
Round-Optimal Black-Box Protocol Compilers

Yuval Ishai1, Dakshita Khurana2, Amit Sahai3, and Akshayaram Srinivasan4

1 Technion
2 UIUC
3 UCLA

4 Tata Institute of Fundamental Research

Abstract. We give black-box, round-optimal protocol compilers from
semi-honest security to malicious security in the Random Oracle Model
(ROM) and in the 1-out-of-2 OT correlations model. We use our com-
pilers to obtain the following results:

– A two-round, two-party protocol secure against malicious adversaries
in the random oracle model making black-box use of a two-round
semi-honest secure protocol. Prior to our work, such a result was
not known even considering special functionalities such as a two-
round oblivious transfer. This result also implies the first construc-
tions of two-round malicious (batch) OT/OLE in the random oracle
model based on the black-box use of two-round semi-honest (batch)
OT/OLE.

– A three-round multiparty secure computation protocol in the ran-
dom oracle model secure against malicious adversaries that is based
on the black-box use of two-round semi-honest OT. This protocol
matches a known round complexity lower bound due to Applebaum
et al. (ITCS’20) and is based on a minimal cryptographic hardness
assumption.

– A two-round, multiparty secure computation protocol in the 1-out-
of-2 OT correlations model that is secure against malicious adver-
saries and makes black-box use of cryptography. This gives new
round-optimal protocols for computing arithmetic branching pro-
grams that are statistically secure and makes black-box use of the
underlying field.

As a contribution of independent interest, we provide a new variant of the
IPS compiler (Ishai, Prabhakaran and Sahai, Crypto 2008) in the two-
round setting, where we relax requirements on the IPS “inner protocol”
by strengthening the “outer protocol”.

1 Introduction

Minimizing the round complexity of cryptographic protocols in the presence of
malicious parties has been a major theme of research in recent years. While most
feasibility questions have been answered, there are still big efficiency gaps be-
tween known round-optimal protocols and their best counterparts with security
against semi-honest parties.



This line of research produced many innovative ideas for bridging the ef-
ficiency gap in special cases of interest. For instance, Peikert et al. [33] pro-
posed concretely efficient 2-round oblivious transfer (OT) protocols under sev-
eral standard assumptions. Other concretely efficient 2-round OT protocols were
proposed in [26, 27]. Chase et al. [10] and Branco et al. [7] designed such pro-
tocols for oblivious linear evaluation (OLE), a natural arithmetic extension of
OT. Recent techniques improve the efficiency of 2-round protocols in the batch
setting, where multiple instances of OT or OLE are generated together [6, 5]. In
all these cases, efficiently obtaining security against malicious parties (without
resorting to general-purpose NIZK) requires ingenious ideas that are carefully
tailored to the structure of the underlying primitives. In some cases, this requires
using more aggressive (and sometimes nonstandard) flavors of the assumptions
that underlie the semi-honest protocols. For instance, Boyle et al. [5] present
a communication-efficient 2-round “batch-OT” protocol, realizing polynomially
many instances of OT, with semi-honest security based on the Learning Parity
with Noise (LPN) assumption. In the case of malicious security, they present
a similar protocol in the random oracle model, but require a stronger leakage-
resilient variant of LPN.

The goal of this work is to propose new general techniques for bridging the
“semi-honest vs. malicious” gap without increasing round complexity, without
strengthening the underlying assumptions, and without significantly hurting con-
crete efficiency. A clean theoretical model for capturing the latter is a black-box
construction. Such a construction builds a malicious-secure protocol by using
an underlying semi-honest protocol as an oracle. The latter restriction ensures
that the efficiency gap does not depend on the complexity or structure of the
semi-honest protocol. This paradigm has been successfully applied not only in
the context of theoretical feasibility results, but also in the context of concretely
efficient protocols. Indeed, black-box constructions can typically be optimized
to have a very low overhead, at least in an amortized sense.

There is a large body of research on such black-box constructions, including
a black-box construction of constant-round honest-majority secure computation
from one-way functions [11] (replacing an earlier non-black-box construction
from [4]), a black-box construction of malicious-secure OT from semi-honest
OT [18] or trapdoor permutations [29] (replacing a non-black-box construction
of [17]), and a black-box construction for OT extension [20] (replacing the earlier
non-black-box protocol [3]).

One major shortcoming of most previous black-box constructions is that they
inherently increase the round complexity. In particular, they cannot be used to
obtain 2-round protocols. Thus, the main question we ask is:

Can we construct round-optimal black-box transformations from semi-honest
secure protocols to malicious secure variants?

The recent work of [19], building upon the IPS compiler of [24], made partial
progress towards settling the question. In particular, it gave a round-preserving
black-box compiler that relies on a random OT correlation setup in the 2-party
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case, or a more complex correlated OT setup in the multiparty case. Two sig-
nificant caveats are that the underlying semi-honest protocol should satisfy: (i)
semi-malicious security;5 and (ii) adaptive security with erasures, a limitation
inherited from [24]. This latter property is typically easy to achieve by increasing
the round complexity. However, it poses a major challenge in the 2-round setting.
While natural two-round protocols in the OT-hybrid model already satisfy the
adaptive security requirement, standard 2-round protocols in the plain model,
including semi-honest OLE or batch-OT protocols, do not.

The above state of affairs raises the following natural questions: Can we elim-
inate the adaptive security requirement? Can we eliminate the setup completely,
or replace it by a standard OT setup in the multiparty case?

Since we are targeting 2-round protocols with security against malicious ad-
versaries, we cannot hope to obtain results in the plain model. But since the aim
of achieving black-box protocols is efficiency, this raises the natural question:
can we build such round-preserving black-box protocol compilers in the random
oracle model?

1.1 Our Results

In this work, we tackle both kinds questions: eliminating the adaptive security
requirement and eliminating the need for correlated randomness completely in
the random oracle model. In the multiparty case, we also address the goal of
replacing the complex correlation setup from [19] by standard OT correlations.
We now give a more detailed account of our results.

Round-Preserving Compilers in the OT Correlations Model. In the
case of two-party protocols in the OT correlations model, we remove the need
for adaptive security with erasures and obtain the following result.

Informal Theorem 1 There exists a black-box compiler from any two-round
semi-malicious two-party protocol to a two-round malicious two-party computa-
tion protocol given a setup that consists of random 1-out-of-2 OT correlations
(alternatively, Rabin-OT correlations).

See Theorem 3 for a formal statement. As in the case of the IPS compiler [24],
the functionality f ′ realized by the semi-malicious protocol may depend on the
target functionality f we want the malicious protocol to realize. From a feasibility
point of view, it suffices to consider a semi-malicious protocol for OT (which can
be used in parallel to realize f ′ via Yao’s protocol [34]). But when f is a “simple”
functionality such as batch-OT6 or batch-OLE, we can in fact use f ′ that consists
of only a constant number of instances of f .

5 Semi-malicious security is a strengthening of semi-honest security where the adver-
sary is allowed to choose the random tape of the corrupted parties in an arbitrary
manner before the protocol begins. In the context of 2-round protocols, most (but
not all) natural semi-honest protocols also satisfy this stronger security property.

6 Batch-OT is not trivialized in the OT correlations model because the number of
OTs in this setup is a fixed polynomial in the security parameter.
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We note that the required setup is minimal in the sense that both the number
of random OT correlations and their size only depend on the security parameter
and not on the circuit being computed. Moreover, recent techniques for effi-
cient “silent” OT extension [6] can make the setup reusable without additional
interaction.

To obtain this result, we build a new version of the black-box protocol com-
piler of [24], where we replace the outer protocol with one that can be simpler
and more efficient than the state-of-the-art [23] protocol previously used in this
setting. Besides eliminating the need for adaptive security from the semi-honest
MPC protocol, the improved outer protocol may be of independent interest.

However, our primary contribution (that also uses the techniques developed
above) is the construction of round-optimal compilers in the Random Oracle
model, as we discuss next.

Round-Preserving Compilers in the Random Oracle Model. The semi-
malicious to malicious protocol compilers, described above, rely on OT corre-
lations to perform cut-and-choose (using the watchlists mechanism introduced
in [24]). Our key contribution in this work is to remove the need for watch-
lists/OT correlations, and to instead give a novel adaptation of the Fiat-Shamir
paradigm in the Random Oracle model to perform the watchlist function. This
gives rise to new round-optimal malicious secure protocols in the random oracle
model from black-box use of semi-honest secure protocol.7

The Two-Party Setting. We obtain the following results in the two-party
setting. Here, non-interactive secure computation (NISC) denotes a two-round
2-party secure computation protocol for general functionalities where only one
party obtains an output. A two-sided non-interactive secure computation (NISC)
denotes a two-round 2-party secure computation protocol for general function-
alities where both parties obtain an output.

