,1,κ
A − pSamp,2,κ

A

∣∣∣.
A sampler Samp over C = {Cκ}κ∈N where all C ∈ Cκ take κ-bit inputs, is called
admissible if there exists a negligible function µ s.t. for any non-uniform PPT
adversary A, AdvSamp,κ

A ≤ µ(κ) · 2−κ, for all sufficiently large κ.

10 Admissible samplers are a special case of X-Ind sampler defined in [10], where it
is parametrized by a function X(κ) ≤ 2κ. The definition of admissible samplers
corresponds to setting X(κ) = 2κ and restricting to (deterministic) circuits taking
κ-bit inputs.
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We shall refer to an obfuscation scheme with respect to such admissible
samplers as a pIO scheme. As shown in [10], assuming the existence of sub-
exponentially secure iO and sub-exponentially secure puncturable PRFs, pIO
schemes exist for any polynomial sized circuit family, that is secure against a
class D of sub-exponential time distinguishers.

Next we define injective obfuscators.

Definition 5 (Injective Obfuscator). An obfuscator O for a circuit family
{Cκ}κ∈N is said to be injective if ∀κ1, κ2, C1, C2

O(1κ1 , C1; r1) = O(1κ2 , C2; r2) ̸= ⊥ ⇒ C1 = C2.

We remark that it is easy to convert any obfuscator into an injective obfus-
cator (without affecting its hiding properties) simply by attaching a perfectly
binding commitment of the circuit to its original obfuscation.

3 New definitions

We define COA-secure obfucation in Section 3.1, and Verifiability/COA fortifi-
cation for obfuscations in Sections 3.2 and 3.3 respectively. Towards this, first,
we will need the following definition of circuit samplers.

Definition 6 (ϕ-Satisfying Samplers). Let C = {Cκ}κ∈N be a circuit class
and ϕ be a predicate. We say that a randomized algorithm Samp is a ϕ-satisfying
sampler over C if, for all large enough κ, Samp(1κ) outputs (C1, C2, z) such that,
with probability 1, C1, C2 ∈ Cκ and, ϕ(C1) = ϕ(C2) = 1.

3.1 COA-Secure Obfuscation

Definition 7 (Admissible ϕ-satisfying Samplers). A sampler algorithm Samp(1κ)
is an admissible ϕ-satisfying sampler over C if it is both admissible (according
to Definition 4) and ϕ-satisfying (according to Definition 6) over C.

Definition 8 (COA-Secure Obfuscation). A COA-secure obfuscation for
a circuit class C = {Cκ}κ∈N w.r.t. a predicate ϕ is a pair of PPT algorithms
(cO.Obf, cO.Ver) defined as follows11:

– cO.Obf(1κ, C, ϕ)→ Ĉ. This takes as input the security parameter κ, a circuit

C ∈ Cκ, a predicate ϕ, and outputs an encoding Ĉ.
– cO.Ver(1κ, Ĉ, ϕ) → {C̃ ∪ ⊥}. This takes as input a string Ĉ, a predicate ϕ,

and outputs either a circuit C̃ or a reject symbol ⊥.

These algorithms satisfy the following correctness, verifiability and security prop-
erties.

11 Both the algorithms cO.Obf and cO.Ver take as input a predicate. This is to capture
the uniformity of the algorithms w.r.t. ϕ.
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– Perfect Correctness. For every κ ∈ N and circuit C ∈ Cκ s.t. ϕ(C) = 1,

if C̃ ← cO.Ver(1κ, cO.Obf(1κ, C, ϕ), ϕ), then C̃ ≡ C.
– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,

there exists a negligible function ν(·) such that:

Pr
C̃←cO.Ver(1κ,Πκ,ϕ)

[
C̃ ̸= ⊥ ∧

(
∄C ∈ Cκ : ϕ(C) = 1 ∧ C̃ ≡ C

)]
= ν(κ).

