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Abstract. We propose a mechanism for generating and manipulating
protein polymers to obtain a new type of consumable storage that exhibits
intriguing cryptographic “self-destruct” properties, assuming the hardness
of certain polymer-sequencing problems.
To demonstrate the cryptographic potential of this technology, we first de-
velop a formalism that captures (in a minimalistic way) the functionality
and security properties provided by the technology. Next, using this tech-
nology, we construct and prove security of two cryptographic applications
that are currently obtainable only via trusted hardware that implements
logical circuitry (either classical or quantum). The first application is a
password-controlled secure vault where the stored data is irrecoverably
erased once a threshold of unsuccessful access attempts is reached. The
second is (a somewhat relaxed version of) one time programs, namely a
device that allows evaluating a secret function only a limited number of
times before self-destructing, where each evaluation is made on a fresh
user-chosen input.
Finally, while our constructions, modeling, and analysis are designed
to capture the proposed polymer-based technology, they are sufficiently
general to be of potential independent interest.

1 Introduction

Imagine we could cryptographically create k-time programs, i.e., programs that
can be run only some bounded number of times, and inherently self-destruct after
the k-th invocation. This would open the door to a plethora of groundbreaking
applications: For instance, we would be able to use even low-entropy passwords for
offline data storage, because k-time programs could lock out a brute-force-search
adversary after a few attempts; today this is possible only via interaction or
trusted electronics.

Alternatively, we could release a sensitive and proprietary program (such as
a well-trained ML model) and be guaranteed that the program can be used only
a limited number of times, thus potentially preventing over-use, mission-creep,
or reverse engineering.



Such programs can also be viewed as a commitment to a potentially exponen-
tial number of values, along with a guarantee that only few of these values are
ever opened.

Indeed, k-time programs, first proposed by Goldwasser, Kalai, and Rothblum
[35] are extremely powerful. What does it take to make this concept a reality?
Obviously, we cannot hope to do that with pure software or classical information
alone, since these are inherently cloneable. In fact, software-only k-time programs
do not exist even if the program can use quantum gates [13].

In [35] it is shown that “one-out-of-two" memory gadgets, which guarantee
that exactly one out of two pieces of data encoded in the gadget will be retrievable,
along with circuit garbling techniques [55], suffice for building k-time programs
for any functionality.

However, how do we obtain such memory gadgets? While Goldwasser et al.
suggest a number of general directions, we are not aware of actual implementations
of one-out-of-two memory gadgets other than generically tamper-proofing an
entire computational component.

Can alternative technologies be explored? Also, what can be done if we only
can obtain some weaker forms of such memory gadgets, that provide only limited
retrievability to naive users, along with limited resilience to adversarial attacks?

More generally, where can we look for such technologies, and how can we
co-develop the new technology together with the cryptographic modeling and
algorithmics that will complement the technology to obtain full-fledged k-time
programs, based only on minimal and better-understood assumptions on the
physical gadgets, rather than by dint of complex defensive engineering?

1.1 Contributions

This work describes a cross-disciplinary effort to provide some answers to these
questions, using ideas bases on the current technological capabilities and limi-
tations in synthesizing and identifying random proteins. We begin with a brief
overview of the relevant biochemical technology and our ideas for using this
technology for bounded-retrieval information storage. We then describe our
algorithmic and analytical work towards constructing k-time programs and re-
lated applications, along with rigorous security analysis based on well-defined
assumptions on the adversarial capabilities - both biochemical and computational.
Biochemical background. Advances in biotechnology have allowed the custom-
tailored synthesis of biological polymers for the purpose of data storage. Most
effort has focused on DNA molecules, which can be synthesized as to encode
digital information in their sequence of bases. DNA can be readily cloned and read
with excellent fidelity, both by nature and by existing technology [12,19,27,38].
Even minute amounts of DNA can be reliably cloned - and then read - an effec-
tively unbounded number of times, making it an excellent storage medium—too
good, alas, for our goal, since it is unclear how to bound the number of times a
DNA-based storage can be read.

Consider, though, a different biological polymer: proteins. These chains of
amino acids can likewise represent digital information, and can be synthesized via
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standard (albeit more involved) lab procedures. However, reading (“sequencing”)
the amino acid sequence in a protein appears much more difficult: The best
known lab procedure for sequencing general proteins is mass spectrometry, which
requires a macroscopic pure sample, free of substantial pollution. The sequencing
process then destroys the sample - the protein is chopped into small fragments
which are accelerated in a detector.

Furthermore, we have no way to clone a protein that is given in a small
amount. Indeed, Francis Crick’s central dogma of molecular biology states: “once
‘information’ has passed into protein it cannot get out again. [Information] transfer
from protein to protein, or from protein to nucleic acid is impossible” [20]. Over
billions of years of evolution, no known biological system has ever violates this
rule, despite the reproductive or immunological benefits this could have bestowed.
Moreover, in the 63 years since that bold hypothesis (or, alternatively, challenge)
was put forth, it has also stymied human ingenuity, in spite of the enormous
usefulness to science and medicine that such ability would provide.

This makes proteins terrible as a general-purpose data storage medium: they
cannot be read unless presented in just the right form, and they self-destruct after
few reads. However, cryptography is the art of making computational lemonade
out of hard lemons. Can we leverage the time-tested hardness of sequencing
small amounts of proteins for useful functionality? We see a couple of approaches,
leading to different functionality and applications.

Biochemical “conditionally retrievable memory”. As a first attempt, we
consider a protein-based “conditionally retrievable memory”, that stores infor-
mation in a way so that retrieving the information requires knowledge of some
key, and furthermore, once someone attempts to retrieve the information “too
many times” with wrong keys, the information becomes irrevocably corrupted. A
first attempt at implementing such a system may proceed as follows: The sender
encodes the payload information into a payload protein, and the key into a header
protein, which are connected into a single protein (the concrete encoding and
procedures is discussed in Section 2). The process actually creates a macroscopic
amount of such payload-header pairs, and mixes these pairs with a large quantity
of decoys which are similarly structured but encode random keys and payloads.
The resulting sample is then put in a vial, serving the role of (biological) memory.

Recovering the information from the vial can be done via a pull-down pro-
cedure, i.e., a chemical reaction of the sample with an antibody that attaches
to a specific portion of the protein. Given the key, one can choose the correct
antibody and use it to isolate the information-bearing proteins from the added
ones. Then, the information can be read via mass spectrometry.

In addition, any meaningful attempt to obtain information from the vial would
necessarily employ some sort of pull-down on some portion of the sample in the
vial, and then employ mass spectrometry on the purified portion of the sample.
(Indeed, performing mass spectrometry on the vial without pull-down will return
results that are polluted by the decoys.) Furthermore, since each application
of the spectrometry process needs, and then irrevocably consumes, some fixed
sample mass, an adversary is effectively limited to trying some bounded number
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n of guesses for the key, where n depends on the initial mass of the sample in
the vial and the grade of the specific spectrometer used.
Partially retrievable memory. The above scheme appears to be easily adapt-
able to the case of storing multiple key-payload pairs in the same vial, along with
the random noise proteins. This variant has the intriguing feature that even a
user that knows all keys can only obtains n payloads from the vial, where n is
the number of pull-down-plus-mass-spectrometry operations that can be applied
to the given sample.
Challenges. While the above ideas seem promising, they still leave a lot to
be desired as far as a cryptographic scheme is concerned: First, we would need
a more precise model that adequately captures the capabilities required from
honest users of the system, as well as bounds on the feasible capabilities of
potential adversaries—taking into account that adversaries might have access to
significantly more high-end bio-engineering and computational tools than honest
users. Next, we would need to develop algorithmic techniques that combine
bio-engineering steps and computational steps to provide adequate functionality
and security properties. Finally, we would need to provide security analysis that
rigorously asserts the security properties within the devised model. We describe
these steps next.
Formal modeling: Consumable tokens. The full biochemical schemes we
propose involve multiple steps and are thus difficult to reason about formally.
We thus distill the requisite functionality and security properties into relatively
simple idealized definition of a consumable token in Section 3. In a nutshell,
an (1, n, v)-time token is created with 2v values: keys k1, ..., kv and messages
m1, ...,mv, taken from domains K and M , respectively. Honest users can query a
token only once, with key k′. If k′ = ki for some i, then the user obtains mi, else
the user obtains ⊥. Adversaries can query a token n times, each with a new key
k′. Whenever any of keys equals kj , the adversary obtains mj . We assume that
that the size of M , K and v are fixed, independent of any security parameter.
Constructing consumable tokens. Our biochemical procedures provide a
candidate construction for consumable tokens, but with weak parameters. They
can only store a few messages, of short length, under short keys, with non-
negligible completeness and soundness errors. This is in addition to the power
gap between an honest recipient and an adversarial one; the former can perform
one data retrieval attempt, while the latter might be able to perform up to n
queries, for some small integer n.

