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Abstract. Property-preserving hash functions allow for compressing
long inputs x0 and x1 into short hashes h(x0) and h(x1) in a manner
that allows for computing a predicate P (x0, x1) given only the two hash
values without having access to the original data. Such hash functions
are said to be adversarially robust if an adversary that gets to pick x0
and x1 after the hash function has been sampled, cannot find inputs for
which the predicate evaluated on the hash values outputs the incorrect
result.
In this work we construct robust property-preserving hash functions for
the hamming-distance predicate which distinguishes inputs with a ham-
ming distance at least some threshold t from those with distance less than
t. The security of the construction is based on standard lattice hardness
assumptions.
Our construction has several advantages over the best known previous
construction by Fleischhacker and Simkin (Eurocrypt 2021). Our con-
struction relies on a single well-studied hardness assumption from lattice
cryptography whereas the previous work relied on a newly introduced
family of computational hardness assumptions. In terms of computa-
tional effort, our construction only requires a small number of modular
additions per input bit, whereas the work of Fleischhacker and Simkin
required several exponentiations per bit as well as the interpolation and
evaluation of high-degree polynomials over large fields. An additional
benefit of our construction is that the description of the hash function
can be compressed to λ bits assuming a random oracle. Previous work
has descriptions of length O(`λ) bits for input bit-length `.
We prove a lower bound on the output size of any property-preserving
hash function for the hamming distance predicate. The bound shows that
the size of our hash value is not far from optimal.
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1 Introduction

Efficient algorithms that compress large amounts of data into small digests that
preserve certain properties of the original input data are ubiquitous in computer
science and hardly need an introduction. Sketching algorithms [5], approximate
membership data structures [8], locality-sensitive hash functions [15], stream-
ing algorithms [20], and compressed sensing [11] are only a few among many
examples.

Commonly, these algorithms are studied in benign settings where no adver-
sarial parties are present. More concretely, these randomized algorithms usually
state their (probabilistic) correctness guarantees by quantifying over all inputs
and arguing that with high probability over the chosen random coins, the al-
gorithm will behave as it should. Importantly, the inputs to the algorithm are
considered to be independent of the random coins used.

In real world scenarios, however, the assumption of a benign environment
may not be justified and an adversary may be incentivized to manipulate a
given algorithm into outputting incorrect results by providing malicious inputs.
Adversaries that choose their inputs adaptively after the random coins of the
algorithm have been sampled, were previously studied in the context of sketching
and streaming algorithms [19, 14, 21, 10, 9, 6, 7, 12]. These works show that
algorithms which work well in benign environments are not guaranteed to work
well in the presence of adaptive malicious inputs and several algorithms with
security guarantees against malicious inputs were proposed.

The focus of this work are adversarially robust property-preserving hash
(PPH) functions recently introduced by Boyle, LaVigne, and Vaikuntanathan [9],
which allow for compressing long inputs x0 and x1 into short hashes h(x0) and
h(x1) in a manner that allows for evaluating a predicate P (x0, x1) given only
the two hash values without having access to the original data. A bit more
concretely, a PPH function for a predicate P : X ×X → {0, 1} is composed of
a deterministic compression function h : X → Y and an evaluation algorithm
Eval : Y ×Y → {0, 1}. Such a pair of functions is said to be adversarially robust
if no computationally bounded adversary A, who is given a random (h,Eval)
from an appropriate family, can find inputs x0 and x1, such that P (x0, x1) 6=
Eval(h(x0), h(x1)).

BLV constructed PPH functions that compress inputs by a constant factor for
the gap hamming predicate, which distinguishes inputs with very small hamming
distance from those with a large distance4. For inputs that have neither a very
small or very large distance, their construction provided no guarantees.

Subsequently Fleischhacker and Simkin [12] constructed PPH functions for
the exact hamming distance predicate, which distinguishes inputs with distance
at least t from those with distance less than t. Their construction compresses ar-
bitrarily long inputs into hash values of size O(tλ), where λ is the computational
security parameter. Unfortunately, their construction is based on a new family of

4 We do not care about the exact size of their gap, since we will focus on a strictly
stronger predicate in this work.
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computational assumptions, which is introduced in their work, meaning that the
security of their result is not well understood. From a computational efficiency
point of view, their construction is rather expensive. It requires O(`) exponenti-
ations for hashing a single `-bit long input and evaluating the predicate on the
hashes requires interpolating and evaluating high-degree polynomials over large
fields.

1.1 Our Contribution

In this work we present a new approach for constructing PPH functions for
the exact hamming distance predicate, which improves upon the result of Fleis-
chhacker and Simkin in several ways.

The security of our construction relies on a well-studied hardness assumption
from the domain of lattice-based cryptography. Both hashing an input and eval-
uating a predicate on hash values only involves fast operations, such as modular
additions, xor, and evaluating a few t-wise independent hash functions. The size
of our hash values is Õ(λ2t) bits. We present a lower bound of Ω(t log(`/t)) on
the size of the hash value of any PPH function for the exact hamming distance
predicate, showing that our result is not far from optimal.

