
Dynamic Collusion Bounded Functional
Encryption

from Identity-Based Encryption

Rachit Garg ?, Rishab Goyal ??, George Lu ?, and Brent Waters ? ? ?

Abstract. Functional Encryption is a powerful notion of encryption in
which each decryption key is associated with a function f such that
decryption recovers the function evaluation f(m). Informally, security
states that a user with access to function keys skf1 , skf2 , . . . (and so on)
can only learn f1(m), f2(m), . . . (and so on) but nothing more about the
message. The system is said to be q-bounded collusion resistant if the
security holds as long as an adversary gets access to at most q = q(λ)
function keys. A major drawback of such statically bounded collusion
systems is that the collusion bound q must be declared at setup time
and is fixed for the entire lifetime of the system.
We initiate the study of dynamically bounded collusion resistant func-
tional encryption systems which provide more flexibility in terms of
selecting the collusion bound, while reaping the benefits of statically
bounded collusion FE systems (such as quantum resistance, simulation
security, and general assumptions). Briefly, the virtues of a dynamically
bounded scheme can be summarized as:

Fine-grained individualized selection. It lets each encryptor select
the collusion bound by weighing the trade-off between performance
overhead and the amount of collusion resilience.

Evolving encryption strategies. Since the system is no longer tied
to a single collusion bound, thus it allows to dynamically adjust the
desired collusion resilience based on any number of evolving factors
such as the age of the system, or a number of active users, etc.

Ease and simplicity of updatability. None of the system parame-
ters have to be updated when adjusting the collusion bound. That
is, the same key skf can be used to decrypt ciphertexts for collusion
bound q = 2 as well as q = 2λ.

We construct such a dynamically bounded functional encryption scheme
for the class of all polynomial-size circuits under the general assumption
of Identity-Based Encryption.
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1 Introduction

Public-key encryption [DH76] is one of the most fundamental concepts in cryp-
tography. Traditionally, public-key encryption was defined to provide an “all-or-
nothing” type functionality and security, where given a decryption key sk, a user
can either recover the entire plaintext m from a ciphertext ct or nothing at all.
In the recent years, an extremely powerful notion of encryption called Functional
Encryption (FE) [SW05,BSW11] has emerged.

FE provides a fine-grained access control mechanism over encrypted data
where a decryption key is now associated with a function f and the decryptor
recovers the function evaluation f(m) from the ciphertext. Moreover, a user with
access to function keys skf1 , . . . , skfn can only learn f1(m), . . . , fn(m) but noth-
ing more about the message. This security requirement is commonly captured
in a game based indistinguishability definition, where the adversary submits
two messages, m0 and m1, as a challenge and must be unable to distinguish
between encryptions of m0 and m1 with non-negligible probability given that
fi(m0) = fi(m1) hold for all keys in adversary’s possession.

Over the last several years, FE has been studied extensively. Significant
progress has been made towards building various expressive forms of FE under
such indistinguishability-based definitions. Starting with initial works [BW07,KSW08]
that built specific forms of predicate encryption over bilinear maps, the search for
FE for general circuits under standard cryptographic assumptions culminated in
the recent breakthrough work of Jain, Lin, and Sahai [JLS21]. They proposed an
FE scheme for general circuits from a combination of PRGs in NC0, Symmetric
eXternal Diffie-Hellman (SXDH), Learning with Errors (LWE), and Learning
Parity with Noise (LPN) over large fields assumptions. While this is tremendous
progress, an unfortunate limitation of this FE scheme is that it is susceptible to
quantum attacks due to the post-quantum insecurity of the SXDH assumption.
But even more broadly, pursuing the direction of indistinguishability-based se-
curity for FE suffers from the drawback that it is unclear how it captures the
intuition that an attacker learns at most the function evaluation but nothing
more.

For these reasons, FE has also been investigated in the bounded collusion
model under simulation-based definitions. In the bounded collusion model, the
FE system declares a bound q at the setup time, such that all the system param-
eters are allowed to grow polynomially with q (in addition to the security pa-
rameter λ). Additionally, the security requirement is captured via a simulation-
based game, which says that as long as the attacker does not make more than q
key queries, the adversary’s view - which includes the ciphertext ctm and func-
tion keys skf1 , . . . , skfq - can be “simulated” given only the function evaluations
f1(m), . . . , fq(m) and nothing more about m. Although this more closely cap-
tures the intuition behind FE, if the attacker corrupts more than q keys, then
no security is provided. Despite its limitations, the bounded collusion model for
FE has been very useful in various contexts such as proving negative results in
differential privacy [KMUW18], applications to tracing [GKW18,CVW+18], etc.
In some cases, it is the only currently known pathway to certain applications in
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the post-quantum regime. A notable feature of the bounded collusion model is
that under them, FE can be built from the minimal assumption of public-key
encryption (and OWFs in case of private-key FE) as studied in a long line of
works [SS10,GVW12,AR17,Agr17,GKW18,CVW+18,AV19].

The question. A major drawback of such bounded collusion FE systems is that
the setup authority needs to declare the collusion bound q at the very begin-
ning, and the bound q is fixed, once and for all, for the entire lifetime of the
system. This puts the authority in a difficult situation, as it requires an incredi-
ble amount of foresight at the setup time. In particular, if the authority sets the
bound q lower than the eventual number of compromised keys, then the system
will be insecure; whereas overestimating the bound q would result in significant
performance overhead. Now when the collusion bound is breached, the only op-
tion is to do a fresh setup and redistribute the keys which is at best inefficient,
and possibly infeasible in certain scenarios. Switching to the state-of-the-art fully
collusion resistant FE schemes would suffer from drawbacks discussed above.

With the aforementioned limitations of existing FE systems, we ask the fol-
lowing –

Can we build an FE system for general circuits that reaps the bene-
fits of bounded collusion FE systems – post-quantum security, sim-
ulation security, and general assumptions – while at the same time
provide more flexibility to the authority in terms of selecting the
collusion bound? And, would such an FE system lead to results in
the domain of full collusion resistance?

In this work, we study the above question. We answer the first part in af-
firmative by introducing a new flexible corruption model that we call the “dy-
namic collusion” model, and building a simulation secure FE system in the
dynamic collusion model from the general assumption of Identity-Based En-
cryption (IBE) [Sha84,Coc01,BF01] (for which we have quantum-safe instanti-
ations [GPV08,CHKP10,ABB10]). Since it is widely believed that the FE for
general circuits is significantly more expressive than plain IBE, this seems to an-
swer the latter part negatively. Concurrently, the authors of [AMVY21] noticed
the same gaps and limitations in bounded-collusion FE security, and defined a
similar dynamic collusion model. For a more detailed comparison of the concur-
rent work, refer to Section 1.3.

Defining Dynamically Bounded Collusion Resistance

In this work, we refer to the traditional notion of bounded collusion resistance
for FE as statically bounded collusion resistance. Recall that, syntactically, a
statically bounded FE is defined exactly as fully collusion resistant FE, that is
using four polynomial time algorithms – Setup, KeyGen, Enc, and Dec – except
the Setup algorithm now additionally takes the target collusion bound q as an
input. As mentioned previously, declaring the collusion bound q upfront lets the
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setup authority set up the system parameters with enough redundancy, and this
typically leads to the running time and sizes of all system parameters (i.e., the
keys and ciphertexts) to grow polynomially with q.

In the dynamic collusion model, the Setup algorithm no longer takes the col-
lusion bound as input, but instead the Enc algorithm selects the collusion bound
per ciphertext. That is, the setup and key generation algorithms no longer de-
pend on the collusion bound q, but only the encryptor needs to specify the collu-
sion bound.1 Basically, this lets the encryptor dynamically decide the size of set
of colluding users against which it wants to hide its message. As a consequence,
in the dynamic collusion model, only the size of the ciphertexts potentially grows
with the collusion bound q, but the running times of the Setup and KeyGen algo-
rithms (therefore the public and secret keys) are independent of q. The security
requirement is again captured via a simulation-based game but where the admis-
sibility constraints on the attacker are lifted such that the number of key queries
the attacker is permitted can be adaptively specified at the time of committing
the challenge m instead of beginning of the game as in the static model.

Our dynamic collusion model and its comparison with the static model is
discussed in detail in Section 3. Below we briefly highlight the virtues of the
dynamic collusion model.

Fine-grained individualized selection. A dynamically bounded collusion FE
scheme allows each user to select the collusion bound by weighing the trade-
off between the performance overhead and amount of collusion resilience at
encryption time. For example, depending upon the factors such as available
computing resources, or the bandwidth on the communication channel, or
the sensitivity of data etc, an encryptor might want to increase/decrease the
amount of collusion resilience to better fit the computing/communication/privacy
constraints.

