
On the Concrete Security of TLS 1.3 PSK Mode?

Hannah Davis1, Denis Diemert2, Felix Günther3, and Tibor Jager2

1 University of California San Diego, La Jolla, CA, USA
h3davis@eng.ucsd.edu

2 Bergische Universität Wuppertal, Wuppertal, Germany
denis.diemert@uni-wuppertal.de, tibor.jager@uni-wuppertal.de

3 ETH Zürich, Zürich, Switzerland
mail@felixguenther.info

Abstract. The pre-shared key (PSK) handshake modes of TLS 1.3 al-
low for the performant, low-latency resumption of previous connections
and are widely used on the Web and by resource-constrained devices,
e.g., in the Internet of Things. Taking advantage of these performance
benefits with optimal and theoretically-sound parameters requires tight
security proofs. We give the first tight security proofs for the TLS 1.3
PSK handshake modes.
Our main technical contribution is to address a gap in prior tight se-
curity proofs of TLS 1.3 which modeled either the entire key schedule
or components thereof as independent random oracles to enable tight
proof techniques. These approaches ignore existing interdependencies in
TLS 1.3’s key schedule, arising from the fact that the same cryptographic
hash function is used in several components of the key schedule and the
handshake more generally. We overcome this gap by proposing a new ab-
straction for the key schedule and carefully arguing its soundness via the
indifferentiability framework. Interestingly, we observe that for one spe-
cific configuration, PSK-only mode with hash function SHA-384, it seems
difficult to argue indifferentiability due to a lack of domain separation
between the various hash function usages. We view this as an interesting
insight for the design of protocols, such as future TLS versions.
For all other configurations however, our proofs significantly tighten the
security of the TLS 1.3 PSK modes, confirming standardized parameters
(for which prior bounds provided subpar or even void guarantees) and
enabling a theoretically-sound deployment.

1 Introduction

The Transport Layer Security (TLS) protocol is probably the most widely-used
cryptographic protocol. It provides a secure channel between two endpoints
? Some of this work was done while Hannah Davis was visiting ETH Zurich. Felix
Günther was supported in part by German Research Foundation (DFG) Research
Fellowship grant GU 1859/1-1. Tibor Jager was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme, grant agreement 802823.

2 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

(client and server) for arbitrary higher-layer application protocols. Its most re-
cent version, TLS 1.3 [48], specifies two different “modes” for the initial hand-
shake establishing a secure session key: the main handshake mode based on a
Diffie–Hellman key exchange and public-key authentication via digital signa-
tures, and a pre-shared key (PSK) mode, which performs authentication based
on symmetric keys. The latter is mainly used for two purposes:
Session resumption. Here, a prior TLS connection established a secure

channel along with a pre-shared key PSK, usually via a full handshake.
Subsequent TLS resumption sessions use this key for authentication and key
derivation. For example, modern web browsers typically establish multiple
TLS connections when loading a web site. Using public-key authentication
only in an initial session and PSK-mode in subsequent ones minimizes the
number of relatively expensive public-key computations and significantly
improves performance for both clients and servers.

Out-of-band establishment. PSKs can also be established out-of-band, e.g.,
by manual configuration of devices or with a separate key establishment
protocol. This enables secure communication in settings where a complex
public-key infrastructure (PKI) is unsuitable, such as IoT applications.
TLS 1.3 provides two variants of the PSK handshake mode: PSK-only and

PSK-(EC)DHE. The PSK-only mode is purely based on symmetric-key cryptog-
raphy. This makes TLS accessible to resource-constrained low-cost devices, and
other applications with strict performance requirements, but comes at the cost of
not providing forward secrecy [29], since the latter is not achievable with static
symmetric keys.4 The PSK-(EC)DHE mode in turn achieves forward secrecy
by additionally performing an (elliptic-curve) Diffie–Hellman key exchange, au-
thenticated via the PSK (i.e., still avoiding inefficient public-key signatures).
This compromise between performance and security is the suggested choice for
TLS 1.3 session resumption on the Internet.