Our hash functions can be described by a uniformly random bit string of
sufficient length. This means that, assuming a random oracle, these descriptions
can compressed into λ bits by replacing it with a short seed. This compression is
not applicable to the work of Fleischhacker and Simkin, since their hash function
descriptions are Θ(`λ)-long bit strings with a secret structure that is only known
to the sampling algorithm.

1.2 Technical Overview

Let x0 and x1 be two `-bit strings, which we would like to compress using a hash
function h in a manner that allows us to use h(x0) and h(x1) to check whether
d(x0, x1) < t, where d is the hamming distance and t is some threshold. We start
with a simple observation from the work of Fleischhacker and Simkin [12]. We
can encode bit strings x = x1x2 . . . x` into sets X = {2i− xi | i = 1, . . . , `} and
for x0, x1 ∈ {0, 1}` we have that d(x0, x1) < t, if and only if |X0 4X1| < 2t.
Thus, from now on we can focus on hashing sets and constructing a property-
preserving hash function for the symmetric set difference, which turns out to be
an easier task.

Conceptually, our construction is inspired by Invertible Bloom Lookup Tables
(IBLTs), which were introduced by Goodrich and Mitzenmacher [13]. This data
structure allows one to encode a set into an Õ(t) sketch with the following
properties: Two sketches can be subtracted from each other, resulting in a new
sketch that corresponds to an encoding of the symmetric set difference of the
original sets. If a sketch contains at most O(t) many set elements, then it can be
decoded with high probability, meaning that the elements within it can be fully
recovered.



4 Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin

Given this data structure, one could attempt the following construction of
a PPH function for the symmetric set difference predicate. Given an input set,
encode it as an IBLT. To evaluate the symmetric set difference predicate on two
hash values, subtract the two given IBLTs and attempt to decode the resulting
data structure. If decoding succeeds, then count the number of decoded elements
and check, whether it’s more or less than 2t. If decoding fails, then conclude that
the symmetric set difference is too large. The main issue with this construction
is that IBLTs do not provide any correctness guarantees for inputs that are
chosen adversarially. Thus, the main contribution of this work is to construct a
robust set encoding similar to IBLTs that remains secure in the presence of an
adversary.

Our robust set encoding is comprised of “random” functions ri : {0, 1}∗ →
{1, . . . , 2t} for i = 1, . . . , k and a “special” collision-resistant hash function A. To
encode a set X, we generate an initially empty k × 2t matrix H. Each element
x ∈ X is then inserted by adding A(x) in each row i to column ri(x) in H, i.e.,
H[i, ri(x)] = H[i, ri(x)] + A(x) for i = 1, . . . , k. To subtract two encodings, we
simply subtract the two matrices entry-wise. To decode a matrix back into a set,
we repeatedly look for entries in H that contain a single hash value A(x), i.e., for
cells i, j with |H[i, j]| = A(x) for some x, and peel them away. That is, whenever
we find such an entry, we find x corresponding to A(x) and then remove x from
all positions, where it was originally inserted in H. Then we repeat the process
until the matrix H is empty or until the process gets stuck, because no cell
contains a single set element by itself.

To prove security of our construction, we will show two things. First, we
will show that no adversary can find a pair of sets that have a small symmetric
set difference, where the peeling process will get stuck. Actually, we will show
something stronger, namely that such pairs do not exist with overwhelming
probability over the random choices of r1, . . . , rk. Secondly, we will need to show
that no (computationally bounded) adversary can find inputs, which decode
incorrectly. In particular, we will have to argue that the peeling process never
decodes an element that was not actually encoded, i.e., that the sum of several
hash values in some cell H[i, j] never looks like A(x) for some single set element
x. To argue that such a bad sum of hash values does not exist, one would need to
pick the output length of A too big in the sense that our resulting PPH function
would not be compressing. Instead, we will show that for an appropriate choice
of A these sums may exist, but finding them is hard and can be reduced to
the computational hardness of solving the Short Integer Solution Problem [4], a
well-studied assumption from lattice-based cryptography.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we will
use throughout this work. We denote by λ ∈ N the security parameter and by
poly(λ) any function that is bounded by a polynomial in λ. A function f in
λ is negligible, if for every c ∈ N, there exists some N ∈ N, such that for all
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λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function.
An algorithm is PPT if it is modeled by a probabilistic Turing machine with a
running time bounded by poly(λ).