Evolving encryption strategies. Since the system is no longer statically tied
to a single collusion bound at setup time, thus it allows to dynamically adjust
the desired collusion resilience based on any number of evolving factors such
as the age of the system, or number of active users etc. Thus, the authority
does not need to have any foresight about the attackers at setup time in
contrast to statically bounded collusion FE systems.

(Of course the ciphertexts in which the collusion bound was exceeded will
not be secure, but future attacks can be prevented by adapting to a larger
collusion bound.)

Ease and simplicity of updatability. While the above features are already
highly desirable, a noteworthy property of these systems is that none of the
parameters have to be updated when adjusting the collusion bound. That is,
the same function key skf can be used to decrypt ciphertexts for collusion
bound q = 2 as well as q = 2λ without requiring any updates. Also, the
storage space for the parameters is bounded by a fixed polynomial in λ.

1 However, note that it is essential that the master public-secret keys and every func-
tion key is resuable for all values of the collusion bound.
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Next, we provide an overview of our approach and describe the technical
ideas. Later on, we discuss some related works and open questions.

1.1 Technical Overview

In this section, we provide a high level overview of our new collusion framework
and the corresponding FE construction. The overview is split into five parts
which roughly correspond to the proceeding sections of the paper. First, we
informally introduce the notion of dynamically bounded collusion resistant FE.
Second, we define an efficiency property that we refer to as weak optimality for
statically bounded collusion FE systems, and show that any weakly optimal FE
construction could be generically lifted to a dynamically bounded collusion FE
scheme. Next, we build such a weakly optimal FE scheme via the framework
of tagged functional encryption scheme, where a tagged FE scheme is same
as a regular FE scheme except each ciphertext and secret key is additionally
embedded with a tag such that only ciphertexts and keys with the same tag
can be combined together. Finally, we build a tagged FE scheme for statically
bounded collusions in two steps – first, reduce the problem of constructing tagged
FE with static collusions to the simpler setting of at most one key corruption
(also referred to as 1-bounded collusion); and second, design a tagged FE system
in the simpler setting directly from IBE.

Dynamic vs. Static Bounded Collusion Model

Let us start by recalling the syntax of functional encryption in the static collusion
model. An FE scheme in the static collusion model consists of four algorithms
with the following semantics:

– Setup takes as input the collusion bound q and samples the master public-
secret key pair (mpk,msk).

– KeyGen generates a function key skf given function f and master key msk.
– Enc encrypts a message m to a ciphertext ct.
– Dec recovers f(m) from the ciphertext and decryption key.

In the dynamic collusion model, the collusion bound q is not fixed at the system
setup, but instead the encryptor chooses the amount of collusion resilience it
wants every time a fresh ciphertext is created. This is reflected with the following
changes:

– Setup no longer takes the collusion bound q as an input.
– Enc takes the desired collusion bound q as an additional input for sampling

the ciphertext.

Note that since the collusion bound q is not specified during setup or key genera-
tion at all, thus the efficiency condition for a dynamically bounded collusion FE
scheme requires the running time of Setup and KeyGen to be fixed polynomials
in λ, whereas in static setting they are allowed to grow polynomially with q.
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Static to Dynamic via Weak Optimality

As we mentioned before, our first observation is that a dynamically bounded
collusion FE scheme can be constructed from any statically bounded scheme if
it satisfies a ‘weak optimality’ property. Intuitively, the weak optimality property
says that the running time of the setup and key generation algorithms grows only
poly-logarithmically in the collusion bound q.

Now looking closely at the notion of weakly-optimal statically bounded collu-
sion FE, we observe that the major difference between this and a dynamic system
is that the Setup algorithm requires q as an explicit input in the static setting,
but not in the dynamic setting. Our idea to get around this is to exploit the
efficiency property of the static scheme, where the dynamic collusion FE scheme
essentially runs λ independent instances of the static collusion FE scheme in
parallel with geometrically increasing collusion bounds. That is, i-th subsystem
(running a single instance of the static scheme) is set up with collusion bound
qi = 2i. And, now the master public-secret key pair as well as each function key
in the dynamic system contains λ independently sampled keys where the i-th
sub-key is sampled using the i-th static FE system. Since the encryption algo-
rithm receives the target collusion bound q as input, thus the encryptor uniquely
selects a static FE sub-system under which it encrypts the message. The target
collusion bound to subsystem index mapping can simply be defined i := dlog qe
(i.e., nearest power of two). Note that setting up the system this way ensures the
dynamic system achieves the desired efficiency. This is because the setup and
key generation will be efficient (by weak optimality of the static FE scheme),
and since 2i = 2dlog qe < 2q, thus the running time of encryption and decryption
is a polynomial in q.

Since the above transformation is very natural, one would expect the simu-
lation security of the resulting dynamic FE system to also follow directly from
the simulation security of the underlying static FE schemes. However, this is
not the case. To better understand the technical barrier, let us first consider the
most natural simulation strategy described next. The simulator for the dynamic
system simply runs the simulator for each of the underlying static systems in
parallel, where the ciphertext simulator is only run for the static system corre-
sponding to the adversarially selected challenge target collusion bound q∗. While
this seems to compile, there are two subtle issues that need to be carefully han-
dled.

First, the running time of each static FE simulator grows with the underlying
collusion bound which grows as large as exponential in λ. For avoiding the prob-
lem of inefficient simulation, we additionally require the underlying static FE
scheme to have weakly-optimal simulators as well which means that all but the
ciphertext simulation phase of the static FE could be performed optimally (i.e.,
the simulator running time grows only poly-logarithmically in q). However, this
is still not enough for proving simulation security. The reason is that typically
the simulation security states that the distribution of secret keys and ciphertext
are simulatable as long as the adversary does not make more key queries than
what is specified by the static collusion bound. That is, if the adversary makes
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more key queries then no guarantee is provided. Now our dynamic FE simulator
must invoke the underlying static FE simulator even for collusion bounds smaller
than q∗, thus the standard simulation guarantee is insufficient. To get around
this issue, we define a notion called strong simulation security for static-bounded-
collusion FE schemes under which we require that the real and ideal worlds are
also indistinguishable even when the adversary makes more key queries than
that specified by the collusion bound as long as the adversary does not make
any challenge message queries. More details are provided in Section 3.2.

From Tagged FE to Weak Optimality

Our next idea is to embed auxiliary tagging information inside each individual
ciphertext and decryption key such that the auxiliary information is useful for
achieving weak optimality generically by embedding information about the col-
lusion bound inside the auxiliary information. Formally, in a tagged FE system,
the semantics of encryption and key generation are changed as:

– KeyGen,Enc, both also take in a tag string tg as an input.

And, now the decryption algorithm recovers f(m) from the ciphertext and de-
cryption key corresponding to tags tg1, tg2 (respectively) iff tg1 = tg2. Basically,
the intuition behind a tagged FE scheme is to efficiently implement many par-
allel instances of a statically bounded collusion FE scheme such that the master
public-secret keys do not grow with number of underlying (untagged) FE in-
stances.

In other words, the idea behind tagged FE is to serve as an extension to
regular (untagged) FE in the same way as IBE is to PKE, that is to capture
the same master public-secret key compression properties. That is, a tagged
FE enables compressing exponentially many parallel instances of untagged FE
into a succinct system where all the system parameters are efficient, and the
ciphertexts and decryption keys corresponding to each underlying untagged FE
system can be efficiently computed given those parameters. In terms of simu-
lation security for tagged FE, the property is a natural extension of statically
bounded-collusion security model for FE to the tagged setting, where now the
adversary is allowed to query keys and ciphertexts for an unbounded number of
tags, and the simulation security must hold for all challenge ciphertexts (queried
under separate tags) as long as the number of key queries does not exceed the
collusion bound on any tag for which a challenge ciphertext is also requested.

Looking ahead, the benefit of a tagged FE scheme will be that we can dis-
tribute the final desired collusion bound over to the auxiliary tag space as well,
and not just the collusion bound ingrained in the tagged FE system. And, since
tagged FE can encode the tag space more efficiently than the collusion bound,
thus this is useful for obtaining the desired weak optimality.