Informal Theorem 2 (BB Malicious NISC) There exists a construction of
NISC with malicious security in the random oracle model that makes black-box
use of NISC with semi-honest security.

Informal Theorem 3 (BB Malicious 2-sided NISC) In the random ora-
cle model, there exists a construction of two-sided NISC with malicious security
that makes black-box use of two-sided NISC with semi-honest security.

As before, the functionality computed by the semi-honest protocol depends
on the target functionality computed by the malicious protocol. For the case of
simple functionalities such as (batch)-OT and (batch)-OLE, these two functions
are identical. The formal statement of the transformation in the random oracle

7 In the random oracle model, we additionally remove the need for semi-malicious
security.
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model can be found in Theorem 2 and its extension to the two-sided setting
appears in Section 5.3.

We note that [28] also used the Fiat-Shamir transform to collapse the number
of rounds of a NISC protocol but their final protocol was not two-round and their
assumptions were stronger than semi-honest two-round, two-party computation
(specifically, they needed homomorphic commitments and two-round malicious
secure OT protocol). Finally, NISC with semi-honest security can be obtained
based on the black-box use of any two-round semi-honest oblivious transfer (OT)
protocol, by relying on Yao’s garbled circuits [34]. This implies the following
corollaries of Informal Theorem 2:

Informal Corollary 1 There exists a construction of two-round OT with mali-
cious security in the random oracle model that makes black-box use of two-round
OT with semi-honest security.

Informal Corollary 2 There exists a construction of two-round OLE/batch
OT/batch OLE respectively with malicious security in the random oracle model
that makes black-box use of two-round OLE/batch OT/batch OLE respectively
with semi-honest security.

Prior to our work, the only known construction of two-round malicious OLE
relied on specialized assumptions such as N th residuosity [10] or LWE [7]. The
black-box constructions of OT required assumptions stronger than semi-honest
security in the random oracle model [26, 27] or in the plain model [13] (such as
strongly uniform key agreement).

Protocol Compilers in the Multi-Party Setting. In the multiparty setting,
we give a construction of a three round protocol in the random oracle model that
makes black-box use of the minimal cryptographic hardness assumption which
is a two-round semi-honest OT protocol.

Informal Theorem 4 There exists a construction of three-round MPC with
malicious security in the random oracle model that makes black-box use of two-
round OT with semi-honest security.

The formal statement can be found in Theorem 4. Applebaum et al.[1] showed
that even considering only semi-honest security such a protocol is round-optimal
(in the random oracle model). A recent work of Patra and Srinivasan [32] gave
a construction of a three-round malicious secure protocol from any two-round
oblivious transfer that satisfied a certain form of adaptive security on the receiver
side. In this work, we construct a malicious secure protocol by relying only a two-
round semi-honest OT (in the random oracle model).

As an additional contribution, we show how to remove the complex multi-
party watchlist correlations setup from the work of [19] and replace it with a
simple 1-out-of-2 random OT correlations setup. As a corollary, this gives the
first constructions of statistical secure protocols against malicious adversaries
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for computing arithmetic branching programs making black-box use of the un-
derlying field in the OLE correlations model. The formal statement appears in
Theorem 5.

2 Technical Overview

In this section, we describe the key ideas and techniques used in the construction
of our protocol compilers.

2.1 IPS Compiler

The starting point of our work is the black-box compiler given by Ishai, Prab-
hakaran, and Sahai [24] (henceforth, referred to as the IPS compiler). This com-
piler transforms a semi-honest secure protocol (with certain special properties)
into a malicious secure protocol. The (simplified version of the) IPS compiler
for computing a function f in the two-party setting consists of the following
components:
– A client-server MPC protocol for computing f that is secure against any

malicious adversary corrupting an arbitrary subset of the clients and a con-
stant fraction of the servers. Such a protocol, requiring only two rounds,
was constructed by Ishai, Kushilevitz, and Paskin [23] (see also [30]) making
black-box use of a PRG. This protocol is referred to as the outer protocol.

– A semi-honest secure8 protocol where the functionality computed by this
protocol is the computation done by the servers in the outer protocol. This
is referred to as the inner protocol.
In the IPS compiler, each party takes the role of a client in the outer MPC

protocol and generates the first round messages to be sent to the servers. The
computation performed by the servers in the outer protocol is emulated by the
inner protocol. Specifically, we run m instances of the inner protocol (where m
is the number of servers) in parallel. In the i-th instance, the parties use as input
the messages to be sent to the i-th server and use the inner protocol to compute
the functionality of the i-th server. At the end of this emulation, the parties
can obtain the second round message generated by each server from the inner
protocol and finally, compute the output of f using the output decoder of the
outer protocol.

If the adversary cheats in an instance of the inner protocol, then this cheating
translates to a corruption of the corresponding server in the outer protocol.
However, a malicious adversary can cheat in all the inner protocol instances,
thereby breaking the security of each one of them. Note that the outer protocol
is only guaranteed to be secure as long as a constant fraction of the servers are
corrupted. To ensure this property, the IPS compiler uses a special “cut-and-
choose” mechanism referred to as watchlists.

8 The IPS compiler required this semi-honest protocol to satisfy a variant of adaptive
security with erasures property and we will come back to this point soon.
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The simplest version of watchlist mechanism involves a Rabin-OT channel
with a carefully chosen erasure probability. For each of the m executions of
the inner protocol, each party sends its input, randomness pair used in that
particular execution to the other party via the Rabin OT channel. The other
party then checks if the input, randomness pair for the executions it received via
the channel is consistent with the transcript seen so far and aborts the execution
if it detects any inconsistency. The erasure probability of the Rabin-OT channel
is chosen in such a way that:

– The adversary cannot learn the private inputs of the honest parties from the
information it receives via the Rabin-OT channel.

– If the adversary cheats in more than a constant fraction of the inner protocol
instances, then with overwhelming probability this cheating is detected via
an inconsistency by the honest party.

Thus, the watchlist mechanism ensures that a malicious adversary that cheats
in more than a constant fraction of the inner protocol executions is caught and
this allows us to argue the security of the compiled protocol against malicious
adversaries.

Need for Adaptive Security of the Inner Protocol. As mentioned earlier, in the
IPS compiler, it is not sufficient for the inner protocol to satisfy standard semi-
honest security. We actually need the inner protocol to satisfy so-called “semi-
malicious” security with a certain variant of adaptive security with erasures.
As already noted in [24], it is possible to replace semi-malicious security with
standard semi-honest security using additional rounds. However, the need for
adaptive security with erasure seems somewhat inherent in the proof of security.
In the two-round setting, which is the primary focus of this work, this security
requirement translates to a natural property of the receiver called as equivocal
receiver security [15]. Specifically, we require the existence of an equivocal sim-
ulator that can equivocate the first round message of the receiver to any input.
Before proceeding further, let us give some more details on why is equivocality
property is needed in the security proof.

Consider an adversary that corrupts the sender and cheats in a small number
of inner protocol instances. The number of such cheating executions is small
enough so that it goes undetected by the watchlist mechanism. At the point
of generating the first round message from the receiver, we do not know in
which executions the adversary is planning to cheat, as the receiver sends its
message before the sender. Only after receiving the message from the adversary,
we realize that in some executions the adversary has cheated, thereby breaking
the security of the inner protocol. Hence, we need to equivocate the first round
receiver message in these cheating executions to the actual receiver input so that
we can derive the same output that an honest receiver obtains.

We note that this property could be added generically to certain types of pro-
tocols such two-round semi-honest oblivious transfer. However, it is not known
how to add this property to general protocols by making black-box use of cryp-
tography. Even for special cases such as Oblivious Linear Evaluation (OLE), we
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do not know of any method to add this property to natural semi-honest OLE
instantiations.

2.2 A New Compiler: Removing Equivocality

In this work, we give a new IPS-style compiler in the two-round setting where
the inner protocol need not satisfy the equivocal receiver message property.

Strengthening the Outer Protocol. Our main idea to achieve this is to strengthen
the requirements from the outer MPC protocol. Namely, we show that if the
outer protocol satisfies a certain output error-correction property, then we do
not need equivocal receiver security from the inner protocol. Our output error-
correction property requires that for all choices of second round messages from
the (few) corrupted servers, the output of the honest receiver remains the same.
Indeed, we can substitute the outputs of those cheating executions with any
default value and still we are guaranteed to obtain the same output as that of
an honest receiver. This removes the need to equivocate the first round message
of the receiver for the executions where the adversary is cheating and instead,
we can rely on any semi-malicious inner protocol. The main question we are now
tasked with solving is to construct an outer protocol in the client-server setting
that runs in two rounds and satisfies the output error-correction property.