– COA Security. Let O be an oracle defined as follows: O(κ, C̃) outputs the
lexicographically first circuit C ∈ Cκ such that ϕ(C) = 1 and C is functionally

equivalent to C̃.
For any sampler algorithm Samp, and an oracle distinguisher D, for b ∈
{1, 2}, let

qSamp,b,κ
cO,D := Pr

(C1,C2,z)←Samp(1κ)

Ĉ←cO.Obf(1κ,Cb,ϕ)

[
DO(κ,·) ◦ cO.Ver(1κ,·,ϕ) ◦ FiltĈ (1κ, Ĉ, z) = 1

]
,

COAAdvSamp,κ
cO,D :=

∣∣∣qSamp,1,κ
cO,D − qSamp,2,κ

cO,D

∣∣∣
where FiltĈ denotes a function that behaves as the identity function on all

inputs except Ĉ, on which it outputs ⊥.
Then for every admissible ϕ-satisfying sampler Samp (according to Defini-
tion 7) and any non-uniform PPT distinguisher D, there exists a negligible

function µ(·), s.t. COAAdvSamp,κ
cO,D = µ(κ).

While the above definition of COA security is w.r.t. admissible samplers,
we can also define COA security more generally as an add-on for obfuscation
schemes O whose security could be w.r.t. other samplers. Before presenting this
notion of fortifying any obfuscation scheme with COA security, we introduce a
simpler (but already useful) notion of fortifying an obfuscation scheme by adding
verifiability.

3.2 Verifiability Fortification for Obfuscation

Given an obfuscation scheme O, we shall define its verifiability fortification w.r.t.
a predicate ϕ as a pair of algorithms (vO.Obf, vO.Verify). The verification algo-
rithm guarantees that, given a string Π (purportedly generated by vO.Obf), if
C̃ ← vO.Verify(Π) and C̃ ̸= ⊥, then there exists a circuit C which satisfies the

predicate ϕ s.t. C̃ = O(C; r) for some randomness r.

Definition 9 (Verifiability Fortification for Obfuscation). Let O be an
obfuscator for a circuit class C = {Cκ}κ∈N and ϕ be an efficiently computable
predicate on circuits. An ϵ-gap verifiability fortification of O w.r.t. ϕ, is a tuple
of PPT algorithms vO = (vO.Obf, vO.Verify) that satisfy the following:

– Correctness. For every κ ∈ N and every circuit C ∈ Cκ, such that ϕ(C) = 1,

Pr
C̃←vO.Verify(1κ,vO.Obf(1κ,C,ϕ),ϕ)

[C̃ ≡ C] = 1.
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– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,
there exists a negligible function ν(·) such that:

Pr
C̃←vO.Verify(1κ,Πκ,ϕ)

[
C̃ ̸= ⊥ ∧

(
∄(C ∈ Cκ, r) : ϕ(C) = 1 ∧ C̃ = O(C; r)

)]
= ν(κ).

– ϵ-Gap Indistinguishability of Obfuscated Circuits. There exists an
efficient transformation T (on distinguisher circuits) such that for any ϕ-
satisfying sampler Samp (Definition 6) over {Cκ}κ and distinguisher D,

AdvSamp
O,T (D) ≥ ϵ(κ) · AdvSamp

vO.Obf,D

where AdvSamp
O′,D′ (for (O′,D′) = (O, T (D)) or (vO.Obf,D)) is as defined in

(1).

3.3 COA Fortification for Obfuscation

We now define COA fortification cO for an obfuscation scheme O w.r.t. a predi-
cate ϕ. Apart from the natural correctness property, we require that cO satisfies
verifiability w.r.t. predicate ϕ just like verifiability fortification. In addition, we
want cO to satisfy “gap COA security”, which intuitively means that any dis-
tinguisher D that distiguishes between cO.Obf(C1) and cO.Obf(C2) given access
to a circuit deobfuscation oracle can be converted to a distinguisher that distin-
guishes O(C1) from O(C2) without access to any oracle. In our construction, our
transformation between distinguishers is not necessarily of polynomial size in the
security parameter κ – therefore, in addition to ϵ as before, we parameterize the
gap security in our definition by T = T (κ) to capture the (in)efficiency of this
transformation.