At a high level, to transform any tagged FE scheme into an FE scheme that
satisfies the desired weak optimality property, we rely on the linearization trick
by Ananth and Vaikuntanathan [AV19] where they suggested a generic com-
piler to improve efficiency of a statically bounded-collusion FE scheme from an
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arbitrary polynomial dependence on the collusion bound, q, to only a linear de-
pendence. Our observation is that if we substitute all the underlying FE scheme
in the linearization transformation from [AV19] with a single tagged FE scheme,
then that would result in a statically bounded-collusion FE scheme with weak
optimality.

Briefly, collusion bound linearization transformation simply consists of run-
ning q many parallel instances of the inefficient (untagged) FE scheme each, but
with collusion bound set to be the security parameter λ. While for encrypting
the message m, the ciphertext is computed as an encryption of m under each
of the underlying FE schemes; the key generator only generated a decryption
key for a random instance out of the q inefficient FE systems. By a standard
balls and bins concentration argument, it was shown that, with all but negligible
probability, the collusion bound of λ was never crossed for any of the underlying
FE system as long as only q many total key queries were made. We rely on the
same idea for our weak optimality transformation wherein we simply replace the
q many parallled untagged FE systems with a single tagged FE system, where
now the i-th FE sub-scheme in the [AV19] transformation is set to be the sub-
scheme corresponding to tag value i. The full transformation is provided later
in Section 5.

Intuitively, we use the linearization trick to absorb the blow-up due to the
collusion bound in the tag space of the FE scheme instead. This decouples the
desired collusion bound, q, from the resulting FE scheme with the collusion
bound fixed inside the underlying tagged FE system thereby allowing us to set
the collusion bound for the tagged system to be simply λ. Thus, we can reason
from the efficiency of the tagged FE scheme that the resulting scheme only has
polylogarithmic dependence in the λ for Setup and KeyGen, making it weakly
optimal.

Amplifying Collusion Bound in Tagged FE

The next component in our sequence of transformations is a generic collusion
bound amplification procedure for tagged FE, in turn reducing the problem to
constructing tagged FE for 1-bounded collusion instead. Our approach follows
the general bootstrapping blueprint developed for upgrading collusion bound in
untagged FE literature [GVW12,AV19] which runs a specific multiparty compu-
tation protocol in the head.

In such MPC protocols, there are N servers/parties and a single client with
an input x with the computation proceeding in two phases – offline and online.
In the offline phase, the client encodes its input x into N individual encodings
– {x̂1, . . . , x̂N} – one for each server. While in the online phase, a function f is

encoded into N individual encodings – {f̂1, . . . , f̂N} – such that i-th server learns
the i-th function encoding, and any subset S of servers of size p can locally decode
their individual encodings to obtain partial evaluations, ŷi for i ∈ S, such that
all these p partial evaluations can be publicly combined to compute the function
evaluation f(x). And importantly, the security of the MPC protocol assures that,
even if at most t servers get corrupted, no information other than actual value
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f(x) can be adversarially learned given the public partial evaluations. Now for
applications to collusion bound amplification in FE, it is important to have MPC
protocols in which the client can delegate the computation for multiple functions
w.r.t. a single offline phase.

The high level idea is that each ciphertext encodes the message m into various
different pieces where each piece corresponds to an individual offline encoding for
a particular server, and now the key generator selects a random subset of servers
for which it gives the appropriate function encodings for each selected server. In
more detail, the bootstrapping procedure works as follows, where 1KeyFE is any
1-bounded collusion untagged FE scheme:

– Setup samples N independent master public-secret key pair (mpki,mski) for
the 1KeyFE scheme. These N key pairs are set as the master public-secret
key pairs for this scheme respectively.

– Enc encodes the message m using the offline phase to compute encodings
{x̂1, . . . , x̂N}, and encrypts the i-th encoding under the i-th master public
key, that is cti ← 1KeyFE.Enc(mpki, x̂

i) for i ∈ [N], and outputs (ct1, . . . , ctN)
as the full ciphertext.

– KeyGen selects a random subset S ⊆ [N] of size p, and performs the online

phase to compute {f̂1, . . . , f̂N}. Now enable decryption, it creates a FE de-
cryption key for each server i ∈ S enabling the local circuit computation,
that is skf,i ← 1KeyFE.KeyGen(mski, Local(f̂

i, ·)), and sets the final decryp-
tion key as these individual decryption keys skf,i for i ∈ S.

– Dec first recovers the partial evaluations ŷi = Local(f̂ i, x̂i) for i ∈ S by run-
ning the 1KeyFE decryption, and then combines them to compute f(m).

It turns out that the above compiler amplifies the collusion bound from 1
to q if a simple combinatorial property, regarding the random sets (S1, . . . , Sq)
sampled for each key, is satisfied. Here Sj ⊆ [N] be the set sampled while anwer-
ing the j-th key query. Observe that whenever two sets Sj , Sj′ intersect at an
index i, we learn two keys for the underlying 1KeyFE scheme thereby breaking
its security, and an adversary can completely learn the underlying encoding x̂i.
And, if the security is broken for enough 1KeyFE systems (i.e., > t), then our
MPC guarantee fails. Thus, to prove security it is sufficient to show that the
total number of pairwise intersections is not larger than t. With this combina-
torial guarantee, we can rely on the security of 1KeyFE and the MPC protocol
to ensure no information other than f(m) is revealed.

Our observation here is that the same blueprint can also be used for tagged
FE schemes where for amplifying 1-bounded collusion to q-bounded collusion,
we start with a slightly larger tag space for the underlying 1-bounded tagged
FE scheme. Basically, to build a q-bounded collusion tagged FE scheme with tag
space T , we start with a 1-bounded scheme with tag space [N]×T , and replace
i-th instantiation of the 1KeyFE scheme with 1-bounded tagged FE scheme and
the tag is set as (i, tg) where tg is the tag to be embedded (during encryption
and key generation, respectively). Now the correctness and security of the result-
ing compiler closely follows the analysis for untagged FE schemes from [AV19],
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with some subtleties in the analysis that arise due to the fact that in tagged
FE simulation security we need to be able to jointly simulate multiple cipher-
texts (though for distinct tags) at that the same time. More details follow later
in Section 6.

Adding Tags to 1-Bounded-Collusion FE via IBE

Lastly, to instantiate our above transformations to build a dynamically bounded
collusion FE scheme, we need a tagged FE scheme that achieves 1-bounded col-
lusion simulation security. To that end, we look back at the 1-bounded collusion
untagged FE construction by Sahai and Seyalioglu [SS10] which works by com-
bining garbled circuits with plain public-key encryption. In a few words, our
idea is to imitate the same ideology for instantiating our tagged FE scheme, but
replace the plain public-key encryption scheme with an identity-based encryp-
tion scheme to introduce additional space for efficiently embedding tags in the
identity space of the IBE scheme.

Recall that in the well-known 1-bounded collusion untagged FE construction,
an encryptor garbles the universal circuit U with message m hardwired such
that, on an input a description of a circuit C, the hardwired circuit computes
C(m). Now the encryptor hides the wire keys for the garbled circuit under the
corresponding PKE public keys chosen during setup time, where two PKE key
pairs are sampled per bit of the description length of the circuit C. And, the
decryption key for a circuit C simply corresponds to half of the PKE secret keys
selected on the basis of bit description of C, that C[i]-th PKE secret key for each
i. Basically, a decryptor first uncovers the wire labels corresponding to circuit
C using PKE decryption, and then simply evaluates the garbled circuit to learn
the circuit evaluation C(m).

We observe that the same construction can be upgraded to a tagged FE
scheme if we simply replace each PKE system in the above transformation with
an IBE system2, where the identity space of the IBE system will be used to
encode the “designated tag”. Thus, the encryptor simply sets the IBE iden-
tity corresponding to which encryption is performed to be the input tag tg,
and the decryption key consists of appropriate IBE keys where the identity for
each underlying IBE system is the tag tg to be embedded. Clearly, this gives
the desired efficiency if the underlying IBE scheme is efficient, and the secu-
rity follows by a similar argument as to before where a more careful analysis
is needed to argue simulation security in presence of multiple tags. While the
above transformation is sufficient to prove security in the non-adaptive setting
as the original [SS10] construction, we rely on the delayed/non-committing en-
cryption strategies [CFGN96] as in [GVW12,GSW21] to upgrade to adaptive
security. Our tagged FE scheme with 1-bounded collusion security is described
in Section 7.