Barriers. We first observe that if the outer protocol satisfies guaranteed output
delivery, then it satisfies the error correction property as well. Unfortunately,
Gennaro et al. [16] showed that in the two round setting, if more than one party
is corrupted, then it is impossible to construct protocols that have guaranteed
output delivery. Indeed, we do not know of any ways to bypass this impossibility
result even to achieve the weaker goal of error correction.

Pairwise Verifiable Adversaries. To overcome this barrier, we show that it is
sufficient to achieve error correction against a restricted class of adversaries,
that we call pairwise verifiable. In this model, the adversary that is corrupting
either one of the two clients and a constant fraction of the servers is forced to
send a first round message from the corrupted client to the honest servers such
that these messages pass a specified pairwise predicate check. Namely, there is a
predicate that takes the first round messages sent to any two servers and outputs
either accept or reject. We require the first round messages sent by the adversary
to each pair of honest servers to pass this predicate check. However, the first
round messages sent between corrupted servers or between a honest server and
a corrupted server need not satisfy the pairwise verification check. Addition-
ally, second round messages from corrupted servers can be generated arbitrarily.
We show that once we restrict the adversary to be pairwise verifiable, we can
construct extremely efficient outer protocols that also satisfy output error cor-
rection. In particular, we show that the semi-honest secure protocol from [21] is
secure against pairwise verifiable adversaries if we replace the plain Shamir secret
sharing with a bi-variate Shamir secret sharing. The error correction property of
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this construction can be shown by viewing Shamir secret sharing as an instance
of the Reed-Solomon error correcting codes.

Why is security against Pairwise Verifiable Adversaries sufficient? We now ex-
plain why this weaker security notion is sufficient to instantiate the IPS compiler
for two rounds. To see why this is the case, we modify the watchlist mechanism
checks so that it not only checks if the pair of input and randomness it received
via the Rabin-OT channel is consistent with the transcript, but also checks if
the inputs (a.k.a. the first round messages sent to the servers) pass the pairwise
verification check. Using standard statistical arguments, we show that if all the
inputs received via the Rabin-OT channel pass the pairwise verification check,
then a large fraction of the other messages also pass the pairwise verification
checks. This translates to the adversary only corrupting a small fraction of the
servers and we can rely on the security of the outer protocol against pairwise
verifiable adversaries.

Instantiating the Rabin-OT Channel. We now explain how to instantiate a
Rabin-OT channel if we have access to 1-out-of-2 OT correlations:

1. We first transform the 1-out-2 OT correlations non-interactively to 1-out-of-p
correlations. Such a transformation is implicit in the work of [8].

2. We then use the transformation described in [24, Section 2] to convert 1-
out-of-p random OT correlations into a single round Rabin OT protocol
with erasure probability 1− 1/p.

We show that such a rational erasure probability is sufficient to instantiate
the IPS compiler.

2.3 Protocol Compiler in the Random Oracle Model

To give a compiler in the random oracle model, we first observe that the Rabin
OT channel can be replaced with a k-out-of-m OT channel (for an appropriate
choice of k) and the same arguments go through. Our key idea here is to replace
the k-out-of-m OT channel with the Fiat-Shamir transformation [12] applied
using a random oracle. Specifically, we require both parties to additionally send
a non-interactive and extractable commitment to their input and randomness
used in each of the inner protocol instances9. In each round, we require the
party sending the message to hash the transcript seen so far along with the
messages generated in this round to obtain a set of executions (called the opened
executions) of size k. The party, in addition to sending the messages of the
inner protocol instances in that particular round, must also reveal the input–
randomness pair (via an opening of the commitments) for the opened executions.
The other party checks if the openings are correct, if the random oracle output is
correctly computed, if the input–randomness pair in the opened executions are

9 Such a commitment can be constructed unconditionally in the random oracle
model [31].
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consistent with the transcript seen so far, and if the pairwise consistency checks
pass.

In the security proof, we rely on the correlation-intractability of the random
oracle [9] to show that if the adversary cheats in more than a constant fraction
of the inner protocol instances, then with overwhelming probability the opened
executions will intersect with the cheating executions. This will therefore be
detected by the honest party forcing it to abort. In our proof of security, we also
rely on the programmability of the random oracle to pre-determine the set of
opened executions of the honest parties.

Relying on a Semi-Honest Secure Protocol. We observe that in the random oracle
model, it is sufficient for the inner protocol to satisfy semi-honest security rather
than semi-malicious security. Specifically, the random tape used by each party in
an instance of the inner protocol is set to be the output of the random oracle on
the party index, the instance number, and a randomly chosen salt. This ensures
that even if the salt is not uniformly random, the adversarial parties will query
the random oracle on different inputs which implies that the outputs obtained
from the oracle will be uniform and uncorrelated.

2.4 Two-Sided NISC

In the protocol compiler described earlier, at the end of the second round, the
receiver obtains the output of the two-party functionality whereas the sender
does not obtain any output. To extend this protocol to the setting where both
parties get the output (called the two-sided NISC setting [19]), we cannot use the
näıve idea of running the one-sided protocol in parallel but in opposite directions.
Specifically, nothing prevents a cheating adversary from using inconsistent inputs
in both these executions, thereby, breaking the security of the overall protocol.
To prevent this attack, we further refine the IPS compiler methodology. We
modify the first round commitments/message sent via the Rabin-OT channel to
include the inputs and the randomness used on both sides of the inner protocols.
In the opened/non-erased executions, in addition to the checks that are already
performed, each party checks if the inputs used on both sides are the same and
if it is not the case, then the honest parties abort. This prevents the adversary
from using inconsistent inputs in “many” instances of the inner protocol, and if
that is the case, we can rely on the security of the outer protocol to show that
this adversary does not learn any additional information about the honest party
inputs.

2.5 The Multiparty Setting

In extending the above ideas to the multiparty setting, we face two main chal-
lenges:

1. First, we do not know of any two-round black-box inner protocol in the
semi-honest setting (and indeed [1] gave some barriers). Moreover, in ex-
isting three-round protocols [32], if the adversary cheats in generating the
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first round message, then the adversary can recover the private inputs of
the honest parties. Thus, we need the first message in the (3-round) inner
protocol to satisfy a certain form of adaptive security with erasures even if
the outer protocol has the output error correction property.

2. Recall that to use the security of the semi-honest inner protocol, we need to
additionally give the simulator the power to program the random tape of the
corrupted parties in some intermediate hybrids. Note that in our compiler we
rely on the random oracle to perform this programming. However, a cheating
adversary on behalf of a corrupted party i could query the random oracle on
many different salts where the first two parts of the query are fixed to the
same i and instance number j. It could then use the output of any one of these
queries as the random tape in the j-th inner protocol instance. A natural
idea to deal with this is to choose one of these queries uniformly at random
and “embed” the programmed random tape as the output of the chosen
query. The hope is that the adversary chooses this particular query with
non-negligible probability and we can use this to come up with a reduction
that breaks the security of the inner protocol. But this idea quickly runs into
trouble in the multiparty setting as the adversary could potentially corrupt
an arbitrary subset of the parties, and we require the adversary on behalf
of each malicious party to correctly choose this embedded query. This only
happens with probability that is exponential in n (where n is the number of
parties) and is not sufficient to break the security of the inner protocol.

To solve the first issue, we show how to add the required equivocal properties
to the protocol of [32] in a black-box manner relying only on two-round semi-
honest OT. This allows us to use it as the inner protocol and instantiate the IPS
compiler.

To solve the second issue, we rely on the fact that the semi-honest secure pro-
tocol in [32] has a special structure. Namely, it is a parallel composition of a sub-
protocol that computes a special functionality called 3MULTPlus. Importantly,
for this discussion it is sufficient to note that 3MULTPlus is a three-party func-
tionality. The security of the composed protocol is argued via a hybrid argument
where we switch each one of these sub-protocols for computing the 3MULTPlus
functionality to the ideal world. Now, relying on this special structure, we show
that in the intermediate hybrids, it is sufficient to program the random tapes of
the corrupted parties that participate in a single instance of the sub-protocol.
Since the number of such parties is only a constant, we can show that adversary
chooses the “correct” random oracle outputs with non-negligible probability and
this allows us to provide a reduction that breaks the security of the sub-protocol.

3 Preliminaries

Let λ denote the cryptographic security parameter. We assume that all cryp-
tographic algorithms implicitly take 1λ as input. A function µ(·) : N → R+ is
said to be negligible if for any polynomial poly(·), there exists λ0 such that for
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all λ > λ0, we have µ(λ) < 1
poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function.
We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are compu-

tationally indistinguishable if for every non-uniform PPT distinguisher D there
exists a negligible function negl(·) such that |Pr[D(1λ, Xλ) = 1]|−Pr[D(1λ, Yλ) =
1]| ≤ negl(λ).

