
Batch-OT with Optimal Rate

Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

1 Weizmann Institute of Science
2 IT, IST - University of Lisbon

3 CISPA Helmholtz Center for Information Security

Abstract. We show that it is possible to perform n independent copies
of 1-out-of-2 oblivious transfer in two messages, where the communi-
cation complexity of the receiver and sender (each) is n(1 + o(1)) for
sufficiently large n. Note that this matches the information-theoretic
lower bound. Prior to this work, this was only achievable by using the
heavy machinery of rate-1 fully homomorphic encryption (Rate-1 FHE,
Brakerski et al., TCC 2019).
To achieve rate-1 both on the receiver’s and sender’s end, we use the
LPN assumption, with slightly sub-constant noise rate 1/mε for any
ε > 0 together with either the DDH, QR or LWE assumptions. In terms
of efficiency, our protocols only rely on linear homomorphism, as op-
posed to the FHE-based solution which inherently requires an expensive
“bootstrapping” operation. We believe that in terms of efficiency we com-
pare favorably to existing batch-OT protocols, while achieving superior
communication complexity. We show similar results for Oblivious Linear
Evaluation (OLE).
For our DDH-based solution we develop a new technique that may be of
independent interest. We show that it is possible to “emulate” the binary
group Z2 (or any other small-order group) inside a prime-order group Zp
in a function-private manner. That is, Z2 operations are mapped to Zp
operations such that the outcome of the latter do not reveal additional
information beyond the Z2 outcome. Our encoding technique uses the
discrete Gaussian distribution, which to our knowledge was not done
before in the context of DDH.

1 Introduction

Oblivious Transfer (OT) [34,20] is one of the most basic cryptographic primitives.
In the simple 1-out-of-2 OT, a receiver holds a bit b ∈ {0, 1} and a sender holds
two bits x0, x1. In the end of the protocol, the receiver should learn xb, but
nothing about x1−b, and the sender should learn nothing about the value of b. In
most applications, one OT is not enough and one is required to perform many OT
operations in parallel. We let n denote the number of parallel executions. Various
techniques have been developed to address this task of batch-OT [29,6,5]. For the
most part, they involve a preprocessing “offline” phase where the parties generate
random OT correlations.4 Given such correlations, executing the OT protocol

4 That is, a protocol in which the receiver obtains b, xb and the sender obtains x0, x1,
where b, x0, x1 are all (pseudo-)randomly sampled.

2 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

in the so-called “online phase” is computationally very simple. This approach
is very useful for purposes of computational efficiency, since the offline phase
can be carried out even before the actual inputs of the computation are known.
However, in terms of communication complexity, there is an inherent cost, even
just in the online phase, of n receiver bits and 2n sender bits. In contrast, the
insecure implementation only requires n bits to be sent from each party in a
two-message protocol: the receiver sends its input, and the sender returns all of
the appropriate xb values. As always in cryptography, we wish to understand
what is the “cost of privacy”, namely can we approach the information theoretic
minimum without losing privacy. Note that we can only hope to achieve this for
a sufficiently large n, due to the security parameter overhead.5

In prior work, Döttling et al. [19] showed that if the same receiver bit is
used for multiple OT instances, then the sender’s response can be compressed to
n(1 + o(1)), achieving an optimal amortized rate. This was shown under a vari-
ety of computational assumptions: Decisional Diffie-Hellman (DDH), Quadratic
Residuosity (QR), or Learning with Errors (LWE). It was also shown by Braker-
ski et al. [10] and by Gentry and Halevi [23] that fully homomorphic encryption
(FHE) can achieve optimal communication complexity, which in particular im-
plies that under the LWE assumption, optimal rate batch-OT is achievable.
However, the FHE-based protocol inherently requires the use of a computation-
ally exorbitant “bootstrapping” mechanism in order to compress the receiver’s
message.

1.1 Our Contribution

We show that optimal-rate6 batch-OT can be achieved from various computa-
tional assumptions, and without giving up on computational efficiency. In partic-
ular, we require the LPN assumption with a small-inverse-polynomial noise7, in
addition to one of the assumptions DDH, QR or LWE. In terms of computational
cost, our protocol does not require heavy operations such as bootstrapping and
relies on linear homomorphism only. We believe that in terms of overall cost it
compares favorably even with random-OT based methods. All of our results are
in the semi-honest (honest-but-curious) setting.

We further extend our results to the task of Oblivious Linear Evaluation
(OLE) [30,14,24,12], where the sender holds a linear function over a ring and
the receiver holds an input for the function, and we wish for the receiver to

5 In more detail, since 2-message OT implies a public-key encryption scheme, the
messages must have length that relates to the security parameter of the underlying
computation assumption. This is the case even for single-bit OT.

6 Achieving optimal rate (or any rate above 1/2) seems to involve a “phase-transition”
and should be viewed as more than a “constant factor” improvement. For example,
OT beyond this threshold implies the existence of lossy trapdoor functions (see dis-
cussion in [19], Section 6.3). Therefore one could expect such a protocol to inherently
be heavier on public-key operations.

7 This is still a regime where LPN alone is not known to imply public-key encryption.

Batch-OT with Optimal Rate 3

learn the output on its input and nothing more, and the sender learns nothing
as usual. OLE has been shown to be useful in various settings [27,14].

Our techniques rely mostly on linear homomorphism, namely on the ability
to evaluate linear functions on encrypted data (see Section 2 below). Notably,
we require a linearly homomorphic scheme over Z2 (more generally Zq for OLE)
where the evaluation is function-private. Namely, the output ciphertext should
not reveal any information about the linear function that was evaluated. This
was not known to be achievable from DDH prior to this work, and we introduce a
new technique that we believe may be of independent interest. The reason for this
is that DDH works “natively” over the group Zp where p is a super-polynomially
large prime. Furthermore, we only have access to the Zp elements in the exponent
of a group generator g. Indeed, one can encode 0 → g0, 1 → g1, and linear Z2

homomorphism will follow in the sense that after applying a linear function in
the exponent, we obtain gx, where x (mod 2) is the desired Z2 output. This
creates two obstacles: first we need to be able to efficiently map gx → x, which
means that x must come from a polynomially-bounded domain, and second
that recovering x reveals more information than just x (mod 2). We develop a
new method to resolve this issue using discrete Gaussian variables. A technique
that was used in the context of the LWE assumption but to the best of our
knowledge not for DDH. We view this as an additional contribution of this
work, which may find additional applications. In particular we show that it can
be used to enhance the key-dependent-message security properties of the well-
known encryption scheme [3].

For more details on all of our contributions, see the technical overview in
Section 2.

1.2 Related Work

The communication complexity of OT has been extensively studied throughout
the decades. Here we present a brief overlook of previous works.

OT from Pseudorandom Correlations. A recent line of research studies the fea-
sibility of efficiently extending OTs in a silent manner [6,5]. In these works, a
setup phase is performed to distributed some shares between the parties. These
shares can later be expanded into random OT correlations. In the most efficient
scheme [5] the setup phase can be performed in just two rounds assuming just
a pseudorandom generator and an OT scheme. Using this scheme for perform-
ing the setup together with the standard transformations form random OT to
chosen-input OT, [5] shows that n independent instances of OT for s-bit strings
can be performed with communication complexity (2s+ 1)n+ o(n). For bit OT,
this yields a communication complexity 3n+ o(n) bits.

Download rate-1 OT. We say that an OT protocol has download rate 1 if the
rate of the sender’s message is asymptotically close to 1. OT protocols with
download rate 1 were presented in [19,21,15].However, these protocols do not
achieve upload rate 1, that is, the rate of the receiver’s message is far from being

4 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

1. Moreover, it is not clear how we can extend these protocols to achieve upload
rate 1.

Using rate-1 FHE. As mentioned before, optimal-rate OT can be achieved using
the recent scheme for rate-1 fully homomorphic encryption (FHE) of [10,23] to-
gether with (semi-honest) circuit-privacy techniques for FHE (e.g. [4]). However
this can only be instantiated using LWE.

Laconic OT. Laconic OT [16,33,28,1] is a flavor of two-round OT where the first
message sent by the receiver is sublinear (ideally polylogarithmically) in the size
of its input. However, by a simple information-theoretical argument, the sender’s
message has size at least as large as the size of the sender’s input. Note that,
if this is not the case, then we would have an OT protocol with asymptotically
better communication than an insecure OT protocol.

2 Technical Overview

2.1 Oblivious Transfer from Homomorphic Encryption

Our starting point is a textbook construction of oblivous transfer from simple
homomorphic encryption schemes, such as ElGamal. For a cryptographic group
G = 〈g〉 of prime order p, recall that an ElGamal public key is of the form

pk = (g, h = gx) ∈ G2, where x
$←− Zp is the secret key. Ciphertexts are of the

form c = (c1, c2) = (gr, hr ·gb), where r
$←− Zp is uniformly random and b ∈ {0, 1}

is the encrypted message. Given such a ciphertext c, the public key pk and two
bits m0,m1 ∈ {0, 1}, anyone can homomorphically compute a new ciphertext c′

which is distributed identically to a fresh encryption of mb, by homomorphically
evaluating the linear function f(x) = (1− x) ·m0 + x ·m1 = (m1 −m0) · x+m0

on the ciphertext c and rerandomizing the resulting ciphertext. Note that if
b ∈ {0, 1} is a bit, then it holds that f(b) = mb. This homomorphic evaluation
can be achieved by computing

c′1 ← gr
∗
· cm1−m0

1

c′2 ← hr
∗
· cm1−m0

2 · gm0 ,

where r∗
$←− Zp is chosen uniformly random. Note that it holds that

c′1 = gr
∗+r·(m1−m0)

c′2 = hr
∗+r·(m1−m0) · g(m1−m0)·b+m0 = hr

∗+r·(m1−m0) · gmb .