Concrete security and tightness. Classical, complexity-theoretic security proofs
considered the security of cryptosystems asymptotically. They are satisfied with
security reductions running in polynomial time and having non-negligible suc-
cess probability. However, it is well-known that this only guarantees that a suffi-
ciently large security parameter exists asymptotically, but it does not guarantee
that a deployed real-world cryptosystem with standardized parameters—such as
concrete key lengths, sizes of algebraic groups, moduli, etc.—can achieve a cer-
tain expected security level. In contrast, a concrete security approach makes all
bounds on the running time and success probability of adversaries explicit, for
example, with a bound of the form Adv(A) ≤ f(A) ·Adv(B), where f is a func-
tion of the adversary’s resources and B is an adversary against some underlying
cryptographic hardness assumption.

The concrete security approach makes it possible to determine concrete de-
ployment parameters that are supported by a formal security proof. As an in-
tuitive toy example, suppose we want to achieve “128-bit security”, that is, we
4 See [2,9] for recent work discussing symmetric key exchange and forward secrecy.

On the Concrete Security of TLS 1.3 PSK Mode 3

want a security proof that guarantees (for any A in a certain class of adversaries)
that Adv(A) ≤ 2−128. Suppose we have a cryptosystem with a reduction that
loses “40 bits of security” because we can only prove a bound of f(A) ≤ 240.
This means that we have to instantiate the scheme with an underlying hardness
assumption that achieves Adv(B) ≤ 2−168 for any B in order to upper bound
Adv(A) by 2−128 as desired. Hence, the 40-bit security loss of the bound is
compensated by larger parameters that provide “168-bit security”.

This yields a theoretically-sound choice of deployment parameters, but it
might incur a very significant performance loss, as it requires the choice of larger
groups, moduli, or key lengths. For example, the size of an elliptic curve group
scales quadratically with the expected bit security, so we would have to choose
|G| ≈ 22·168 = 2336 instead of the optimal |G| ≈ 22·128 = 2256. The performance
penalty is even more significant for finite field groups, RSA or discrete loga-
rithms “modulo p”. This could lead to parameters which are either too large for
practical use, or too small to be supported by the formal security analysis of the
cryptosystem. We demonstrate this below for security proofs of TLS.

Even worse, for a given security proof the concrete loss ` may not be a con-
stant, as in the above example, but very often ` depends on other parameters,
such as the number of users or protocol sessions, for example. This makes it
difficult to choose theoretically-sound parameters when bounds on these other
parameters are not exactly known at the time of deployment. If then a concrete
value for ` is estimated too small (e.g., because the number of users is underes-
timated), then the derived parameters are not backed by the security analysis.
If ` is chosen too large, then it incurs an unnecessary performance overhead.

Therefore we want to have tight security proofs, where ` is a small constant,
independent of any parameters that are unknown when the cryptosystem is
deployed. This holds in particular for cryptosystems and protocols that are de-
signed to maximize performance, such as the PSK modes of TLS 1.3 for session
resumption or resource-constrained devices.

Previous analyses of the TLS handshake protocol and their tightness. TLS 1.3
is the first TLS version that was developed in a close collaboration between
academia and industry. Early TLS 1.3 drafts were inspired by the OPTLS
design by Krawczyk and Wee [42], and several draft revisions as well as the
final TLS 1.3 standard in RFC 8446 [48] were analyzed by many different re-
search groups, including computational/reductionist analyses of the full and PSK
modes in [19,20,25,21]. All reductions in these papers are however highly non-
tight, having up to a quadratic security loss in the number of TLS sessions and
adversary can interact with. For example, [17] explains that for “128-bit secu-
rity” and plausible numbers of users and sessions, an RSA modulus of more than
10,000 bits would be necessary to compensate the loss of previous security proofs
for TLS, even though 3072 bits are usually considered sufficient for “128-bit secu-
rity” when the loss of reductions is not taken into account. Likewise, [14] argues
that the tightness loss to the underlying Diffie–Hellman hardness assumption
lets these bounds fail to meet the standardized elliptic curves’ security target,
and for large-scale adversary even yields completely vacuous bounds.

4 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

Recently, Davis and Günther [14] and Diemert and Jager [17] gave new,
tight security proofs for the TLS 1.3 full handshake based on Diffie–Hellman key
exchange and digital signatures (not PSKs). However, their results required very
strong assumptions. One is that the underlying digital signature scheme is tightly
secure in a multi-user setting with adaptive corruptions. While such signature
schemes do exist [3,28,16,31], this is not known for any of the signature schemes
standardized for TLS 1.3, which are subject to the tightness lower bounds of [4]
as their public keys uniquely determine the matching secret key.