Thus, employing our protein-based consumable tokens in any of the appli-
cations discussed above is not straightforward. It requires several (conventional
and new) techniques to mitigate these challenges. Amplifying completeness is
handled by sending several vials, instead of one, all encoding the same message.
Storing long messages is handled by fragmenting a long message into several
shorter ones, each of which is stored under a different header in a separate vial.
The rest are more involved and were impacted by the application itself.
Bounded query, point function obfuscation for low-entropy passwords.
Password-protected secure vaults, or digital lockers, allow encrypting a message
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under a low entropy password. This can be envisioned as a point function with
multi-bit output where the password is the point and the message is the output.
With our consumable tokens, one can store the message inside a vial with the
password being mapped to a token key (or header) that is used to retrieve the
message. The guarantee is that an honest recipient, who knows the password,
will be able to retrieve the message using one query. While an adversary can try
up to n guesses after which the token will be consumed.

However, having a non-negligible soundness error complicates the matter. We
cannot use the conventional technique of sharing the message among several vials,
and thus reducing the error exponentially. This is due to the fact that we have
one password mapped to the keys of these tokens, so revealing the key of any of
these tokens would give away the password. We thus devise a chaining technique,
which effectively forces the adversary to operate on the tokens sequentially. In
Section 4, we start with formalizing an ideal functionality for bounded-query
point function obfuscation, and then detail our consumable token and chaining
based construction, along with formal security proofs.

(1, n)-time programs. Next we use (1, n, v)-consumable tokens to construct
(1, n)-time programs, namely a system that, given a description of a program
π, generates some digital rendering π̂ of π, and a number of consumable tokens,
that (a) allows a user to obtain π(x) on any value x of the user’s choice, and
(b) even an adversary cannot obtain more information from the combination of
π̂ and the physical tokens, on top of π(x1), ..., π(xn) for n adversarially chosen
values x1, ..., xn.

In the case of n = 1 (i.e., when even an adversary can obtain only a single
message out of each token), (1, 1)-time programs can be constructed by garbling
the program π and then implementing one-out-of-two oblivious transfer for
each input wire using a (1, 1, 2)-consumable token with K = M = {0, 1}κ [35].
However, constructing (1, n′)-time programs from (1, n, v)-consumable tokens
with n > 1 turns out to be a significantly more challenging problem, even when
v is large and even when n′ is allowed to be significantly larger than n (i.e., even
when the bound that the construction is asked to impose on the number of xi’s
for which the adversary obtains π(xi) is significantly larger than the number of
messages that the adversary can obtain from each token): A first challenge is
that plain circuit garbling provides no security as soon as it is evaluated on more
than a single input (in fact, as soon as the adversary learns both labels of some
wire). Moreover, even if one were to use a “perfect multi-input garbling scheme”
(or, in other words VBB obfuscation [9]), naive use of consumable tokens would
allow an adversary to evaluate the function on an exponential number of inputs.

Our construction combines the use of general program obfuscation (specifically,
Indistinguishability Obfuscation [9,42]) together with special-purpose encoding
techniques that guarantee zero degradation in the number of values that an
adversary may obtain—namely (1, n)-time programs using our consumable tokens.

Specifically, our construction obfuscates the circuit, and uses consumable
tokens to store random secret strings each of which represents an input in the
circuit input domain. Without the correct strings, the obfuscated circuit will
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output ⊥. Beside amplifying soundness error (luckily it is based on secret sharing
for this case), our construction employs an innovative technique to address a
limitation imposed by the concrete construction of consumable tokens. That is, a
token can store a limited number of messages (or random strings), thus allowing
to encode only a subset of the circuit inputs rather than the full input space. We
use linear error correcting codes to map inputs to codewords, which are in turn
used to retrieve random strings from several tokens.

We show a number of flavors of this construction, starting with a simple one
that uses idealized (specifically VBB) obfuscation, followed by a more involved
variant that uses only indistinguishability obfuscation iO. We also discuss how
reusable garbled circuits [34] can be used to limit the use of iO to a smaller and
simpler circuits.
Protection from malicious encapsulators. Our constructions provide vary-
ing degrees of protection for an honest evaluator in face of potentially ill-structured
programs. The (1, n)-point function obfuscation application carries the guarantee
that an adversary can only obfuscate (or encapsulate) valid point functions with
the range and domain specified. This is due to the fact that we use consumable
tokens each of which is storing one secret message m (from a fixed domain)
under a single token key (from a fixed space). The use of a wrong key (i.e., one
that is not derived correctly from the password that an honest evaluator knows)
will return ⊥. The general (1, n)-program application only guarantees that the
evaluator is given some fixed program, but without guarantees regarding the
nature of the program. Such guarantees need to be provided in other means. A
potential direction is to provide a generic non-interactive zero knowledge proof
that the encapsulated program along with the input labels belong to a given
functionality or circuit class.
The analytical model. We base our formalism and analysis within the UC
security framework [15]. This appears to be a natural choice in a work that
models and argues about schemes that straddle two quite different models of
computation, and in particular attempt at arguing security against attacks
that combine bioengineering capabilities as well as computational components.
Specifically, when quantifying security we use separate security parameters: one for
the bioengineering components and one for the computational ones. Furthermore,
while most of the present analysis pertains to the computational components,
we envision using the UC theorem to argue about composite adversaries and
in particular construct composite simulators that have both bioengineering and
computational components.

1.2 Related Work

Katz et al. [44] initiated the study of tamper-proof hardware tokens to achieve UC
security for MPC protocols in the plain model. Several follow up works explored
this direction, e.g., [18, 40, 41], with a foundational study in [37]. In general, two
types of tokens are used: stateful [23] and stateless (or resettable) [7, 22]; the
latter is considered a weaker and more practical assumption than the former. In
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another line of work, Goldwasser et al. [35] employed one-time memory devices
to build one-time programs as mentioned before. They assume that such memory
devices exist without showing any concrete instantiation. Our work instead
provides an instantiation for a weaker version of memory devices—(1, n)-time
memory devices—and uses them to build (1, n)-time programs. Other works relied
on tamper-proof smart cards to construct functionalities such as anonymous
authentication and practical MPC protocols [39, 45]. They assume that such
cards withstand reverse-engineering or side-channel attacks. Our work, on the
other hand, proposes an alternative that relies on deeper, more inherent physical
phenomena that have withstood the test of nature and ingenuity. We show that
even a weak level of security and functionality, far below the natural smart-card
trust assumption, suffices for useful cryptographic functionalities.

Quantum computing offer an unclonability feature that poses the question of
whether it can offer a solution for bounded program execution. This possibility
was ruled out by Broadbent et al [13] who proved that one-time programs, even
in the quantum model, cannot be constructed without one-time memory devices.
To circumvent this impossibility, Roehsner et al. [52] introduced a relaxed notion—
probabilistic one-time programs—allowing for some error in the output, and
showed a construction in the quantum model without requiring hardware tokens.
Secure software leasing (SSL) [5] emerged as a weaker alternative for quantum
copy-protection [1]. SSL deals with software piracy for quantum unlearnable
circuits; during the lease period the user can run the program over any input,
but not after the lease expires. Our work bounds the number of executions a user
obtains regardless of the time period and can be used for learnable functions.

Another line of research explored basing cryptography on physical assumptions.
For example, noisy channels [21] and tamper-evident seals [48] were used to
implement oblivious transfer and bit commitments. Others built cryptographic
protocols for physical problems: [32] introduced zero knowledge proof system
for nuclear warhead verification and [28] presented a unified framework for such
proof systems with applications to DNA profiling and neutron radiography. This
has been extended in [29] to build secure physical computation in which parties
have private physical inputs and they want to compute a function over these
inputs. Notably, [29] uses disposable circuits; these are hardware tokens that
can be destroyed (by the opposing party) after performing a computation. In
comparison to all these works, our consumable tokens are weaker as they are
used for storing short messages rather than performing a computation.

Physical unclonable functions (PUFs) [51] are hardware devices used as sources
of randomness, that cannot be cloned. PUFs found several applications, such as
secure storage [25], key management [43], oblivious transfer [53], and memory
leakage-resilient encryption schemes [6]. The works [14] and [50] proposed models
for using trusted and malicious PUFs, respectively, in the UC setting. Our tokens
share the unclonability feature with PUFs, but they add the bounded query
property and the ability to control the output of a data retrieval query.