Since r∗
$←− Zp is chosen uniformly random, it holds that r′ = r∗ + r · (m1 −

m0) is distributed uniformly random and we can conclude that c′ = (c′1, c
′
2) is

distributed identical to a fresh encryption of mb. Since c′ does not reveal more
than the function value f(b) = mb, we call the above homomorphic evaluation
procedure function private.

Batch-OT with Optimal Rate 5

This immediately implies an OT protocol: An OT-receiver holding a choice-
bit b ∈ {0, 1} generates a pair (pk, sk) of ElGamal public and secret keys, en-
crypts the bit b under pk and sends the resulting ciphertext to the OT-sender.
The OT-sender, holding messages m0,m1, homomorphically computes a cipher-
text c′ encrypting mb and sends c′ back to the OT-receiver, who decrypts c′

to mb. Security against semi-honest senders follows from the IND-CPA secu-
rity of ElGamal, whereas security against semi-honest receivers follows from the
function privacy property established above.

2.2 Download-Rate Optimal String OT

While the above OT protocol is simple and efficient, it suffers from a very poor
communication rate. While the receiver’s message encrypts just a single bit, he
needs to send 4 group elements, whereas the sender sends 2 group elements, each
of size poly(λ).

Döttling et al. [19] proposed a compression technique for batched ElGamal
ciphertexts based on the share-conversion technique of [7]. A batched ElGamal
ciphertext is of the form c = (c0, c1, . . . , c`) = (gr, hr1 · gb1 , . . . , hr` · gb`), where
pk = (g, h1, . . . , h`) is the corresponding public key and sk = (s1, . . . , s`) with
hi = gsi is the secret key. The compression technique of [19] keeps c0 compresses
each of the c1, . . . , c` into just a single bit. The idea is instead of sending each ci ∈
G (for i ≥ 1) in full, to first compute the distance d to the next pseudorandom
break-point in G, and then only send its parity d mod 2. The break points
P ⊆ G are the set of all points h ∈ G satisfying PRFK(h) = 0t, where PRF :
G → {0, 1}t is a pseudorandom function with a range of size 2t = poly(λ).
Thus, the distance d = d(ci) of a group element ci to the nearest break point
is the smallest non-negative d such that ci · gd ∈ P. Given that neither ci nor
ci · g−1 is a breakpoint, we can recover the bit bi from c0 = gr, β=d(ci) mod 2
and the secret key component si. It was shown in [9] that for a given ciphertext
c = (c0, c1, . . . , c`), the PRF-key K can be (efficiently) chosen such that all ci are
good, in the sense that neither ci nor ci ·g−1 is a breakpoint. This ensures that a
receiver can recover the b1, . . . , b` from c′ = (K, c0, β1, . . . , β`), where βi = d(ci)
mod 2. Since all the βi are bits, such a compressed ciphertext only has additive
size-overhead consisting of K, c0. For a sufficiently large `, this fixed overhead
becomes insignificant and the ciphertext rate approaches 1.

The compressed batched ElGamal we’ve outlined leads to a batch bit-oblivious
transfer protocol with download-rate 1 : The receiver generates a key-pair pk, sk
for batched ElGamal, and encrypts his choice-bits b1, . . . , b` into

c1 = Encpk(b1, 0, . . . , 0), . . . , c` = Encpk(0, . . . , 0, b`),

i.e. c(i) encrypts a vector which is bi in index i and 0 everywhere else. The
OT-receiver now sends pk, c1, . . . , c` to the OT-sender, whose input are mes-
sages (m1,0,m1,1), . . . , (m`,0,m`,1). Using circuit private homomorphic evalu-
ation, the sender computes ciphertexts c′1, . . . , c

′
` encrypting (m1,b1 , 0, . . . , 0),

. . . , (0, . . . , 0,m`,b`). Homomorphically computing the sum of the ciphertexts

6 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

c′1, . . . , c
′
`, we obtain a ciphertext c′ encrypting (m1,b1 , . . . ,m`,b`). Finally, com-

pressing c′ with the compression technique outlined above we obtain a com-
pressed ciphertext c̄ = (K, c0, β1, . . . , β`) which the OT-sender sends back to the
OT-receiver, who can decrypt (m1,b1 , . . . ,m`,b`).

Note that the size of the sender’s message c̄ in this batch OT-protocol is
poly(λ) + `, which means that the amortized communication cost per bit-OT
approaches 1 bit, and is therefore asymptotically optimal. Even in terms of
concrete complexity this seems hard to beat, as the only additional information
sent by the sender are the PRF key K and the ciphertext header c0.

However, in terms of the upload rate, i.e. in terms of the size of the receiver’s
message, this protocol performs poorly. Specifically, to encrypt ` bits b1, . . . , b`,
the receiver needs to send ciphertexts c1, . . . , c` of total size `2 · poly(λ), which
has a worse dependence on ` than just repeating the simple protocol from the
last paragraph ` times.

Clearly, we need a mechanism to compress the receiver’s message. Applying
the same ElGamal compression technique as for the sender’s message quickly
runs into problems: Once an ElGamal ciphertext is compressed, the scheme loses
its homomorphic capabilities, i.e. we cannot perform any further homomorphic
operations on compressed ciphertexts and currently we don’t know if it is possible
to publicly decompress such ciphertexts into “regular” ElGamal ciphertexts.

2.3 Our Approach: Recrypting the Receiver’s Message

Instead, our approach will be to encrypt the receiver’s message under a different
encryption scheme, specifically one which achieves ciphertext rate approach-
ing 1 but at the same time can be decrypted by the homomorphic capabilities
of batched ElGamal. Specifically, the decryption procedure of this encryption
scheme should be a linear function in the secret key. We can get an encryption
scheme which almost fulfills these requirements from the Learning Parity with
Noise (LPN) assumption. The LPN assumption states that for a random m× n
matrix A

$←− Zm×n2 , a random vector s
$←− Zn2 and a ρ-Bernoulli distributed 8

e ∈ Zm2 , it holds that

(A,As + e) ≈c (A,u),

where u
$←− Zm2 is chosen uniformly at random. This gives rise to the following

simple symmetric-key encryption scheme with approximate correctness: Assume

that A is a fixed public parameter, the secret key is a uniformly random s
$←− Zn2 .

To encrypt a message m ∈ Zm2 , we compute a ciphertext d← As+e+m, where
e ∈ Zm2 is chosen via a ρ-Bernoulli distribution. To decrypt such a ciphertext,
we compute m′ ← d−A · s.

Note that this scheme is only approximately correct in the sense that it holds
that m′ = m + e, i.e. in most coordinates m′ is identical to m, but only in few

8 i.e. every component of ei of e is independently 0 with probability 1− ρ and 1 with
probability ρ

Batch-OT with Optimal Rate 7

coordinates m′ and m differ. Furthermore, one-time security of this encryption
scheme follows from the LPN assumption.

The high level strategy to use this symmetric key encryption scheme is now
as follows: Assume the matrix A ∈ Zm×n2 is known to both the sender and the
receiver. In the actual protocol this matrix will be chosen by the receiver, and the
communication cost of sending A will be amortized by reusing A many times.

The OT-receiver chooses a symmetric key s
$←− Zn2 uniformly at random and

encrypts his vector of choice bits b = (b1, . . . , b`) to d = As + e + b (where
again, e ∈ Z`2 is ρ-Bernoulli distributed). Furthermore, the receiver will encrypt
the LPN secret under ElGamal, i.e. he encrypts s to c = Enc(pk, s). For the
moment, assume that s is encrypted bit-wise with standard ElGamal rather
than batched ElGamal. The OT-receiver now sends the ElGamal public key pk
and the ciphertexts c and d to the OT-sender.

Now, given these values, the sender can homomorphically decrypt the d into
ElGamal, effectively key-switching from the ciphertext d into an ElGamal ci-
phertext. Concretely: The sender homomorphically evaluates the linear function
f(x) = d − Ax on the ElGamal ciphertext c = Enc(pk, s). This produces an
ElGamal encryption c′ encrypting f(s) = d−As = b + e = b′. In other words,
the OT-sender has now obtained an ElGamal encryption of a vector b′ which
agrees with b in most locations.

The high-level idea is now to let the OT-sender use this ciphertext c′ as
the encryption of the receiver’s choice bits and proceed as in the ElGamal-
based OT-protocol above. If we were to naively use c′ in this way, the receiver
would obtain the correct output mi,bi in locations where b and b′ agree, but
would get the wrong output mi,1−bi in locations where b and b′ disagree. While
there certainly are applications in which a small amount of faulty locations are
tolerable, in general this leads to insecure protocols.

There is, however, another issue with this approach. In this paragraph we
have implicitly assumed that ElGamal is homomorphic for linear functions mod-
ulo 2. However, since the group we implement ElGamal over is of large prime
order p, when we evaluate linear functions such as f(x) = d − Ax over a ci-
phertext encrypting a s ∈ {0, 1}n, the result of this evaluation is not reduced
modulo 2, and the resulting ciphertext in fact encrypts f(s) as an integer. This
does not cause major problems in terms of correctness, as this integer will still
be small (at most of size m), and hence decryption will still be efficient.

However, this does cause major problems in terms of sender-privacy, as we
can only guarantee sender privacy for receiver messages that are guaranteed to
encrypt a bit b ∈ {0, 1}.

For now, we will bypass this problem by relying on a homomorphic encryption
scheme which is in fact homomorphic over Z2 (rather than Zp), offers function
privacy for linear functions modulo 2 and is compatible with ciphertext com-
pression. Such an encryption can in fact be constructed from the Quadratic
Residuosity assumption [19].

Another small issue we haven’t addressed here is that the compression mech-
anisms for the sender and the receiver are somewhat orthogonal, in the sense that

8 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

the sender’s message is compressed by compressing a batched ElGamal cipher-
text (which generally does not allow homomorphic evaluation across different
components), whereas the receiver’s compression strategy requires the homo-
morphic evaluation of linear functions with multiple (i.e. vector-valued) inputs.
In the main body (Section 7) we will show a tradeoff which allows to reconcile
these requirements, leading to a batch OT protocol with overall rate 1.