3.1 Semi-Honest Two-Round Two-Party Computation

We now give the syntax and definition for a two-round semi-honest two-party
computation protocol.

Syntax. Consider two parties, a sender with input y and a receiver with input
x. Let f be an arbitrary two-party functionality. A two-party protocol Π for
computing f is given by a tuple of algorithms (Π1, Π2, outΠ). Π1 is run by the
receiver and takes as input 1λ and the receiver input x and outputs (π1, sk).
The receiver sends π1 to the sender in the first round. Π2 is run by the sender
and it takes as input 1λ, π1, and the sender input y and outputs π2. The sender
sends π2 to the receiver in the second round. The receiver then runs outΠ on
inputs π2 and sk and obtains the output z. Let ViewR(〈R(1λ, x), S(1λ, y)〉) and
ViewS(〈R(1λ, x), S(1λ, y)〉) be the views of the receiver and the sender during
the protocol interaction with inputs x and y respectively. Here, View of a party
(either the sender or the receiver) includes its private input, its random tape,
and the transcript of the protocol. The protocol Π satisfies the definition given
below.

Definition 1 (Semi-Honest Security). A two-round, two-party protocol Π =
(Π1, Π2, outΠ) is said to securely compute f against semi-honest adversaries if
it satisfies the following properties:
– Correctness: For every receiver’s input x and for every sender input y, we

have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk)← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
– Security: There exists a simulator SimΠ such that for any receiver’s input
x and sender’s input y, we have:

ViewS(〈R(1λ, x), S(1λ, y)〉) ≈c (y, r,SimΠ(1λ, R, y))

ViewR(〈R(1λ, x), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where the random tape r of the sender/receiver in the second distribution is
uniformly chosen.

Remark 1. In the standard definition of semi-honest security, SimΠ is allowed
to additionally set the random tape of the corrupted receiver. Here, we consider
a slightly stronger definition where the random tape of the corrupted receiver
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is chosen uniformly and this is provided as input to SimΠ and SimΠ is required
to produce the transcript of the protocol. We note that this definition is im-
plied by the standard definition whenever f is reverse sampleable. Specifically,
given (x, f(x, y)), if there is an efficient algorithm I that outputs some y′ s.t.
f(x, y) = f(x′, y′) then the weaker definition implies the stronger definition de-
scribed above. Indeed, for most natural functionalities, such as Oblivious Trans-
fer (OT), Oblivious Linear Evaluation (OLE), their batched versions, batch-OT
and batch-OLE, there exists such a reverse sampler, and the above definition is
satisfied by all semi-honest secure protocols.

3.2 Semi-Malicious Two-Round Two-Party Computation

Semi-Malicious security [2] is a strengthening of the semi-honest security defini-
tion where we additionally allow the adversary to choose the random tape of the
corrupted party arbitrarily. However, the adversary is restricted to follow the
protocol specification. Such an adversary is called as a semi-malicious adversary.
A two-round semi-malicious secure two-party protocol has the same syntax of a
semi-honest protocol and satisfies the definition given below.

Definition 2 (Semi-Malicious Security). A two-round, two-party protocol
Π = (Π1, Π2, outΠ) is said to securely compute f against semi-malicious adver-
saries if it satisfies the following properties:

– Correctness: For every receiver’s input x and for every sender input y, we
have:

Pr[outΠ(π2, sk) = f(x, y)] = 1

where (π1, sk)← Π1(1λ, x) and π2 ← Π2(1λ, π1, y).
– Security: There exists a simulator SimΠ such that for any semi-malicious

adversary A corrupting either the sender or the receiver and for any re-
ceiver’s input x, sender’s input y and for any random tape r, we have:

ViewA(〈R(1λ, x),A(1λ, y)〉) ≈c ViewA(〈R(1λ,0),A(1λ, y)〉)

ViewA(〈A(1λ, x), S(1λ, y)〉) ≈c (x, r,SimΠ(1λ, S, (x, r), f(x, y)))

where 0 is a default input.

3.3 Extractable Commitments in ROM

In our protocol compilers, we make use of non-interactive, straight-line ex-
tractable commitments in the random oracle model. Namely, the commitments
are computationally hiding and straight-line extractable by observing the queries
that the adversary makes to the random oracle. Such commitments were con-
structed in [31].
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3.4 Pairwise Verifiable Secret Sharing

Consider a linear t-out-of-m threshold secret sharing scheme where the secrets
are over a finite field F and the shares are over another finite field F′. We use +
and · to denote the addition and multiplication operations over both the fields.

Definition 3 (Pairwise Verifiable Predicate). A predicate P is a pairwise
verifiable predicate if it takes a threshold t, two indices j, k ∈ [m] and the pur-
ported j-th and k-th shares xj and xk and outputs 1/0. Further, if P (t, j, k, (xj , xk))
= 1 and P (t, j, k, (x′j , x

′
k)) = 1, then P (t, j, k, (xj + x′j , xk + x′k)) = 1 and

P (2t, j, k, (xj · x′j , xk · x′k)) = 1.

In the main body, we also extend the definition of the pairwise verifiable
predicate P to take in a vector of pair of shares and apply the above pairwise
check for each pair.

Definition 4 (Pairwise Verifiable and Error Correctable Secret Shar-
ing). A t-out-of-m threshold linear secret sharing scheme (Share(t,m),Rec(t,m))
is said to be k-multiplicative and `-error-correctable w.r.t. pairwise predicate P
if:

1. k-Multiplicative: Given m shares of elements x1, . . . , xk arranged as a ma-
trix M of k rows and m columns, the row vector obtained by computing the
product of each column of M is a kt-out-of-m secret sharing of x1 ·x2 . . . ·xk.

2. Pairwise Verifiable Error Correction: Let T be a subset of [m] of size at
most `. Let (x1, . . . , xm) be arbitrary elements such that for any threshold t′ ≤
kt and for any j, k ∈ [m] \ T , P (t′, j, k, xj , xk) = 1. Then, for any {xi}i∈T ,
Rec(t′,m)({xi}i∈T , {xi}i 6∈T ) = Rec(t′,m)({xi}i∈T , {xi}i 6∈T ) = x. Furthermore,
there exists an efficient procedure Extrapolate that on input t′, {xi}i 6∈T out-
puts {x′i}i∈T such that ({xi}i 6∈T , {x′i}i∈T ) belongs to supp(Share(t′,m)(x)).

We note that the above definition of pairwise verifiable secret sharing is the
same as the one given in [23] except that We note that bivariate Shamir secret
sharing is a t-out-of-m secret sharing scheme that is k-multiplicative and `-error
correctable as long as m ≥ kt+ 2`+ 1.

4 Two-Round Client-Server Protocol with Pairwise
Verifiability

In this section, we give a construction of a two-round, pairwise verifiable MPC
protocol in the client-server model. We start with the Definition of this protocol
in Section 4.1.

4.1 Definition

Syntax. Let f be an arbitrary n-party functionality. Consider the standard client-
server MPC setting [11] with n clients and m servers. A two-round protocol
Φ = (Share,Eval,Dec) for computing a function f in this model has the following
syntax:
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– Share(1λ, i, xi) : It outputs a set of shares (xi1, . . . , x
i
m) along with a verifica-

tion key vki.
– Eval(j, (x1j , . . . , x

n
j )) : It outputs a string φj .

– Dec(i, vki, (φ1, . . . , φm)) : It outputs a string z or the special symbol ⊥.
In the first round of the protocol, each client i ∈ [n] runs the algorithm Share

on its private input xi and obtains a set of shares (xi1, . . . , x
i
m) and a verification

key vki. It then sends xij as the first round message to the j-th server for each
j ∈ [m]. In the second round, each server j ∈ [m] runs the Eval algorithm on
the first round messages received from each client and obtains the string φj . A
subset of the clients are designated as output clients in the protocol. The j-th
server sends φj to each of the output clients in the second round. To obtain the
output, each output client i runs Dec on its verification key vki and the second
round messages received from all the servers to obtain the output z.

Security Definition. Below we provide the security definition of a client-server
MPC protocol that is pairwise verifiable w.r.t. predicate P .

Definition 5 (Admissible Adversary). Let P be a pairwise predicate that
takes a client index i ∈ [n], two server indices j, k ∈ [m], the first round mes-
sage (xij , x

i
k) sent by the i-th client to the servers j and k and outputs 1/0. An

adversary A corrupting a subset of the clients and up to t servers is said to be
admissible w.r.t. pairwise predicate P if for every honest pair of servers j, k and
every corrupted client i, the output of the predicate P on input (i, j, k, (xij , x

i
k))

is 1.