2 Technically, we compress the keys even further as we replace all the PKE key pairs
with a single IBE key pair instead of a sequence of IBE key pairs. However, for the
purpose of this overview, we present this simpler version.
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1.2 Related Work and Future Directions

Prior work on bounded collusion resistance. The intial works on bounded col-
lusion resistance for FE were for the specific class of IBE systems. Dodis et
al. [DKXY02] and Goldwasser, Lewko, and Wilson [GLW12] constructed bounded
collusion secure IBE with varying parametere size from regular public-key en-
cryption and special types of linearly key homomorphic public-key encryption,
respectively. For more expressive classes of FE, Sahai and Seyalioglu [SS10] pro-
posed general functional encryption schemes resilient against a single function-
key query using garbled circuits [Yao86]. Following [SS10], GVW [GVW12]
build a statically bounded collusion resistant FE scheme for NC1 circuits from
any public-key encryption scheme, and also provided a generic compiler to im-
prove to the class of all polynomial time computable functions by addition-
ally relying on PRFs computable in NC1. Afterwards, a number of follow-up
works [AR17,Agr17,GKW18,CVW+18] improved the concrete efficiency of the
statically bounded collusion resistant FE scheme wherein they improved the
dependence of the FE scheme parameters on the collusion bound q by relying
on more structured algebraic assumptions. Most recently, Ananth and Vaikun-
tanathan [AV19] achieved optimally efficient statically secure FE scheme from
the minimal assumption of public-key encryption. The optimal efficiency states
that the system parameters grow only linearly with the collusion bound q, since
any further improvement would lead to a fully collusion resistant FE scheme via
the bootstrapping theorems from [GGH+13,SW14,AJ15,BV15,AJS15].

Comparison with bundling functionalities and encrypt ahead FE. Goyal, Kop-
pula, and Waters (GKW) [GKW16] proposed the concept of bundling function-
alities in FE systems, where bundling functionalities in an FE scheme meant
having the property that a single set of public parameters can support the union
of all message/function spaces supported by the underlying FE system. They
provided a generic transformation that started with IBE (and other implied
primitives) and was able to upgrade any FE scheme to its bundled counter-
part. One might ask that whether applying the [GKW16] transformation to the
family of bounded collusion FE, where the the collusion bound q is treated as
part of the functionality index that is bundled, already leads to a dynamically
bounded collusion FE system. It turns out this is not the case because such a
generic transformation suffers from the limitation that a function key for a given
collusion bound is not reusable for other collusion bounds. In particular, this
necessitates each user to make additional queries to the authority for obtaining
function keys for desired collusion bound, and this only solves the problem of
removing the problem of removing the collusion bound dependence for the setup
algorithm. Additionally, GKW proposed a novel variant of FE called encrypt
ahead FE. One could ask the same question about relationship between encrypt
ahead FE and dynamically bounded collusion resistant FE, and the answer is
the same as for the case of bundling functionalities which is they are insufficient.

Open questions. Our work introduces a new interesting avenue for exploring
dynamic collusion resilience in FE systems. An interesting research direction is
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studying similar concepts of dynamic “query” resilience in other cryptographic
contexts. For example, one could ask the same question for the concept of CCA-
secure encryption where we know that CPA-secure public-key encryption implies
(statically-)bounded-query-CCA security for public-key encryption [CHH+07].
We believe answering the question of dynamically bounded-query-CCA secu-
rity might provide more insight in resolving the longstanding open problem of
constructing a (general) CCA-secure encryption scheme from a CPA-secure one.

1.3 Concurrent Work

In a concurrent and independent work, Agrawal et al. [AMVY21] also define the
dynamic collusion model for bounded-collusion functional encryption, with a
similar motivation of providing more flexibility in selecting the collusion bound.
Their primary construction of dynamic-bounded FE is essentially the same as
ours, with the main difference in their presentation. We define abstractions to
simplify exposition, while their construction focuses on constructing a ciphertext-
policy FE scheme (CPFE) rather than a key-policy FE scheme (KPFE). One
can transform any CPFE scheme to a KPFE scheme and vice versa, by using a
universal circuit.

In addition, they extend their result to uniform computation models while
relying on specific algebraic assumptions. They use LWE to instantiate succinct
bounded functional encryption scheme, and the notion of reusable garbled cir-
cuits of [GKP+13]. By utilizing the succinct properties of these schemes, they
are able to construct non-adaptive FE for Turing machines and adaptive FE
for NL in the dynamic collusion model. Finally, they answer the question of the
necessity of IBE in building dynamic-bounded collusion FE in the affirmative,
which was left as an open problem in an earlier version of this paper.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2,
we let Zq denote the ring of integers modulo q. We denote the set of all posi-
tive integers upto n as [n] := {1, . . . , n}. For any finite set S, x ← S denotes
a uniformly random element x from the set S. Similarly, for any distribution
D, x ← D denotes an element x drawn from distribution D. The distribution
Dn is used to represent a distribution over vectors of n components, where each
component is drawn independently from the distribution D. Two distributions
D1 and D2, parameterized by security parameter λ, are said to be computation-
ally indistinguishable, represented by D1 ≈c D2, if for all PPT adversaries A,
|Pr[A(x) = 1 : x← D1]− Pr[A(x) = 1 : x← D2]| ≤ negl(λ).

2.1 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al.
[BHR12]. Let {Cn}n be a family of circuits where each circuit in Cn takes n bit
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inputs. A garbling scheme GC for circuit family {Cn}n consists of polynomial-
time algorithms Garble and Eval with the following syntax.

– Garble(1λ, C ∈ Cn): The garbling algorithm takes as input the security pa-

rameter λ and a circuit C ∈ Cn. It outputs a garbled circuit C̃, together with
2n wire keys {wi,b}i≤n,b∈{0,1}.

– Eval(C̃, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit

C̃ and n wire keys {wi}i≤n and outputs y ∈ {0, 1}.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct

if for all λ, n, x ∈ {0, 1}n and C ∈ Cn, Eval(C̃, {wi,xi
}i≤n) = C(x), where

(C̃, {wi,b}i≤n,b∈{0,1})← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit
C and input x, the garbled circuit C̃ together with input wires {wi,xi

}i≤n cor-
responding to some input x reveals only the output of the circuit C(x), and
nothing else about the circuit C or input x.

Definition 1. A garbling scheme GC = (Garble,Eval) for a class of circuits
C = {Cn}n is said to be a secure garbling scheme if there exists a polynomial-
time simulator Sim such that for all n, C ∈ Cn and x ∈ {0, 1}n, the following
distributions are computationally indistinguishable:{
Sim

(
1λ, 1n, 1|C|, C(x)

)}
λ
≈c
{(
C̃, {wi,xi}i≤n

)
:
(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

While this definition is not as general as the definition in [BHR12], it suffices for
our construction.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I =
{In}n∈N and message spaces M consists of four polynomial time algorithms
(Setup,KeyGen,Enc,Dec) with the following syntax:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security
parameter λ and identity space index n. It outputs the public parameters
mpk and the master secret key msk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master
secret key msk and an identity id ∈ In. It outputs a secret key skid.

Enc(mpk, id,m)→ ct. The encryption algorithm takes as input the public pa-
rameters mpk, a message m ∈ M, and an identity id ∈ In. It outputs a
ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid
and a ciphertext ct. It outputs either a message m ∈M or a special symbol
⊥.
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Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies
correctness if for all λ, n ∈ N, (mpk,msk) ← Setup(1λ, 1n), id ∈ In, m ∈ M,
skid ← KeyGen(msk, id), and ct ← Enc(mpk, id,m), we have that Dec(skid, ct) =
m.

Definition 2. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure
if for any stateful PPT adversary A there exists a negligible function negl(·), such
that for all λ, n ∈ N, the probability

Pr

AKeyGen(msk,·)
1 (st, ct) = b :

(mpk,msk)← Setup(1λ, 1n); b← {0, 1}
(m0,m1, id

∗)← AKeyGen(msk,·)(1λ, 1n,mpk)
ct← Enc(mpk, id∗,mb)

 ,
is ≤ 1

2
+ negl(λ) where all identities id queried by A satisfy id 6= id∗.

3 Functional Encryption: Dynamic Bounded Collusion

In this section, we define the notion of functional encryption (FE) where we start
by recalling the regime of (statically) bounded collusion secure FE systems as
studied in prior works [SS10,GVW12]. We follow that by extending the notion
to dynamic collusion bounded secure FE systems. And, along the way we also
introduce a special compactness property for statically bounded collusion secure
FE schemes. This will serve as an appropriate intermediate abstraction to build
a fully dynamic collusion bounded FE schemes.