We will first discuss how to deal with the issue of errors in the key-switched
ciphertext, and then return to the issue of implementing our approach with
ElGamal instead of QR-based encryption.

2.4 Dealing with LPN Errors

To deal with the LPN errors in the key-switched ciphertext c′, we will pursue the
following high-level strategy: The sender will introduce an additional masking
on the receiver’s output, which can only be removed in error-free locations.
This masking effectively erases the receiver’s output in locations in which the
receiver’s output is corrupted.

To communicate the correct outputs in the locations with errors, the parties
will rely on an additional protocol which is run in parallel. Given that the number
of errors is sufficiently small, the communication cost of this additional protocol
will be insubstantial and not affect the overall asymptotic rate.

We will first address the problem of erasing the receiver’s output in corrupted
locations. First observe that the receiver knows the locations with errors (i.e. the
support of the error vector e). Assume that the LPN error vector e has a fixed
hamming weight t ≈ ρm, and note that hardness of fixed-weight LPN follows
routinely from the hardness of Bernoulli LPN9. A t-puncturable pseudorandom
function [8,6] is a pseudorandom function [25] which supports punctured keys.
That is, given a PRF key K and t inputs x1, . . . , xt, we can efficiently compute
a punctured key K ′ of size t · poly(λ) which allows to evaluate the PRF on all
inputs except x1, . . . , xt. Furthermore, the key K ′ does not reveal the function
values at x1, . . . , xt, i.e. PRF(K,x1), . . . ,PRF(K,xt) are pseudorandom given the
punctured key K ′.

The approach to erase the receiver’s outputs in erroneous locations is now
as follows. The sender chooses a PRF key K and masks both mi,0 and mi,1

with PRF(K, i), i.e. instead of using (mi,0,mi,1) as OT-inputs, he uses m′i,0 =
mi,0 ⊕ PRF(K, i) and m′i,1 = mi,1 ⊕ PRF(K, i). Assuming that the sender can
somehow communicate a punctured key K ′ which is punctured at the locations
i1, . . . , it of the errors (i.e. eij = 1 and e is 0 everywhere else), the receiver
will be able to remove the mask from error-free locations by computing mi,bi =
m′i,bi ⊕ PRF(K ′, i). In the erroneous locations however, mi,1−bi will be hidden
from the view of the receiver as PRF(K, i) is pseudorandom even given the
punctured key K ′.

How can we communicate the punctured key K ′ to the receiver with small
communication cost in such a way that the sender does not learn the error-

9 See e.g. [18,6]

Batch-OT with Optimal Rate 9

locations i1, . . . , it? This could be achieved generically by relying on the punc-
tured PRF construction of [8] and transferring keys using a sublinear private in-
formation retrieval (PIR) scheme [17,19]. However, recently [6] provided a proto-
col to achieve this task very efficiently via a two round protocol communicating
only tpoly(λ) bits. In the main body (Section 6), we will refer to this primi-
tive as co-PIR, since effectively it allows to communicate a large pseudorandom
database to a receiver except in a few locations chosen by the receiver.

Finally, to communicate the correct outputs to the receiver in the locations
with errors, we will in fact rely on a two-message PIR scheme with polyloga-
rithmic communication. Such schemes are known e.g. from LWE [11] and were
recently constructed from a wide variety of assumptions [19], such as DDH and
QR. The idea is as follows: For each error location ij the receiver sends an ad-
ditional OT message OT1(bij) using an off-the-shelf low-rate OT protocol (e.g.
the basic ElGamal based protocol sketched above), as well as a PIR message
PIR1(ij). The sender speculatively completes this OT protocol for each index
i (since the index ij is not known to the sender), collects his OT responses in a
database of size `, runs the PIR sender algorithm on this database, and sends
the response back to the receiver. The receiver will now be able to recover the
correct OT2 message via PIR, complete the OT and recover mij ,bij

. We remark

that for this protocol to be secure against semi-honest senders, we need a PIR
protocol with sender privacy. However, e.g. the protocols provided in [19] readily
have this feature.

Carefully putting all these components together, we obtain a batch bit-OT
protocol with rate-1, for both the sender and the receiver.

2.5 Emulating Small Subgroups

We now return to the issue that ElGamal does not provide function privacy for
linear functions modulo 2. Recall that the issue essentially boils down to the fact
that the plaintext space of ElGamal is natively Zp, and when we encode messages
in the least significant bits, i.e. encoding a bit b as gb, then for all practical
purposes homomorphic evaluations of linear functions with {0, 1} coefficients are
over Z2, i.e. the resulting ciphertext encodes the result of the function evaluation
without reduction modulo 2.

From an algebraic perspective, this problem is rooted in the fact that since
p is prime, Zp has no non-trivial subgroup, i.e. it just does not support modular
reductions with respect to anything else than p.

To approach this problem, we will take inspiration from the domain of lattice
cryptography [35]. There, messages are typically encoded in the high order bits
of group elements, i.e. to encode b in Zp, we would like to encoded it as b · p2 .
However, since p is odd, first have to round p

2 to the nearest integer in order to
get a proper Zp element, i.e. we encode b via b ·

⌈
p
2

⌉
. If we could encode b with

respect to p
2 /∈ Zp, we would get a subgroup of order 2, i.e. for bits b, b′ ∈ {0, 1}

it holds that (
b · p

2
+ b′ · p

2

)
mod p = (b+ b′ mod 2) · p

2
.

10 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

However, once we round p
2 to the next integer, we get essentially the same prob-

lem as before: If we perform group operations on b
⌈
p
2

⌉
and b′

⌈
p
2

⌉
, then the

rounding errors start to accumulate information about b and b′ which is cannot
be obtained from b+ b′ mod 2. Specifically

b
⌈p

2

⌉
+ b′

⌈p
2

⌉
mod p = b

(
p

2
+

1

2

)
+ b′

(
p

2
+

1

2

)
mod p

= (b+ b′ mod 2)
p

2
+ (b+ b′)

1

2
mod p.

Thus, now the least significant bit of b
⌈
p
2

⌉
+b′

⌈
p
2

⌉
mod p e.g. leaks if b = b′ = 1,

something which cannot be learned from b+ b′ mod 2.
Consequently, at first glance the idea of encoding a bit b in the “high-order”

bits of a Zp element seems ineffective. However, the lattice toolkit still has more
to offer. In particular, in the context of sampling discrete gaussians from lattices,
Peikert [32] considered a technique called randomized rounding. The basic idea
is, given a a real number r ∈ R to not always round to the same value e.g. dre,
but to sample a an integer z close to r. In [32], this distribution is a discrete
gaussian Z on Z centered at r, i.e. the expectation of Z is r. Such a discrete
gaussian is parametrized by a gaussian parameter σ, which essentially controlls
the standard deviation of the discrete gaussian. We denote Z by drcσ.

Now, given any two r, r′ ∈ R and σ1, σ2 > ω(
√

log(λ)) (more generally the
smoothing parameter of Z), Peikert [32] shows that

drcσ1 + dr′cσ2 ≈s dr + r′c√
σ2
1+σ

2
2

.

In other words, while drcσ1 + dr′cσ2 and dr + r′c√
σ2
1+σ

2
2

are note the same,

they are statistically close. This means that anything that can be learned from
drcσ1

+ dr′cσ2
could have as well been learned from dr + r′c√

σ2
1+σ

2
2

! While this

comes at the expense of an increase “error” term with parameter
√
σ2
1 + σ2

2 , this
additive error is very small (of size approx σ) controlling the growth of this error
term can be handled by standard techniques.

Returning to our goal of emulating small subgroups in Zp, our approach
follows almost instantly: Instead of encoding a bit b ∈ Z2 as b ·

⌈
p
2

⌉
, we will

encode it as
⌈
b · p2

⌋
σ

(for a σ > ω(
√

log(λ))). For b, b′ ∈ {0, 1} this ensures that⌈
b · p

2

⌋
σ

+
⌈
b′ · p

2

⌋
σ

mod p ≈s
⌈
(b+ b′ mod 2) · p

2

⌋
√
2σ

mod p.

Thus, we have ensured that
⌈
b · p2

⌋
σ

+
⌈
b′ · p2

⌋
σ

mod p does not leak more infor-
mation than b+ b′ mod 2.

Function-Private Evaluation for ElGamal We will now briefly discuss how this
idea leads to a modulo 2 function private homomorphic evaluation procedure
for ElGamal. Say we have two ElGamal ciphertexts c1 = (gr1 , hr1 · gb1) and
c2 = (gr2 , hr2 ·gb2) for a public key pk = (g, h) and we want to homomorphically

Batch-OT with Optimal Rate 11

evaluate the function f(x1, x2) = a1x1 + a2x2 mod 2 (for a1, a2 ∈ {0, 1}) on
this pair of ciphertexts. In the first step, we randomly encode the function f as

f ′(x1, x2) = x1 ·
⌈
a1
p

2

⌋
σ

+ (1− x1) · d0cσ + x2 ·
⌈
a2
p

2

⌋
σ

+ (1− x2) · d0cσ ,

noting that this is still a linear function (chosen from a distribution). Homomor-
phically evaluating f ′ on the ciphertexts c,c2 we obtain a ciphertext c′ encrypting

f ′(b1, b1) = b1 ·
⌈
a1
p

2

⌋
σ

+ (1− b1) · d0cσ + b1 ·
⌈
a2
p

2

⌋
σ

+ (1− b1) · d0cσ

=
⌈
b1a1

p

2

⌋
σ

+
⌈
b1a2

p

2

⌋
σ

≈s
⌈
(b1a1 + b1a2 mod 2)

p

2

⌋
√
2σ
.

In other words, this ciphertext could have been simulated knowing only the
function result f(b1, b1) = b1a1+b1a2 mod 2, establishing that this homomorphic
evaluation procedure is function private.