We write ei to denote the i-th canonical unit vector, i.e. the vector of zeroes
with a one in position i, and assume that the dimension of the vector is known
from the context. For a row vector v, we write vᵀ to denote its transpose. Let
n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote by
|X| the size of X and by X 4 Y the symmetric set difference of X and Y , i.e.,
X4Y = (X ∪Y ) \ (X ∩Y ) = (X \Y )∪ (Y \X). We write x← X to denote the
process of sampling an element of X uniformly at random. For x, y ∈ {0, 1}n, we
write w(x) to denote the Hamming weight of x and we write d(x, y) to denote
the Hamming distance between x and y, i.e., d(x, y) = w(x⊕ y). We write xi to
denote the i-th bit of x.

2.1 Property-Preserving Hash Functions

The following definition of property-preserving hash functions is taken almost
verbatim from [9]. In this work, we consider the strongest of several different
security notions that were proposed in [9].

Definition 1 (Property-Preserving Hash). For a λ ∈ N an η-compressing
property-preserving hash function family Hλ = {h : X → Y } for a two-input
predicate requires the following three efficiently computable algorithms:

Sample(1λ)→ h is an efficient randomized algorithm that samples an efficiently
computable random hash function from H with security parameter λ.

Hash(h, x)→ y is an efficient deterministic algorithm that evaluates the hash
function h on x.

Eval(h, y0, y1)→ {0, 1}: is an efficient deterministic algorithm that on input h,
and y0, y1 ∈ Y outputs a single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for
0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 2 (Direct-Access Robustness). A family of PPH functions H =
{h : X → Y } for a two-input predicate P : X × X → {0, 1} is a family of
direct-access robust PPH functions if, for any PPT adversary A it holds that,

Pr

[
h← Sample(1λ);

(x0, x1)← A(h)
: Eval(h, h(x0), h(x1)) 6= P (x0, x1)

]
≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.
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Two-Input Predicates. We define the following two-input predicates, which
will be the main focus of this work.

Definition 3 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-
input predicate is defined as

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

2.2 Lattices

In the following we recall some lattice hardness assumptions and the relationships
between them. We start by revisiting one of the most well-studied computational
problems.

Definition 4 (Shortest Independent Vector Problem). For an approxi-
mation factor of γ := γ(n) ≥ 1, the (n, γ)-SIVP is defined as follows: Given
a lattice L ⊂ Rn, output n linearly independent lattice vectors, which have all
euclidean length at most γ · λn(L), where λn(L) is the minimum possible.

Starting with the celebrated work of Lenstra, Lenstra, and Lovász [16], a
long line of research works [1, 3, 2] has been dedicated to finding fast algorithms
for solving the exact and approximate shortest independent vector problem. All
existing algorithms for finding any poly(n)-approximation run in time 2Ω(n) and
it is believed that one can not do better asymptotically as is captured in the
following assumption.

Assumption 5. For large enough n, there exists no 2o(n)-time algorithm for
solving the (n, γ)-SIVP with γ = poly(n).

A different computationally hard problem that has been studied extensively
is the short integer solution problem.

Definition 6 (Short Integer Solution Problem). For parameters n,m, q,
β2, β∞ ∈ N, the (n,m, q, β2, β∞)-SIS problem is defined as follows: Given a
uniformly random matrix A ∈ Zn×mq , find s ∈ Zm with ‖s‖2 ≤ β2 and ‖s‖∞ ≤
β∞, such that Asᵀ = 0.

It was shown by Micciancio and Peikert that the difficulty of solving the SIS
problem fast on average is related to the difficulty of solving the SIVP in the
worst-case.

Theorem 1 (Worst-Case to Average-Case Reduction for SIS [17]). Let
n, m := m(n), and β2 ≥ β∞ ≥ 1 be integers. Let q ≥ β2 · nδ for some constant
δ > 0. Solving the (n,m, q, β2, β∞)-SIS problem on average with non-negligible
probability in n is at least as hard as solving the (n, γ)-SIVP in the worst-case
to within γ = max(1, β2 · β∞/q) · Õ (β2

√
n).
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Combining the above result with Assumption 5, we get the following corollary.

Corollary 2. Let n ∈ Θ(λ) and m = poly(λ) be integers, let β∞ = 2, and let
β2 =

√
m+ ν for some constant ν. Let q > β2 ·nδ for some constant δ > 0. If As-

sumption 5 holds, then for large enough λ, there exists no PPT adversary that
solves the (n,m, q, β2, β∞)-SIS problem with non-negligible (in λ) probability.

3 Robust Set Encodings

In this section, we define our notion of robust set encodings. The encoding trans-
forms a possibly large set into a smaller sketch. Given two sketches of sets with
a small enough symmetric set difference, one should be able to decode the sym-
metric set difference. The security of our encodings guarantees that no computa-
tionally bounded adversary can find a pair of sets where decoding either returns
the incorrect result or fails even though the symmetric set difference between
the encoded sets is small.

Definition 7 (Robust Set Encodings). A robust set encoding for a universe
U is comprised of the following algorithms:

Sample(1λ, t)→ f is an efficient randomized algorithm that takes the security
parameter λ and threshold t as input and returns an efficiently computable
set encoding function f sampled from the family E.