Definition 10 (COA Fortification for Injective Obfuscators). Let O be
an injective obfuscator for a circuit class C = {Cκ}κ∈N and ϕ be an efficiently
computable predicate on circuits. A (T, ϵ)-gap COA fortification of O w.r.t. ϕ is
a pair of PPT algorithms cO = (cO.Obf, cO.Ver) as follows:

– cO.Obf(1κ, C, ϕ)→ Ĉ. This is a randomized algorithm that on input security

parameter κ, a circuit C ∈ Cκ, and a predicate ϕ, outputs an encoding Ĉ.
– cO.Ver(1κ, Ĉ, ϕ) → {C̃ ∪ ⊥}. This is a randomized algorithm that on input

security parameter κ, a string Ĉ, and a predicate ϕ, outputs either a circuit
C̃ or a reject symbol ⊥.

These algorithms satisfy the following correctness and security properties.

– Perfect Correctness. For every κ ∈ N and every circuit C ∈ Cκ such that
ϕ(C) = 1,

Pr
C̃←cO.Ver(1κ,cO.Obf(1κ,C,ϕ),ϕ)

[∃ r s.t. C̃ = O(1κ, C; r)] = 1
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– Verifiability. For every ensemble of polynomial-length strings {Πκ}κ∈N,
there exists a negligible function ν(·) such that:

Pr
C̃←cO.Ver(1κ,Πκ,ϕ)

[
C̃ ̸= ⊥ ∧

(
∄(C ∈ Cκ, r) : ϕ(C) = 1 ∧ C̃ = O(1κ, C; r)

)]
= ν(κ).

– (T, ϵ)-Gap Security. Let O−1(C̃) =

{
C if ∃ (C ∈ Cκ, r) s.t. C̃ = O(1κ, C; r)

⊥ otherwise.

(well-defined since O is injective). For any ϕ-satisfying sampler Samp (see
Definition 6), and an oracle circuit D, for b ∈ {1, 2}, let

qSamp,b
cO,D := Pr

(C1,C2,z)←Samp(1κ)

Ĉ←cO.Obf(1κ,Cb,ϕ)

[
DO

−1◦ cO.Ver(1κ,·,ϕ) ◦ FiltĈ (1κ, Ĉ, z) = 1
]

COAAdvSamp
cO,D :=

∣∣∣qSamp,1
cO,D − qSamp,2

cO,D

∣∣∣
where FiltĈ denotes a function that behaves as the identity function on all

inputs except Ĉ, on which it outputs ⊥.
Then, there exists a T -sized transformation T (on distinguisher circuits)
such that for any admissible sampler Samp over {Cκ}κ and distinguisher D,

AdvSamp
O,T (D) ≥ ϵ(κ) · COAAdvSamp

cO,D

where AdvSamp
O,T (D) is as defined in (1).

Remark 1. One could consider a (possibly) stronger definition that allows the

sampler Samp used in defining COAAdvSamp
cO,D to also make de-obfuscation queries.

We note that for worst-case indistinguishability notions for O (like iO), this does
not make any difference, as the (non-uniform) sampler can output the optimal
pair of circuits.

Remark 2. We remark that for any T = T (κ) ≥ poly(κ), any ϵ = ϵ(κ) ≤ negl(κ),
(T, ϵ)-gap COA fortification for any injective (T, ϵ)-secure pIO implies COA-
secure obfuscation according to Definition 8. Here (T, ϵ)-security indicates that
the advantage of any poly(T )-sized adversary in the pIO security game is at most
negl(ϵ).

4 Robust NIDI

Robust NIDI arguments w.r.t. an oracle O are an extension of NIDI arguments
(Definition 2), whereby the gap distributional indistinguishability requirement
of NIDI is further strengthened to hold even if the distinguisher has access to
the oracle O. (The completeness and soundness guarantees remain unchanged.)
In other words, any distinguisher DO, distinguishing the proofs generated by
prover P on input the distributions on instance-witness pairs - D0 = (X0,W0)
or D1 = (X1,W1), can be converted to an efficient distinguisher T (D)O which
distinguishes the underlying instances X0 or X1 upto a “gap” ϵ. We formally
define the same below.
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Definition 11 (Robust NIDI Arguments). Let L be an NP language with
an associated relation RL, and O be an arbitrary oracle. A NIDI argument for
L, (P,V) is said to be robust w.r.t. O if it satisfies the following:

– ϵ-Gap Robust Distributional Indistinguishability: There exists an
efficient transformation T on distinguishers such that for every poly(κ)-
sampleable pair of distributions D0 = (X0,W0) and D1 = (X1,W1) over
instance-witness pairs in RL where Supp(X0) ∪ Supp(X1) ⊆ L, and every
distinguisher D with∣∣∣Pr[DO(P(1κ,D0)) = 1]− Pr[DO(P(1κ,D1)) = 1]

∣∣∣ = ν(κ)

the distinguisher D̂ = T (D) satisfies:∣∣∣Pr[D̂O(X0) = 1]− Pr[D̂O(X1) = 1]
∣∣∣ ≥ ϵ(κ) · ν(κ).