One aspect to note is that while the messages b1, b1 are encoded in c1, c2 in
the “low-order-bits” via gb1 and gb2 , the function result f(b1, b2) encrypted in c′

is encoded in the high order bits, i.e. it is encoded as ≈ gf(b1,b2)
p
2 . This makes

it necessary to change the decryption procedure: Let c′ = (c′1, c
′
2) and s be the

secret key. To decrypt c′ we compute f = c′2 · (c′1)−s ≈s gdf(s1,s2)·
p
2 c, we test if

f is close to g0 = 1 or gdp/2e. This recovers f(s1, s2), as the error introduced
by the rounding operation is of size at most poly(λ) via standard gaussian tail
bounds.

Finally, we remark this this “high-order-bit” encoding is still compatible
with ElGamal ciphertext compression, i.e. we can still compress homomorphi-
cally evaluated batch ElGamal ciphertexts down asymptotically optimal size,
using a slightly different compression mechanism. This mechanism is discussed
in Section 5. We expect this technique to have additional applications. As one
immediate application, it allows to upgrade the key-dependent message secure
encryption scheme of Boneh et al. [3] to support arbitrary linear functions mod-
ulo 2.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this
work, λ denotes the security parameter. By negl(λ), we denote a negligible func-
tion in λ, that is, a function that vanishes faster than any inverse polynomial
in λ. Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite)
set, we denote by x←$S the experiment of sampling uniformly at random an
element x from S. If D is a distribution over S, we denote by x←$D the el-
ement x sampled from S according to D. We denote by S[i] the i-th element
of S (where the elements are ordered by ascending order except when explicitly
stated otherwise)

12 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

For two probability distributions X,Y , we use the notation X ≈s Y to state
that the distributions are statistically indistinguishable.

For two vectors u,v ∈ Fn over a finite field F, we denote by u � v their
component-wise multiplication. We denote by Supp(u) the support of u, that
is, the set of indices where u is different from 0.10 For S ⊆ [n], uS denotes the
vector (ui)i∈S . Finally, uT denotes the transpose of u and hw(u) denotes the
hamming weight of u (that is, the number of coordinates of u different from 0).

3.1 Lattices and Gaussians

We now review some basic notions of lattices and gaussian distributions.
Let B ∈ Rk×n be a matrix. We denote the lattice generated by B by Λ =

Λ(B) = {xB : x ∈ Zk}.11 The dual lattice Λ∗ of a lattice Λ is defined by
Λ∗ = {x ∈ Rn : ∀y ∈ Λ,x · y ∈ Z}. It holds that (Λ∗)∗ = Λ. The orthogonal
lattice Λ⊥q is defined by {y ∈ Znq : AyT = 0 mod q}.

Let ρs(x) be probability distribution of the Gaussian distribution over Rn
with parameter s and centered in 0. We define the discrete Gaussian distribution
DS,s over S and with parameter s by the probability distribution ρs(x)/ρ(S) for
all x ∈ S (where ρs(S) =

∑
x∈S ρs(x)).

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the least real
σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε [31].

Lemma 1 ([2]) For all α ∈ R, ‖x‖ ≤ α
√
n for x←$Dn

Z,α, except with negligible
probability in n.

We will make use of the following convolution property of discrete gaussians.

Lemma 2 ([22], Corollary 4.8) Let Λ1, Λ2 ⊆ Rn be lattices, let σ1, σ2 >
0 be such that 1/

√
1/σ2

1 + 1/σ2
2 > ηε(Λ1 ∩ Λ2) for some ε = negl(λ). Then

it holds for all a,b ∈ Rn that DΛ1+a,σ1 + DΛ2+b,σ2 is statistically close to
D
Λ1+Λ2+a+b,

√
σ2
1+σ

2
2

.

We just need the following simple corollary of Lemma 2, which can be ob-
tained by setting Λ1 = Λ2 = Z.

Corollary 1. Let σ1, σ2, σ3 =
√
σ2
1 + σ2

2 be such that σ1σ2/σ3 > ηε(Z) for a
negligible ε and let a, b ∈ Z. Then DZ+a,σ1

+DZ+b,σ2
and DZ+a+b,σ3

are statis-
tically close.

3.2 Distributed GGM-PPRF Correlation

Let PPRFGGM = (KeyGen,Eval,Puncture,EvalPunct) be the GGM-PPRF scheme
based on [26]. The distributed GGM-PPRF correlation functionality [5] considers
two parties: A receiver with input α ∈ {0, 1}` and a sender with input β ∈ Fpr
and a GGM-PPRF key K. The functionality outputs a punctured key Kα and a
hardwired value β−PPRF.Eval(K, α) to the receiver. We now present the formal
definition of the functionality.

10 If there is only one index different from zero, Supp(u) denotes this index.
11 The matrix B is called a basis of Λ(B).

Batch-OT with Optimal Rate 13

Distributed GGM-PPRF correlation functionality. The functionality FPPRF-GGM

is parametrized by integers `, p, r ∈ N. Moreover, let PPRFGGM = (KeyGen,Eval,
Puncture,EvalPunct) be the GGM PPRF scheme with input space {0, 1}` and
output space Fpr . The functionality works as follows:

– Receiver phase. R sends α to FPPRF-GGM where α ∈ {0, 1}`.
– Sender phase. S sends (β,K) to FPPRF-GGM where β ∈ Fpr and K ←

PPRF.KeyGen(1λ). FPPRF-GGM sends Kα ← PPRF.Puncture(K, α) and γ ←
β − PPRF.Eval(K, α) to R.

4 Compression-friendly Subgroup Emulation via
Gaussian Rounding

We will now provide our new subgroup emulation technique. We first define the
gaussian rounding functionality.

Definition 1 Let σ > 0. For any x ∈ R, the gaussian rounding dxcσ is a random
variable supported on Z defined by

dxcσ = x+DZ−x,σ.

In other words, dxcσ is a discrete gaussian centered on x ∈ R but supported
on Z.

We will use the following convolution lemma which provides a simulation
property for gaussian rounding.

Lemma 3 Let ε > 0 be bounded by a sufficiently small constant and let σ1, σ2 ≥
ηε(Z). Then it holds for all x, y ∈ R that

dxcσ1
+ dycσ2

≈s dx+ yc√
σ2
1+σ

2
2

.

It immediately follows from Lemma 3 that it holds for every integer p ≥ 2 that

dxcσ1
+ dycσ2

mod p ≈s dx+ yc√
σ2
1+σ

2
2

mod p.

Please refer to Appendix B of the full version of this paper for the proofs of
lemmas in this section.

Lemma 4 Let p > q ≥ 2 be integers with q ≤ 2k, and let σ > ηε(Z) for a
negligible ε. Let f : Znq → Zq be given by f(x1, . . . , xn) =

∑n
i=1 aixi + c for

a1, . . . , an, c ∈ Zq. Define the randomized function f̂ : {0, 1}nk → Znp via

f̂(x1,1, . . . , xn,k) =

n∑
i=1

k∑
j=1

(
xi,j ·

⌈
2j · p

q
ai

⌋
σ

+ (1− xi,j) d0cσ

)
+

⌈
p

q
c

⌋
σ

.

Then it holds for all x1,1, . . . , xn,k ∈ {0, 1} that

f̂(x1,1, . . . , xn,k) ≈s

pq · f
 k∑
j=1

x1,j2
j , . . . ,

k∑
j=1

xn,j2
j


√
2nk+1σ

.

14 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

5 Rate-1 Circuit-Private Linearly Homomorphic
Encryption

In this section we define circuit-private LHE and present constructions based on
LWE, DDH or QR12. All constructions achieve rate 1.

Definition 2 A (packed) linearly homomorphic encryption (LHE) scheme LHE
over a finite group G is composed by a tuple of algorithms (Keygen,Enc,Eval,Shrink,DecShrink)
such that:

– KeyGen(1λ, k) takes as input a security parameter λ and k ∈ N. It outputs a
pair of public and secret keys (pk, sk).

– Enc(pk,m = (m1, . . . ,mk)) takes as input a public key pk and a message
m = (m1, . . . ,mk) ∈ Gk. It outputs a ciphertext ct.

– Eval(pk, f, (ct1, . . . , ct`)) takes as input a public key pk, a linear function
f : (Gk)` → Gk and ` ciphertexts (ct1, . . . , ct`). It outputs a new ciphertext
c̃t.

– Shrink(pk, ct) takes as input a public key pk and a ciphertext ct. It outputs a
new shrunken ciphertext ct′.

– DecShrink(sk, ct) takes as input a secret key sk and a shrunken ciphertext ct.
It outputs a message m.

For simplicity, we define the algorithm Eval&Shrink(pk, f, (ct1 . . . , ct`)) which
outputs a ciphertext c̃t and is defined as

Eval&Shrink(pk, f, (ct1 . . . , ct`)) = Shrink(pk,Eval(pk, f, (ct1, . . . , ct`)))

for any linear function f .
We require the following properties from a (circuit-private) packed LHE:

Correctness, semantic security, compactness and circuit-privacy.

Definition 3 (Correctness) A packed LHE scheme LHE is said to be correct if
for any ` ∈ N, any messages m1, . . . ,m` and any linear function f : (Gk)` → Gk
we have that

Pr

m̃← DecShrink(sk, c̃t) :
(pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [`]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ct`))

 = 1

where m̃← f(m1, . . . ,m`).

Definition 4 (Semantic Security) A packed LHE scheme LHE is said to be
semantically secure if for all λ ∈ N, all k = poly(λ) and all adversaries A =
(A0,A1) we have that∣∣∣∣∣∣∣∣Pr

b← A1(st, ct) :

(pk, sk)← KeyGen(1λ, k)
(m0,m1, st)← A0(pk)

b←$ {0, 1}
ct← Enc(pk,mb)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ).