Even more importantly, both [14] and [17] modeled the TLS key schedule or
components thereof as independent random oracles. This was done to overcome
the technical challenge that the Diffie–Hellman secret and key shares need to be
combined in the key derivation to apply their tight security proof strategy, fol-
lowing Cohn-Gordon et al. [11], yet in TLS 1.3 those values enter key derivation
through separate function calls. But neither work provided formal justification
for their modeling, and both neglected to address potential dependencies between
the use of a hash function in the key schedule and elsewhere in the protocol.

Our contributions. In this paper, we describe a new perspective on TLS 1.3,
which enables a modular security analysis with tight security proofs.
New abstraction of the TLS 1.3 key schedule. We first describe a new
abstraction of the TLS 1.3 key schedule used in the PSK modes (in Section 2),
where different steps of the key schedule are modeled as independent random
oracles (12 random oracles in total). This makes it significantly easier to rig-
orously analyze the security of TLS 1.3, since it replaces a significant part of
the complexity of the protocol with what the key schedule intuitively provides,
namely “as-good-as-independent cryptographic keys”, deterministically derived
from pre-shared keys, Diffie–Hellman values (in PSK-(EC)DHE mode), protocol
messages, and the randomness of communicating parties.

Most importantly, in contrast to prior works on TLS 1.3’s tightness that
abstracted (parts of or the entire) key schedule as random oracles [17,14] to
enable the tight proof technique of Cohn-Gordon et al. [11], we support this new
abstraction formally. Using the indifferentiability framework of Maurer et al. [46]
in its recent adaptation by Bellare et al. [5] that treats multiple random oracles,
in Section 4 we prove our abstraction indifferentiable from TLS 1.3 with only
the underlying cryptographic hash function modeled as a random oracle, and
this proof is tight. This accounts for possible interdependencies between the use
of a hash function in multiple contexts, which were not considered in [17,14].
Identifying a lack of domain separation. A noteworthy subtlety is that, to
our surprise, we identify that for a certain choice of TLS 1.3 PSK mode and hash
function (namely, PSK-only mode with SHA384), a lack of domain separation [5]
in the protocol does not allow us to prove indifferentiability for this case. We
discuss the details of why domain separation is achieved for all but this case in
the full version of this paper [13].

This gap could be closed by more careful domain separation in the key sched-
ule, which we consider an interesting insight for designers of future versions of

On the Concrete Security of TLS 1.3 PSK Mode 5

TLS or other protocols. Concretely, the ideal domain separation method would
be to add a unique prefix or suffix to each hash function call made by the proto-
col. However, existing standard primitives like HMAC and HKDF do not permit
the use of such labels, so this advice is not practical for TLS 1.3 or similar proto-
cols. For these, a combination of labels (where possible) and padding for domain
separation seems advisable, where the padding ensures that the protocol’s direct
hash calls have strictly longer inputs than the internal hash calls in HMAC and
HKDF. We outline this method in more detail in the full version.
Modularization of record layer encryption. Like most of the prior com-
putational TLS 1.3 analyses [19,25,21,17], we use a multi-stage key exchange
(MSKE) security model [24] to capture the complex and fine-grained security
aspects of TLS 1.3. These aspects include cleverly distinguishing between “ex-
ternal” keys established in the handshake for subsequent use (by, e.g., appli-
cation data encryption, resumption, etc.) and “internal” keys, used within the
handshake itself (in TLS 1.3 for encrypting most of the handshake through the
protocol’s record layer) to avoid complex security models such as the ACCE
model [33] which monolithically treat handshake and record-layer encryption.