Lastly, a few works investigated the use of DNA in building cryptographic
primitives and storage devices. For example, a DNA-based encryption scheme
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was proposed in [56], while [26] focused on bio-data storage that deteriorates with
time by utilizing engineered sequences of DNA and RNA, without any further
cryptographic applications. Both works do not provide any formal modeling or
security analysis. To the best of our knowledge, we are the first to use unclonable
biological polymers—proteins—to build advanced cryptographic applications
with formal treatment. Apart from storage, a more ambitious view was posed
by Adleman [3] back in the 1990s, who investigated the concept of molecular
computers. They showed how biochemical interactions can solve a combinitorial
problem over a small graph encoded in molecules of DNA [2]. This leaves an open
question of whether one can extend that to proteins and build stronger tokens
that can securely execute a full computation.

2 Unclonable Polymer-based Data Storage

In this section, we present an overview of the protein-based data storage con-
struction that we use to build consumable tokens. We focus on the specifications
and guarantees this construction provides rather than detailed explanation of
the biology behind them. The detailed explanation, and a more complete version
of this section, can be found in the full version.6

Protein-based data storage and retrieval. Advances in biotechnology have
allowed the custom-tailored synthesis of biological polymers for the purpose
of data storage. Much of the effort in this new field has focused on the use
of DNA, generating an arsenal of molecular protocols to store and retrieve
information [12,19,27,38]. With this growing application, we became interested
in the cryptographic attributes this new hardware offers. Specifically, we propose
the use of proteins, in particular short amino-acid polymers or peptides, as a data
storage material. Curiously, the most fundamental characteristics of proteins;
they cannot be directly cloned nor can they replicate or be amplified, and that
“data retrieval" is typically self-destructive, might be considered as limitations
from a regular data storage point of view. However, these exact traits can confer
powerful features to instantiate cryptographic primitives and protocols.

Accordingly, for storage, the digital message is encoded into the primary
configuration of the peptide/protein, i.e., the sequence of the 20 natural amino
acids of the protein material, the “peptide-payload". To retrieve the message, the
order of the amino-acids of a protein is determined, after which this sequence
is decoded to reconstruct the original message. Given that our primary goal is
to design a biological machinery to securely realize cryptographic primitives,
we extend this basic paradigm to support data secrecy. Our proposal is based
on a number of features of proteins and peptides: (i) unique peptides can be
designed to comprise any string of amino acids and be physically produced with
precision and at high fidelity, (ii) a peptide sample whose amino acid sequence is

6It should be noted that we are working on a sister paper showing the details of
this biological construction; will delve into the technical details of the biochemical
realization and empirically analyze it under the framework established in this paper.
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Fig. 1. General scheme for peptide-based data storage.

not known is unclonable and cannot be replicated or amplified, (iii) sequencing
the peptide results in its consumption.7

As illustrated in Figure 1, the peptide message, peptide-m, is conjugated to a
short (< 10 amino acids) peptide tag, a tag that is recognized specifically by a
predetermined monoclonal antibody (mAb). Thus, the peptide tag, designated
“header", corresponds to its specific mAb. Next, peptide-m is mixed with a vast
variety of decoy peptide messages, all of which are peptide permutations of
composition and length, each conjugated to a collection of alternative header
sequences. The sender shares the secret header with the recipient, i.e., the peptide
sequence of the header (this is digital data), which reveals to the recipient the
identity of the correct unique mAb to be used to recover peptide-m. Then he
sends a vial of the protein mix (a physical component).

For data retrieval, as shown in Figure 2, the only possible way to decode
the message is to first single out and purify peptide-m. This can be achieved by
employing the unique mAb that specifically recognizes the unique header attached
to peptide-m. Note that all decoy peptides and the target peptide-m are of the
same general length, mass, and composition, but differing in sequence. Thus,
effective purification of the desired protein from the decoys, without the matching
mAb, is impossible through standard biochemical/biophysical methodologies.
This achieves message secrecy in the sense that without the matching mAb, m
cannot be retrieved.
Biochemical properties. Protein-based data storage enjoys several properties
that we exploit in our cryptographic applications. These include the following
(this is a high level description, more details on the biochemical features that
supports these properties can be found in the full version):
– Unclonability. Proteins are unclonable biological polymers, meaning that given

an amount of proteins one cannot replicate it to obtain a larger amount.
– Destructive data retrieval. Modern biology is only capable of reading protein

sequences indirectly, destructively, and at lower throughput compared to
DNA. The main practical strategy for reading proteins is mass spectrometry
(MS) or versions thereof [8,33]. This machinery imposes several conditions on

7Although we talk about one message in these protocols, several messages can be
stored in one sample by having several peptide-ms instead of one, each of which is
conjugated with a unique header and mixed with the decoys.
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Fig. 2. Message retrieval.

the protein sample to allow retrieving the digital data. First, the sample must
contain a sufficient amount of the target protein, and second, the sample
must be pure enough. Once a vial is purified and read using MS, the structure
of the protein is destructed due to fragmentation.

– Adversarial interactions. The only known way to retrieve any information
about the data stored in a vial is by pulling-down the target protein using
the key (or mAb), and then sequencing this protein using MS. Thus, an
adversary, who does not know the correct mAb, can only guess a candidate
mAb and check if sequencing will output m. Also, when obtaining several
(independent) tokens, the adversary will operate on these tokens separately,
since purification and sequencing are still needed to obtain the stored data.

– Bounded query. The previous properties imply that a protein-based data
storage allows for a finite number of data retrieval attempts after which
the vial is consumed, i.e., each data retrieval attempt destroys a portion
of the biological material. In our model, we account for that fact that an
adversary could be more powerful that an honest recipient, e.g., she owns
more advanced MS that operates at lower thresholds. This implies that the
vial will allow the adversary to perform multiple data retrieval attempts,
denoted as n, but an honest recipient will perform only one.

– Message and key (header) sizes. Proteins can store relatively short messages
using short headers. In the full version, we show how to use fragmentation to
store a long message using several vials instead of one, such that the header
will be the concatenation of all headers used in these vials. Nonetheless, in
our applications, we use consumable tokens to store cryptographic keys rather
than very long messages.

– Completeness and soundness errors. Due to laboratory experimental (human
and machine) errors, the protein-based data storage may have non-negligible
completeness and soundness errors. The former means that despite the use of
the correct mAb, the target message may not be successfully retrieved. While
the latter means that despite the use of an incorrect mAb, an adversary
may manage to recover m. In other words, these incorrect mAb may have
similar features to the correct one (what we call close keys). We amplify the
completeness error on the biology side (by sending several vials all encoding
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the same message),8 while we amplify the soundness error as part of the
cryptographic constructions that we build in later sections.

3 The Consumable Token Functionality

We utilize the protein-based data storage to build what we call consumable
tokens. A consumable token is a physical token that stores some secret messagess,
requires a secret key to retrieve any of these messages, and (partially) destructs
after each data retrieval attempt. An honest recipient will have one data retrieval
attempt, while an adversary (who could be more powerful than honest parties)
may have multiple attempts. In this section, we define an ideal functionality for
consumable tokens that we use in our applications. Some preliminary notions
that we use in our work can be found in the full version.
Notation. We use [n] as a shorthand for {1, 2, . . . , n}. For time unit represen-
tation, we use the term “computational time step” to refer to the time needed
to perform an operation in Turing machine-based modeling of computations.
While we use “technologically-realizable time step” to refer to the time needed to
perform an operation in physical procedures, which may involve computational al-
gorithms as well. We use κ to denote the security parameter which is encapsulates
two security parameters: κp for physical procedures and κc for computational
algorithms. Thus, when we say polynomial in κ, this means polynomial in the
max{κp, κc}. Lastly, boldface letters represent vectors and PPT is a shorthand
for probabilistic polynomial time.

3.1 Ideal Functionality Definition

In formalizing our ideal functionality, we target an adversary class that interacts
with a token only using the feasible procedure of applying token keys. Also, we
adopt a deterministic approach for quantifying the closeness relation between the
keys, and hence, computing the soundness error of any data retrieval attempt. In
particular, each key k in the token key space has a set of close keys. Hitting any
of these keys may allow retrieving the message from the token with a probability
bounded by γ (the upper bound for the soundness error).
Adversary class A. We require the consumable token (or any cryptographic
application built using this token) to be secure against an adversary that performs
data retrieval (or decode) queries using token keys. This adversary, if given
multiple tokens, operate on these tokens separately. To capture the fact that
class A may have more power than the honest parties, an adversary A ∈ A can
perform up to n decode queries instead of only one. This adversary is adaptive
in the sense that it may choose her input based on the outputs obtained from
previous interactions. Furthermore, this adversary is capable of performing digital
and physical procedures.