Definition 6 (Pairwise Verifiable MPC). Let f be a n-party functionality.
A protocol Φ = (Share,Eval,Dec) is a two-round, n-client, m-server pairwise
verifiable MPC protocol for computing f against t server corruptions if there
exists a pairwise predicate P such that:

1. Error Correction: If A is any admissible adversary (see Definition 5)
w.r.t. P corrupting a subset T (where |T | ≤ t) of the servers and for any
two sets of second round messages {φj}j∈T and {φj}j∈T and for any honest

client i ∈ [n], Dec(i, vki, {φj}j 6∈T , {φj}j∈T ) = Dec(i, vki, {φj}j 6∈T , {φj}j∈T )
where {φj}j 6∈T are the second round messages generated by the honest servers
in the interaction with A and vki is the verification key output by Share
algorithm.

2. Security: For any admissible adversary A (see Definition 5) w.r.t. P cor-
rupting a subset of the clients and (adaptively) corrupting upto t servers,
there exists an ideal world simulator SimΦ such that for any choice of inputs
of the honest clients, the following two distributions are computationally in-
distinguishable:
– Real Execution. The admissible adversary A interacts with the hon-

est parties who follow the protocol specification. The output of the real
execution consists of the output of the admissible adversary A and the
output of the honest output clients.
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– Ideal Execution. This corresponds to the ideal world interaction where
SimΦ and the honest client have access to the trusted party implementing
f . Each honest client sends its input to f and each honest output client
outputs whatever the trusted functionality sends back. For every honest
output client, SimΦ sends a special instruction to the trusted functionality
to either give the output of f to the output client or the special symbol
⊥. The output of the ideal execution corresponds to the output of SimΦ

and the output of all the honest outputs clients.

We state the main theorem about constructing pairwise verifiable MPC pro-
tocol and defer the proof to the full version.

Theorem 1. Let (Share(t,m),Rec(t,m)) be a t-out-of-m, 4-multiplicative, t-error-
correctable secret sharing scheme w.r.t. pairwise predicate P (see Definition 4).
Let f be an arbitrary n-party functionality. Then, there exists a construction of
an n-client, m-server pairwise verifiable MPC protocol for computing f against
t server corruptions (see Definition 6) that makes black-box use of a PRF. Fur-
thermore, Eval algorithm does not perform any cryptographic operations. The
computational cost of the protocol is polynomial in the circuit size of f , the se-
curity parameter 1λ, and the number of parties.

5 Black-Box Protocol Compilers in the Two-Party
Setting

In this section, we give our black-box protocol compilers to construct round-
optimal malicious-secure protocols in the two-party setting. In Section 5.1, we
give our compiler in the random oracle model. In Section 5.2, we give our compiler
in the OT correlations model. Finally, in Section 5.3, we show how to extend
these compilers to give a round-optimal, malicious-secure, two-party protocol in
the two-sided setting.

5.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a black-box compiler that transforms from any two-
round semi-honest two-party protocol to a two-round malicious secure protocol
in the random oracle model. We state the formal theorem statement below.

Theorem 2. Let f be an arbitrary two-party functionality. Assume the existence
of:
– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,

Eval,Dec) for computing f against t server corruptions (see Definition 6).
– A two-round semi-honest protocol Πi = (Πi,1, Πi,2, outΠi) for each i ∈ [m]

(see Definition 1) where Πi computes the function Eval(i, ·).
Then, there exists a two-round protocol Γ for computing f that makes black-
box use of {Πi}i∈[n] and is secure against static, malicious adversaries in the
random oracle model. The communication and computation costs of the protocol
are poly(λ, |f |), where |f | denotes the size of the circuit computing f .
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Instantiating the pairwise verifiable MPC protocol from Theorem 1, we get
the following corollary.

Corollary 1. Let f be an arbitrary two-party functionality. There exists a two-
round protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and is
secure against static, malicious adversaries in the random oracle model. The
communication and computation costs of the protocol are poly(λ, |f |), where |f |
denotes the size of the circuit computing f .

In Section 5.1, we describe the construction of the above malicious-secure
protocol and in section 5.1, we give the proof of security.

Construction We start with the description of the building blocks used in the
construction.

Building Blocks. The construction makes use of the following building blocks.

1. A protocol Φ = (Share,Eval,Dec) that is a two-round, 2-client, m-server pair-
wise verifiable MPC protocol w.r.t. predicate P for computing the function f
against t server corruptions (see Definition 6). We set t = 4λ and m = 6t+1.

2. An two-round semi-honest inner protocol Πi = (Πi,1, Πi,2, outΠi
) for each

i ∈ [m] (see Definition 1) where Πi computes the function Eval(i, ·) (i.e., the
function computed by the i-th server).

3. A non-interactive, straight-line extractable commitment (Com,Open). Such
a commitment scheme can be constructed unconditionally in the random
oracle model (see Section 3.3).

4. Two hash functions H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ → Sm,λ that are
modelled as random oracles where Sm,λ is the set of all subsets of [m] of size
λ.

Description of the Protocol. Let P0 be the receiver that has private input x0 and
P1 be the sender that has private input x1. The common input to both parties
is a description of a two-party function f . We give the formal description of a
two-round, malicious-secure protocol for computing f in Figure 1.

Proof of Security Let A be the malicious adversary that is corrupting either
P0 or P1. We start with the description of the simulator Sim. Let Pi be the
honest client.

Description of Sim.

1. Interaction with the Environment. For every input value corresponding
to the corrupted P1−i that Sim receives from the environment, it writes these
values to the input tape of the adversary A. Similarly, the contents of the
output tape of A is written to Sim’s output tape.

2. Sim chooses uniform subset Ki of size λ and programs the random oracle H2

to output this set when queried on the message generated by Pi.
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– Round 1: The receiver P0 does the following:
1. It computes (x01, . . . , x

0
m, vk0)← Share(1λ, 0, x0).

2. For each j ∈ [m],
(a) It computes r0j := H1(0, j, x0j , s

0
j ) for uniformly chosen s0j ← {0, 1}λ.

(b) It computes com0
j ← Com((x0j , s

0
j )).

(c) It computes (πj,1, skj)← Πj,1(1λ, x0j ; r
0
j ).

3. It computes K0 = H2(0, {com0
j , πj,1}j∈[m], tag0) where tag0 ← {0, 1}λ.

4. It sends {com0
j , πj,1}j∈[m], tag0, and {(x0j , s0j ),Open(com0

j )}j∈K0 .
– Round-2: The sender does the following:

1. It runs chkConsistency(0,T) where chkConsistency is described in Figure 2
and T is the transcript in the first round. If chkConsistency outputs 0,
then it aborts.

2. Else, it computes (x11, . . . , x
1
m, vk1)← Share(1λ, 1, x1).

1. For each j ∈ [m],
(a) It computes r1j := H1(1, j, x1j , s

1
j ) for uniformly chosen s1j ← {0, 1}λ.

(b) It computes com1
j ← Com((x1j , s

1
j )).

(c) It computes πj,2 ← Πj,2(1λ, x1j , πj,1; r1j ).
2. It computes K1 = H2(1, {com1

j , πj,2}j∈[m], tag1) where tag1 ← {0, 1}λ.
3. It sends {com1

j , πj,2}j∈[m], tag1, and {(x1j , s1j ),Open(com1
j )}j∈K1 .

– Output: To compute the output, the receiver does the following:
1. It runs chkConsistency(1,T) where T is the transcript in the first two

rounds. If chkConsistency outputs 0, then it aborts and outputs ⊥.
2. For each j ∈ [m],

(a) It runs outΠj (πj,2, skj) to obtain φj .
3. It runs Dec(0, vk0, φ1, . . . , φm) and outputs whatever Dec outputs.

Fig. 1: Description of r-round Malicious 2PC

3. Sim starts interacting with the simulator SimΦ for the outer protocol by
corrupting the client P1−i and the set of servers indexed by Ki. It obtains the
first round messages {xij}j∈Ki sent by the honest client Pi to the corrupted
servers.

4. For each j ∈ Ki, it uses the the input xij and uniformly chosen sij to generate
the messages in the protocol Πj as described in Figure 1. For each j 6∈ Ki,
it runs the simulator for the inner protocol Πj to generate the messages on
behalf of Pi. To generate the commitments, for each j ∈ Ki, it uses (xij , s

i
j)

to compute comi
j . However, for each j 6∈ Ki, it commits to some dummy

values.

5. For each of the unique random oracle queries made by A, Sim samples a
uniform element in the range of the oracle and outputs it as the response.
Each time Sim generates query to the random oracle on behalf of honest Pi,
Sim checks if adversary has already made that query. If that is the case, then
it aborts the execution and outputs a special symbol abort.
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Input: A party index i ∈ {0, 1} and the transcript T.

1. Compute Ki from the transcript T and the hash function H2.
2. For each j ∈ Ki,

(a) It obtains {(xij , sij),Open(comi
j)} from T.