As a generic simplification step for MSKE models, we show (in Section 5)
that for a certain class of transformations using the internal keys, we can even
avoid the somewhat involved handling of internal keys altogether. We use this
to simplify our analysis of the TLS 1.3 handshake (treating the TLS 1.3 record-
layer encryption as such transformation). The result itself however is not specific
to TLS 1.3, but general and of independent interest; it furthermore is tight.
Tight security of TLS 1.3 PSK modes. We leverage the new perspective on
the TLS 1.3 key schedule and the fact that we can ignore record-layer encryption
to give our main results: the first tight security proofs for the PSK-only and
PSK-(EC)DHE handshake modes of TLS 1.3.
Evaluation. Finally, we evaluate our new bounds and prior ones from [21] over a
wide range of fully concrete resource parameters, following the approach of Davis
and Günther [14]. Our bounds improve on previous analyses of the PSK-only
handshake by between 15 and 53 bits of security, and those of the PSK-(EC)DHE
handshake by 60 and 131 bits of security across all our parameters evaluated.

Further related work and scope of our analysis. Several previous works gave secu-
rity proofs for the previous protocol version TLS 1.2 [33,40,27,41,44,7], including
its PSK-modes [44]; all reductions in these works are highly non-tight.

Brzuska et al. [10] recently proposed a stand-alone security model for the
TLS 1.3 key schedule, likewise aiming at a new abstraction perspective on the
latter to support formal protocol analysis. While their treatment focuses solely
on the key schedule and only briefly argues its application to a key exchange
security result, it is more general and covers the negotiation of parameters [22,6]
and agile usage of various algorithms.

Our focus is on the TLS 1.3 PSK modes. Hence, our abstraction of the key
schedule and the careful indifferentiability treatment is tailored to that mode
and cannot be directly translated to the full handshake (without PSKs). We are

6 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

confident that our approach can be adapted to achieve similar results for the full
handshake, but leave revisiting the results in [17,14] in that way to future work.

Like many previous cryptographic analyses [33,40,19,20,25,21,17,14] of the
TLS handshake, our work focuses on the “cryptographic core” of the TLS 1.3
PSK handshake modes (in particular, we consider fixed parameters like the
Diffie–Hellman group, TLS ciphersuite, etc.). Our abstraction of the key sched-
ule is designed for easy composition with our tight key exchange proof, and
our indifferentiability treatment is important confirmation of that abstraction’s
soundness. We do not consider, e.g., ciphersuite and version negotiation [22] or
backwards compatibility issues in settings where multiple TLS versions are used
in parallel, such as [34]. We also do not treat the security of the TLS record layer;
instead we explain how to avoid the necessity to do so in order to achieve more
modular security analyses, and we refer to compositional results [24,19,30,21,17]
treating the combined security when subsequent protocols use the session keys
established in an MSKE protocol.

Numerous authenticated key exchange protocols [28,11,45,32,31] were re-
cently proposed that can be proven (almost) tightly secure. However, these pro-
tocols were specifically designed to be tightly secure and none is standardized.

2 The TLS 1.3 Pre-shared Key Handshake Protocol

Overview. We consider the pre-shared key mode of TLS 1.3, used in a setting
where both client and server already share a common secret, a so-called pre-
shared key (PSK). A PSK is a cryptographic key which may either be manually
configured, negotiated out-of-band, or (and most commonly) be obtained from a
prior and possibly not PSK-based TLS session to enable fast session resumption.
The TLS 1.3 PSK handshake comes in two flavors: PSK-only, where security is
established from the pre-shared key alone, and PSK-(EC)DHE, which includes
an (finite-field or elliptic-curve) Diffie–Hellman key exchange for added forward
secrecy. Both PSK handshakes essentially consist of two phases (cf. Figure 1).

1. The client sends a random nonce and a list of offered pre-shared keys to the
server, where each key is identified by a (unique) identifier pskid.5 The server
then selects one pskid from the list, and responds with another random
nonce and the selected pskid. In PSK-(EC)DHE mode, client and server
additionally perform a Diffie–Hellman key exchange, sending group elements
along with the nonces and PSK identifiers. In both modes, the client also
sends a so-called binder value, which applies a message authentication code
(MAC) to the client’s nonce and pskid (and the Diffie–Hellman share in
PSK-(EC)DHEmode) and binds the PSK handshake to the (potential) prior
handshake in which the used pre-shared key was established (see [12,39] for
analysis rationale behind the binder value).

5 In this work, we do not consider negotiation of pre-shared keys in situations where
client and server share multiple keys, but focus on the case where client and server
share only one PSK and the client therefore offers only a single pskid. However, we
expect that our results extend to the general case as well.