We construct robust NIDI arguments for any finite12 oracle O = {Oκ}κ∈N by
modifying the construction in [22] to ensure that all the underlying primitives
remain secure in the presence of oracle O. Our approach to achieve this is to rely
on complexity leveraging, although it may be possible to leverage other axes
of hardness in order to instantiate the underlying primitives with those that
remain secure in the presence of O. In the full version [8], we prove the following
theorem.

Theorem 3. Fix any finite oracle O = {Oκ}κ∈N. Assuming the existence of
sub-exponentially secure one-way functions and sub-exponentially secure indis-
tinguishability obfuscation, there exist robust NIDI arguments w.r.t. O, satisfying
ϵ-gap distributional indistinguishability, for every ϵ(κ) = 2−o(log

c(κ)), for some
constant c > 1, satisfying Definition 11.

5 Constructing COA Secure Obfuscation

In this section, we prove the following theorem.

Theorem 4. For any (T (κ), ϵ(κ)), if there exist ϵ(κ)-secure CCA commitments
satisfying Definition 3 for which the decommitment oracle can be implemented
in time T (κ), and robust NIDIs satisfying ϵ(κ)-gap distributional indistinguisha-
bility w.r.t. the decommitment oracle for the CCA commitments (see Definition
11), then there exists a (T (κ), ϵ(κ)/4)-gap COA fortification for any injective
obfuscation, satisfying Definition 10.

Here we describe our construction, and defer its proof of security to our full
version [8].

12 By ‘finite’, we mean that there exists a constant c > 1 s.t. for large enough κ the
oracle Oκ can be represented as a truth-table of size at most 2κ

c

.
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Construction 1. We require the following primitives:

– Let ccacom denote an ϵ(κ)-secure CCA commitment scheme according to
Definition 3 and let O denote the (deterministic, inefficient) oracle that im-
plements the cca.DeCom algorithm for ccacom. That is, on input a commit-
ment string com, the oracle O outputs either a message m ∈ {0, 1}∗ or ⊥.
Also, let T = poly(|m|, 2κ) (where |m| denotes the size of message space for
ccacom).

– Let r-NIDI denote a robust NIDI w.r.t. oracle O for language Lϕ, defined
below.

– Let O denote the underlying obfuscator for our COA fortification. We will
assume that this obfuscator is secure against poly(T )-sized adversaries. This
can be achieved by appropriately scaling the security parameter for O, since
O is assumed to be subexponentially secure.

– Define language Lϕ = {{O, c} : ∃(C, r1, r2) : O = O(C; r1)∧ c = ccacom(C; r2)∧
ϕ(C) = 1}

The algorithm cO.Obf(1κ, C, ϕ) does the following:

– Define distribution DC(r1||r2) = {O(C; r1), c = ccacom(C; r2)} for uni-
formly sampled r1, r2.

– Output π ← r-NIDI.P(1κ,DC ,Lϕ) computed using uniform randomness rc.

The algorithm cO.Ver(1κ, Ĉ, ϕ) does the following:

– Sample randomness rR.
– Output y ← r-NIDI.V(1κ, π; rR).

In particular, for ϵ(κ) = 2−o(log
c(κ)) and some constant c > 1, there ex-

ist ϵ(κ)-secure CCA commitments satisfying Definition 3 for which the decom-

mitment oracle can be implemented in time T (κ) where T (κ) = 2κ
δ

for some
constant δ > 0, and by Theorem 3 there exist robust NIDI arguments satisfy-
ing ϵ(κ) gap distributional indistinguishability w.r.t. the decommitment oracle
for the CCA commitments. Then, the theorem above implies that there exist

(2κ
δ

, 2−o(log
c(κ)))-gap COA fortification for any injective obfuscation.