(b) It checks if Open(comi
j) is valid.

(c) It then checks if (xij , H1(i, j, xij , s
i
j)) is a valid (input,randomness) pair for

the protocol Πj consistent with the transcript T.
(d) For each j′ ∈ Ki, it checks if P (i, j, j′, xij , x

i
j′) = 1.

3. If any of the checks fail, it outputs 0. Else, if all the checks pass, it outputs 1.

Fig. 2: Description of chkConsistency

6. On obtaining the protocol message from A, Sim uses the straight-line extrac-
tor for the extractable commitment Com and obtains (x1−i1 , s1−i1 ), . . . , (x1−im , s1−im )
from com1−i

1 , . . . , com1−i
m respectively.

7. It initializes two empty sets I1 and I2.
8. For each j ∈ [m], if (x1−ij , H1(1− i, j, x1−ij , s1−ij )) is not a valid (input,randomness)

pair for the protocol Πj w.r.t. the messages sent by A, then it adds j to the
set I1. It adaptively corrupts the server j in the outer protocol and obtains
xij . It uses this as the input to compute the second round message of the
protocol Πj when i = 1.

9. It constructs an inconsistency graph G where the vertices correspond to [m]
and it adds an edge between j and k if P (1− i, j, k, x1−ij , x1−ik ) = 0. It then
computes a 2-approximation for the minimum vertex cover in this graph and
calls this vertex cover as I2. For each j ∈ I2, it adaptively corrupts the server
j in the outer protocol and obtains xij . It uses this as the input to generate
the second round message of the protocol Πj when i = 1.

10. If |I1| ≥ λ or if |I2| ≥ λ, then it sends ⊥ to its ideal functionality.
11. It completes the interaction with A and if at any point of time, A’s messages

do not pass chkConsistency then Sim sends ⊥ to the trusted functionality.
12. It provides {x1−ij }j 6∈I1∪I2∪Ki

to SimΦ as the messages sent by the adversary
to the honest servers. SimΦ queries the ideal functionality on an input x1−i
and Sim forwards this to its trusted functionality.

13. If i = 0, then if SimΦ instructs the ideal functionality to deliver the output
to honest P0, then Sim forwards this message. Otherwise, if SimΦ instructs
the ideal functionality to deliver ⊥, Sim sends ⊥ to the ideal functionality.

14. If i = 1, then Sim obtains z = f(x0, x1) from the ideal functionality and for-
wards this to SimΦ. SimΦ sends the second round protocol messages {φj}j 6∈I1∪I2∪K1

from the honest servers. For each j 6∈ I1 ∪ I2 ∪ K1, Sim uses φj as the
output of Πj and gives this as input to the simulator for Πj along with
(x0j , H1(0, j, x0j , s

0
j )) as the (input, randomness) pair. We get the final round

message for Πj for each j 6∈ I1 ∪ I2 ∪K1 from the inner protocol simulators
and we use this to generate the final round message in the protocol.
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Proof of Indistinguishability. We now argue that the real execution and the ideal
execution are computationally indistinguishable via a hybrid argument.
– Real : This corresponds to the output of the real execution of the protocol.
– Hyb0 : This hybrid corresponds to the distribution where the random ora-

cle queries of the adversary are answered with a uniformly chosen random
element from the image of the oracle. Further, if the adversary makes any
queries to the hash functions H1, H2 before the exact same query was made
by the honest party, we abort. We note that since each query made to the
hash functions H1, H2 has a component which is a uniformly chosen random
string of length λ, the probability that an adversary is able to make a query
that exactly matches this string queried by an honest party is q ·2−λ (where q
is the total number of queries made by the adversary to the random oracles).
Hence, this hybrid is statistically close to the previous one.

– Hyb1 : In this hybrid, we make the following changes:
1. We use the extractor for the extractable commitment Com to obtain

(x1−i1 , s1−i1 ), . . . ,
(x1−im , s1−im ) from com1−i

1 , . . . , com1−i
m respectively.

2. We construct the sets I1 and I2 as described in the simulation.
3. If |I1| ≥ λ or |I2| ≥ λ, we abort the execution and instruct the honest

party to output ⊥.
4. If i = 0 and if |I1| < λ and |I2| < λ, then for each j ∈ I1 ∪ I2 ∪Ki, we

set φj to be some default value and compute the output of honest P0.
In Lemma 1, we show that Hyb0 and Hyb1 are statistically indistinguishable
from the error correction properties of Φ (see Definition 4.1).

– Hyb2 : In this hybrid, we make the following changes:
1. We sample a uniform subset Ki (of size λ) and program the random

oracle H2 to output this set when queried on the messages generated by
Pi.

2. For each j 6∈ Ki, we change the commitments comi
j to be commitments

to some dummy values instead of (xij , s
i
j).

This hybrid is computationally indistinguishable to the previous hybrid from
the hiding property of the non-interactive commitment scheme.

– Hyb3 : In this hybrid, we do the following:
1. We choose uniform subset Ki of [m] of size λ and program the random

oracle H2 to output this set when queried on the messages generated by
Pi.

2. For each j 6∈ Ki, we run the simulator for the inner protocol and generate
the messages from Pi for the protocol Πj using this simulator.

3. We compute the sets I1 and I2 as before.
4. If some j 6∈ Ki is added to I1 or I2 and if i = 1, we use xij to compute

the second round sender message.
5. If |I1| ≥ λ or if |I2| ≥ λ, we abort as in the previous hybrid.
6. For j 6∈ Ki∪I1∪I2, we use the input x1−ij extracted from the extractable

commitment to compute φj = Eval(1λ, j, x0j , x
1
j ).

7. If i = 0, for each j ∈ Ki ∪ I1 ∪ I2, we set φj to be a default value and
use these values instead to compute the output of the receiver P0.
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8. If i = 1, then for each j 6∈ K1∪I1∪I2, we send the input x0j , randomness

H1(0, j, x0j , s
0
j ) and the output φj to the simulator for Πj and obtain

the final round message in Πj . We use this to generate the final round
message in the overall protocol.

In Lemma 2, we show that Hyb2 ≈c Hyb3 from the semi-honest sender secu-
rity of the inner protocol.

– Hyb4 : In this hybrid, we make the following changes:
1. We (adaptively) corrupt the set of servers corresponding to the indices
Ki∪I1∪I2 and the client P1−i. We run the simulator SimΦ for the outer
protocol and obtain the first round messages sent by the honest client to
these corrupted servers. We use this to complete the execution with A.

2. We provide {x1−ij }j 6∈Ki∪I1∪I2 (extracted from the extractable commit-
ment) to SimΦ as the messages sent by the adversary to the honest
servers. SimΦ queries the ideal functionality on an input x1−i.

3. If i = 0 then if SimΦ instructs the ideal functionality to deliver the output
to honest P0, then we instruct P0 to output f(x0, x1). Otherwise, if SimΦ

instructs the ideal functionality to deliver ⊥, we instruct P0 to output
⊥.

4. If i = 1, we compute z = f(x0, x1) and send this to SimΦ as the output
from the ideal functionality. SimΦ sends the second round protocol mes-
sages {φj}j 6∈Ki∪I1∪I2 from the honest servers. We use this to generate
the final round message of the protocol as in the previous hybrid.

In Lemma 3, we show that Hyb3 ≈c Hyb4 from the security of the outer
protocol. We note that output of Hyb4 is identically distributed to the output
of the ideal execution with Sim.

Lemma 1. Assuming the error correction properties of Φ, we have Hyb0 ≈s
Hyb1.

Proof. We show that if |I1| ≥ λ or if |I2| ≥ λ then the honest client in Hyb0 also
aborts with overwhelming probability.
– Case-1: |I1| ≥ λ: Note that K1−i is chosen by the random oracle after the

adversary generates the message on behalf of the corrupted party in the
protocol. We show that since K1−i is uniformly chosen random subset of [m]
of size λ, the probability that |I1 ∩ K1−i| = 0 is 2−O(λ). Note that if this
event doesn’t happen, then the honest client Pi aborts in Hyb0.

Pr[|K1−i ∩ I1| = 0] ≤
(
m−λ
λ

)(
m
λ

)
=

(
1− λ

m

)(
1− λ

(m− 1)

)
. . .

(
1− λ

(m− (λ− 1))

)
<

(
1− λ

m

)λ
< e−O(λ) .

where the last inequality follows since m = O(λ). By an union bound over
the set of all the q queries that adversary makes to the random oracle H2,
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the probability that there exists some K1−i which is the response of the RO
such that |K1−i ∩ I1| = 0 is upper bounded by q · e−O(λ).