On the Concrete Security of TLS 1.3 PSK Mode 7

2. Then client and server derive unauthenticated cryptographic keys from the
PSK and the established Diffie–Hellman key (the latter only in (EC)DHE
mode, of course). This includes, for instance, the client and server hand-
shake traffic keys (htkC and htkS) used to encrypt the subsequent hand-
shake messages, as well as finished keys (fkC and fkS) used to compute and
exchange finished messages. The finished messages are MAC tags over all
previous messages, ensuring that client and server have received all previous
messages exactly as they were sent.
After verifying the finished messages, client and server “accept” authenti-
cated cryptographic keys, including the client and server application traffic
secret (CATS and SATS), the exporter master secret (EMS), and the re-
sumption master secret (RMS) for future session resumptions.

Detailed specification. For our proofs we will need fully-specified descriptions for
each of the TLS 1.3 PSK and PSK-(EC)DHE handshake protocols. Pseudocode
for these protocols can be found in Figure 1, where we let (G, p, g) be a cyclic
group of prime order p such that G = 〈g〉.

The two descriptions on the left and right in Figure 1 show the same protocol,
but they use different abstractions to highlight how we capture the complex way
TLS 1.3 calls its hash function. This one hash function is used in some places
to condense transcripts, in others to help derive session keys, and in still others
as part of a message authentication code. We call this function H, and let its
output length be hl bits so that we have H : {0, 1}∗ → {0, 1}hl . Depending on
the choice of ciphersuite, TLS 1.3 instantiates H with either SHA256 or SHA384
[47]. In our security analysis, we will model H as a random oracle.

On the left-hand side of Figure 1, we distinguish four named subroutines of
TLS 1.3 which use H for different purposes:

– A message authentication code MAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl , which
calls H via the HMAC function MAC(K,M) := HMAC[H](K,M) where

HMAC[H](K,M) := H((K ‖ 0bl−hl)⊕ opad) ‖H((K ‖ 0bl−hl ⊕ ipad) ‖M))

Here opad and ipad are bl-bit strings, where each byte of opad and ipad is set
to the hexadecimal value 0x5c, resp. 0x36. We have bl = 512 when SHA256
is used and bl = 512 for SHA384. When modeling SHA256 resp. SHA384 as a
random oracle, we keep the corresponding value of bl.

– Extract,Expand : {0, 1}hl×{0, 1}∗ → {0, 1}hl , two subroutines for extract-
ing and expanding key material in the key schedule, following the HKDF
key derivation paradigm of Krawczyk [38,36]. These functions are defined
• Extract(K,M) := HKDF.Extract(K,M) = MAC(K,M).
• Expand(K,M) := HKDF.Expand(K,M) = MAC(K,M ‖ 0x01).6

6 HKDF.Expand [36] is defined for any output length (given as third parameter). In
TLS 1.3, Expand always derives at most hl bits, which can be trimmed from a
hl-bit output; we hence in most places omit the output length parameter.

8 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

Client Server

rC
$←− {0, 1}nl

x $←− Zp, X ← gx

ClientHello: rC

[+ ClientKeyShare: X]†
ES← Extract(0, PSK)

dES← Expand(ES, `3 ‖H(""))
BK← Expand(ES, `0 ‖H(""))

fkb ← Expand(BK, `6)
binder ←MAC(fkb, H(CH−))
+ ClientPreSharedKey: pskid, binder

abort if binder 6= MAC(fkb, H(CH−))
accept ETS← Expand(ES, `1 ‖H(CH))

1
accept EEMS← Expand(ES, `2 ‖H(CH))

2
rS

$←− {0, 1}nl

y $←− Zp, Y ← gy

ServerHello: rS

[+ ServerKeyShare: Y]†
+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�
HS← Extract(dES, DHE)

CHTS← Expand(HS, `4 ‖H(CH ‖ SH))
SHTS← Expand(HS, `5 ‖H(CH ‖ SH))

dHS← Expand(HS, `3 ‖H(""))
accept htkC ← DeriveTK(CHTS)

3
accept htkS ← DeriveTK(SHTS)