Corollary 1. Assuming the existence of sub-exponentially secure one-way func-
tions and sub-exponentially secure indistinguishability obfuscation, there exists
COA-secure obfuscation for all polynomial-sized circuits, satisfying Definition 8.

Proof. (Sketch) By [10], assuming the existence of sub-exponentially secure iO
and sub-exponentially secure puncturable PRFs, there exist subexponentially
secure pIO schemes for any polynomial sized circuit family. That is, there exists

a constant δ > 0 such that for T = 2κ
δ

, and every poly(T )-sized distinguisher D,
AdvSamp

pIO,D = negl(T ) where Samp is an admissible sampler according to Definition
4. This scheme can be made injective (while retaining T -security) by attaching
a perfectly binding commitment of the circuit to its original obfuscation.

Furthermore, for ϵ(κ) = 2−o(log
c(κ)) and some constant c > 1, there exist ϵ(κ)-

secure CCA commitments satisfying Definition 3 for which the decommitment
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oracle can be implemented in time T (κ), and by Theorem 3 there exist robust
NIDI arguments satisfying ϵ(κ) gap distributional indistinguishability w.r.t. the
decommitment oracle for the CCA commitments. Then, the theorem above im-

plies that there exist (2κ
δ

, 2−o(log
c(κ)))-gap COA fortification for any injective

obfuscation and in particular, for the injective pIO scheme described above. This
results in a COA-secure obfuscation scheme, whose correctness and verifiability
are immediate from those of the COA fortification. Furthermore, by definition
of fortification, this means there is a T -sized transformation T on distinguishers
such that for any admissible sampler Samp and distinguisher D,

AdvSamp
O,T (D) ≥ ϵ(κ) · COAAdvSamp

cO,D

This implies that for any T -sized distinguisher D, COAAdvSamp
cO,D = negl(κ).

6 Keyless Verifiable Watermarking

In this section, we describe an application of COA obfuscation to building water-
marking schemes. We present a generalized abstraction called keyless verifiable
watermarking. As a consequence we obtain watermarking for useful functionali-
ties like PRFs as a special case of this abstraction.

In the following, we define our notion of watermarking, which generalizes the
one in the recent work of Kitagawa et. al. [23] to capture publicly markable and
extractable watermarking schemes without setup.

Definition 12 (Keyless Verifiable Watermarking). Let C = {Cκ}κ∈N be
a circuit class s.t. Cκ consists of circuits with input length n(κ) and output
length m(κ). For a distribution family DC and a relation R over C, a (DC , R)-
unremovable keyless verifiable watermarking scheme with a message spaceM =
{Mκ}κ∈N consists of two PPT algorithms (Mark,Verify) as follows:

– Mark(1κ, C,m): Mark is a randomized algorithm that takes as input a circuit

C ∈ Cκ, a message (or mark) m ∈Mκ and outputs a (marked) circuit Ĉ.

– Verify(1κ, Ĉ): Verify is a randomized algorithm that takes as input a (pur-

portedly marked) circuit Ĉ and outputs a pair (C ′,m′), where C ′ is a circuit
or ⊥, and m′ ∈Mκ ∪ {⊥}.

They should satisfy the following properties:

– Correctness. There exists a negligible function µ s.t. for any circuit C ∈ Cκ
and message m ∈Mκ it holds that

Pr
(C′,m′)←Verify(1κ,Mark(1κ,C,m))

[C ′ ̸≡ C ∨ m′ ̸= m] ≤ µ(κ).

– (DC , R)-Unremovability. There exists a negligible function ν s.t. for every
non-uniform PPT adversary A, for all sufficiently large κ,

Pr[ExpA,DC,R(κ) = 1] ≤ ν(κ)

where the experiment ExpA,DC,R(κ) is defined as follows:
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1. A(1κ) sends a message m ∈Mκ to the challenger. The challenger sam-

ples a circuit C ← DCκ and responds with Ĉ ← Mark(1κ, C,m).

2. A outputs a circuit Ĉ∗. Let (C∗,m∗)← Verify(1κ, Ĉ∗). Then, the exper-
iment outputs 1 iff C∗ ̸= ⊥, m∗ ̸= m, and
• either ∃C ′ ∈ Cκ s.t. C ′ ≡ C∗ and Rκ(C

′, C) = 1,
• or there is no circuit in Cκ that is functionally equivalent to C∗.