8At the cryptography level this is still viewed as one token that allows the honest
recipient to retrieve the message with all but negligible probability
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Key affinity database. In order to capture the relation between the keys in the
token key space K, we use an affinity database D. Such a database is composed
of rows each of which is indexed by a key k ∈ K. Each row, in turn, contains
a set of tuples (k′, γ′) where k′ is a close key to k and γ′ is the corresponding
soundness error, such that γ′ ≤ γ. So for a token storing message m under key
k, a decode query with k′ allows an adversary A to obtain m with probability
γ′. Recall that a token can store multiple messages each of which is tied to a
different key. When these keys are selected at random, any key applied by the
adversary will be close to at most one of these keys. Accordingly, in our model the
ideal functionality is parameterized by the affinity database D. It consults this
database for each adversarial query to decide key closeness and γ′ value (if any).
Furthermore, recall that for any token the soundness error is upper bounded by
γ. Thus, for all queries i ∈ [n], we require

∑
i γ
′
i ≤ γ.

Ideal functionality. An ideal functionality for consumable tokens, denoted
as FCT , is defined in Figure 3. As shown, FCT is parameterized by a security
parameter κ, a key affinity database D, and an integer n. As noted earlier, for
simplicity FCT allows an honest party to perform one decode query, while it
allows the adversary to perform up to n queries. It is straightforward to generalize
to arbitrary configurations given that the power gap between honest parties and
the adversary is preserved.

As shown in the figure, FCT supports four interfaces. The first one, Encode,
allows the sender P1 to create a consumable token with ID tid encoding multiple
secret messages under secret keys, all chosen by P1, and transfer the token to P2.
To capture the fact that in real life an adversary may interrupt the communication
between P1 and P2, FCT asks the adversary whether to proceed. If the adversary
agrees to continue, FCT notifies P2 about the new token, and creates a state for
this token.9 This state includes a counter j to track the number of decode queries
performed so far, which is initialized to 0. It also includes two flags, hflag1 and
hflag2, tracking whether P1 and P2, respectively, are honest or corrupted. These
flags are set by default to 1 indicating that both parties are honest.

The second interface, Decode, allows P2 to query the token on a key k′. If the
input key matches the ith token key in k, the corresponding message mi will be
returned to P2, otherwise, ⊥ will be returned. After the first query, where the
counter j is set to 1, FCT stops answering all future Decode queries, capturing
that an honest recipient gets only one retrieval query.

The third and fourth interfaces, Corrupt-encode and Corrupt-decode, are used
to notify FCT that the environment wants to corrupt any of the involved parties.
Corrupting P1 allows the adversary to encode a vector of messages m′ under
a key vector k′, both of his choice. The state of this token will indicate that
P1 is corrupted by setting hflag1 = 0. On the other hand, and to capture the
additional power an adversary A ∈ A has, corrupting P2 allows the adversary to
perform up to n decode queries. Moreover, trying a key k′ 6= ki for i ∈ [v], gives
the adversary γ′ chance to obtain mi if k′ is close enough to key ki.

9It is the responsibility of P1 to securely share k with P2.
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Functionality FCT

FCT is parameterized by a security parameter κ, a key affinity database D and a
positive integer n.

Encode: Upon receiving the command (Encode, tid, P1, P2,k,m, v) from token
creator P1, where tid is the token ID, P2 is the token recipient, k is a vector of v
token keys, and m is a vector of v messages, do: if a token with ID tid was created,
end activation. Otherwise, do the following:
– Send (Encode, tid, P1, P2) to the adversary.
– Upon receiving (OK) from the adversary, send (Encode, tid, P1) to P2, and

store (tid, P1, P2,k,m, v, j = 0, hflag1 = 1, hflag2 = 1).

Decode: Upon receiving the command (Decode, tid, k′) from P2, if
no token with ID tid exists, then end activation. Otherwise, retrieve
(tid, P1, P2,k,m, v, j, hflag1, hflag2) and do the following:
– If j > 0, end activation. Else, increment j, and if ∃i ∈ [v] s.t. k′ = ki, then set

out = mi, else set out = ⊥.
– Send (tid, out) to P2.

Corrupt-encode: Upon receiving the command (Corrupt-encode, tid,k′,m′, v)
from the adversary, do: if a token with ID tid was created, end activation. Else, send
(Encode, tid, P1) to P2 and store (tid, P1, P2,k

′,m′, v, j = 0, hflag1 = 0, hflag2 = 1).

Corrupt-decode: Upon receiving the command (Corrupt-decode, tid, k′) from the
adversary, if no token with ID tid was created, end activation. Else, retrieve
(tid, P1, P2,k,m, v, j, hflag1, hflag2). If hflag2 = 1 and j > 0, or j > n, then end
activation, else do the following:
– If ∃i ∈ [v] s.t. k′ = ki, then set out = mi, else set out = ⊥ and (close, γ′, i) =

affinity(D,k, k′). If close = 1, choose r $←− [0, 1] and change out = mi if r ≤ γ′.
– Store (tid, P1, P2,k,m, v, j + 1, hflag1, hflag2 = 0).
– Send (tid, out) to the adversary.

Fig. 3. An ideal functionality for consumable tokens.

To depict these capabilities, FCT tracks the number of decode queries per-
formed so far and stops answering when this counter j reaches its maximum value
n. Key closeness and soundness error are measured by invoking an algorithm
called affinity that simply searches the database and checks if k′ (the adversary’s
input) is listed in the close key set of any of token keys in k. It outputs a flag
close, and index i, and a soundness error value γ′. If close = 1, this means that
k′ is close to ki, and hence, FCT outputs mi with probability γ′.

As shown, we restrict the token to be in the hand of either an honest party or
the adversary but not both at the same time. Therefore, P2 cannot be corrupted
after the honest recipient submits a decode query. Before submitting any honest
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Protocol 1 (A Physical Construction of Consumable Tokens)

Protocol 1 is parameterized by a security parameter κ, the message spaceM, the
header space H, and the peptide space P.

Encodephys(h,m): Given a vector of v messages m ∈Mv and a vector of v headers
h ∈ Hv, do the following:
1. For i ∈ [v], encode each mi as a target protein peptide-mi.
2. For each peptide-mi and hi, synthesize a protein sequence that concatenates

them with an amount that allows retrieving mi only once.
3. Mix the target proteins with a natural mixture of decoy proteins dp selected

at random from P, and produce a protein vial SP . Output SP .

Decodephys(h, SP ): Given a header h ∈ H, and a protein vial Sp, do the following:
1. Immunoperciptate SP with the mAb that recognizes h then wash out excess

mixture.
2. Cleave the target protein and sequence it using MS. If MS identifies the

peptides in this protein, then decode the message m (which will be one of the
messages in m) back into its digital form, and set out = m. Otherwise, set
out = ⊥. Output out.

Fig. 4. A physical construction of consumable tokens.

decode query, corrupting P2 is allowed, and when the environment asks for that,
the value of hflag2 is set to 0.

3.2 A Construction for Consumable Tokens

In this section, we present a construction for consumable tokens, shown in Figure 4.
It is based on the biological procedures used in storing and retrieving data using
proteins discussed in Section 2. We conjecture that it securely realizes FCT .10 In
the full version, we present a mathematical (vector-based) model to abstract the
biological procedures. We also show a consumable token construction (using this
vector model) and formally prove its security.

4 Bounded-query Point Function Obfuscation

In this section, we introduce one of the cryptographic applications of consumable
tokens: obfuscating bounded-query point functions with multibit output. We
begin with motivating this application, after which we define a notion for bounded-
query point function obfuscation, and a construction showing how consumable
tokens can be used to realize this functionality.

10This construction is described at a high level; the biological experiments (the
subject of our followup paper) will determine parameters such as required protein
quantities, MS thresholds, amount of decoy proteins, etc., and falsify our conjecture.
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Motivation. Program obfuscation is a powerful cryptographic concept that
witnessed a large interest in the past two decades. It hides everything about
a program other than what can be learned solely by running this program.
A program obfuscator is a compiler that takes as input the original program,
or circuit, and produces an unintelligible version that preserves functionality
but hides any additional information. Program obfuscation found numerous
applications, e.g., [30, 31, 46, 49]. Barak et al. [9] initiated the first rigorous study
of program obfuscation laying down several security notions. Among them, we
have virtual black box (VBB), which states that all what an adversary can learn
from an obfuscated program can be simulated using an oracle access to the
original program. The same work showed that this notion cannot be realized for
general functionalities, but can be realized for restricted function classes.