4
{EncryptedExtensions}

fkS ← Expand(SHTS, `6)
finS ←MAC(fkS , H(CH ‖ · · · ‖ EE))

{ServerFinished}: finS

abort if finS 6= HMAC(fkS , H(CH ‖ · · · ‖ EE))
MS← Extract(dHS, 0)

accept CATS← Expand(MS, `7 ‖H(CH ‖ · · · ‖ SF))
5accept SATS← Expand(MS, `8 ‖H(CH ‖ · · · ‖ SF))
6accept EMS← Expand(MS, `9 ‖H(CH ‖ · · · ‖ SF))
7

fkC ← Expand(CHTS, `6)
finC ←MAC(fkC , H(CH ‖ · · · ‖ SF))
{ClientFinished}: finC

abort if finC 6= MAC(fkC , H(CH ‖ · · · ‖ SF))
accept RMS← Expand(MS, `10 ‖H(CH ‖ · · · ‖ CF))

8

Client Server

rC
$←− {0, 1}nl

x $←− Zp, X ← gx

ClientHello: rC

[+ ClientKeyShare: X]†

binder ← TKDFbinder(PSK, H(CH−))
+ ClientPreSharedKey: pskid, binder

abort if binder 6= TKDFbinder(PSK, H(CH−))
accept ETS← TKDFETS(PSK, H(CH))

1
accept EEMS← TKDFEEMS(PSK, H(CH))

2
rS

$←− {0, 1}nl

y $←− Zp, Y ← gy

ServerHello: rS

[+ ServerKeyShare: Y]†
+ ServerPreSharedKey: pskid

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

accept htkC ← TKDFhtkC (PSK, DHE, H(CH ‖ SH))
3

accept htkS ← TKDFhtkS (PSK, DHE, H(CH ‖ SH))
4

{EncryptedExtensions}

finS ← TKDFfinS
(PSK, DHE, H(CH ‖ SH), H(CH ‖ · · · ‖ EE))

{ServerFinished}: finS

abort if finS 6= TKDFfinS
(PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ EE))

accept CATS← TKDFCATS(PSK, DHE, H(CH ‖ · · · ‖ SF))
5accept SATS← TKDFSATS(PSK, DHE, H(CH ‖ · · · ‖ SF))
6accept EMS← TKDFEMS(PSK, DHE, H(CH ‖ · · · ‖ SF))
7

finC ← TKDFfinC
(PSK, DHE, H(CH ‖ SH), H(CH ‖ · · · ‖ SF))

{ClientFinished}: finC

abort if finC 6= TKDFfinC
(PSK,DHE,H(CH ‖ SH),H(CH ‖ · · · ‖ SF))

accept RMS← TKDFRMS(PSK, DHE, H(CH ‖ · · · ‖ CF))
8

Legend
MSG: Y message MSG sent, containing Y
+ MSG extension sent within previous message
{MSG} MSG sent AEAD-encrypted with htkC/htkS

[. . .]† present only in PSK-(EC)DHE
[. . .]� present only in PSK

CH− partial ClientHello up to (incl.) pskid
`x label value, distinct for distinct x

DeriveTK(HTS) := Expand(HTS, `11 ‖ Th(""), hl) ‖ Expand(HTS, `12 ‖ Th(""), ivl)
(traffic key computation, deriving a hl-bit key and a ivl-bit IV)

Fig. 1. TLS 1.3 PSK and PSK-(EC)DHE handshake modes with (optional) 0-RTT
keys (stages 1 and 2), with detailed key schedule (left) and our representation of the
key schedule through functions TKDFx (right), explained in the text. Centered compu-
tations are executed by both client and server with their respective messages received,
and possibly at different points in time. Dotted lines indicate the derivation of session
(stage) keys together with their stage number. The labels `x are distinct for distinct
index x, see the full version [13] for their definition.

On the Concrete Security of TLS 1.3 PSK Mode 9

TKDFfinS
(PSK, DHE, h1, h2):

1 ES← Extract(0, PSK)
2 dES← Expand(ES, `3 ‖ Th(""))
3 HS← Extract(dES, DHE)

4 SHTS← Expand(HS, `5 ‖ h1)
5 fkS ← Expand(SHTS, `6)
6 finS ←MAC(fkS , h2)
7 return finS

Fig. 2. Definition of TKDFfinS
, deriving the ServerFinished MAC.