Our definition is incomparable with recent related definitions, specifically
those of Cohen et al. [12] Aaronson et al. [1], where the latter proposes a unified
definition to capture most prior works. Specifically, we require that a water-
marking scheme has a verification algorithm that is executed before running the
watermarked programs. In our definition, the adversary is considered to have
removed the watermark only if it produces a circuit that verifies, and for which
the corresponding circuit in the circuit family is related to the original circuit.

Our definition also strengthens the definitions from prior works (includ-
ing [23] and [1]) in some crucial ways:

– Our definition eliminates the need for any key generation algorithm/public
parameters.

– Our definition incorporates a guarantee that a circuit passing the verification
indeed belongs to the circuit class.

In addition, our definition has a flavor of traitor-tracing security that is similar
to the recent works of [18]. In particular, we say that an adversary wins the
watermarking game if it removes/modifies the watermark and outputs a circuit
that is related to the original circuit – where related refers to satisfying one of a
large class of relations.

We shall construct a (DC , R)-unremovable keyless verifiable watermarking
scheme, when circuits drawn from DC are unlearnable from oracle access, but
the relation R is such that a circuit becomes learnable given a related circuit (as
made precise in Theorem 5). We first describe our construction before stating
its security guarantee.

Construction 2. Let C = {Cκ}κ∈N be a circuit class s.t. Cκ consists of circuits
that take inputs of length n(κ) and produce outputs of length m(κ), andM =
{Mκ}κ∈N be a space of polynomially long messages. For any κ ∈ N and any
m ∈Mκ, let C′κ = {Cm | C ∈ Cκ,m ∈Mκ}, where

Cm(x) =

{
m||C(0) if x = 0

C(x) otherwise.

Let circuit class C′ = {C′κ}κ∈N be the marked circuit class and ϕ′ be its
membership predicate, i.e. ϕ′(C) = 1 iff C ∈ C′κ (ϕ′ will internally use ϕC , the
membership predicate of C).

Let cO = (cO.Obf, cO.Ver) be COA obfuscation for C′, w.r.t. predicate ϕ′

(according to Definition 8). Instantiate the watermarking scheme for C w.r.t.
message spaceM = {Mκ}κ∈N and relation R as follows:
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– Mark(1κ, C,m): Return cO.Obf(1κ, Cm, ϕ′), where Cm is defined using C as
above.

– Verify(1κ, Ĉ): Let C ′ ← cO.Ver(1κ, Ĉ, ϕ′). Parse C ′(0) as m||y, where m ∈
Mκ and y ∈ {0, 1}m(κ)

. (If C ′ = ⊥, or the parsing above fails, return (⊥,⊥).)
Construct a circuit C ′′ such that

C ′′(x) =

{
y if x = 0

C ′(x) otherwise.

Return (C ′′,m).

We provide the following theorem which captures the security of the above
construction. We provide a proof of this in our full version [8].

Theorem 5. Let C = {Cκ}κ∈N, DC = {DCκ}κ∈N and R = {Rκ}κ∈N be ensembles
of polynomial (in κ) sized circuits, distributions over those circuits and relations
over those circuits, as follows:

– Cκ = {Eκ(f, ·) | f ∈ {0, 1}h(κ)}, where Eκ is a polynomial sized circuit imple-

menting a function Eκ : {0, 1}h(κ) × {0, 1}n(κ) → {0, 1}m(κ)
, with n(κ) ≤ κc

for a constant c < 1.
– For any circuit family A = {Aκ}κ∈N where Aκ is of size poly(2n(κ)),

Pr
C←DCκ , C′←AC(·)

κ

[C ′ ≡ C ] ≤ negl(2n(κ)).

– There is a family of polynomial (in κ) sized circuits Rec = {Recκ}κ∈N such
that,

Pr
C←DCκ

[
∃C ′ ∈ Cκ, Rκ(C,C

′) = 1 ∧ RecC(·)
κ (C ′) ̸= C

]
≤ negl(κ).