Syntax. Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn}
a family of functions, where for all n ∈ N and f ∈ Fn, f : Mn → Rn. We
will also assume that for all n ∈ N, the set Fn contains an empty function εn :
Mn → Rn. As in [BSW11], the empty function is used to capture information
that intentionally leaks from the ciphertext.

A functional encryption scheme FE for a family of function classes {Fn}n∈N
and message spaces {Mn}n∈N consists of four polynomial-time algorithms (Setup,
Enc,KeyGen,Dec) with the following semantics.

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n3 (in unary), and outputs the
master public-secret key pair (mpk,msk).

Enc(mpk,m ∈Mn)→ ct. The encryption algorithm takes as input the master
public key mpk and a message m ∈Mn and outputs a ciphertext ct.

KeyGen(msk, f ∈ Fn)→ skf . The key generation algorithm takes as input the
master secret key msk and a function f ∈ Fn and outputs a function key
skf .

Dec(skf , ct)→ Rn. The decryption algorithm takes as input a ciphertext ct and
a secret key skf and outputs a value y ∈ Rn.

3 One coud additionally consider the setup algorithm to take as input a sequence of
functionality indices where the function class and message space are characterized by
all such indices (e.g., having input length and circuit depth as functionality indices).
For ease of notation, we keep a single functionality index in the above definition.
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Correctness and Efficiency. A functional encryption scheme FE = (Setup,Enc,
KeyGen,Dec) is said to be correct if for all λ, n ∈ N, functions f ∈ Fn, messages
m ∈Mn and (mpk,msk)← Setup(1λ, 1n), we have that

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1,

where the probability is taken over the coins of key generation and encryption
algorithms. And, it is said to be efficient if the running time of the algorithms
is a fixed polynomial in the parameters λ and n.

3.1 Bounded Collusion FE: Static and Dynamic

Informally, a functional encryption scheme is said to be secure if an adversary
having secret keys for functions {fi}i≤q and a ciphertext ct for message m learns
only {fi(m)}i≤q, ε(m) and nothing else about the underlying message m. Here
ε is the empty function associated with the message space.

The Static Setting. Now in the “static” bounded collusion setting, the scheme
is said to guarantee security so long as q is a polynomial in the security parameter
λ and fixed a-priori at the setup time. Thus, the syntax of the setup algorithm
changes as follows:

Setup(1λ, 1n, q)→ (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n (in unary), and also takes as input
the ‘collusion bound’ q (in binary).4 It outputs the master public-secret key
pair (mpk,msk).

Efficiency. Although the collusion bound q is given in binary to the setup algo-
rithm, the efficiency condition for a statically bounded collusion FE scheme only
requires that the running time of the all the algorithms is a fixed polynomial in
λ, n and q. That is, the running time of Setup, KeyGen, Enc, and Dec is allowed
to polynomially grow with the collusion bound q.

Static bounded collusion security. This is formally captured via the following
‘simulation based’ security definition as follows. We first provide the adaptive
definition, and later provide the non-adaptive definition.

Definition 3 (static-bounded-collusion simulation-security). A functional
encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-
collusion simulation-secure if there exists a stateful PPT simulator Sim = (S0,S1,S2,S3)
such that for every stateful PPT adversary A, the following distributions are

4 Although most prior works on bounded collusion security consider the collusion
bound q to either be a global parameter, or given in unary to the setup algorithm.
Here we instead pass it in binary for technical reasons as will become clear in the
sequel. See Remark 1 for more details.
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computationally indistinguishable:AKeyGen(msk,·)(ct) :

(1n, 1q)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, q)
m← AKeyGen(msk,·)(mpk)

ct← Enc(mpk,m)


λ∈N

≈cAS
Um(·)
3 (st2,·)(ct) :

(1n, 1q)← A(1λ)
(mpk, st0)← S0(1λ, 1n, q)
m← AS1(st0,·)(mpk)

(ct, st2)← S2(st1, Π
m)


λ∈N

whenever the following admissibility constraints and properties are satisfied:

– S1 and S3 are stateful in that after each invocation, they updates their states
st1 and st3 (respectively) which is carried over to its next invocation.

– Πm contains a list of functions fi queried by A in the pre-challenge phase
along with the their output on the challenge message m. That is, if fi is the
i-th function queried by A to oracle S1 and qpre be the number of queries A
makes before outputting m, then Πm =

(
(f1, f1(m)), . . . , (fqpre , fqpre(m))

)
.5

– A makes at most q queries combined to the key generation oracles in the
corresponding games.

– S3 for each queried function fi, in the post-challenge phase, makes a single
query to its message oracle Um on the same fi itself.

Remark 1 (unary vs binary). Note that in the above security games, we require
the adversary to specify the collusion bound q in unary at the beginning. This is
in contrast to the setup algorithm which gets q in binary as an input. The reason
for this distinction is that in the security game for bounded collusion security we
do not want to allow the attacker to specify super-polynomial collusion bounds,
whereas (as we point out later) allowing the setup algorithm to be run on super-
polynomial values of the collusion bound is important for our dynamic collusion
bounded FE schemes.

Weak optimality. Additionally, we also introduce the notion of a “weakly opti-
mal” statically-bounded-collusion secure FE scheme where this system provides
better efficiency properties. That is, in a weakly optimal static bounded collusion
system, the running time of the setup and key generation algorithms grows only
poly-logarithmically in the collusion bound q. Concretely, we define it below.

Definition 4 (weakly optimal statically-bounded-collusion). A func-
tional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be ‘weakly

5 To be more precise, Πm should also contain the empty function and the evaluation
of empty function on challenge message (εn, εn(m)). However, for ease of notation,
throughout the paper we assume that to be implicitly added to the list of function-
value pairs.
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optimal’ statically-bounded-collusion FE scheme if the running time of the Setup
and KeyGen algorithm is additionally upper bounded by a fixed polynomial in λ,
n and log q.

Strengthening the simulation guarantee. In this work, we consider a strengthen-
ing of the above simulation-secure properties (for the class of weakly optimal
static-bounded-collusion FE schemes) which will be be crucial towards building
a dynamic-bounded-collusion functional encryption scheme. Note that typically
the simulation security states that the distribution of secret keys and cipher-
text are simulatable as long as the adversary does not make more key queries
than what is specified by the static collusion bound. That is, if the adversary
makes more key queries then no guarantee is provided. However, we consider a
stronger simulation guarantee below wherein the real world is still simulatable
even when the adversary makes more key queries than that specified by the
collusion bound as long as the adversary does not make any challenge message
queries. That is, either the collusion bound is not crossed, or no challenge cipher-
text is queried. In addition to this, we require the running time of the simulator
algorithms S0,S1 and S3 (that is, all except the ciphertext simulator S2) grow
only poly-logarithmically in the static collusion bound q. Formally, we define it
below.

Definition 5 (strong simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion strong
simulation-secure if, in the security game defined in Definition 3, the following
additional conditions hold:

1. the number of key queries made by adversary is allowed to exceed the static
collusion bound q as long as the adversary does not submit any challenge
message, and

2. the running time of the simulator algorithms S0,S1 and S3 is upper bounded
by a fixed polynomial in λ, n and log q.

Lastly, we also define the non-adaptive variant of the simulation security.

Definition 6 (non-adaptive simulation-security). A functional encryption
scheme FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion
non-adaptive (regular/strong) simulation-secure if the adversary is prohibited
from making any key queries in the post-challenge phase (that is, after receiving
the challenge ciphertext) in its respective security game.

The Dynamic Setting. Now in the “dynamic” bounded collusion setting, the
scheme is no longer tied to a single collusion bound q fixed a-priori at the system
setup, but instead the encryptor could choose the amount of collusion resilience
it wants. Thus, this changes the syntax of the setup and encryption algorithm
when compared to the static setting from above:
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Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security
parameter λ and the functionality index n (in unary). It outputs the master
public-secret key pair (mpk,msk).
(Note that thus syntactically the setup of a dynamic bounded collusion
scheme is same as that of a fully collusion resistant scheme.)

Enc(mpk,m ∈Mn, 1
q)→ ct. The encryption algorithm takes as input the mas-

ter public key mpk, a message m ∈ Mn, and it takes the desired collusion
bound q (in unary) as an input. It outputs a ciphertext ct.

Efficiency. Since the collusion bound q is not specified during setup or key gen-
eration at all, thus the efficiency condition for a dynamically bounded collusion
FE scheme requires the running time of Setup and KeyGen to be fixed polyno-
mials in λ and n. While since the encryptor takes q as input in unary, thus the
running time of the Enc algorithm could grow polynomially with collusion bound
q. Similarly, the running time of Dec is also allowed to grow polynomially with
collusion bound q.