Point functions are one of these classes that has been studied thoroughly [11,
16,17,46,54]. A point function outputs 1 at a single target point x, and 0 at all
points x′ 6= x. It is useful for access control applications where providing the
correct passcode grants the user an access to the system. An extended version
of this function class supports a multibit output, i.e., message m, instead of a
single bit. The obfuscation of this extended class is motivated by the notion of
digital lockers [16]: for a message m encrypted using a low-entropy key, such as
a human-generated password, the only way for an adversary to learn anything
about m from its ciphertext is through an exhaustive search over the key space.

A question that arises here is whether one can strengthen this security
guarantee to also prevent exhaustive search attacks. In real life access-control
applications, this usually takes the form of tracking the number of login attempts
and lock the user out when a maximum number is exceeded. However, this cannot
be applied to digital lockers; an adversary has a copy of the ciphertext and can
decrypt it for as many times as she wishes. Thus, the question becomes more
about the possibility of augmenting multibit-output point function obfuscation
with a bounded-query (or limited number of decryptions) capability.

We answer this question in the affirmative by instantiating a bounded-query
obfuscator for point functions with multibit output using consumable tokens. We
achieve that by translating the low entropy point or password p into the high
entropy token key space, and setting the multibit output to be the message m
encoded inside the token. The message m is obtained when the correct password
p is queried, and only up to nq queries can be performed (nq ∈ N).

4.1 Definition

We aim to build an obfuscator for multibit-output point functions with points
drawn from a low entropy distribution. For password space P and message space
M, let Ip,m : P →M∪ {⊥} be a point function that outputs m when queried
on p and ⊥ otherwise. Let I = {Ip,m|p ∈ P,m ∈ M} be the family of these
functions. In this section, we define an ideal functionality for bounded-query
point function obfuscation that allows one honest query and up to nq function
evaluations. This functionality, denoted as FBPO, is captured in Figure 5.
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Functionality FBPO

FBPO is parameterized by a security parameter κ, a class of point functions Iκ,
and a positive integer nq.

Obfuscate: Upon receiving the command (Obfuscate, P2, p,m) from party P1 (the
obfuscator), where P2 is the evaluator, p is a password, andm is the function output
(so Ip,m ∈ Iκ), do: if this is not the first activation, then do nothing. Otherwise:
– Send (Obfuscate, P1, P2) to the adversary.
– Upon receiving (OK) from the adversary, store (p,m, j = 0, hflag2 = 1) and

output (Obfuscate, P1) to P2.

Evaluate: Upon receiving input (Evaluate, p′) from P2: if Obfuscate was not invoked
yet or j > 0, then end activation. Otherwise, increment j, and if p = p′, then set
out = m, else set out = ⊥. Output out to P2.

Corrupt-obfuscate: Upon receiving the command (Corrupt-obfuscate, p′,m′)
from the adversary, do: If an Obfuscate output was generated, then end acti-
vation. Else, store (p′,m′, j = 0, hflag1 = 0, hflag2 = 1) and output (Obfuscate, P1)
to P2.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate, p′) from the
adversary, if no stored state exists, end activation. Else, retrieve (p,m, j, hflag2)
and do:
– If j = nq, or hflag2 = 1 and j > 0, then end activation.
– Else, increment j, set hflag2 = 0, and if p′ = p, set out = m, else set out = ⊥.
– Output out to the adversary.

Fig. 5. An ideal functionality for bounded-query point function obfuscation.

As shown in the figure, FBPO supports four interfaces. The first is Obfuscate
that allows P1 to ask for obfuscating any point function Ip,m in the class I
defined earlier. If the adversary agrees to continue, FBPO notifies P2 about the
new obfuscation request and creates a state for it. As shown, this state stores
a counter to track the number of evaluate queries performed so far, which is
initialized to 0. It also stores two flags, hflag1 and hflag2 introduced before,
tracking whether P1 and P2, respectively, are honest or corrupted. These flags
are set by default to 1 indicating that both parties are honest. As noted, FBPO
allows for one obfuscation request, and hence, several instantiations are needed
to create multiple obfuscated functions.

The second interface, Evaluate, allows P2 to request evaluating the obfuscated
point function over an input password p′ of her choice. If this input matches
the stored password p, then P2 obtains m, and ⊥ otherwise. FBPO updates the
counter j to be 1, and thus, all future queries will not output anything since an
honest P2 gets only one query.

The third and fourth interfaces, Corrupt-obfuscate and Corrupt-evaluate, are
used to notify FBPO that the environment wants to corrupt any of the involved
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parties. Corrupting P1 allows the adversary to obfuscate any point function
Ip,m ∈ I of her choice. The state of this obfuscation will indicate that P1 is
corrupted by setting hflag1 to 0. On the other hand, corrupting P2 allows the
adversary to perform up to nq evaluate queries over inputs of her choice. The
adversary needs to invoke Corrupt-evaluate for each input evaluation, where after
performing nq queries, FBPO will stop responding. As shown, an obfuscated
function can be in the hand of either an honest party or the adversary, but not
both at the same time. In particular, if an honest party performs her single
evaluate query, Corrupt-evaluate will not do anything.

Beside realizing the above ideal functionality, which captures correctness
and security, we require any bounded-query point function obfuscation scheme
realizing FBPO to satisfy the efficiency property defined below.

Definition 1 (Efficiency of Bounded-query point function Obfuscation).
There exists a polynomial q such that for all κ ∈ N, all Ip,m ∈ Iκ, and all inputs
p′ ∈ P, if computing Ip,m(p′) takes t computational time steps, then the command
(Evaluate, p′) takes q(t, κ) technologically-realizable time steps.

4.2 Construction

A direct application of FCT produces a construction that suffers from two
limitations. First, it obfuscates a class of point functions with multibit output
that is restricted in its domain; must be in the high-entropy token key space K.
Second, FCT has a non-negligible soundness error bounded by γ, which will violate
the security guarantees of FBPO. Recall that the goal is to have a construction
that permits A to only perform a bounded query exhaustive search. In other
words, the success probability of A in retrieving m must be only negligibly larger
than the probability of guessing the correct password when performing nq queries
(e.g., nq

|P| + negl(κ) when using a uniform password distribution). We now show
our construction in stages, where to simplify the discussion, we assume a uniform
password distribution in the following paragraphs.11

First attempt. An initial idea is to use a known soundness amplification
technique in which m is shared among u tokens, accompanied with a mechanism
to map a password p ∈ P to a set of keys ki ∈ K for i ∈ [u]. This mapping can
be built as, for example, a set of random oracles π1, . . . , πu each of which maps
any password p ∈ P to a random string of size ρ for some ρ ∈ N. So we have
πi : P → {0, 1}ρ and we denote the output space of each πi as SP ⊂ {0, 1}ρ such
that |SP | = |P|. Each random string is then used to choose a key at random from
K. This is modeled by having the token creator P1 use a public algorithm KeyGen
that takes a random string as input and returns a token key as an output.

At a high level, with this construction an adversary A will need to retrieve
all shares from all token instances in order to recover m. Taking the worst case

11Later, when proving Theorem 1, we generalize that by replacing nq

|P| with a variable
representing the probability of guessing the password using nq queries. The value of
this variable can be computed based on the underlying password distribution.

17



scenario, meaning fixing the soundness error to be the maximum value γ, this
multi-instance approach reduces the overall soundness error to γu. By setting u
to be large enough, the soundness error becomes negligible. Furthermore, and
given that each token instance allows n attempts to retrieve a share, and that all
shares are needed to recover m, A will have nq = n attempts to obtain m.

However, the above analysis is flawed. The adversary A can perform what we
call a leftover attack and utilize the relation between the keys of the u tokens
(i.e., mappings of the same password) to gain a better advantage in recovering
m. That is, success with any of the tokens not only reveals the message share
stored in that token, but also reveals the keys of the rest of the tokens. In detail,
A operates on the first token and performs up to n − 1 queries (by guessing
passwords and mapping them to token keys using π1). If any of these queries
succeeds in retrieving m1, then with probability at least 1 − γ, A knows that
the key (and hence the password guess) used in this query is the correct key k1
(respectively, the password p). Knowing p, and the public mapping function set
{π1, . . . , πu} as well as KeyGen, allows A to derive the rest of the tokens keys
and retrieve all shares m2, . . . ,mu. On the other hand, if A does not succeed in
retrieving m1 using the first n− 1 queries, it operates on the second token by
repeating the same strategy. In fact, A here has a better chance to guess the
correct password/key since it will exclude all the passwords that did not succeed
with the first token. If A succeeds in retrieving m2, and thus p and k1, k3, . . . , ku
as mentioned previously, then it can go back to the first token and use the last
query to retrieve m1. If it didn’t succeed, A applies the same strategy to the rest
of the tokens with the hope of guessing the correct password.