Encode(f,X)→ y is an efficient deterministic algorithm that takes set encoding
function f and set X ⊂ U as input and returns encoding y.

Decode(f, y0, y1)→ X ′/⊥ is an efficient deterministic algorithm that takes set
encoding function f and two set encodings y0, y1 as input and returns set X ′
or ⊥.

We denote by LenE : N × N → N the function that describes the length of the
encoding for a given security parameter λ and threshold t. For any two sets
X0, X1 we use X ′ ← Diff(f,X0, X1) as a shorthand notation for

X ′ ← Decode(f,Encode(f,X0),Encode(f,X1)).

We say a set encoding is robust, if for any PPT adversary A and any threshold
t ∈ N it holds that,

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}

∨ (|X0 4X1| < t ∧X ′ = ⊥)

 ≤ negl(λ),

where the probability is taken over the random coins of the adversary A and
Sample.
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Sample(1λ, t)

foreach i ∈ [k]

ri ←R.Sample(1λ)

R := (r1, . . . , rk)

A← Zn×mq

return f := (R,A)

Encode(f,X)

H := (0n)k×2t ∈ (Znq )k×2t

foreach x ∈ X
foreach i ∈ [k]

H[i, ri(x)] := H[i, ri(x)] +Aeᵀx

return y := H

Decode(f,H0, H1))

H := H0 −H1

X ′ := ∅
do

Z :=

(x,w)

∣∣∣∣∣∣∣
∃(i, j) ∈ [k]× [2t].

∧H[i, j] = w

∧ w ∈ {Aeᵀx,−Aeᵀx}


X ′ := X ′ ∪ {x | ∃w. (x,w) ∈ Z}
H := Peel(f,H,Z)

while Z 6= ∅

if H = (0n)k×2t

return X ′

else

return ⊥

Peel(f,H,Z)

foreach (x,w) ∈ Z
foreach i ∈ [k]

H[i, ri(x)] := H[i, ri(x)]− w
return H

Fig. 1. Construction of a robust set encoding for universe [m].

3.1 Instantiation

In this section we construct a set encoding for universe [m] with m = poly(λ)
by modifying Invertible Bloom Lookup Tables [13] to achieve security against
adaptive malicious inputs. Since we are only encoding polynomially large sets and
can leverage the cryptographic hardness of the SIS problem, we can get away with
only maintaining a matrix of hash values in our sketch and we do not require the
additional counter or value fields that were present in the original construction
of Goodrich and Mitzenmacher. Refer to Figure 1 for a full description of the
construction. Before we prove that the construction is a robust set encoding we
will first prove a few of its properties that will be useful in the following.

The following lemma effectively states that given the difference of two en-
codings there will always be a least one element that can can be peeled if the
symmetric set difference is small enough.

Lemma 3. Let R be a family of t-wise independent hash functions r : [m]→ [2t]
and let k ≥ 2 log3/em. With probability at least 1−2−Ω(k), it simultaneously holds
for all sets T ⊆ [m] with 0 < |T | ≤ t that there is at least one x ∈ T and one
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index i ∈ [k] such that ri(x) 6= ri(y) for all y ∈ T \ {x}. Here the probability is
taken over the random choice of the ri’s.

Proof. Let E denote the event that there is a set T with 0 < |T | ≤ t such that
for all x ∈ T and all i ∈ [k], there is a y ∈ T \ {x} with ri(x) = ri(y). We show
that Pr[E] is small. The proof follows from a union bound over all T ⊆ [m] with
2 ≤ |T | ≤ t. So fix one such T . Let ET denote the event that there is no i ∈ [k]
and x ∈ T such that ri(x) 6= ri(y) for all y ∈ T \ {x}. Then by a union bound,
we have

Pr[E] ≤ Pr
[⋃
T⊆[m]

ET

]
≤
∑
T⊆[m]

Pr[ET ].

To bound Pr[ET ], notice that conditioned on ET , the number of distinct hash
values |{ri(x) | x ∈ T}| for the ith hash function is at most |T |/2, as every hash
value is hit by either 0 or at least 2 elements from T . Now define an event ET,S
for every k-tuple S = (S1, . . . , Sk) where Si is a subset of |T |/2 values in [k]. The
event ET,S occurs if ri(x) ∈ Si for every x ∈ T and every i ∈ [k]. If ET happens
then at least one event ET,S happens. Thus

Pr[ET ] ≤ Pr
[⋃
S

ET,S ] ≤
∑
S

Pr[ET,S ].