Dynamic bounded collusion security. This is formally captured via a ‘simulation
based’ security definition as in the static setting. The game is similar to that
provided in Definition 3, except now the attacker specifies the collusion bound q
while making the challenge ciphertext query and the simulator also only receives
the collusion bound as input at that point. For completeness, we describe it
formally below (both the adaptive and non-adaptive variants).

Definition 7 (dynamic-bounded-collusion simulation-security). A func-
tional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-
bounded-collusion simulation-secure if there exists a stateful PPT simulator Sim =
(S0,S1,S2,S3) such that for every stateful PPT adversary A, the following dis-
tributions are computationally indistinguishable:AKeyGen(msk,·)(ct) :

1n ← A(1λ)
(mpk,msk)← Setup(1λ, 1n)

(m, 1q)← AKeyGen(msk,·)(mpk)
ct← Enc(mpk,m, 1q)


λ∈N

≈cAS
Um(·)
3 (·)(ct) :

1n ← A(1λ)
mpk← S0(1λ, 1n)

(m, 1q)← AS1(·)(mpk)
ct← S2(Πm, 1q)


λ∈N

whenever the admissibility constraints and properties, as defined in Definition 3,
are satisfied.

Definition 8 (non-adaptive simulation-security). A functional encryp-
tion scheme FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-bounded-
collusion non-adaptive simulation-secure if, in the security game defined in Def-
inition 7, the adversary is prohibited from making any key queries in the post-
challenge phase (that is, after receiving the challenge ciphertext).
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3.2 Upgrading Static to Dynamic Bounded Collusion FE via Weak
Optimal Efficiency

In this section, we provide a generic construction of a dynamic-bounded-collusion
FE scheme from any static-bounded-collusion FE scheme that satisfies the strong
simulation property (Definition 5) and the weak optimality property (Defini-
tion 4). Below we provide our construction followed by correctness and security
proofs.

Construction Let Static-FE = (S-FE.Setup,S-FE.Enc,S-FE.KeyGen,S-FE.Dec)
be a weakly-optimal static-bounded-collusion FE scheme for a family of func-
tion classes {Fn}n∈N and message spaces {Mn}n∈N. We use Static-FE to build
a dynamic-bounded-collusion FE scheme FE = (Setup,Enc,KeyGen,Dec) as fol-
lows.

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm runs the Static-FE setup al-
gorithm λ times with increasing values of the static collusion bound q as
follows:

∀i ∈ [λ], (mpki,mski)← S-FE.Setup(1λ, 1n, q = 2i).

It then sets the master secret and public keys as an λ-tuple of all these keys,
i.e. msk = (mski)i∈[λ] and mpk = (mpki)i∈[λ].

KeyGen(msk, f)→ skf . Let msk = (mski)i∈[λ]. The key generation algorithm
runs the Static-FE key generation algorithm with all λ keys independently
as ski,f ← S-FE.KeyGen(mski, f) for i ∈ [λ]. It outputs the secret key sk as
sk = (ski,f )i∈[λ].

Enc(mpk,m, 1Q)→ ct. Let mpk = (mpki)i∈[λ]. The encryption algorithm sim-

ply encrypts the message m under dlogQe-th master public key as ct ←
S-FE.Enc(mpkdlogQe,m). (It also includes Q as part of the ciphertext.)

Dec(skf , ct)→ z. Let skf = (ski,f )i∈[λ]. The decryption algorithm runs the Static-FE

decryption using the dlogQe-th function key as z ← S-FE.Dec(skdlogQe,f , ct).

Correctness, Efficiency, and Security The correctness of the above scheme
follows directly from the correctness of the underlying static-bounded-collusion
FE system, while for the desired efficiency consider the following arguments.
First, note that by weak optimality of Static-FE we have that the running time
of S-FE.Setup and S-FE.KeyGen grows as poly(λ, n, log q). Since the Setup and
S-FE.KeyGen algorithms run S-FE.Setup and S-FE.KeyGen (respectively) λ many
times for log q ∈ {1, . . . , λ}, thus we get that running time of Setup and KeyGen
is poly(λ, n) as desired. Lastly, the encryption and decryption algorithm run
in time at most poly(λ, n, 2dlogQe) = poly(λ, n,Q) since the dlogQe-th static-
bounded-collusion FE system uses 2dlogQe ≤ 2 ·Q as the static collusion bound.
Thus, the resulting FE scheme satisfies the required efficiency properties.
To conclude, we prove the following.
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Theorem 1. If Static-FE = (S-FE.Setup,S-FE.Enc,S-FE.KeyGen,S-FE.Dec) is a
weakly-optimal static-bounded-collusion simulation-secure FE scheme (as per Def-
initions 4 and 5), then the above scheme FE = (Setup,Enc,KeyGen,Dec) is a
dynamic-bounded-collusion simulation-secure FE scheme (as per Definition 7).

The proof follows from a composition of the static-bounded-collusion simulation-
security property of Static-FE. Recall that in the static setting, we require the
scheme to provide a stronger form of real world vs. ideal world indistinguishabil-
ity. Where typically the simulation security states that the distribution of secret
keys and ciphertext are simulatable as long as the adversary does not make more
key queries than what is specified by the static collusion bound. That is, if the
adversary makes more key queries then no guarantee is provided. However, in our
formalization of simulation security for static-bounded-collusion FE schemes, we
require that the real and ideal worlds are also indistinguishable even when the
adversary makes more key queries than that specified by the collusion bound
as long as the adversary does not make any challenge message queries. That is,
either the collusion bound is not crossed, or no challenge ciphertext is queried.
Also, the running time of the simulator algorithms S0,S1 and S3 (all except the
ciphertext simulator S2) grow only poly-logarithmically in the collusion bound.

Thus, the simulator for the dynamic-bounded-collusion FE scheme simply
runs the S0 algorithms for all collusion bounds q = 1, . . . , 2λ to simulate the
individual master public keys. It then also runs the S1 algorithms for simulating
the individual function keys for each of these static-bounded-collusion FE sys-
tems for answering each adversarial key query. Note that since the running time
of S0 and S1 is also poly(λ, n, log q) where q = 1, . . . , 2λ, thus this is efficient.

Now when the adversary makes the challenge query for message m, it also
specifies the target collusion bound Q∗. The dynamic-bounded-collusion simula-
tor then runs only the ciphertext simulator algorithm S2 for the static FE system
corresponding to collusion bound log q = dlogQ∗e. Note that the simulator does
not run S2 for the underlying FE schemes with lower (and even higher) collusion
bounds. This is important for two reasons: (1) we want to invoke the simulation
security of the i-th static FE scheme for i < dlogQ∗e but we can only do this
if the ciphertext simulator S2 is not run for these static FE schemes, (2) the
running time of S2 could grow polynomially with the collusion bound q, thus
we should not invoke simulator algorithm S2 for i > dlogQ∗e as well (since for
say i = λ, the running time would be exponential in λ which would make the
dynamic simulator inefficient). Thus, even the ciphertext simulation is efficient
and the dynamic simulator is an admissible adversary with respect to static FE
challenger, therefore our dynamic FE simulator is both efficient and can rely on
simulation security of the underlying static FE schemes. The last phase of sim-
ulation (i.e., post-challenge key generation phase) works the same as the second
phase simulator (i.e., pre-challenge key generation phase) which is by running
S3 for all collusion bounds.

This completes a high level sketch. A complete proof is provided in our full
version [GGLW21].
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Remark 2 (non-adaptive simulation-security). If the underlying static-bounded-
collusion FE scheme only provides security against non-adaptive attackers (as
per Definition 6), then the resulting dynamic-bounded-collusion FE scheme is
also secure only against non-adaptive attackers (as per Definition 8).

4 Tagged Functional Encryption

In this work, we introduce the concept of tagged functional encryption where
the basic difference when compared to regular functional encryption systems is
that ciphertexts and secret keys are embedded with a tag value such that only
the ciphertexts and keys with the same tags can be combined during decryption.

Formally, a tagged FE scheme in the static collusion model for a set of tag
spaces I = {Iz}z∈N consists of the same four algorithms with following modifi-
cation to the syntax:

Setup(1λ, 1n, 1z, 1q)→ (mpk,msk). In addition to the normal inputs taken by a
static-bounded FE scheme, the setup also takes in a tag space index z, which
fixes a tag space Iz.

Enc(mpk, tg ∈ Iz,m ∈Mn)→ ct. The encryption also takes in a tag tg ∈ Iz to
bind to the ciphertext.