As noted, although the probability of retrieving all shares without correctly
guessing any of the token keys is γu, A now has nq = un queries (instead of n)
to guess the right password. Based on that, the probability of retrieving m can
be computed as:12 Pr[m] = un

|P| +
(
1− un

|P|
)
γu. In other words, A can retrieve m

by either guessing the password correctly in any of the un queries, or by being
lucky and retrieving all shares from all tokens despite using incorrect keys due to
the soundness error. Although, the second term has been reduced and can be set
to negligible by configuring u properly, the first term increased the advantage of
A way beyond n

|P| .

Our construction. To address the leftover attack, we introduce a construction
that chains the u tokens together so that in order to operate on the jth token,
A would need to retrieve all mi for i < j. Otherwise, A will have to guess the
token key from a large space (larger than |P|). This enables us to amplify the
soundness error without increasing the total number of queries A obtains.

Towards building our construction, we introduce a modified way to map
passwords to token keys. In particular, a function set f1, . . . , fu is used to
generate token keys k1, . . . , ku such that for i ∈ [u] we define f1 : P → K and
fi : P×{0, 1}κ → K when i > 1. We write ki ← fi(p, r

′
i), where r′i = r0⊕· · ·⊕ri−1

such that r0 = ⊥ and ri ← {0, 1}κ is a random string stored in the ith token.
12For the jth token, the size of the password space, after excluding the passwords

that were already tried, is |P| − (j − 1)n. For simplicity, we let |P| − (j − 1)n ≈ |P|.
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Each fi first applies the mapping πi described earlier to p and then uses the
output along with the random string r′i (for i > 1) to generate a token key. A
concrete instantiation of fi could be composed of a random oracle that takes
πi(p) ‖ r′i as input and outputs a random string of size ρ, then KeyGen is invoked
for this random string to generate a key ki as before.

Note that each fi, for i > 1, may have an input space that is larger than the
output space, i.e., |P|2κ >> |K|. If this is the case (in particular, if 2κ ≥ |K|), this
function can be instantiated to cover the full space of K and be a many-to-one
mapping. That is, a password p ∈ P can be mapped to different keys (or to all
keys in K) by changing the random string r used when invoking fi. Furthermore,
correctly guessing the key k of any of the tokens (other than the first one) without
the random string r, does not help the adversary in guessing the password p (the
adversary still needs to guess r in order to recover the password).

Protocol 2, described in Figure 6, outlines a construction that uses the above
function set, along with the consumable token ideal functionality FCT , to build a
bounded-query obfuscator for low-entropy point functions with multibit output.

We informally argue that this construction addresses the leftover attack
described previously (again, for simplicity we assume a uniform password distri-
bution for the moment). To see this, let an adversary A follow the same strategy
as before and assume that A did not obtain r1||m1 while performing (n − 1)
queries over the first token. A now moves to the second token, performs (n− 1)
queries where it will succeed in guessing the key k2 correctly with probability
n−1
|K| . This is different from the naive construction in which this probability is
n−1

|P|−(n−1) since the previously tried passwords are excluded. In our construction,
A, when it does not have r1, has the only choice of trying keys from the full key
space K (regardless of the password space distribution). This is due to the fact
that without r′2 (where r′2 = r1), A cannot compute the induced key space by P ,
thus the only choice is to guess keys from K. This probability will be negligible
for a large enough K.

Furthermore, even if A guesses the correct k2, without the random string r′2
it will be infeasible to deduce the password p from k2 through f2. A needs to
feed f2 with passwords and random strings, where the latter has a space of size
2κ. Also, under the many-to-one construction of f2, . . . , fu, several (or even all)
passwords could be mapped to k2 due to the random string combination, which
makes the task harder for A to find out the correct password. The same argument
applies to the rest of the tokens because without r1, none of the subsequent r′i
can be computed, and the only effective strategy for A is to guess keys from
the key space K. So for each of these tokens, the success probability is n−1

|K|
instead of n−1

|P|−(i−1)(n−1) as in the naive scheme (again, the latter will depend on
the password distribution, but the former will always be uniform). The success
probability for A to retrievem is then approximated as: Pr[m] ≈ n

|P|+
(
1− n
|P|
)
γu.

That is, to retrieve m, A either has to guess the password correctly using the first
token, or get lucky with every token and retrieve the share it stores. As shown,
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Protocol 2 (A bounded-query obfuscation scheme for I)

For a security parameter κ, a number of token instances u, i ∈ [u], message m ∈M,
password p ∈ P, and token key space K, let f1, . . . , fu be as defined before such
that f1 : P → K, and fi : P × {0, 1}κ → K for i > 1, P1 be the obfuscator, P2 be
the evaluator, and FCT be the consumable token functionality defined in Section 3.
Construct a tuple of algorithms (Obf,Eval) to obfuscate a function in I as follows.

Obf: on input a function Ip,m ∈ I, P1 does the following:
1. Use an additive secret sharing scheme to generate random shares m1, . . . ,mu

such that m = ⊕ui=1mi.
2. Set r0 = ⊥.
3. For i ∈ [u]:

(a) Generate a random string ri ← {0, 1}κ.
(b) Compute r′i = ⊕i−1

j=0rj .
(c) Generate a token key ki: ki ← fi(p, r

′
i).

(d) Generate a token cti, with a unique token ID tidi, encoding ri ‖mi using
ki by sending the command (Encode, tidi, P1, P2, ki, ri ‖mi, 1) to FCT .

Eval: on input an obfuscated function o = {ct1, . . . , ctu} and point p ∈ P, P2 does
the following:
1. Set r0 = ⊥.
2. For i ∈ [u]:

(a) Compute r′i = ⊕i−1
j=0rj .

(b) Generate a token key ki: ki ← fi(p, r
′
i).

(c) Query token cti using ki to retrieve ri ‖ mi by sending the command
(Decode, tidi, ki) to FCT .

3. Compute m = ⊕ui=1mi and output m.

Fig. 6. A construction for a bounded-query obfuscation scheme for I.

this amplifies the soundness error (and can be set to negligible with sufficiently
large u) without increasing the number of queries A can do.13

4.3 Security

Theorem 1 shows that Protocol 2 in Figure 6 securely realizes FBPO for the
function family I, with an arbitrary password distribution. For simplicity, we
assume that the token keys ki, the randomness ri, and the message m are all of
an equal size, which is polynomial in the security parameter κ. The proof can be
found in the full version.

Theorem 1. For 0 ≤ γ ≤ 1, if each of f1, . . . , fu is as defined above, then
Protocol 2 securely realizes FBPO for the point function family I = {Ip,m|p ∈

13Similarly, to make the presentation easier, the probability is simplified here where
some terms are omitted. See the full proof in the full version.
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P,m ∈ M} in the FCT -hybrid model in the presence of any adversary A ∈ A,
with nq = n and large enough u.

Remark 1. As mentioned before, κ encapsulates a digital and a biological se-
curity parameters. Also, A is capable of doing computational algorithms and
physical procedures, so is the simulator. In the above theorem, the simulator is
computational, but it relies on FCT whose simulator involves physical procedures.
The use of UC security allows us to obtain an overall security guarantee against
all physical/digital combined attacks, both in concrete and asymptotic terms.

5 (1, n)-time Programs

In this section, we introduce another cryptographic application of consumable
tokens; (1, n)-programs. For such programs, completeness states that an honest
party can run a program at most once, while soundness states that an adversary
can run this program at most n times. Again, this can be generalized to allow for
multiple honest queries given that the power gap between honest parties and the
adversary is preserved. We begin with motivating this application, after which
we present a construction showing how consumable tokens can be used to build
(1, n)-programs for arbitrary functions.

Remark 2. One may argue that this application is a generalization of the bounded-
query point function obfuscation. Thus, the previous section is not needed as
one may construct a (1, n)-program for any point function. However, (1, n)-
program guarantees that only some program was encapsulated, while the previous
section guarantees that a valid point function has been encapsulated. Also, the
construction shown in this section relies on a rather strong assumption, namely,
indistinguishability obfuscation, that was not required in the previous section.
Therefore, we present these applications separately.

Motivation. One-time (and k-time) programs allow hiding a program and
limiting the number of executions to only one (or k). They can be used to protect
proprietary software and to support temporary transfer of cryptographic abilities.
Furthermore, k-time programs allow obfuscating learnable functions—functions
that can be learned using a polynomial number of queries. By having k as a small
constant, an adversary might not be able to learn the function, which makes
obfuscating such a function meaningful.