To bound Pr[ET,S ], notice that by t-wise independence, the values ri(x) are
independent and fall in Si with probability exactly |T |/(2 · 2t). Since this must
happen for every i and every x ∈ T , we get that Pr[ET,S ] ≤ (|T |/(4t))|T |k and
Pr[ET ] ≤

(
2t
|T |/2

)k
(|T |/(4t))|T |k. A union bound over all T gives us Pr[E] ≤∑t

j=2

(
m
j

)(
2t
j/2

)k
(j/(4t))jk. Using the bound

(
n
k

)
≤ (en/k)k for all 0 ≤ k ≤ n and

the bound
(
m
j

)
≤ mj , we finally conclude:

Pr[E] ≤
t∑

j=2

(
m

j

)(
2t

j/2

)k
(j/(4t))jk

≤
t∑

j=2

mj(4et/j)jk/2(j/(4t))jk

=

t∑
j=2

mj(e/3)jk/2(3j/(4t))jk/2

For k ≥ 2 log3/em we have (e/3)k/2 ≤ 1/m. The above is thus bounded by

Pr[E] ≤
t∑

j=2

(3j/(4t))jk/2

≤
t∑

j=2

(3/4)jk/2
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For any k ≥ 2, the terms in this sum go down by a factor at least 4/3 and thus
is bounded by 2−Ω(k). ut

In the next lemma we show that correctly peeling one layer of elements
during decoding leads to a state that is equivalent to never having inserted
those elements in the first place.

Lemma 4. For any security parameter λ, any threshold t, any encoding function
f ← Sample(1λ, t), any pair of subsets X0, X1 ⊆ [m] and any set

Z ⊆ {(x,Aeᵀx) | x ∈ X0 \X1} ∪ {(x,−Aeᵀx) | x ∈ X1 \X0}

and X := {x | ∃w. (x,w) ∈ Z} it holds that

Peel(Encode(f,X0)−Encode(f,X1), Z) = Encode(f,X0\X)−Encode(f,X1\X).

Proof. Let Hb := Encode(f,Xb), H ′b := Encode(f,X ′b\X) and H := Peel(f,H0−
H1, Z) For any (i, j) ∈ [k]× [2t], let Si,j = {x ∈ [m] | ri(x) = j}. Then for each
(i, j) ∈ [k]× [2t] we have

H[i, j] =H0[i, j]−H1[i, j]−
∑

x∈X∩Si,j

Z(x) (1)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩Si,j

Z(x) (2)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩X0∩Si,j

Z(x) −
∑

x∈X∩X1∩Si,j

Z(x) (3)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩X0∩Si,j

Aeᵀx +
∑

x∈X∩X1∩Si,j

Aeᵀx (4)

=
∑

x∈(X0\X)∩Si,j

Aeᵀx −
∑

x∈(X1\X)∩Si,j

Aeᵀx (5)

=H ′0[i, j]−H ′1[i, j], (6)

where we denote by Z(x) the unique value w such that (x,w) ∈ Z. Equations 1
and 2 follow from the definitions of Peel and Encode respectively. Equations 3
and 5 follow from the fact that X is a subset of the symmetric set difference of
X0 and X1. Equation 4 follows from the fact that w = (−1)bAeᵀx iff x ∈ Xb.
Finally, Equation 6 follows again from the definition of Encode. ut

The following lemma essentially states that during the decoding process we
will never peel an element that is not in the symmetric set difference and all
elements will be peeled correctly, i.e., the decoding algorithm correctly identifies
whether an element is from X0 or from X1.

Lemma 5. For an encoding function f ← Sample(1λ, t) and two sets X0, X1,
let Z1, Z2, . . . denote the sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X1)).
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Let further Xc
b = Xb\{y | ∃w. (y, w) ∈ Z1∪· · ·∪Zc−1}. If the (n,m, q,

√
m+ 3, 2)-

SIS problem is hard, then for any PPT algorithm A, it holds that

Pr

[
f := Sample(1λ, t);

(X0, X1)← A(f)
∃c. Zc 6⊆

{(x,Aeᵀx) | x ∈ Xc
0 \Xc

1}
∪{(x,−Aeᵀx) | x ∈ Xc

1 \Xc
0}

]
≤ negl(λ).

Proof. Let A be an arbitrary PPT algorithm with

Pr

[
f := Sample(1λ, t);

(X0, X1)← A(f)
∃c. Zc 6⊆

{(x,Aeᵀx) | x ∈ Xc
0 \Xc

1}
∪{(x,−Aeᵀx) | x ∈ Xc

1 \Xc
0}

]
= ε(λ).

We construct an algorithm B that solves (n,m, q,
√
m+ 3, 2)-SIS as follows.

B receives as input a random matrix A ∈ Zn×mq , samples ri ← R for i ∈
[k] and invokes A on f = (A, (r1, . . . , rk)). Once A outputs X0, X1, B runs
H0 := Encode(f,X0) and H1 := Encode(f,X1) and then starts to execute
Decode(f,H0, H1). Let Zc denote the set Z in the c-th iteration of the main
loop of Decode. In each iteration, if

Zc 6⊆ {(x,Aeᵀx) | x ∈ Xc
0 \Xc

1} ∪ {(x,−Aeᵀx) | x ∈ Xc
1 \Xc

0},

then B stops the decoding process and proceeds as follows.
Let Si,j = {x ∈ [m] | ri(x) = j}. By definition of Z, there must exists at

least one element (x,w) ∈ Zc, such that

H[i, j] = (−1)bAeᵀx and x 6∈ Xc
b \Xc

1−b (7)

for some cell (i, j) and some bit b. B identifies one such cell by exhaustive search
and outputs the vector

s :=
∑

y∈Xc
0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey − (−1)bex.