KeyGen(msk, tg ∈ Iz, f ∈ Fn)→ sktg,f . The key generation also binds the secret
keys to a fixed tag tg ∈ Iz.

Dec(sktg,f , ct)→ Rn. The decryption algorithm has syntax identical to a non-
tagged scheme.

Correctness and Efficiency. A tagged FE scheme tgfe is said to be correct if for
all λ, n, z, q ∈ N, every function f ∈ Fn, message m ∈ Mn, tag tg ∈ Iz, and
(mpk,msk)← Setup(1λ, 1n, 1z, 1q), we have that

Pr [Dec(KeyGen(msk, tg, f),Enc(mpk, tg,m)) = f(m)] = 1,

where the probability is taken over the coins of key generation and encryption
algorithms. And, it is said to be efficient if the running time of the algorithms
is a fixed polynomial in the parameters λ, n, q and z.

Security. The security definition is modelled in a similar fashion to the ordinary
static bounded collusion FE game with the difference that the adversary plays it
on multiple tg simultaneously and the simulator must simulate the ciphertexts
for every tag. In addition, the adversary is also allowed to make arbitrary many
secret key queries for all other tags. The formal definition follows.

Definition 9 (tagged-static-bounded-collusion simulation-security).
For any choice of parameters λ, n, q, z ∈ N, consider the following list of

stateful oracles S0,S1,S2 where these oracles simulate the FE setup, key genera-
tion, and encryption algorithms respectively, and all three algorithms share and
update the same global state of the simulator. Here the attacker interacts with the
execution environment E, and the environment makes queries to the simulator
oracles. Formally, the simulator oracles and the environment are defined below:
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S0(1λ, 1n, 1z, 1q) generates the simulated master public key mpk of the system,
and initializes the global state st of the simulator which is used by the next
two oracles.

S1(·, ·, ·), upon a call to generate secret key on a function-tag-value tuple (fi, tgi, µi),
where the function value is either µi = ⊥ (signalling that the adversary has
not yet made any encryption query on tag tgi), or (mtgi , tgi) has already
been queried for encryption (for some message mtgi), and µi = fi(m

tgi), the
oracle outputs a simulated key skfi,tgi .

S2(·, ·), upon a call to generate ciphertext on a tag-list tuple (tgi, Π
mtgi

), where

the list Πmtgi
is a possibly empty list of the form Πmtgi

=
(
(f

tgi
1 , f

tgi
1 (mtgi)),

. . . , (f
tgi
qpre , f

tgi
qpre(m

tgi))
)

(that is, contains the list of function-value pairs for
which the adversary has already received a secret key for), the oracle outputs
a simulated ciphertext cttgi .

ES1,S2(·, ·), receives two types of queries – secret key query and encryption query.
Upon a secret key query on a function-tag pair (fi, tgi), if (mtgi , tgi) has
already been queried for encryption (for some message mtgi) then E queries
key oracle S1 on tuple (fi, tgi, µi = fi(m

tgi)), otherwise it adds (fi, tgi) to
the its local state, and queries S1 on tuple (fi, tgi, µi = ⊥). And, it simply
forwards oracle’s simulated key skfi,tgi to the adversary.
Upon a ciphertext query on a message-tag pair (mi, tgi), if the adversary
made an encryption query on the same tag tgi previously, then the query is
disallowed (that is, at most one message query per every unique tag is per-
mitted). Otherwise, it computes a (possibly empty) list of function-value pairs

of the form Πmi =
(

(f
tgi
1 , f

tgi
1 (mtgi)), . . . , (f

tgi
qpre , f

tgi
qpre(m

tgi))
)

where (f
tgi
j , tgi)

are stored in E’s local state, and removes all such pairs (f
tgi
j , tgi) from its lo-

cal state. E then queries ciphertext oracle S2 on tuple (tgi, Π
mi), and simply

forwards oracle’s simulated ciphertext cttgi to the adversary.

A tagged functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said
to be tagged-statically-bounded-collusion simulation-secure if there exists a state-
ful PPT simulator Sim = (S0,S1,S2) such that for every stateful admissible PPT
adversary A, the following distributions are computationally indistinguishable:{

AKeyGen(msk,·,·),Enc(mpk,·,·)(mpk) :
(1n, 1q, 1z)← A(1λ)

(mpk,msk)← Setup(1λ, 1n, 1z, 1q)

}
λ∈N

≈c{
AE

S1,S2 (·,·)(mpk) :
(1n, 1q, 1z)← A(1λ)

mpk← S0(1λ, 1n, 1z, 1q)

}
λ∈N

where A is an admissible adversary if:

– A makes at most one encryption query per unique tag (that is, if the ad-
versary made an encryption query on some tag tgi previously, then making
another encryption query for the same tag is disallowed)
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– A makes at most q queries combined to the key generation oracles in the
above experiments for all tags tgi such that it also submitted an encryption
query for tag tgi.

Definition 10 (tagged-static-bounded-collusion non-adaptive simulation-
security). A tagged functional encryption scheme FE = (Setup,Enc,KeyGen,
Dec) is said to be tagged-statically-bounded-collusion non-adaptive simulation-
secure if, in the security game defined in Definition 9, the adversary is prohibited
from making any key queries on any particular tag in the post-challenge phase
(that is, if the adversary makes an encryption query w.r.t. tag tg, then it must
not make any more key queries on the same tag tg but can make key queries for
other tags).

5 Tagged to Weakly Optimal Static Collusion FE

In this section we show how to convert the our construction of Q-bounded tagged
FE to a weakly optimal statically secure functional encryption scheme with
collusion bound Q. The transformation is very similar to the transformation in
[AV19] that achieves linear complexity for any bounded-key FE scheme.

Let Q be the desired collusion bound for the static scheme. The transforma-
tion in [AV19] starts with Q instances of q-bounded statically secure FE, where
q is set to some polynomial in the security parameter. The setup parameters
are thus linearly bounded in Q. Encryption simply calls the base encrypt al-
gorithm (for the q-bounded collusion scheme) on each instance. Since the base
encryption scheme is for collusion bound q = poly(λ), one instance of encrypt
takes time polynomial in the security parameter and thus encrypt is linearly
bounded in Q. Key generation for a circuit C simply selects one of the instances
at random and outputs the key generated by the base scheme on this instance.
Correctness holds as the encrytor has encrypted for all possible instances. Secu-
rity fails only if, after giving out Q secret keys, the load on a particular instance
exceeds q = poly(λ) (which happens with only negligible probability via a simple
Chernoff argument).

The transformation has the drawback that the setup outputs Q instances and
thus all the algorithms depend linearly on Q. Our observation is thar if we start
with a tagged FE scheme instead, then we can compress the public and secret
parameters using the tag space by setting it proportional to the desired collusion
bound Q. Similarly the key generation algorithm takes in a single master public
key and master secret key and outputs one instance of the secret key. This helps
us satisfy the weakly optimal property. More formal details follow below.

5.1 Construction

Let tgfe = (TgFE.Setup,TgFE.Enc,TgFE.KeyGen,TgFE.Dec) be a bounded-collusion
tagged FE scheme for a family of circuit classes {Fn}n∈N, message spaces {Mn}n∈N,
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and tag space {Iz = {0, 1}z}z∈N. We use TgFE to build Static-FE a weakly-
optimal static-bounded-collusion FE scheme for the same function classes and
message spaces.

Setup(1λ, 1n, Q)→ (mpk,msk). The setup algorithm runs the TgFE setup algo-
rithm with the tag space of Iz = [2dlogQe] and collusion bound q = λ and
sets the master public-secret keys as

(mpk,msk)← TgFE.Setup(1λ, 1n, 1z = 1dlogQe, 1q = 1λ).

Notation. Here and throughout the paper, we represent dlogQe-bit tags as
elements over a larger alphabet [2dlogQe], and when we write u ← [Q] then
that denotes sampling u as a random integer between 1 and Q which can be
uniquely encoded as an dlogQe-bit tag.

KeyGen(msk, C)→ skC . It samples a tag u← [Q], key skC,u ← TgFE.KeyGen(msk,
u, C), and outputs skC = (skC,u, u).

Enc(mpk,m, 1Q)→ ct. It encrypts the message m for all possible tags, and out-
puts the ciphertext ct = (ct1, . . . , ctQ) where each sub-ciphertext is com-
puted as:

∀u ∈ [Q], ctu ← TgFE.Enc(mpk, u,m).