12 Please refer to Appendix D.1 and D.2 of the full version paper for the construction
of LWE and QR.

Batch-OT with Optimal Rate 15

Definition 5 (Compactness) We require that a packed LHE scheme LHE has
the following compactness properties:

– For (pk, sk) ← KeyGen(1λ, k), the size of the public key |pk| is bounded by
k · poly(n).

– For any linear function f : (Gk)` → Gk and any (m1, . . . ,m`) ∈ (Gk)` we
have that

lim
λ→∞

inf
|f(m1, . . . ,m`)|

|Eval&Shrink(pk, , f, (ct1 . . . , ct`))|
→ 1

for sufficiently large k, where (pk, sk)← KeyGen(1λ, k) and cti ← Enc(pk,mi)
for i ∈ [`]. In this case, we say that the scheme has rate 1.

We also need that the packed LHE scheme fulfills circuit privacy (in the
semi-honest case).

Definition 6 (Circuit Privacy) A packed LHE scheme LHE is said to be circuit-
private if for all messages (m1, . . . ,m`) ∈ (Gk)` and all linear functions f :
(Gk)` → Gk, there exists a simulator Sim such that for all adversaries A we
have that∣∣∣∣∣∣∣∣∣∣

Pr

1← A(pk, sk, c̃t) :
(pk, sk)← KeyGen(1λ, k)

cti ← Enc(pk,mi) for i ∈ [`]
c̃t← Eval&Shrink(pk, , f, (ct1 . . . , ct`))

−
Pr

[
1← A(pk, sk, c̃t) :

(pk, sk)← KeyGen(1λ, k)
c̃t← Sim(pk, m̃)

]
∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

where m̃← f(m1, . . . ,m`).

In other words, since Sim does not use f to compute c̃t, no information about
it is leaked from c̃t (apart from what is trivially leaked by f).

Encryption of matrices. Above, we defined LHE that supports encryption of
vectors m ∈ Gk. We can easily extend the definition to support encryption of
matrices M ∈ Gk×α for any α = poly(λ): Given a public key pk, an encryption
Enc(pk,M) of M is defined as

Enc(pk,M) =

 | |
Enc

(
pk,m(1)

)
. . . Enc

(
pk,m(α)

)
| |


where m(i) is the i-th column of M.

5.1 Construction from DDH

In the following, let G be a (prime-order) group generator, that is, G is an al-
gorithm that takes as an input a security parameter 1λ and outputs (G, p, g),
where G is the description of a multiplicative cyclic group, p is the order of the
group which is always a prime number unless differently specified, and g is a
generator of the group. In the following we state the decisional version of the
Diffie-Hellman (DDH) assumption.

16 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

Definition 7 (Decisional Diffie-Hellman Assumption) Let (G, p, g)←$G(1λ).
We say that the DDH assumption holds (with respect to G) if for any PPT ad-
versary A∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣ ≤ negl(λ)

where a, b, c←$Zp.

Shrinking ciphertexts. We first present how we can shrink DDH-based ci-
phertexts to achieve rate 1. The shrinking mechanism presented below is a mod-
ification of the one presented in [9] (which is itself based on previous works
[7,19]).

Let (G, p, g)←$G(1λ) and k ∈ Z. Consider an El Gamal public key of the
form pk = (g, (h1, . . . , hk) = (g, (gx1 , . . . , gxk)) ∈ Gk+1 for x1, . . . , xk←$Zp
(here, x = (x1, . . . , xk) is the secret key). Consider the following modified El
Gamal encryption algorithm where a ciphertext for m = (m1, . . . ,mk) ∈ {0, 1}k
is of the form ct = (c1, (c2,1, . . . , c2,k)) ∈ Gk+1 where c1 = gr and c2,i =
hri g
dmi(p/2)cσ .13 We now show how to compress ciphertexts of this form.
We will need the following ingredients: Let B, T ∈ poly(λ) and PRF =

(KeyGen,Eval) be a PRF that maps g ∈ G to {0, 1}τ for some τ ∈ Z. We
also define the function LEq< : G2 → {0, 1} which receives two group elements
g0, g1 and outputs 1 if g0 < g1 and 0 otherwise, for some order relation < (e.g.
the lexicographic order).

ShrinkDDH(pk, ct) :
– Parse pk = (g, (h1, . . . , hk)) and ct = (c1, (c2,1, . . . , c2,k)). Let w = gbp/2c.
– Sample a PRF key K←$PRF.KeyGen(1λ) such that the following condi-

tions are simultaneously satisfied:
1. For every i ∈ [k] and j ∈ {−B, . . . , B} we have that

PRF.Eval(K, c2,i · gj) 6= 0 and PRF.Eval(K, c2,i · w · gj) 6= 0.

2. For all i ∈ [k] there exists ` ∈ {B + 1, . . . , T} such that

PRF.Eval(K, c2,i · g`) = 0 and PRF.Eval(K, c2,i · w · g`) = 0.

– For every i ∈ [k], let δ0,i, δ1,i > 0 be the smallest integer such that

PRF.Eval(K, c2,i · gδ0,i) = 0 and PRF.Eval(K, c2,i · w · gδ1,i) = 0.

Let α0,i = c2,i ·gδ0,i and α1,i = c2,i ·w ·gδ1,i . If LEq<(α0,i, α1,i) = 0, then
set bi = 0. Else, set bi = 1.

– Output c̄t = (c1,K, (b1, . . . , bk)).
DecShrinkDDH(sk, c̄t) :

– Parse sk = x = (x1, . . . , xk) and c̄t = (c1,K, (b1, . . . bk)). Let w = gbp/2c.
– For every i ∈ [k], compute β0,i = cxi1 and β1,i = cxi1 · w.

13 Note that d·cσ is defined in section 4.

Batch-OT with Optimal Rate 17

– For every i ∈ [k], find the smallest integers γ0,i, γ1,i > 0 such that

PRF.Eval(K, β0,i · gγ0,i) = 0 and PRF.Eval(K, β1,i · gγ1,i) = 0.

Let ᾱ0,i = β0,i · gγ0,i and ᾱ1,i = β1,i · gγ1,i . If LEq<(ᾱ0,i, ᾱ1,i) = bi, set
mi = 0. Else, set mi = 1.

– Output m = (m1, . . . ,mk).

Lemma 5 (Correctness) Let B = poly(λ) be such that B > λσ+ 1. Then the
shrinking procedure presented above is correct.

Please refer to Appendix C.1 of the full version paper for the proof.

Lemma 6 (Runtime) Let PRF be a PRF, τ = log(8Bk) and T = 2τλ loge(k)+
B(1 + 4k). Then, the shrinking algorithm ShrinkDDH described above terminates
in polynomial time, except with negligible probability.

Please refer to Appendix C.2 of the full version paper for the proof.

Ciphertext rate. After applying ShrinkDDH we obtain a ciphertext composed by
c̃t = (c1,K, (b1, . . . , bk)) ∈ G×K × {0, 1}k. Hence,

|c̃t|
|m|

=
|c1|+ |K|+ |(b1, . . . , bk)|

k
=

2λ+ k

k
= 1 +

2λ

k

which tends to 1 for large enough k.

Function-private LHE from DDH. We now present our circuit-private LHE
over Z2 based on DDH.

KeyGen(1λ, k) :
– (G, p, g)←$G(1λ)
– Sample x1, . . . , xk←$Zp. Compute hi = gxi .
– Output pk = (G, p, g, h1, . . . , hk) and sk = x = (x1, . . . , xk).

Enc(pk,m = (m1, . . . ,mk)) :
– Parse pk as (G, p, g, h1, . . . , hk).
– Sample r←$Zp. Compute c1 = gr and c2,i = hri g

mi for i ∈ [k].
– Output ct = (c1, (c2,1, . . . , c2,k)).

Eval(pk, f, (ct1, . . . , ct`))

– Parse pk as (G, p, g, h1, . . . , hk), f as f(x1, . . . ,x`) =
∑`
i=1 aixi + b for

a = (a1, . . . , a`) ∈ Z`2 and b ∈ Zk2 and cti as (c1,i, c2,i) where c2,i =
(c2,1,i, . . . , c2,k,i)) for i ∈ [`].

– Compute c̄t = (c̄1, (c̄2,1, . . . , c̄2,1)) where

c̄1 =
∏̀
i=1

(
c
dai p2 cσ
1,i · (g · c−11,i)

d0cσ

)
· gt

18 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

and

c̄2 =
⊙̀
i=1

(
c
dai p2 cσ
2,i � (g · c−12,i)

d0cσ

)
�
(
gdb1

p
2 cσ , . . . , gdbk

p
2 cσ
)
�(ht1, . . . , h

t
k).

for t←$Zp and where � denotes the component-wise multiplication.

– Output c̄t.

Shrink(pk, ct) : Output c̄t← ShrinkDDH(pk, ct).

DecShrink(sk, ct) : Output m← DecShrinkDDH(sk, c̄t).

Correctness and expected polynomial runtime of the LHE described above is
guaranteed by Lemma 5 and Lemma 6 by setting B > λ(σ(

√
2`+ 1)). Semantic

security of the scheme can be established by a simple reduction to the DDH
assumption in a similar way as in many previous works (the reduction is similar
to the one that proves that El Gamal is semantically secure). It is also easy to
see that the scheme has rate-1 for large enough k.

We now show that the scheme is circuit private. Essentially, circuit privacy
can be established by resorting to Lemma 4.

Lemma 7 (Circuit-privacy) The scheme presented above is circuit private.

Please refer to Appendix C.3 of the full version paper for the proof.

Larger plaintext space. As in the LWE case, in the construction presented above,
the plaintext space is Zk2 . Both the shrinking algorithm and the function-private
LHE schemes can be extended to support plaintext space Zkq where q = poly(λ)
and q = 2ν for some ν ∈ Z (the constrain of q being a power of 2 comes from
Lemma 4)

6 Co-Private Information Retrieval

In this section, we present a new cryptographic primitive that we call co-PIR.
In a co-PIR scheme, a receiver (with input a set of indices S) and a sender (with
no input) interact such that, at the end, the sender obtains a string y ∈ Zmq and
receiver obtains y−S (all positions of y except for the indices in S).