If the decoding procedure terminates without such a Zc occurring, B outputs
⊥.

To analyze the success probability of B, consider that by Lemma 4 and since
Zc is the first set in which an element as specified above exists, we have that
H = Encode(f,X ′0)− Encode(f,X ′1), i.e.

(−1)bAeᵀx = H[i, j] =
∑

y∈Xc
0∩Si,j

Aeᵀy −
∑

y∈Xc
1∩Si,j

Aeᵀy

Thus, whenever B outputs a vector s, it holds that Asᵀ = 0. Furthermore,
this vector consists of the sum of at most m unique canonical unit vectors and
one additional canonical unit vector. This implies that ‖s‖2 ≤

√
m+ 3 and

‖s‖∞ ≤ 2. It remains to argue that s is non-zero. The vector s is zero, iff∑
y∈Xc

0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey = (−1)bex.
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Observe that, since we are summing up canonical unit vectors, this can hold
only if x ∈ Xc

b \Xc
1−b. However, by Equation 7 this does not occur, therefore s

is non-zero.
We can conclude that B solves (n,m, q,

√
m+ 3, 2)-SIS, with probability ε(λ).

Since (n,m, q,
√
m+ 3, 2)-SIS is assumed to be hard, ε(λ) must be negligible. ut

The following lemma states that with overwhelming probability the decoding
process will output either ⊥ or a subset of the symmetric set difference, even for
maliciously chosen sets X0, X1.

Lemma 6. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT

adversary A it holds that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ 6= ⊥ ∧ X ′ 6⊆ X0 4X1

 ≤ negl(λ)

Proof. Let Z1, Z2, . . . denote the sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X0)).

If an algorithm outputs X0, X1, such that X ′ 6⊆ X0 4X1, there must exist an
x ∈ X ′ such that

x′ 6∈ X0 4X1 = (X0 \X1) ∪ (X1 \X0).

Since X ′ := {x | ∃w. (x,w) ∈ Z1 ∪ . . . }, this can only happen with negligible
probability by Lemma 5. ut

The following lemma states that with overwhelming probability the decoding
process will never output a strict subset of the symmetric set difference, even
for maliciously chosen sets X0, X1.

Lemma 7. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT

adversary A it holds that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ ( X0 4X1

 ≤ negl(λ)

Proof. Let A be a PPT an adversary for the above experiment. We construct
an adversary B against (n,m, q,

√
m+ 3, 2)-SIS as follows. B is given matrix A,

samples ri ← R for i ∈ [k] and invokes A on f = (A, (r1, . . . , rk)). Adversary
A returns X0 and X1 and B computes X ′ := Diff(f,X0, X1). If X ′ ( X0 4X1,
then B computes X ′b = Xb \X ′ for b ∈ {0, 1} and finds an index i, j such that
there exists an x ∈ X ′0 4X ′1 with ri(x) = j. B returns

s :=
∑

y∈X′
0∩Si,j

ey −
∑

y∈X′
1∩Si,j

ey.
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Since every canonical unit vector appears at most once in the sum above, it
follows that ‖s‖2 ≤

√
m and ‖s‖∞ = 1. Further, since, by construction, there

exists at least one y ∈ (X ′0 ∩ Si,j)4 (X ′1 ∩ Si,j) it follows that s 6= 0.
To analyze the probability that Asᵀ = 0 we consider the following. Let

H ′ be the value of the matrix H when the decoding procedure terminates. By
Lemma 5 and Lemma 4 it holds with overwhelming probability that H ′ = H ′0−
H ′1 = Encode(f,X ′0) − Encode(f,X ′1). However, since the decoding terminates
successfully, it must also hold that H ′ = (0n)k×2t. It follows that for all i, j, we
have H ′0[i, j]−H ′1[i, j] = 0 and therefore As = 0 with overwhelming probability.
Since (n,m, q,

√
m+ 3, 2)-SIS is assumed to be hard the lemma follows. ut

By combining Lemma 6 and Lemma 7 we obtain the following corollary
stating that with overwhelming probability the decoding process will output
either the correct symmetric set difference or the error symbol ⊥.

Corollary 8. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT

adversary A it holds that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ 6∈ {X0 4X1,⊥}

 ≤ negl(λ)

The following lemma states that with overwhelming probability the decoding
process will not output ⊥ if the symmetric set difference is small.