– Case-2: |I2| ≥ λ: Since |I2| ≥ λ, the size of the minimum vertex cover
is at least λ/2. This means that in the inconsistency graph, there exists a
maximum matching of size at least λ/4. Let M be the set of vertices for this
matching. Note that K1−i is uniformly chosen random subset of [m] of size
λ. If any edge of this matching is present in K1−i, then the honest client
Pi aborts in Hyb0. [22, Theorem 4.1] shows that probability that no edge of
this matching is present in K1−i is 2−O(λ). Again, by an union bound over
the set of all the q queries that adversary makes to the random oracle H2,
the probability that there exists some K1−i which is the response of the RO
such that no edge in M is in K1−i is upper bounded by q · 2−O(λ).

In the case, where |I1| ≤ λ and |I2| ≤ λ, consider an admissible adversary A′
against the protocol Φ that corrupts the set of servers indexed by I1 ∪ I2 ∪
Ki. By definition for every server j, k 6∈ I1 ∪ I2 ∪ Ki, it follows that P (1 −
i, j, k, x1−ij , x1−ik ) = 1. Thus, it follows from the error correction property of Φ
that Hyb2 ≈s Hyb3.

Lemma 2. Assuming the semi-honest security of the inner protocol, we have
that Hyb2 ≈c Hyb3.

Proof. We sample a uniform subset Ki of [m] of size λ and program the random
oracle H2 to output the this set when queried on the messages generated by Pi.

Let I = [m]\Ki. We consider a sequence of |I| hybrids between Hyb2 and Hyb3
where we change from real to simulated executions of the inner protocol for each
j ∈ I one by one. If Hyb2 and Hyb3 are computationally distinguishable, then by
a standard hybrid argument, there exists two sub-hybrids Hyb2,j−1 and Hyb2,j
which differ only in the j-th execution and are computationally distinguishable.
Specifically, in Hyb2,j , the messages in the protocol Πj is generated as in the
ideal execution and in the Hyb2,j−1 it is generated as in the real execution. We
now show that this contradicts the semi-honest security of the inner protocol.

We begin interacting with external challenger and provide xij as the input
used by Pi in Πj . Amongst all the queries made by A to the random oracle
H1 where the first two inputs are (1 − i, j), we choose one of these queries
(1− i, j, x1−ij , s1−ij ) at random and give x1−ij as the input of the corrupted party.

The challenger provides with a random tape r1−ij to be used by P1−i. We provide

r1−ij as the response from the random oracle. On receiving the protocol message

from A, we run the extractor for the extractable commitment Com on com1−i
j

and obtain (x1−ij , s1−ij ). We consider the following cases.

1. If j is added to I1 or I2 then:
– If i = 1, we use xij to generate the second round sender message. We

generate the view of the adversary and run the distinguisher between
Hyb2,j and Hyb2,j−1 on this view and output whatever it outputs.

– If i = 0, we set φj to be an arbitrary value and generate the view of
the adversary and the output of the honest party as before. We run the
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distinguisher between Hyb2,j and Hyb2,j−1 on these values and output
whatever it outputs.

2. If j is not added to I1 or I2 but (x1−ij , s1−ij ) 6= (x1−ij , s1−ij ), then we output
a random bit to the external challenger.

3. If j is not added to I1 or I2 and (x1−ij , s1−ij ) = (x1−ij , s1−ij ), then we continue
with the rest of the execution using the messages from the challenger (i =
1) or the output from the challenger (i = 0) to compute the view of the
adversary and output of the honest party. We run the distinguisher between
Hyb2,j and Hyb2,j−1 and output whatever it outputs.

We note that if j is not added to I1 or I2 and (x1−ij , s1−ij ) = (x1−ij , s1−ij ), then
the input to the distinguisher is identical to Hyb2,j−1 if the challenger generated
the messages of Πj as in the real execution and otherwise, it is identical to
Hyb2,j . Similarly, if j is added to I1 or I2, then the input to the distinguisher
is identical to Hyb2,j−1 if the challenger generated the messages of Πj as in the
real execution and otherwise, it is identical to Hyb2,j .

Finally, conditioning on j not added to I1 or I2, the probability that (x1−ij , s1−ij ) 6=
(x1−ij , s1−ij ) is at least 1− 1/q − negl(λ) (and at most 1− 1/q + negl(λ)) where
q is the total number of queries made by the adversary to the random oracle
H1. Let us assume that the probability that the distinguisher correctly predicts
whether it is given a sample from Hyb2,j and Hyb2,j−1 to be 1/2 + µ(λ) (for
some non-negligible µ(λ)). Let ε be the probability that j is added to I1 or I2.
Let p be the probability that the above reduction correctly predicts whether it
is interacting with the real execution or the ideal execution. Then,

p ≥ (1/2 + µ(λ))ε+ (1− ε)((1− 1/q − negl(λ))(1/2) + (1/q − negl(λ))(1/2 + µ(λ)))

≥ (1/2 + µ(λ))ε+ (1− ε)(1/2 + µ(λ)/q)− negl(λ)

≥ 1/2 + µ(λ)/q + ε(µ(λ)− µ(λ)/q)− negl(λ)

≥ 1/2 + µ(λ)/q − negl(λ)

and this contradicts the semi-honest security of the inner protocol.

Lemma 3. Assuming the security of the outer protocol Φ, we have Hyb3 ≈c
Hyb4.

Proof. Assume for the sake of contradiction that Hyb3 and Hyb4 are compu-
tationally distinguishable. We give a reduction to breaking the security of the
outer protocol.

We begin interacting with the external challenger by providing the input xi
of the honest client Pi. We then corrupt the other client P1−i and the set of
servers indexed by Ki. We obtain the first round messages sent from the honest
client Pi to the corrupted servers and we begin interacting with A using these
messages. For each server that is added to I1 or I2, we adaptively corrupt that
server and obtain the first round message sent from the honest client to this
server. We use this message to continue with the rest of the execution as in
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Hyb3. At the end of the protocol execution, we send {x1−ij }j 6∈Ki∪I1∪I2 as the
first round messages sent by the corrupted client P1−i to the honest servers.
If P0 is uncorrupted, we send {φj}j∈Ki∪I1∪I2 (set to be arbitrary values as in
Hyb3) to the challenger and it provides the output of P0 and we instruct P0 to
output the same. If P0 is corrupted, we obtain {φj}j 6∈Ki∪I1∪I2 from the external
challenger and we use this to generate the final round message in the protocol.
We finally run the distinguisher between Hyb2 and Hyb3 on the view of A and
the output of P0 (if it is uncorrupted) and output whatever the distinguisher
outputs.

The above reduction emulates an admissible adversary as by definition the
first round message sent to the honest servers pass the pairwise verification w.r.t.
predicate P . Since |Ki ∪ I1 ∪ I2| ≤ |Ki| + |I1| + |I2| = 3λ = t, the reduction
emulates an admissible adversary that corrupts at most t servers. Thus, if the
messages generated by the external challenger are done as in the real execu-
tion then input to the distinguisher is identical to Hyb3. Else, it is identically
distributed to Hyb4. This implies that the reduction breaks the security of the
protocol Φ and this is a contradiction.

5.2 Protocol Compiler in the OT Correlations Model

In this section, we describe a protocol compiler that transforms two-round semi-
malicious two-party protocol to a two-round malicious-secure protocol. This
transformation is in the standard 1-out-of-2 OT correlations model. We state
the formal theorem below.

Theorem 3. Let f be an arbitrary two-party functionality. Assume the existence
of:
– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,

Eval,Dec) for computing f against t server corruptions (see Definition 6).
– A two-round semi-malicious protocol Πi = (Πi,1, Πi,2, outΠi

) for each i ∈ [m]
(see Definition 2) where Πi computes the function Eval(i, ·).

Then, there exists a two-round protocol Γ for computing f that makes black-box
use of {Πi}i∈[n] and is secure against static, malicious adversaries in the 1-out-
of-2 OT correlations model. The communication and computation costs of the
protocol are poly(λ, |f |), where |f | denotes the size of the circuit computing f and
the size of the OT correlations shared between the parties is a fixed polynomial
in the security parameter and is independent of the size of the function f .

Instantiating the pairwise verifiable MPC protocol from Theorem 1, we get
the following corollary.

Corollary 2. Let f be an arbitrary two-party functionality. There exists a two-
round protocol Γ for computing f that makes black-box use of {Πi}i∈[n] and
is secure against static, malicious adversaries in the 1-out-of-2 OT correlations
model. The communication and computation costs of the protocol are poly(λ, |f |),
where |f | denotes the size of the circuit computing f and the size of the OT corre-
lations shared between the parties is a fixed polynomial in the security parameter
and is independent of the size of the function f .
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We defer the proof of Theorem 3 to the full version.