In terms of security, we require that the sender learns nothing about S,
whereas the string yS looks pseudorandom to the receiver. In terms of effi-
ciency, we require that the total communication of the protocol scales only with
|S|poly(λ)polylog(m) (that is, it scales only poly-logarithmically with m). We
present a construction for Co-PIR from the distributed GGM-PPRF correlation
(as shown in [5]) in Appendix E.1 of the full version paper; We also present
another construction with black-box usage of PPRF and PIR in Appendix E.2
of the full version paper.

Batch-OT with Optimal Rate 19

6.1 Definition

We start by defining Co-PIR and present its security properties.

Definition 8 (Co-PIR) A (two-round) Co-PIR scheme CoPIR over Zq is parametrized
by an integer m where m = poly[λ], and is composed by a tuple of algorithms
(Query,Send,Retrieve) such that

– Query(1λ, S) takes as input a set of indices S ⊆ [m]. It outputs a message
copir1 and a private state st.

– Send(copir1) takes as input a first message copir1. It outputs a second mes-
sage copir2 and a string y ∈ Zmq .

– Dec(copir2, st) takes as input a second message copir2 and a state st. It out-
puts a string ỹ ∈ Zmq .

Definition 9 (Correctness) A Co-PIR scheme CoPIR is said to be correct if
for any m = poly(λ) and S ⊆ [m] we have that

Pr

y[m]\S = ỹ[m]\S :
(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1)
ỹ← Retrieve(copir2, st)

 = 1.

In other words, the strings y and ỹ match for every coordinate i ∈ [m] \ S.

In terms of security, we require two properties: receiver security and sender
security.

Definition 10 (Receiver security) A Co-PIR scheme CoPIR is said to be re-
ceiver secure if for all m = poly(λ), any subsets S1, S2 ⊆ [m] we have that for
any adversary A∣∣∣∣Pr

[
1← A(k, copir1) : (copir1, st)← Query(1λ, S1)

]
−

Pr
[
1← A(k, copir1) : (copir1, st)← Query(1λ, S2)

] ∣∣∣∣ ≤ negl(λ).

Definition 11 (Sender security) A Co-PIR scheme CoPIR is said to be sender
secure if for any m = poly(λ), any subset S ⊆ [m] we have that for all adversaries
A ∣∣∣∣∣∣∣∣∣∣

Pr

[
1← A(k, st, copir2,yS) :

(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1,x)

]
−

Pr

1← A(k, st, copir2,y
′
S) :

(copir1, st)← Query(1λ, S)
(copir2,y)← Send(copir1,x)

y′S ←$Z|S|q


∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Definition 12 (Compactness) A Co-PIR scheme CoPIR is said to be compact
if |copir1|, |copir2| = |S| ·polylog(m) ·poly(λ) for any S ⊆ [m] where (copir1, st)←
Query(1λ, S) and (copir2,y)← Send(copir1). In other words, the communication
complexity depends only poly-logarithmically in m.

20 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

7 Oblivious Transfer with Overall Rate 1

We will now provide our construction of an oblivious transfer protocol with
overall rate 1.

Ingredients. We will make use of the following ingredients.

– A packed linearly homomorphic encryption scheme LHE = (KeyGen,Enc,
Eval,Shrink,DecShrink) with plaintext space {0, 1}` and a post homomor-
phism shrinking procedure Shrink which converts ciphertexts into a rate 1
representation.14

– The binary LPN(n,m, ρ) problem with dimension n = poly(n), m = n · ` ·
poly(n) samples and slightly sub-constant noise-rate ρ = m1−ε.

– A 2-round PIR scheme PIR = (Query,Send,Retrieve) with poly-logarithmic
communication complexity and sender privacy.

– A 2-round Co-PIR scheme CoPIR = (Query,Send,Retrieve) over Z2 parametrized
by m.

Additional Notation. Furthermore, to declutter notation we define the following
embedding functions.

RowMatrix(`, n,v1, . . . ,v`): Takes row-vectors v1, . . . ,v` ∈ {0, 1}n and outputs
a matrix

V =

— v1 —
...

— v` —

 ,

i.e. for every i ∈ [`] the i-th row of V is the row-vector vi.
SingleRowMatrix(`, n, i,v): Takes a row-vector v ∈ {0, 1}n and outputs a matrix

V =



0 . . . 0
...

...
0 . . . 0
— v —
0 . . . 0
...

...
0 . . . 0


,

i.e. the i-th row of V is v, but V is 0 everywhere else.
Diag(n,v): Takes a vector v = (v1, . . . , vn) ∈ {0, 1}n and outputs a matrix

D =

v1 0
. . .

0 vn

 ,

14 Recall that we use the notation Eval&Shrink to denote the composition of algorithms
Eval and Shrink.

Batch-OT with Optimal Rate 21

i.e. D ∈ {0, 1}n×n is a diagonal matrix with the components of v on its
diagonal.

We observe the following:

– For any v1, . . . ,v` ∈ {0, 1}n it holds that

RowMatrix(`, n,v1, . . . ,v`) =
∑̀
i=1

SingleRowMatrix(`, n, i,vi).

– For x,y ∈ {0, 1}n it holds that

x · Diag(n,y) = x� y,

where � denotes component-wise multiplication.

7.1 The Protocol

The protocol OT = (OTR,OTS,OTD) is given as follows.

OTR(b ∈ {0, 1}m`) :
– Parse b = (b1, . . . ,b`), where the bi ∈ {0, 1}m are blocks of size m.
– Choose A←$ {0, 1}n×m uniformly at random and compute a pair of

public and secret key (pk, sk)← LHE.KeyGen(1λ, `).
– For all i ∈ [`], choose si←$ {0, 1}n, and ei←$χm,t, compute ci ← siA+

ei + bi, and set Si ← SingleRowMatrix(`, n, i, si). Compute a matrix-
ciphertext cti ← LHE.Enc(pk,Si).

– For all i ∈ [`] set Ji = Supp(ei) to be the support of ei. Compute
(copir1,i, sti)← CoPIR.Query(Ji). Additionally, for j ∈ [t] compute (qi,j , ŝti,j) =
PIR.Query(Ji[j]).

– Output ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[`], {qi,j}i∈[`],j∈[t]

)
and st = (sk,

{sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t]]).
OTS((m0,m1) ∈ ({0, 1}m`)2, ot1) :

– Parse m0 = (m0,1, . . . ,m0,`) and m1 = (m1,1, . . . ,m1,`), where each
mb,i = (mb,i,1, . . . ,mb,i,m) ∈ {0, 1}m. Parse ot1 = (pk,A, {cti, ci, copir1,i}i∈[`],
{qi,j}i∈[`],j∈[t]).

– For i ∈ [`] (yi, copir2,i)← CoPIR.Send(copir1,i) where yi = (yi,1, . . . , yi,m).
Set zi = m0,i + yi.

– Set Z = RowMatrix(`,m, z1, . . . , z`).
– For all i ∈ [`] set Ci = SingleRowMatrix(`,m, i, ci) and Di = Diag(m,m1,i−

m0,i).
– Define the Z2-linear function f : ({0, 1}`×n)` → {0, 1}`×m via

f(X1, . . . ,X`) =

(∑̀
i=1

(−XiA + Ci) ·Di

)
+ Z.

– Compute c̃t← LHE.Eval&Shrink(pk, f, ct1, . . . , ct`).

22 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

– For i ∈ [`] set DBi = (yi,1+(m1,i,1−m0,i,1), . . . , yi,m+(m1,i,m−m0,i,m)).
For all j ∈ [t] compute ri,j ← PIR.Send(DBi, qi,j).

– Output ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
.

OTD(ot2, st):
– Parse ot2 =

(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
and st = (sk, {sti, Ji}i∈[`],

{ŝti,j}i∈[`],j∈[t]]).
– For all i ∈ [`] compute ỹi = (ỹi,1, . . . , ỹi,m)← CoPIR.Retrieve(copir2,i, sti).

– For i ∈ [`] and j ∈ [t] compute z̃i,j ← PIR.Retrieve(ri,j , ŝti,j).
– For i ∈ [`] set zi = (zi,1, . . . , zi,m) where

zi,l =

{
z̃i,j if l = Ji[j]

ỹi,` otherwise
.

– Set Z = RowMatrix(`,m, z1, . . . , z`).
– Compute W̃← LHE.DecShrink(sk, c̃t) and W = W̃ − Z.
– Let w1, . . . ,w` be the rows of W. Output w = (w1‖ . . . ‖w`) ∈ {0, 1}m`.

Correctness. We will first show that OT is correct, given that LHE, CoPIR and
PIR are correct.

Theorem 1. Assume that LHE, CoPIR and PIR are correct. Then the scheme
presented above is correct.

Proof. First note that by linear-homomorphic correctness of LHE it holds that

W̃ = LHE.DecShrink(sk, LHE.Eval&Shrink(pk, f, LHE.Enc(pk,S1), . . . , LHE.Enc(pk,S`))

= f(S1, . . . ,S`)

=

(
k∑
i=1

(−SiA + Ci) ·Di

)
+ Z

Let w̃i be the i-th row of W̃. It holds by definition Si, Ci and Zi that

w̃i = (−siA + ci)Di + zi

= (−siA + siAi + ei + bi)Di + m0,i + yi

= bi � (m1,i −m0,i) + m0,i + ei � (m1,i −m0,i) + yi.

where yi = (yi,1, . . . , yi,m) is part of the output of CoPIR.Send.
Let Ji be the support of ei and let ỹi = (ỹi,1, . . . , ỹi,m)← CoPIR.Retrieve(copir2,i, sti).