Lemma 9. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT

adversary A it holds that

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: |X0 4X1| < t ∧X ′ = ⊥

 ≤ negl(λ)

Proof. Let A be an arbitrary PPT algorithm. By Lemma 5 and Lemma 4
it holds that in each iteration c we have H = Hc,0 − Hc,1, where Hc,b =
Encode(f,Xc,0, Xc,1) and Xc,b = Xb \ {x | ∃w. (x,w) ∈ Z1 ∪ · · · ∪ Zc−1}. Since
it must hold that |X0 4X1| < t it in particular holds that |Xc,0 4Xc,1| < t in
each iteration. By Lemma 3, in each iteration where Xc,1 4 Xc,2 6= ∅ it holds
that Zc 6= ∅ with overwhelming probability. Therefore, the decoding process ter-
minates after at most t steps, with X ′ = X0 4X1. Since each peeling step was
correct with overwhelming probability it must hold that H = (0n)k×2t. ut

Given the above lemmas, we can now easily prove the following theorem.

Theorem 10. Let R be a family of t-wise independent hash functions r : [m]→
[2t] and let k ≥ max{λ, 2 log3/em}. Then the construction in Figure 1 is a robust
set encoding for universe [m] if the (n = n(λ),m, q,

√
m+ 3, 2)-SIS problem is

hard.
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Sample(1λ)

f ← E .Sample(1λ, 2t)

return h := f

Hash(h, x)

X := {2i− xi | i ∈ [`]}
y := E .Encode(h,X)

return y

Eval(h, y0, y1)

X ′ := E .Decode(h, y0, y1)
if X ′ = ⊥ or

∣∣X ′∣∣ ≥ 2t

return 1

else

return 0

Fig. 2. A family of direct-access robust PPHs for the predicate HAMt over the domain
{0, 1}` for any ` ∈ N.

Proof. Let A be an arbitrary PPT algorithm, using Corollary 8, Lemma 9 and
a simple union bound we can conclude that

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}
∨ (|X0 4X1| < t ∧X ′ = ⊥)


≤ Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: X ′ 6∈ {X0 4X1,⊥}


+ Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: |X0 4X1| < t ∧X ′ = ⊥


≤ negl(λ).

Remark 1. Instantiated as specified, the construction has keys that consist of k
many t-wise independent hash functions and a matrix A ∈ Zm×nq , leading to a
key length of kt · logm+mn · log q. Note that the entire key can be represented
by a public uniformly random kt · logm + mn · log q bit string. Assuming the
existence of a random oracle, this string can be replaced by a short λ bit seed.

4 Construction

In this section we construct property-preserving hash functions for the exact
hamming distance predicate based on robust set encodings.

4.1 PPH for the Hamming Distance Predicate

Theorem 11. Let ` = poly(λ) and t ≤ `. Let E be a robust set encoding for
universe [2`] with encoding length LenE . Then, the construction in Figure 2 is a
LenE(λ, 2t)/`-compressing direct-access robust property-preserving hash function
family for the two-input predicate HAMt and domain {0, 1}`.
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Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H. We construct an adversary B against the robustness of E as follows. Upon
input e, B invokes A on input h := f . When A outputs x0, x1, B outputs
X0 := {2i − x0,i | i ∈ [`]} and X1 := {2i − x1,i | i ∈ [`]}. We note that it holds
that

Pr

[
h← Sample(1λ);

(x0, x1)← A(h)
: Eval(h, h(x0), h(x1)) 6= HAMt(x0, x1)

]
(8)

=Pr


f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
y0 := E .Encode(f,X0);

y1 := E .Encode(f,X1)

: Eval(f, y0, y1) 6= HAMt(x0, x1)

 (9)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(d(x0, x1) ≥ t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(d(x0, x1) < t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))

 (10)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(|X0 4X1| ≥ 2t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(|X0 4X1| < 2t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))


(11)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:

(|X0 4X1| ≥ 2t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(|X0 4X1| < 2t ∧X ′ 6= ⊥ ∧ |X ′| ≥ 2t)

∨(|X0 4X1| < 2t ∧X ′ = ⊥)

 (12)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(X ′ 6= ⊥ ∧ |X0 4X1| 6= |X ′|)
∨(|X0 4X1| < 2t ∧X ′ = ⊥)

 (13)

≤Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}
∨(|X0 4X1| < 2t ∧X ′ = ⊥)

. (14)

(15)

Here Equation 9 follows from the definition of Sample and Hash and Equation 10
follows from the definition of Eval as well as the exact hamming distance predi-
cate. Equation 11 follows from the definition of the sets X0, X1: for each position
i where the x0,i = x1,i, the sets share an element, whereas for every position
where x0,i 6= x1,i, one of them contains the element 2i and the other 2i− 1, thus
d(x0, x1) = t ⇐⇒ |X04X1| = 2t. Equations 12 and 13 follow by first splitting
the bottom clause and then rewriting the top two clauses.