5.3 Extension to the Two-Sided Setting

In this subsection, we explain how to extend the protocol described in Section 5.1
to the bidirectional communication model. Specifically, we want to construct an
two-round protocol where in each round, both parties can send a message and
we require both parties get the output at the end of the second round. The
extension for the protocol in the OT correlations model is similar.

Construction. The construction is very similar to the one described in Figure 1
except that we run two instances of the inner protocol for each j ∈ [m], namely,
Π0
j and Π1

j where the parties use the same input in both the executions (but

use independently chosen randomness). Here, Π0
j is the protocol that delivers

output to P0 and Π1
j is the protocol that delivers output to P1. Additionally,

for each j ∈ [m], the parties send an extractable commitment to the input and
the random strings used in Π0

j and Π1
j respectively. In each round u ∈ [2], the

parties use the random oracle H2 to derive a set Ku
0 ,K

u
1 respectively as in the

previous protocol description. The party Pi (for each i ∈ {1, 2}) then opens
the above generated extractable commitment for those executions indexed by
Ku
i . The chkConsistency run by Pi is modified so that it checks if the input,

randomness pair is consistent in Π0
j and Π1

j for each j ∈ Ku
1−i. The output

computation by both parties is done exactly as described in Figure 1.
We defer the proof of security of this construction to the full version.

6 Black-Box Protocol Compilers in the Multiparty
Setting

We state our main theorems about our protocol compiler in the multiparty case.
The proof of these theorems are given in the Appendix.

6.1 Protocol Compiler in the Random Oracle Model

In this subsection, we give a construction of a three-round malicious-secure MPC
protocol in the random oracle model that makes black-box use of a two-round
semi-honest OT. It was shown in [1] that even considering only semi-honest se-
curity in the random oracle model, such a black-box protocol for the case of
three parties is round-optimal. Recently, [32] gave a malicious-secure construc-
tion in the CRS model assuming a two-round malicious secure oblivious transfer
protocol that additionally satisfies equivocal receiver security [15].

We give the formal statement of our theorem below.

Theorem 4. Let f be an arbitrary n-party functionality. Assuming the existence
of:
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– A two-round, 2-client, m-server pairwise verifiable MPC protocol Φ = (Share,
Eval,Dec) for computing f against t server corruptions (see Definition 6).

– A two-round semi-honest oblivious transfer protocol OT = (OT1,OT2, outOT).
Then, there exits a three-round protocol Γ for computing f over point-to-point
channels that makes black-box use OT and satisfies security with selective abort
against static, malicious adversaries in the random oracle model. The communi-
cation and computation costs of the protocol are poly(λ, n, |f |), where |f | denotes
the size of the circuit computing f .

Instantiating the pairwise verifiable MPC protocol from Theorem 1, we get
the following corollary.

Corollary 3. Let f be an arbitrary n-party functionality. There exits a three-
round protocol Γ for computing f over point-to-point channels that makes black-
box use OT and satisfies security with selective abort against static, malicious
adversaries in the random oracle model. The communication and computation
costs of the protocol are poly(λ, n, |f |), where |f | denotes the size of the circuit
computing f .

We give the proof of Theorem 4 in the full version.

6.2 Protocol Compiler in the OT Correlations Model

In this subsection, we improve the result from [19] and give a construction of a
two-round black-box protocol for computing multiparty functionalities that are
secure against malicious adversaries in the OT correlations model. This compiler
makes black-box use of a two-round semi-malicious secure inner protocol that
has first message equivocality (defined in [19] and recalled in Definition 7).

Building Blocks. The construction makes use of the following building blocks.

1. A two-round n-client, m-sever protocol Φ = (Φ1, Φ2, outΦ) satisfying privacy
with knowledge of outputs10 for computing the function g((x1, k1), . . . , (xn, kn)) =
(y = f(x1, . . . , xn), {MAC(ki, y)}i∈[n]) where MAC is a strongly unforgeable
one-time MAC scheme. This protocol is secure against t server corruptions
and has publicly decodable transcript. We set t = (m−1)/3 and m = 16λn3.
Such a protocol was constructed in [23, 30] by making black-box use of a
PRG. As noted in [19], we can delegate the PRG computations made by the
servers to the client and ensure that the computation done by the servers do
not involve any cryptographic operations.

2. A two-round inner protocol Πj = (Πj,1, Πj,2, outΠ) with publicly decodable
transcript for each j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the
function computed by the j-th server). For each j ∈ [m], we require protocol
Πj to satisfy the following definition.

10 Privacy with knowledge of outputs is a weaker notion than security with selective
abort and allows the adversary to select the output given by the trusted functionality
to the honest parties. We refer the reader to [23] for the formal definition.
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Definition 7 ([19]). We say that (Π1, Π2, outΠ) is a two-round, inner pro-
tocol for computing a function f with publicly decodable transcript if it sat-
isfies the following properties:

– Correctness: We say that the protocol Π correctly computes a function
f if for every choice of inputs xi for party Pi and for any choice of
random tape ri, we require that for every i ∈ [n],

Pr[outΠ(i, π(2)) = f(x1, . . . , xn)] = 1

where π(2) denotes the transcript of the protocol Π when the input of Pi
is xi with random tape ri and ski is the output key generated by Π1.

– Security. Let A be an adversary corrupting a subset of the parties in-
dexed by the set M and let H be the set of indices denoting the honest
parties. We require the existence of a simulator SimΠ such that for any
choice of honest parties inputs {xi}i∈H , we have:

Real(A, {xi, ri}i∈H) ≈c Ideal(A,SimΠ , {xi}i∈H)

where the real and ideal experiments are described in Figure 3 and for
each i ∈ H, ri is uniformly chosen.

Real(A, {xi, ri}i∈H)

(a) For each i ∈ H, compute πi1 :=
Π1(1λ, i, xi; ri).

(b) Send {πi1}i∈H to A.
(c) Receive {πi1, (xi, ri)}i∈M from A.
(d) Check if the messages sent by cor-

rupt parties in π(1) are consistent
with {xi, ri}i∈M .

(e) Semi-Malicious Security: If they
are consistent:

i. For each i ∈ H, compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

(f) Equivocality: If they are not con-
sistent:

i. For each i ∈ H, compute πi2 :=
Π2(1λ, i, xi, π(1); ri).

(g) Send {πi2}i∈H to A.
(h) Receive {πi2}i∈M from A.
(i) Output the view of A and
{outΠ(i, π(2))}i∈H .

Ideal(A, SimΠ , {xi}i∈H)

(a) For each i ∈ H, compute πi1 :=
SimΠ(1λ, i).

(b) Send {πi1}i∈H to A.
(c) Receive {πi1, (xi, ri)}i∈M from A.
(d) Check if the messages sent by cor-

rupt parties in π(1) are consistent
with {xi, ri}i∈M .

(e) Semi-Malicious Security: If they
are consistent:

i. For each i ∈ H, compute
πi2 ← SimΠ(1λ,
i, f(x1, . . . , xn), {xj , rj}j∈M , π(1)).

(f) Equivocality: If they are not con-
sistent:

i. For each i ∈ H, compute πi2 ←
SimΠ(1λ, i, {xi}i∈H , π(1)).

(g) Send {πi2}i∈H to A.
(h) Receive {πi2}i∈M from A.
(i) Output the view of A and
{outΠ(i, π(2))}i∈H .

Fig. 3: Security Game for the Two-Round Inner Protocol
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[19] showed that the protocol from [14] in the OT correlations model and
[25] in the OLE correlations model satisfy the above definition.

3. A single round Rabin OT protocol RabinOT with erasure probability 1 −
λ · n/m. We extend the syntax of the Rabin OT protocol to take in m
strings and each of these strings are independently erased with probability
1− λ · n/m.

Theorem 5. Let f be an arbitrary n-party functionality. Assume the existence
of:
– A two-round n-client, m-sever protocol Φ = (Φ1, Φ2, outΦ) satisfying privacy

with knowledge of outputs against t server corruptions for computing the
function g defined above.

– A two-round inner protocol Πj = (Πj,1, Πj,2, outΠ) with publicly decodable
transcript for each j ∈ [m] where Πj computes the function Φ2(j, ·) (i.e., the
function computed by the j-th server) satisfying Definition 7.

Then, there exists a two-round protocol Γ that makes black box use of {Πj}j∈[m]

and computes f against static, malicious adversaries satisfying security with
selective abort in the 1-out-of-2 OT correlations model and access to point-to-
point channels. Further, if only (Φ1, outΦ) makes black-box use of a PRF and Φ2

does not perform any cryptographic operations, then Γ is fully black-box. The
communication and computation costs of the protocol are poly(λ, n, |f |), where
|f | denotes the size of the circuit computing f and the size of the OT correlations
shared between the parties is a fixed polynomial in the security parameter and
number of parties and is independent of the size of the function f .

We give the proof of this theorem in the full version.
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