Dec(skC , ct)→ y. Let skC = (skC,u, u) and ct = (ct1, . . . , ctQ). The algorithm
outputs y ← TgFE.Dec(skC,u, ctu).

5.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows directly from the correctness of
the underlying TgFE scheme. For the efficiency, recall the requirements (Defi-
nition 4) which state that the Setup and KeyGen algorithms should be bound
by a polynomial in λ, n and logQ. Both Setup and KeyGen run TgFE.Setup and
TgFE.KeyGen once respectively. From the efficiency of these algorithms, we know
that the running time is poly(λ, n, dlogQe).

Our full security proof is described in the full version [GGLW21].

6 Upgrading Collusion Bound for Tagged FE

Now we show that a bounded-collusion tagged FE scheme where the collusion
bound can be any arbitrary polynomial can be generically built from a tagged FE
scheme that allows corrupting at most one key per unique tag (i.e., 1-bounded
collusion secure) by relying on the client server framework from [AV19]. The
ideas behind this transformation are based on the 1-bounded non-tagged FE to
Q-bounded non-tagged FE transformation from [AV19].

The client server framework is formally defined later in our full version
[GGLW21] for completeness. Intuitively, in the client server framework, there
is a single client and N servers. The computation proceeds in two phases, an
offline phase, where the client encrypts an input x of the protocol for N servers
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where u-th server gets x̂u. This is followed by an online phase which runs in Q
sessions for computation on circuits C1, . . . , CQ. In each session j ∈ [Q], client

delegates the computation of Cj by computing Ĉuj for u ∈ [N] and sending Ĉuj to
u-th server. Now S ⊆ [N] where |S| = p servers come online and for u ∈ S, u-th
server computes ŷuj ← Local(Ĉuj , x̂

u). Finally the S server send information back
to client who computes y ← Decode({ŷuj }u∈S , S) for each j ∈ [Q], to compute
Cj(x).

The transformation in [AV19] invokes N (polynomial in Q,λ) many instan-
tiations of the one bounded FE scheme. These N instances act like a separate
server in the client server framework. Encryption simply computes the encryp-
tion of each one bounded instance on the offline computation on the inputs, i.e.
encrypt under x̂u for u ∈ [N] under the one bounded FE algorithm. Key gener-
ation computes the online encryption of the circuits, Ĉu for u ∈ [N] and picks
a random subset S of size p and generates the secret keys on the 1 bounded in-
stance for circuit Local(Ĉu, ·) for u ∈ S. In our transformation, instead of having
N independent instances, we instead blowup the tag space for the one tagged
FE scheme and perform the key generation and encryption procedures very sim-
ilarly. The analysis of the correctness and security are very similar to [AV19],
except that in the 1TgFE security game (Definition 9), we allow the adversary
to request for multiple challenge ciphertexts (each on a different tag) and thus
the security proof is tweaked adequately.

The full construction and proof is described in our full version [GGLW21].

7 Building 1-Bounded Collusion Tagged FE from IBE

Here we construct a tagged FE scheme that achieves security in the 1-bounded
collusion model and, as we discussed in the previous section, this is sufficient to
build a general bounded-collusion tagged FE scheme. Our construction is itself
split into two components where first we have a simple construction using garbled
circuits and IBE while only achieving non-adaptive security, and later show how
to generically upgrade it to full adaptive security by relying on non-committing
encryption techiques. We quickly sketch our formal constructions here. Please
see the full version of our paper, [GGLW21], for the complete proofs.

7.1 Non-Adaptive 1-Bounded Tagged FE from Garbled Circuits
and IBE

The non-adaptive construction is a close adaptation of the traditional construc-
tion of 1-bounded FE from public key encryption and garbled circuits found
in [SS10,GVW12]. The idea is to simply encrypt all the wire labels of a garbling
of a universal circuit using IBE and only give out select IBE secret keys of the
wires corresponding to the circuit.

For simplicity, we assume that the functionality class Fn includes all circuits
of size n (the circuit description is n bits long).
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Setup(1λ, 1n, 1z)→ (mpk,msk). Sample an IBE master key pair as (ibe.pk, ibe.msk)←
IBE.Setup(1λ, 1z+dlogne+1), and output mpk = ibe.pk,msk = ibe.msk.
Notation. Here and throughout the paper, we use (b, i, tg) to denote the
(z + dlog ne+ 1)-bit identity, where b is a single bit, i encodes dlog ne)-bits,
and tg is encoded in the remaining z bits. Basically, each bit-index-tag tuple
is uniquely and efficiently mapped into the identity space.

Enc(mpk, tg,m ∈Mn)→ ct. Let U be the universal circuit for the family of size
n circuits on inputs in Mn (i.e., U(C,m) = C(m)). Now in the following
garble U(·,m) as (Û , {wi,b}i≤n,b∈{0,1})← GC.Garble(1λ,U), and encrypt the
labels as

∀i ∈ n, b ∈ {0, 1}, cti,b ← IBE.Enc(ibe.pk, (b, i, tg), wi,b)

It finally outputs ct = (Û , {cti,b}i≤n,b∈{0,1}).
KeyGen(msk, tg, C ∈ {0, 1}n)→ sktg,C . Let C[1], C[2], . . . C[n] denote the bit rep-

resentation of circuit C. It samples n IBE secret keys as ski = IBE.KeyGen(msk,
(C[i], i, tg)) for i ∈ [n], and outputs sktg,C = {ski}i∈[n].

Dec(sktg,C , ct)→ y. It parses the secret key and ciphertext as above. It first
decrypts the wire keys as wi,C[i] ← IBE.Dec(ski, cti,C[i]) for i ∈ [n], and then

outputs y = GC.Eval(Û , {wi,C[i]}i∈[n]).

7.2 Upgrading to Adaptive Security

We can transform any non-adaptive 1-bounded tagged FE scheme to an adap-
tive one using IBE. This is an analogue of the traditional method of using weak
non-committing encryption (which is constructable from plain public key en-
cryption) to make 1-bounded FE adaptive. Here, the encryption has two modes
— a ‘normal mode’, where the scheme functions like a normal public key/IBE
scheme, and a non-committing mode, where the encryptor can produce secret
keys which equivocate to any value. This enables us to delay simulating the
ciphertext of a adaptive key queries until the secret key is requested.

Setup(1λ, 1n, 1z)→ (mpk,msk). The setup algorithm runs the underlying tagged
FE and IBE setup algorithms as (natgfe.pk, natgfe.msk)← NATgFE.Setup(1λ,
1n, 1z), and (ibe.pk, ibe.msk)← IBE.Setup(1λ, 1z+dlogn

′e+1) where n′ denotes
the length of natgfe ciphertexts with the above parameters.
It outputs the master keys as (mpk,msk) = ((natgfe.pk, ibe.pk), (natgfe.msk,
ibe.msk)).
Notation. Here and throughout the paper, we use (b, i, tg) to denote the
(z+ dlog n′e+ 1)-bit identity, where b is a single bit, i encodes dlog n′e)-bits,
and tg is encoded in the remaining z bits. Basically, each bit-index-tag tuple
is uniquely and efficiently mapped into the identity space.

Enc(mpk, tg,m)→ ct. Let mpk = (natgfe.pk, ibe.pk). It encrypts m using tagged
FE as ct′ ← NATgFE.Enc(natgfe.pk, tg,m), and it encrypts ct′ bit-by-bit
under IBE as cb,j = IBE.Enc(ibe.pk, (b, j, tg), ct′[j]) for b ∈ {0, 1}, j ∈ [n′]. It
then outputs ct = {cb,j}b∈{0,1},j∈[n′].
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KeyGen(msk, tg, C ∈ {0, 1}n)→ sktg,C . Let msk = (natgfe.msk, ibe.msk). It sam-
ples n′ random bits b1, b2, . . . , bn′ ← {0, 1}, and computes secret keys for the
underlying systems as:

natgfe.sktg,C ← NATgFE.KeyGen(natgfe.msk, tg, C),

∀j ∈ [n′], ibe.skbj ,j ← IBE.KeyGen(ibe.msk, (bj , j, tg)).

And it outputs sktg,C = (natgfe.sktg,C , {(bj , ibe.skj,bj )}j∈[n′]).
Dec(sktg,C , ct)→ y. It parses the secret key and ciphertext as above. It first

decrypts the IBE ciphertexts as ct′[j] as IBE.Dec(ibe.skbj ,j , ctb,j) for j ∈ [n′],
and then computes y = NATgFE.Dec(natgfe.sktg,C , ct

′) where ct′[i] is the i-th
bit of ct′.
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