Finally, since E is a robust set encoding it holds by assumption that the
probability in Equation 14 is negligible and the theorem thus follows.
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Corollary 12. Instantiating the construction from Figure 2 using the robust
set encoding from Section 3 with k = n = λ and q =

√
λ(2`+ 3) leads to a

2tkn log q
` = tλ2 log(λ(2`+3))

` compressing PPH for exact hamming distance.

5 Lower Bound

In this section, we show a lower bound on the output length of a PPH for exact
Hamming distance. We prove the lower bound by reduction from indexing. In
the indexing problem, there are two parameters k and m. The first player Alice
is given a string x = (x1, . . . , xm) ∈ [k]m, while the second player Bob is given
an integer i ∈ [m]. Alice sends a single message to Bob and Bob should output
xi. The following lower bound holds:

Lemma 13 ([18]). In any one-way protocol for indexing in the joint random
source model with success probability at least 1−δ over a uniform random string x
and uniform random index i, Alice must send a message of size Ω((1−δ)m log k−
m) in expectation.

Here the joint random source model means that Alice and Bob have shared
randomness that is drawn independently of their inputs. Note that we have
strengthened the lemma a bit over the original result, to allow the failure prob-
ability to be “on average” over a uniform random index. The proof of the above
lemma is very short using modern techniques:

Proof. Let X = (X1, . . . , Xm) be a uniform random string over [k]m and let
I be a uniform random index in [m]. Let R be a random variable giving the
shared randomness between Alice and Bob (independent of their inputs) drawn
from some universe R of finite bit strings. Let π : [k]m × R → {0, 1}∗ give
Alice’s message in a protocol and let τ : {0, 1}∗ × [m] × R → [k] be Bob’s
decoding. That is, π(X,R) is Alice’s message and τ(π(X,R), I, R) is Bob’s out-
put. Assume PrX,I,R[τ(π(X,R), I, R) = XI ] ≥ 1 − δ. For every i ∈ [m], let
δi = PrX,R[τ(π(X,R), i, R) 6= Xi]. Then

∑m
i=1 δi/m ≤ δ. Thus given Alice’s mes-

sage π(X,R), Bob may reconstruct Xi except with probability δi by computing
τ(π(X,R), i, R). By Fano’s inequality, this implies that H(Xi | π(X,R), R) ≤
Hb(δi) + δi log k ≤ 1 + δi log k (here Hb(·) denotes binary entropy). There-
fore, we have H(X | π(X,R), R) ≤

∑m
i=1 1 + δi log k ≤ m + δm log k. But

H(X | R) = m log k. Thus H(π(X,R)) ≥ H(π(X,R) | R) ≥ I(X;π(X,R) |
R) = H(X | R)−H(X | R, π(X,R)) ≥ (1− δ)m log k −m. Since the entropy of
a bit string is no more than its expected length, the lower bound follows.

Using the above lemma, we prove the following lower bound:

Theorem 14. Any PPH for the exact Hamming distance predicate on `-bit
strings with threshold t and success probability at least 1 − δ(This means that
the direct access robustness error is at most δ.), must have an output length of
Ω((1− δ)(t− 1) log(`/t)− t) bits.
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Proof. Assume that there exists a PPH-family H for the predicate HAMt and
input length ` with t ≤ ` and direct robustness error at most δ. Let s denote the
output length of H. We then use H to solve indexing with parameters k = b`/tc
and m = t − 1. When Alice receives a string x ∈ [k]m, she constructs a binary
string y consisting of m chunks of k bits. If mk < `, she pads this string with 0’s.
Each chunk in y has a single 1 in position xi and 0’s elsewhere. She then computes
the hash value h(y), where h is sampled from H using joint randomness, and
sends it to Bob, costing s bits.

From his index i ∈ [m], Bob constructs k bit strings z1, . . . , zk of length `, such
that zj has a 1 in the position corresponding to the j’th position of the i’th chunk
of y, and 0 everywhere else. He then computes the hash values h(z1), . . . , h(zk)
(using the joint randomness to sample h) and runs Eval(h, h(y), h(zj)). Bob
outputs as his guess for xi, an index j, such that Eval(h, h(y), h(zj)) = 0. Notice
that the Hamming distance between zj and y is m + 1 ≥ t if j 6= xi and it
is m − 1 < t otherwise. Thus if all k evaluations are correct, Bob succeeds in
reporting xi. The probability that all evaluations are correct is at least 1 − δ,
since otherwise an adversary could break the direct access robustness of H with
probability greater than δ by sampling x and i uniformly at random, simulating
the above protocol, checking for which zj the evaluation is correct and outputting
y, zj . Thus, Bob is correct with probability at least 1 − δ. By Lemma 13, we
conclude s = Ω((1− δ)(t− 1) log(`/t)− t).

Remark 2. We note that for δ = negl(λ), t > 2, and ` > 4t the lower bound
from Theorem 14 simplifies to Ω(t log(`/t)).
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