Goldwasser et al. [35] showed a construction for one-time programs that com-
bines garbled circuits with one-time memory devices. Goyal et al. [37] strengthened
this result by employing stateful hardware tokens to support unconditional se-
curity against malicious recipients and senders. Bellare et al. [10] presented a
compiler to compile any program into an adaptively secure one-time version. All
these schemes assumed the existence of tamper-proof hardware tokens without
any concrete instantiation. Dziembowski et al. [24] replaced one-time memory
devices with one-time PRFs. Although they mentioned that no hardware tokens
are needed, they impose physical restrictions such as inability to leak all bits

21



of the PRF key, and limiting the number of read/write operations; it is unclear
if these assumptions can be realized in practice. Goyal et al. [36] avoided the
usage of hardware tokens by relying on a blockchain and witness encryption. In
particular, the garbled circuit is posted on the blockchain and the input labels are
encrypted using witness encryption, which can be decrypted later after mining
several blocks given that the input is unique to guarantee at most one execution.
Yet, requiring to store a garbled circuit on a blockchain is impractical.

We investigate the applicability of consumable tokens in constructing bounded
execution programs. This is a natural direction given the bounded query capability
of these tokens, and the fact that we build these tokens rather than assuming
their existence. Nonetheless, the gap between an honest party and the adversary
forces us to consider a slightly different notion; the (1, n)-program mentioned
above. Thus, any application that requires the adversary to execute only on
one input, like digital currencies, cannot be implemented using (1, n)-programs.
However, applications that allow n adversarial queries, such as obfuscating
learnable functions, can employ our scheme.

5.1 Definition

In this section, we define an ideal functionality for bounded-query encapsulation.
This functionality, denoted as FBE , is captured in Figure 7. The description of
the interfaces, and the goal of using the flags and the counter, are very similar to
what was described in the previous section for FBPO. The only difference is that
instead of hiding a point function, FBE hides an arbitrary circuit. The honest
recipient can evaluate this circuit over one input, while an adversary can evaluate
over up to nq inputs. Thus, we do not repeat that here.

Beside realizing the above ideal functionality, we require any bounded-query
obfuscation scheme realizing FBE to satisfy the efficiency property defined below.

Definition 2 (Efficiency of Bounded-query Encapsulation). There ex-
ists a polynomial p such that for all κ ∈ N, all C ∈ Cκ, and all inputs x ∈
{0, 1}∗, if computing C(x) takes t computational time steps, then the command
(Evaluate, ·, x) takes p(t, κ) technologically-realizable time steps.

5.2 Construction and Security

To ease exposition, we describe our construction in an incremental way. We start
with a simplified construction that handles only programs with small input space,
and assumes idealized obfuscation (specifically, Virtual Black Box obfuscation [9]).
Next we extend to handle programs with exponential-size domains (namely, poly-
size inputs). We then replace VBB with indistinguishability obfuscation iO.
Finally, we briefly discuss how reusable garbling can reduce the use of iO.
First attempt—using VBB. In this initial attempt, our goal is to lay down
the basic idea behind our construction (rather than optimizing for efficiency). We
use two tables Tab1 and Tab2. Tab1 maps a program’s input space X to the token
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Functionality FBE

FBE is parameterized by a security parameter κ, a circuit class Cκ, and a positive
integer nq.

Encapsulate: Upon receiving the command (Encapsulate, P2, C) from party P1

(the encapsulator), where P2 is the evaluator, and C ∈ Cκ, do: if this is not the
first activation, then do nothing. Otherwise:
– Send (Encapsulate, P1, P2) to the adversary.
– Upon receiving (OK) from the adversary, store the state (C, j = 0, hflag1 =

1, hflag2 = 1), and output (Encapsulate, P1) to P2.

Evaluate: Upon receiving input (Evaluate, x) from P2, where x ∈ {0, 1}∗: if
Encapsulate was not invoked yet or j > 0, then end activation. Otherwise, increment
j and output (C(x)) to P2.

Corrupt-encapsulate: Upon receiving the command (Corrupt-encapsulate, C′)
from the adversary, do: If an Encapsulate output was generated, then end activation.
Else, store (C′, j = 0, hflag1 = 0, hflag2 = 1) and output (Encapsulate, P1) to P2.

Corrupt-evaluate: Upon receiving the command (Corrupt-evaluate, x′) from the
adversary, if no stored state exists, end activation. Else:
– Retrieve (C, j, hflag1, hflag2).
– If hflag2 = 1 and j > 0, or j = nq, then end activation, else increment j, set

hflag2 = 0, and send (C(x′)) to the adversary.

Fig. 7. An ideal functionality for bounded-query encapsulation.

message spaceM. This table is secret and will be part of the hidden program.
While Tab2 maps X to the token key space K, and it is public.

We use Prog to denote the program that encapsulates the intended circuit or
simply function f , which we want to transform into a (1, n)-program. As shown
in Figure 8, Prog is parametererized by a table Tab : X →M, a secret key sk,
and f . It has two paths: a trapdoor path and a regular one. The trapdoor path
is activated when a hidden trigger in the input m is detected. In particular, this
input may contain a ciphertext of the program output. On the other hand, if
this ciphertext encrypts the special string φ`out , where φ is some unique value
outside the range of f and `out is the length of f ’s output, the regular path is
activated. It evaluates f over x ∈ X that corresponds to the first part of m.

Protocol 3 defined in Figure 9 shows a construction for (1, n)-time program
for Prog using FCT . For simplicity, we assume |X | = |M| = |K|, the keys in K
are distinct (i.e., do not have any affinity relation), and that FCT has a negligible
soundness error (we discuss later how to achieve that). Bounded query is achieved
via the consumable token; to evaluate over input x, the obfuscated program
bP requires a corresponding message m that is stored inside a token. Since the
table Tab2 is secret hidden inside bP , the only way for P2 to obtain a valid m is
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Program ProgTab,sk,f

Input: m
Description:
1. Parse m as m0 ‖m1, and set y = Decrypt(sk,m1)
2. Check that there exists x ∈ X such that Tab[x] = m0. If this is not the case

then output ⊥
3. If y 6= φ`out , then output y, else, output f(x)

Fig. 8. The program ProgTab,sk,f

through the consumable token. Once the token is consumed, no more evaluations
can be performed. An adversary, on the other hand, and using FCT , will be
able to obtain up to n messages corresponding to n program inputs. Thus, this
adversary can run bP at most n times. See the full version for an (informal)
security argument of this construction.
Our construction—extending program domain and replacing VBB
with iO. The concrete construction of a consumable token may impose limita-
tions on the number of keys and messages that can be stored in a single token.
Thus, a token may not be able to cover the full domain X of the program Prog. So
if a single token can store a set of message M ⊂M messages, we have |M | < |X |.
To address this issue, we modify the previous construction to use multiple tokens
along with an error correcting code C. We map each x ∈ X to a codeword of
length ω, and we use ω tokens to represent the program input. Each symbol in a
codeword indicates which key to use with each token. By configuring C properly,
this technique allows us to cover the program domain without impacting the
number of program executions that (an honest or a malicious) P2 can perform.

Concretely, we use a linear error correcting code C with minimum distance
δ, meaning that the Hamming distance between any two legal codewords is at
least δ. We represent each key in the set K ⊆ K used in creating a token, where
|K| = |M |, as a tuple of index and value. So the set K is ordered lexicographically
such that the first key in this ordered set is given index 0, and so on. Hence,
a symbol in a codeword is the index of the token key to be used with the
corresponding token. Based on this terminology, we work in a field of size q = |K|
with a code alphabet Σ = {0, . . . , q − 1}.

Definition 3 (Linear Codes [4]). Let Fq be a finite field. A [ω, d, δ]q linear
code is a linear subspace C with dimension d of Fωq , such that the minimum
distance between any two distinct codewords c, c′ ∈ C is at least δ. A generating
matrix G of C is a ω × d-matrix whose rows generates the subspace C.

For any d ≤ ω ≤ q, there exist a [ω, d, (ω − d + 1)]q linear code: the Reed-
Solomon code [47], which we use in our construction. Let S denote the set of
strings to be encoded, such that each input x ∈ X is mapped to a unique s ∈ S.
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Protocol 3 (A (1, n)-time program scheme for Prog—First attempt)

For a security parameter κ, message spaceM, program input space X , and token
key space K, such that |X | = |M| = |K|, let P1 be the encapsulator, P2 be the
evaluator, FCT as defined in Section 3 but with negligible soundness error, and
Tab1 and Tab2 are mapping tables as defined above. Construct a tuple of algorithms
(Encap,Eval) for a (1, n)-time program scheme as follows.

Encap: on input an arbitrary function f with input space X and mapping tables
Tab1 : X →M and Tab2 : X → K, P1 does the following:
1. Generate a token ct, with a unique token ID tid, encoding all messages m ∈M

each using a unique key from K. This is done by sending the command
(Encode, tidi,K,M, |M|) to FCT .