Then the watermarking scheme in construction 2 is a (DC , R)-unremovable
keyless verifiable watermarking scheme, (according to Definition 12) for circuit
class C and message spaceM.

Next, we provide the following corollary which captures PRF watermarking as
special case of the above theorem.

Corollary 2. Let F = {Fk(·)}k∈Kκ,κ∈N be a PRF family with key-space K =
{Kκ}κ∈N, and seed, input, and output lengths as polynomials h(κ), n(κ) and m(κ)
respectively, such that n(κ) ≤ κc for some c < 1. In addition, suppose the key
distribution ensemble DK and relation ensemble R are as follows:

– F is a sub-exponentially secure PRF under key distribution DK. That is, for
any adversary of size poly(2n(κ)), the following holds: (where F(n,m) = set
of all functions with input length n and output length m)∣∣∣∣ Pr

k←DK, b←AFk(·)(1κ)
[b = 1]− Pr

H←F(n,m), b←AH(1κ)
[b = 1]

∣∣∣∣ ≤ negl(2n(κ))
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– There exists an algorithm Rec s.t.

Pr
k←DK

[
∃k′ ∈ K, Rκ(k

′, k) = 1 ∧ RecFk(·)
κ (k′) ̸= k

]
= negl(κ).

Then the watermarking scheme for F in construction 2 is a (DK, R)-unremovable
keyless verifiable watermarking scheme.

As a concrete instantiation of the above corollary, we consider the following
relation over PRF keys: Rκ(k, k

′) = 1 iff Fk(·) agrees with Fk′(·) on at least one
input. We will use a sub-exponentially secure PRF family F , which satisfies the
following key injectivity property:

Pr
k←DKκ

[∃k′ ∈ K, Rκ(k, k
′) = 1 ∧ k′ ̸= k] = negl(κ).

where DKκ denotes the key distribution for which the PRF security holds. Such
PRFs can be constructed as in [12] under sub-exponential DDH and LWE as-
sumptions. For such a PRF, R(k, k′) = 1 iff k = k′ (for most k). Then, letting
Rec be the identity function satisfies the condition on the relation R in the above
corollary. Thus, instantiating Corollary 2 with Fk(·),DK, R as defined above, we
get a (DK, R)-keyless verifiable watermarking scheme for F .

7 Completely CCA-secure Encryption

In this section, we introduce the notion of a completely CCA-secure public key
encryption scheme. Our notion of completely CCA secure PKE is a generalization
of the notion of completely non-malleable encryption put forward by [14]. The
original definition of Fischlin [14] follows a simulation-based formulation. Later
[30] gave a game-based formulation of completely non-malleable encryption and
showed it to be equivalent to the original simulation-based definition of complete
non-malleability. Our formulation of completely CCA-secure encryption also uses
a game-based formulation.

Definition 13 (C-CCA-security). An encryption scheme PKE = (KeyGen,Enc,Dec)
is completely CCA secure if there exists a (potentially randomized) verification
algorithm KeyVerify such that the following hold.

– Soundness of verification: For any string p̂k and message x, the probability
that KeyVerify(p̂k) rejects and Enc(p̂k, x) ̸=⊥ is negligible, i.e., there is a
negligible function µ(·) in the security parameter κ such that

Pr[(rv, re)← {0, 1}κ, KeyVerify(p̂k; rv) = 0 ∧ Enc(p̂k, x, re) ̸=⊥)] < µ(κ)

– For every PPT adversary A, Advc-ccaPKE,A,b(·) is upper bounded by µ(κ), where

Advc-ccaPKE,A,b(·) = Pr[Expc-ccaPKE,A(κ) = 1]− 1

2

and Expc-ccaPKE,A(κ) is defined via the following experiment involving A and a
(potentially inefficient) challenger C:
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1. The challenger C samples r∗
$←− {0, 1}κ and runs (pk∗, sk∗)← KeyGen(1κ, r∗).