By the correctness of the Co-PIR scheme CoPIR we have that ỹi,j = yi,j for all
j /∈ Ji. On the other hand, by the correctness of the PIR scheme PIR it holds
that

z̃i,j = yi,j + (m1,i,j −m0,i,j)

for all j ∈ Ji. Consequently, we have that

zi,j =

{
yi,j + (m1,i,j −m0,i,j) if l = Ji[j]

yi,j otherwise
.

Batch-OT with Optimal Rate 23

In other words, the term (m1,i,j −m0,i,j) only appears in the coordinates where
ei is equal to one. Then, it holds that

zi = ei � (m1,i −m0,i) + yi.

We conclude that

w = w̃i − zi = bi � (m1,i −m0,i) + m0,i.

Since w = (w1‖ . . . ‖w`) it follows that

w = b� (m1 −m0) + m0,

i.e. OT is correct.

Communication complexity. We will now analyze the communication complexity
of OT and show which choice of parameters leads to an overall rate approaching
1.

The bit-size of the message ot1 =
(
pk,A, {cti, ci, copir1,i}i∈[`], {qi,j}i∈[`],j∈[t]

)
can be bounded as follows.

– |pk| = ` · poly(λ)
– |A| = n ·m
– |{cti}i∈[`]| = `2 · n · poly(λ)
– |{ci}i∈[`]| = ` ·m
– |{copir1,i}i∈[`]| = ` · t · polylog(m) · poly(λ)
– |{qi,j}i∈[`],j∈[t]| = ` · t · polylog(m) · poly(λ).

Consequently, the overall upload-rate ρup can be bounded by

ρup =
|pk|+ |A|+ |(cti)i∈[`]|+ |(ci)i∈[`]|+ |{copir1,i}i∈[`]|+ |(qi,j)i∈[`],j∈[t]|

`m

≤ 1 +
poly(λ)

m
+
n

`
+
` · n · poly(λ)

m
+
t · polylog(m) · poly(λ)

m

≤ 1 +
n

`
+
` · n · poly(λ)

m
+
t · polylog(m) · poly(λ)

m
.

We get an overall upload rate of ρup = 1 + O(1/λ) by choosing ` = λ · n and
m = n2 ·poly(λ) for a sufficiently large poly(λ) depending on ε (where t = m1−ε).

The bit-size of the message ot2 =
(
c̃t, {copir2,i}i∈[`], {ri,j}i∈[`],j∈[t]

)
can be

bounded as follows.

– |c̃t| = `m(1 + ρLHE), where 1 + ρLHE is the ciphertext rate of LHE.
– |{copir2,i}i∈[`]| = ` · t · polylog(m) · poly(λ)
– |{ri,j}i∈[`],j∈[t]| = ` · t · polylog(m) · poly(λ)

Thus, the download-rate ρdown can be bounded by

ρdown =
|c̃t|+ |{copir2,i}i∈[`]|+ |{ri,j}i∈[`],j∈[t]|

`m

≤ 1 + ρLHE +
` · t · polylog(m) · poly(λ)

m
.

By the above choice of m this comes down to ρdown ≤ 1 + ρLHE +O(1/λ).

24 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

7.2 Security

Receiver Security We now focus on the security of the scheme. We start by
proving that the scheme is secure against semi-honest senders.

Theorem 2. Assume that LHE is a semantic secure LHE scheme, PIR is a
user-private PIR scheme, CoPIR is a receiver secure Co-PIR scheme and that
the LPN(n,m, ρ) assumption holds for ρ = m1−ε for ε > 0. Then the scheme
presented in Section 7.1 is receiver secure against semi-honest adversaries.

Recall that the receiver’s message is composed by LHE ciphertexts, LPN
samples, Co-PIR and PIR first messages. In a nutshell, receiver security follows
from the fact that the ciphertexts hide the LPN secret, the LPN samples hide the
receiver’s input b and finally the Co-PIR and PIR first messages hide the indices
Ji. We prove the above theorem in Appendix G.1 of the full version paper.

Sender Security

Theorem 3. Assume that LHE is a statistically function-private LHE scheme,
PIR is a sender-private PIR scheme and CoPIR is a sender-private Co-PIR
scheme. Then the scheme presented in Section 7.1 is sender secure.

In a nutshell, we can use the sender security of PIR and Co-PIR to remove any
information about the indices of DBi that are not in Supp(ei), and finally invoke
circuit-privacy of the LHE. We prove sender security in Appendix G.2 of the full
version paper.

Hardness assumptions for optimal-rate OT. When we instantiate the LHE with
one of the schemes from Section 5, the Co-PIR with the construction from Section
6 and the PIR with a known black-box construction based on LWE, DDH or
QR [19], we obtain the following corollary

Corollary 1 Assuming the LWE, DDH or QR assumptions together with the
LPN(n,m, ρ), there is a black-box construction for optimal-rate OT.

8 Oblivious Matrix-Vector Product and Oblivious Linear
Evaluation with Overall Rate 1

In this section we show how we can extend the techniques from the previous
section to build protocols for OMV and OLE that achieve optimal rate.

We start by presenting a secure protocol for oblivious matrix-vector product
(OMV). In an OMV functionality there is a sender, with input a matrix M ∈
Zm×mq and a vector v ∈ Zmq , and a receiver with input b ∈ Zmq . In the end, the
receiver gets the value bM + v but learns nothing about M and v whereas the
sender learns nothing about b. We start by defining the functionality:

Batch-OT with Optimal Rate 25

OMV functionality. The functionality FOMV is parametrized by integers m =
poly(λ) and q and works as follows:

– Receiver phase. R sends b to FOMV where b ∈ Zmq .
– Sender phase. S sends (M,v) to FOMV where M ∈ Zm×mq and v ∈ {0, 1}m.
FOMV sends bM + v ∈ Zmq to R.

We describe the concrete OMV protocol in Appendix H of the full version
paper.

8.1 OLE Protocol

An oblivious linear evaluation (OLE) is a protocol between a sender, with input
an affine function f , and a receiver, with input a point b. It allows for the receiver
to obliviously learn f(b). We now show how we can obtain an OLE using the
OMV protocol presented in Appendix H of the full version paper.

We start by defining the functionality:

OLE functionality. The functionality FOLE is parametrized by integers k =
poly(λ) and q and works as follows:

– Receiver phase. R sends b to FOLE where b ∈ Zkq .

– Sender phase. S sends (u0,u1) to FOLE where u0,u1 ∈ Zkq . FOLE sends

b� u0 + u1 ∈ Zkq to R.

Protocol for Small Fields We briefly sketch how we can construct an OLE
scheme over Zq where q = poly(λ). The protocol follows as a particular case of
the protocol of Appendix H. We give a brief overview of the scheme below.

Using the notation of Appendix H, let b = (b1, . . . ,b`) ∈ Zm`q be the re-

ceiver’s input and let (u0 = (u0,1, . . . ,u0,`),u1 = (u1,1, . . . ,u1,`)) ∈ (Zm`q)2

be the sender’s input. To achieve OLE, the sender constructs the matrices
Di = Diag(m,u0,i) and sets vi = u1,i for all i ∈ [`]. Then they run the OMV
protocol where the receiver inputs b and the sender inputs D = (D1, . . . ,D`)
and v = (v1, . . . ,v`). It is easy to see that the output of the receiver is y =
(y1, . . . ,y`) where

yi = biDi + vi = bi � u0,i + u1,i

be the correctness of the OMV protocol.
Moreover, hw(Di) = 1 ≤ m1−ζ for some ζ > 0 such that ζ + ε > 1. Thus the

resulting protocol achieves overall rate 1. Finally, in terms of hardness assump-
tions, the OLE protocol inherits the same security.

Extending OLE to Larger Rings Following [19], we briefly explain how we
can achieve OLE over larger rings (which can potentially have super-polynomial
size in λ).

26 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

OLE over ZN = Zq1 × · · · × Zqδ . Let N =
∏δ
i=1 qi be an integer (which might

be superpolynomial in λ) such that for all i ∈ [δ] qi = poly(λ) are different
prime numbers. Then, via the Chinese Remainder Theorem, ZN is isomorphic
to Zq1 × · · · ×Zqδ . Thus, performing an OLE over ZN boils down to performing
δ OLEs over each one of the smaller fields Zqi . It is easy to see that, if each OLE
over Zqi has overall rate 1, then the resulting OLE over ZN also achieves overall
rate 1.

OLE over extension fields. We now show how these techniques can be adapted
to perform OLE over an extension field Fqk of order qk for a prime q. Here,
we rely on the fact that multiplication over Fqk can be expressed as a linear
function over the field Zq. That is, suppose that an element x ∈ Fqk is of the
form x = x1 + x2α+ · · ·+ xkα

k−1 where each xi ∈ Zq and α is a symbol. Then,
for elements a,x ∈ Fqk the product

xa = f1,a(x) + f2,a(x)α+ · · ·+ fk,a(x)αk−1

where each fi,a is a Zq-linear function which depends solely on a.

Given this, we briefly describe how we can perform several OLEs over Fqk
while preserving overall rate 1. The receiver has input b = (b1, . . . ,bt) ∈ Ftqk
such that kt = m` and k|m (using the same notation as in Appendix H). It parses
each bi as a k-dimensional vectors b̄i ∈ Zkq . Then, it organizes all t vectors bi
in blocks ci ∈ Zmq of size m. It inputs c = (c1, . . . , c`) into the OMV protocol.

The sender, with input u,v ∈ Fqk rearranges u,v in the same way as the
receiver and obtains w = (w1, . . . ,w`), z = (z1, . . . , z`) respectively. Then, for
each wi = (wi,1, . . . ,wi,m/k), it computes the functions fj,wi,r for each j ∈ [k],
i ∈ [`] and r ∈ [m/k]. Let fj,wi,r be the vector composed by the coefficients of
fj,wi,r . The sender computes the matrices

D̄i,r =

 | |
f1,wi,r . . . fk,wi,r
| |


and then sets

Di =

D̄i,1

. . .