2. Generate a random secret key sk ∈ {0, 1}κ.
3. Send ct, Tab2, and bP = VBB(ProgTab1,sk,f ) to P2, where bP is an obfuscated

version of the program ProgTab1,sk,f described in Figure 8.

Eval: on input (1, n)-Prog = (ct,Tab2, bP ) and x ∈ X , P2 does the following:
1. Set k′ = Tab2[x].
2. Query token ct using k′ by sending the command (Decode, tid, k′) to FCT and

obtain m.
3. Output out = bP (m).

Fig. 9. A construction for a (1, n)-time program scheme for ProgTab,sk,f .

Using classic Reed-Solomon, to encode an input x, we first define its corresponding
s, and then we multiply s by the generating matrix G to generate a codeword of
size ω. Using this approach, we can cover a domain size |S| = qd+1.

Accordingly, P1 now has to generate ω tokens, denoted as ct0, . . . , ctω−1,
instead of one. Each of these tokens will include all keys in K. Each key k ∈ K
will be tied to a unique message m such that m will be retrieved when a decode
query using k is performed over the token. Let the messages stored in the first
token bem0,0, . . . ,m0,q−1, and in the second token bem1,0, . . . ,m1,q−1, and so on.
We generate these messages using a pseudorandom generator with some random
seed r. In particular, we have mi,j = PRG(r)[i, j] for all i ∈ {0, . . . , ω − 1} and
j ∈ {0, . . . , q − 1}; we picture the output of the PRG as an ω × q matrix of
substrings. Hence, m0,0 is the substring stored at row 0 and column 0 in this
matrix, which is the first substring of the PRG output, and so on.14 Thus, to
create token ct0, P1 will pass K and m0,0, . . . ,m0,q−1 to FCT , while for ct1 the
messages m1,0, . . . ,m1,q−1 along with K will be passed, etc.

So to execute Prog over input x, P2 first maps x to s, and then generates the
codeword c for s. After that, she uses the keys with the indices included in c

14As we will see shortly, mi,j = PRG(r)[i, j] ‖ φn(|x|+`out) assuming all x ∈ X are of
the same length, but we omit that for now to ease exposure.
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Program ProgG,n,sk,r,f

Input: m, x
Description:
1. Parse m as m0 ‖ · · · ‖mω−1, and parse each mi as m0

i ‖m1
i

2. Use G to compute the codeword c that corresponds to x.
3. Check thatm corresponds to a valid codeword: Let B = PRG(r), if ∃B[i, c[i]] 6=

m0
i , then output ⊥.

4. Set yi = Decrypt(sk,m1
i ) for all i ∈ {0, . . . , ω − 1}.

5. If ∃yi 6= φn(|x|+`out), then take the first such yi and do the following:
– Parse yi as y0i ‖ · · · ‖ yn−1

i .
– Parse each yji as yj,0i ‖ y

j,1
i (for j ∈ {0, . . . , n− 1}).

– Output yj,1i for which yj,0i = x.
Else, output f(x).

Fig. 10. The program ProgG,n,sk,r,f with linear error correcting codes.

to query the corresponding tokens. For example, if c = {5, 9, 15, . . . }, then k5
is used to query the first token to retrieve m0 = m0,5, k9 is used to query the
second token and retrieve m1 = m1,9, etc. These messages m = m0 ‖ · · · ‖mω−1
will be used as input to Prog to obtain the output f(x). This in turn means
that Prog must check that m corresponds to a valid codeword in C. We also
modify the trapdoor path to allow including multiple outputs instead of one.
This is needed to allow the simulator to simulate for an adversary who queries
the tokens out of order. It may happen that the last query is common for two (or
more) codewords (in other words, just when this query takes place, the simulator
will tell that the adversary got valid codewords). Having multiple outputs (each
concatenated with the x value that leads to this output) permits the simulator to
embed the valid outputs for the inputs corresponding to these valid codewords.

The modified version of Prog can be found in Figure 10 (with both the
linear code and iO instead of VBB). We also modify the description of Prog (see
Figure 11). The parameters of the underlying error correcting code are configured
in a way that produces a code C such that |C| = |X |. As shown, the output of
Encap now contains ω tokens beside the obfuscation of Prog. Eval follows the
description above.

On preserving the number of program executions (1, n). An honest
party can query any token once. Thus, overall, she will be able to retrieve only
one codeword. An adversary, on the other hand, can query each token up to n
times. We want to guarantee that the nω messages she obtains does not allow
constructing more than n valid codewords. In other words, we want to ensure
that to retrieve n+ 1 codewords, at least nω + 1 distinct queries are needed.

To formalize this notion, we define what we call a cover ; a cover of two,
or more, codewords is the set of all distinct queries needed to retrieve these
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Protocol 4 (A (1, n)-time program scheme for Prog)

For a security parameter κ, message space M, input space X , and token key
space K, let P1 be the encapsulator, P2 be the evaluator, FCT be as defined in
Section 3 but with negligible soundness error, [ω, d, δ]q be a linear code C with
a generating matrix G such that |C| = |X |, and PRG : {0, 1}κ → {0, 1}ωq|m| be
a psuedorandom generator, where m ∈ M and |K| = q for K ⊆ K. Construct a
tuple of algorithms (Encap,Eval) for a (1, n)-time program scheme as follows.

Encap: On input an arbitrary function f with input space X , and a linear code
[ω, d, δ]q with generating matrix G, P1 does the following:
1. Generate secret key sk ∈ {0, 1}κ and a string r ∈ {0, 1}κ both at random.
2. Generate messages mi,j = PRG(r)[i, j] ‖ φn(|x|+`out) for all i ∈ {0, . . . , ω − 1}

and j ∈ {0, . . . , q − 1}.
3. Generate at random token key subspace K ⊆ K such that |K| = q.
4. For i ∈ {0, . . . , ω−1}, generate a token cti, with a unique token ID tidi, encoding

messages mi,0, . . . ,mi,q−1 using k0 . . . kq−1 ∈ K. This is done by sending the
command (Encode, tidi, {k0 . . . kq−1}, {mi,0, . . . ,mi,q−1}, q) to FCT .

5. Send ct = {ct0, . . . , ctω−1} and bP = iO(ProgG,n,sk,r,f ) to P2, where
ProgG,n,sk,r,f is defined in Figure 10.

Eval: On input a (1, n)-Prog = (ct, bP ) and x ∈ X , P2 does the following:
1. Map x to a codeword c.
2. For each i ∈ {0, . . . , ω−1}, query token cti using k′c[i] by sending the command

(Decode, tidi, k′c[i]) to FCT and get mi in return.
3. Output out = bP (m0 ‖ · · · ‖mω−1, x).

Fig. 11. A construction for a (1, n)-time program scheme for ProgG,n,sk,r,f .

codewords. For example, codewords c1 = {5, 4, 13, 17} and c2 = {5, 9, 12, 18}
have a cover of {5, 4, 9, 12, 13, 17, 18},15 and so P2 needs 7 queries to obtain the
messages that correspond to these codewords from the tokens.

Definition 4. A code [ω, d, δ]q is n-robust if for any n + 1 distinct codewords
the size of the cover is at least nω + 1.

So the robustness factor is the number of codewords an adversary can obtain.
To preserve this number to be the original n that an adversary can obtain with
one token, we need to configure the parameters of C to satisfy the lower bound
of the cover size defined above. We show that for Reed-Solomon codes as follows
(the proof can be found in the full version).

Lemma 1. For a Reed-Solomon code [ω, d, δ]q to be n-robust (cf. Definition 4),
we must have ω − n(d− 1)− 1 ≥ 0.

15Note that if 5 was not on the same position for both codewords then it would have
been considered distinct. Different positions means that k5 will be used with different
tokens, which leads to different messages mi,j .
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Accordingly, we have the following theorem (the proof can be found in the
full version.)

Theorem 2. Assuming sup-exponentially secure iO and one-way functions, the
iO-based construction described in Figure 11 is a (1, n)-time program in the
FCT -hybrid model.

Remark 3. It is an intriguing question whether we can obtain (1, n)-time programs
without iO. Since an adversary can evaluate over multiple inputs, we cannot
use garbled circuits—evaluating a circuit over more than one input compromises
security. A potential direction is to employ reusable garbling [34], and use our
construction to build a (1, n)-time program for the circuit that encodes the inputs
(which requires a secret key from the grabler). Thus, iO is only needed for the
encoding circuit, and our consumable token limits the number of times this circuit
can be evaluated, rather than obfuscating the full program as above.
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