It then returns pk∗ to A. It also samples a random bit b
$←− {0, 1}, computes

the challenge ciphertext c∗ ← Enc(pk∗, b, r) for a random r, and returns c∗

to A.
2. At any point in the game, the adversary can make (multiple) decryption

queries to the challenger with respect to either the given public key or dif-
ferent (potentially mauled) public keys. In particular, A gets access to an
oracle D(·, ·). The oracle D takes as input either a ciphertext ci, or else a
pair (p̃ki, ci). In the first case, if ci = c∗ then D returns ⊥. Else D returns
Dec(sk∗, ci). In the second case, D first chooses a random string r. Next, if
ci = c∗ and pki = pk∗, or else ci =⊥, or KeyVerify(pki, r) =⊥, then D re-
turns ⊥. Otherwise, D brute-force finds the set of message-randomness pairs
(m, r) such that Enc(pki,m; r) = ci. Finally, it returns a random message
from this set, or ⊥ if this set is empty.

3. When A outputs a guess b′, return 1 if b′ = b.

7.1 C-CCAsecure PKE scheme in the Plain model

In this section we show how to construct a completely CCA2 secure PKE scheme
in the plain model (i.e., without any set up assumption). It is known from the
work of Fischlin [14] that, it is impossible to construct even completely non-
malleable encryption schemes for general relations w.r.t. black-box simulation
in the standard model. Later works [30,25] overcome this impossibility result
by relying on the common random or reference string model. In this work, we
show how to construct a completely CCA2 secure encryption scheme (which is
stronger than complete non-malleability) in the plain model from COA fortifi-
cation of indistinguishability obfuscators (iO) and one-way functions. The use of
sub-exponential assumptions allow us to bypass the impossibility result of Fis-
chlin [14]. We now present the details of our construction. The main ingredients
required for our construction as follows:

Construction 3. Let ϵ > 0 be an arbitrary small constant s.t. ϵ < δ and:

– Let F1 : {0, 1}2κ → {0, 1} and F2 : {0, 1}2κ+1 → {0, 1}κ be two puncturable
pseudo-random functions that for security parameter 1k satisfy 2k

ϵ

- security
against (non-uniform) adversaries.

– Let G : {0, 1}κ → {0, 1}2κ be a PRG that’s 2k
ϵ

- secure against (non-uniform)
adversaries.

– Let ϕ(C) be the predicate asserting that C is a circuit of the form of Figure
1 with F1, F2 and G as specified above.

– Let iO = (iO.Obf, iO.Eval) be sub-exponentially secure injective indistin-
guishability obfuscation scheme that for security parameter 1k satisfies 2k

ϵ

-
security against (non-uniform) adversaries.

– Let cO = (cO.Obf, cO.Ver) be a COA fortification of an underlying injective
indistinguishability obfuscator (iO) for circuits with respect to predicate ϕ.
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We construct our completely CCA-2 secure encryption scheme PKE = (KeyGen,
Enc,Dec) as follows:

1. KeyGen(1κ) : The key generation algorithm does the following:

– Sample puncturable PRF keys K1 for F1 and K2 for F2.
– Generate program PK1,K2

defined in Figure 1.

– Compute P̂ ← cO.Obf(1κ, PK1,K2
, ϕ).

– Output pk = P̂ , sk = (K1,K2).

Hardwired: Puncturable PRF Keys K1,K2.

Input: Message m ∈ {0, 1}, randomness r ∈ {0, 1}κ.
(a) Let t = G(r)
(b) Set c1 = t, c2 = F1(K1, t)⊕m, and c3 = F2(K2, c1|c2).
(c) Output c = (c1, c2, c3).

Fig. 1. Program PK1,K2 .

2. Enc(pk,m ∈ {0, 1}) : The encryption algorithm does the following:

– Sample randomness r ∈ {0, 1}κ

– Run the randomized verification algorithm P̃ ← cO.Ver(1κ, P̂ , ϕ).

– If P̃ ̸= ⊥, run P̃ (m; r) to obtain c = (c1, c2, c3).

3. Dec(pk, sk, c = (c1, c2, c3)) : The decryption algorithm does the following:

– Check if c3
?
= F2(K2, c1|c2). If the check fails, output ⊥. Otherwise, it

continues.
– Output m′ = F1(K1, c1)⊕ c2

In [8] we also show that Complete CCA security of the above scheme holds
whehever the obfuscation scheme used is COA secure as in Definition 8. That is:

Theorem 6. Assume that the obfuscation scheme O in the above scheme is
COA secure with respect to predicate ϕ. Then the scheme is complete CCA secure
as in Definition 13.
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