D̄i,m/k

 .

It inputs D = (D1, . . . ,D`) and z into the OMV protocol.

It is easy to see that the receiver’s output will be b�u + v where � denotes
component-wise multiplication over Fqk . Moreover, hw(Di) = k. By choosing k
such that k ≤ µ = m1−ζ we achieve a protocol with overall rate 1. In particular,
we can set the parameters such that k = λ and we achieve an OLE over the field
Fqλ of exponential size.

Batch-OT with Optimal Rate 27

Acknowledgment

Zvika Brakerski is supported by the Israel Science Foundation (Grant No. 3426/21),
and by the European Union Horizon 2020 Research and Innovation Program via
ERC Project REACT (Grant 756482) and via Project PROMETHEUS (Grant
780701).

Pedro Branco thanks the support from DP-PMI and FCT (Portugal) through
the grant PD/BD/135181/2017. This work is supported by Security and Quan-
tum Information Group of Instituto de Telecomunicações, by the Fundação para
a Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE
2020, and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling and Sihang Pu were supported by the Helmholtz Association
within the project “Trustworthy Federated Data Analytics” (TFDA) (funding
number ZT-I- OO1 4).

References

1. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic
private set intersection and applications. In: Nissim, K., Waters, B. (eds.) Theory
of Cryptography. pp. 94–125. Springer International Publishing, Cham (2021)

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry
of numbers. Mathematische Annalen 296(4), 625–636 (1993), http://eudml.org/
doc/165105

3. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) Advances in Cryptology –
CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 108–125.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2008)

4. Bourse, F., del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free.
In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016, Part II.
Lecture Notes in Computer Science, vol. 9815, pp. 62–89. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 14–18, 2016)

5. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.:
Efficient two-round OT extension and silent non-interactive secure computation.
In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th
Conference on Computer and Communications Security. pp. 291–308. ACM Press
(Nov 11–15, 2019)

6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In: Boldyreva,
A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019, Part III. Lec-
ture Notes in Computer Science, vol. 11694, pp. 489–518. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2019)

7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 509–539.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016)

8. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014: 17th International Conference on Theory
and Practice of Public Key Cryptography. Lecture Notes in Computer Science,

http://eudml.org/doc/165105
http://eudml.org/doc/165105

28 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

vol. 8383, pp. 501–519. Springer, Heidelberg, Germany, Buenos Aires, Argentina
(Mar 26–28, 2014)

9. Brakerski, Z., Branco, P., Döttling, N., Garg, S., Malavolta, G.: Constant
ciphertext-rate non-committing encryption from standard assumptions. In:
TCC 2020: 18th Theory of Cryptography Conference, Part I. pp. 58–87. Lecture
Notes in Computer Science, Springer, Heidelberg, Germany (Mar 2020)

10. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryp-
tion: Rate-1 fully-homomorphic encryption and time-lock puzzles. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part II.
Lecture Notes in Computer Science, vol. 11892, pp. 407–437. Springer, Heidelberg,
Germany, Nuremberg, Germany (Dec 1–5, 2019)

11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd Annual Symposium on Foundations
of Computer Science. pp. 97–106. IEEE Computer Society Press, Palm Springs,
CA, USA (Oct 22–25, 2011)

12. Branco, P., Döttling, N., Mateus, P.: Two-round oblivious linear evaluation from
learning with errors. Cryptology ePrint Archive, Report 2020/635 (2020), https:
//eprint.iacr.org/2020/635

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001)

14. Chase, M., Dodis, Y., Ishai, Y., Kraschewski, D., Liu, T., Ostrovsky, R., Vaikun-
tanathan, V.: Reusable non-interactive secure computation. In: Boldyreva, A.,
Micciancio, D. (eds.) Advances in Cryptology – CRYPTO 2019, Part III. Lec-
ture Notes in Computer Science, vol. 11694, pp. 462–488. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2019)

15. Chase, M., Garg, S., Hajiabadi, M., Li, J., Miao, P.: Amortizing rate-1 ot and ap-
plications to pir and psi. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography.
pp. 126–156. Springer International Publishing, Cham (2021)

16. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology – CRYPTO 2017, Part II. Lecture Notes in Computer Science,
vol. 10402, pp. 33–65. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2017)

17. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th Annual Symposium on Foundations of Computer Science. pp. 41–50. IEEE
Computer Society Press, Milwaukee, Wisconsin (Oct 23–25, 1995)

18. Döttling, N.: Low noise LPN: KDM secure public key encryption and sample am-
plification. In: Katz, J. (ed.) PKC 2015: 18th International Conference on Theory
and Practice of Public Key Cryptography. Lecture Notes in Computer Science,
vol. 9020, pp. 604–626. Springer, Heidelberg, Germany, Gaithersburg, MD, USA
(Mar 30 – Apr 1, 2015)

19. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
Advances in Cryptology – CRYPTO 2019, Part III. Lecture Notes in Computer
Science, vol. 11694, pp. 3–32. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 18–22, 2019)

20. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology –
CRYPTO’82. pp. 205–210. Plenum Press, New York, USA, Santa Barbara, CA,
USA (1982)

https://eprint.iacr.org/2020/635
https://eprint.iacr.org/2020/635

Batch-OT with Optimal Rate 29

21. Garg, S., Hajiabadi, M., Ostrovsky, R.: Efficient range-trapdoor functions and
applications: Rate-1 OT and more. In: TCC 2020: 18th Theory of Cryptography
Conference, Part I. pp. 88–116. Lecture Notes in Computer Science, Springer,
Heidelberg, Germany (Mar 2020)

22. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian and
subgaussian analysis for lattice cryptography. In: PKC 2020: 23rd International
Conference on Theory and Practice of Public Key Cryptography, Part I. pp. 623–
651. Lecture Notes in Computer Science, Springer, Heidelberg, Germany (2020)

23. Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz,
D., Rosen, A. (eds.) TCC 2019: 17th Theory of Cryptography Conference, Part II.
Lecture Notes in Computer Science, vol. 11892, pp. 438–464. Springer, Heidelberg,
Germany, Nuremberg, Germany (Dec 1–5, 2019)

24. Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function
evaluation with constant overhead. In: Takagi, T., Peyrin, T. (eds.) Advances in
Cryptology – ASIACRYPT 2017, Part I. Lecture Notes in Computer Science, vol.
10624, pp. 629–659. Springer, Heidelberg, Germany, Hong Kong, China (Dec 3–7,
2017)

25. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology –
CRYPTO’84. Lecture Notes in Computer Science, vol. 196, pp. 276–288. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 1984)

26. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (Aug 1986), https://doi.org/10.1145/6490.6503

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 307–328 (2019)

28. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. In: Shacham, H., Boldyreva, A. (eds.) Advances in
Cryptology – CRYPTO 2020, Part I. pp. 527–558. Lecture Notes in Computer
Science, Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20,
2020)

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers ef-
ficiently. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 145–161. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 17–21, 2003)

30. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009: 6th Theory of Cryptography
Conference. Lecture Notes in Computer Science, vol. 5444, pp. 294–314. Springer,
Heidelberg, Germany (Mar 15–17, 2009)

31. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: 45th Annual Symposium on Foundations of Computer Science. pp.
372–381. IEEE Computer Society Press, Rome, Italy (Oct 17–19, 2004)

32. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin,
T. (ed.) Advances in Cryptology – CRYPTO 2010. Lecture Notes in Computer
Science, vol. 6223, pp. 80–97. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 15–19, 2010)

33. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th Annual Symposium on Foundations of Computer Science.
pp. 859–870. IEEE Computer Society Press, Paris, France (Oct 7–9, 2018)

https://doi.org/10.1145/6490.6503

30 Zvika Brakerski1, Pedro Branco2 Nico Döttling3, and Sihang Pu3

34. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. 2005(187) (2005)

35. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM Symposium on Theory
of Computing. pp. 84–93. ACM Press, Baltimore, MA, USA (May 22–24, 2005)

A Additional Preliminaries

A.1 UC Security

In terms of security, we work in the standard UC-framework [13]. Let F be a
functionality, π a protocol that implements F and E be a environment, an entity
that oversees the execution of the protocol in both the real and the ideal worlds.
Let IDEALF,Sim,E be a random variable that represents the output of E after
the execution of F with adversary Sim. Similarly, let REALπ,A,E be a random
variable that represents the output of E after the execution of π with adversary
A.

In this work, we only consider semi-honest adversaries.

Definition 13 A protocol π implements F if for every PPT adversary A there
is a PPT simulator Sim such that for all PPT environments E, the distributions
IDEALF,Sim,E and REALπ,A,E are computationally indistinguishable.

A.2 Learning Parity with Noise

The LPN assumption is closely related to the problem of decoding a random
linear code. Informally, it states that it is hard to find a solution for a noisy
system of linear equations over Z2.

Definition 14 (LPN assumption) Let n,m, t ∈ N such that n ∈ poly(λ) and
let χm,t be uniform distribution over the set of error vectors of size m and ham-
ming weight t. The Learning Parity with Noise (LPN) assumption LPN(n,m, ρ)
holds if for any PPT adversary A we have that∣∣∣∣∣∣Pr

1← A(A, sA + e) :
A←$ {0, 1}n×m

s←$ {0, 1}n
e←$χm,t

− Pr

[
1← A(A,y) :

A←$ {0, 1}n×m
y←$ {0, 1}m

]∣∣∣∣∣∣ ≤ negl(λ)

where ρ = m/t (ρ is called the noise rate).

In this work, we assume that the noise rate ρ is m1−ε for any constant ε > 0.
The LPN assumption is believed to be hard for that noise rate (see e.g. [5] and
references therein).

For other missing preliminaries please refer to the full version paper.

	Batch-OT with Optimal Rate