Despite the new naming conventions, this abstraction closely mimics the TLS 1.3
standard: MAC, Extract, and Expand can be read as more generic ways of
referring to the HMAC, HKDF.Extract, and HKDF.Expand algorithms [35,36].

The right-hand side of Figure 1 separates the key derivation functions for each
first-class key as well as the binder and finished MAC values derived. This way
of modeling TLS 1.3 makes it easier to establish key independence for the many
keys computed in the key schedule, as we will see in Section 4. We introduce 11
functions TKDFbinder , TKDFETS, TKDFEEMS, TKDFhtkC

, TKDFfinC
, TKDFhtkS

,
TKDFfinS

, TKDFCATS, TKDFSATS, TKDFEMS, and TKDFRMS (indexed by the
value they derive) and use them to abstract away many intermediate computa-
tions. Note that we are not changing the protocol, though: we define each TKDF
function to capture the same steps it replaces.

Take as an example TKDFfinS
, the function used to derive the MAC in the

ServerFinished message. In the prior abstraction, a session would first use the
key schedule to derive a finished key fkS from the hashed transcript and the
secrets PSK and DHE. It would then call MAC, keyed with fkS , to generate
the ServerFinished message authentication code on the hashed transcript and
encrypted extensions. Accordingly, we define TKDFfinS

: {0, 1}hl×G×{0, 1}hl×
{0, 1}hl → {0, 1}hl as in Figure 2. In the protocol, TKDFfinS

takes inputs the pre-
shared key PSK and Diffie–Hellman secret DHE and hash digests h1 = Th(CH ‖
SH) and h2 = Th(CH‖· · ·‖EE), and it outputs a MAC tag for the ServerFinished
message. The remaining key derivation functions are defined the same way; we
give their signatures in the full version [13].

Note that the definition of the 11 functions induces a lot of redundancy as
we derive every value independently and therefore compute intermediate values
(e.g., ES, dES, and HS) multiple times over the execution of the handshake.
However, this is only conceptual. Since the computations of these intermediate
values are deterministic, the intermediate values will be the same for the same
inputs and could be cached.

3 Code-based MSKE Model for PSK Modes

We formalize security of the TLS 1.3 PSK modes in a game-based multi-stage
key exchange (MSKE) model, adapted primarily from that of Dowling et al. [21].
We fully specify our model in pseudocode in the full version [13]. We adopt the
explicit authentication property from the model of Davis and Günther [14] and
capture forward secrecy by following the model of Schwabe et al. [49].

10 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

3.1 Key Exchange Syntax

In our security model, the adversary interacts with sessions executing a key ex-
change protocol KE. For the definition of the security experiment it will be useful
to have a unified, generic interface to the algorithms implementing KE, which
can then be called from the various procedures defining the security experiment
to run KE. Therefore, we first formalize a general syntax for protocols.

We assume that pairs of users share long-term symmetric keys (pre-shared
keys), which are chosen uniformly at random from a set KE.PSKS.7 We allow
users to share multiple pre-shared keys, maintained in a list pskeys, and require
that each user uses any key only in a fixed role (i.e., as client or server) to avoid
the Selfie attack [23]. We do not cover PSK negotiation; each session will know
at the start of the protocol which key it intends to use.

New sessions are created via the algorithm Activate. This algorithm takes as
input the new session’s own user, identified by some ID u, the user ID peerid of
the intended communication partner, a pre-shared key PSK, and a role identifier—
initiator (client) or responder (server)—that determines whether the session will
send or receive the first protocol message. It returns the new session πiu, which is
identified by its user ID u and a unique index i so that a single user can execute
many sessions.

Existing sessions send and receive messages by executing the algorithm Run.
The inputs to Run are an existing session πiu and a message m it has received.
The algorithm processes the message, updates the state of πiu, and returns the
next protocol message m′ on behalf of the session. Run also maintains the status
of πiu, which can have one of three values: running when it is awaiting the next
protocol message, accepted when it has established a session key, and rejected if
the protocol has terminated in failure.

In a multi-stage protocol, sessions accept multiple session keys while run-
ning; we identify each with a numbered stage. A protocol may accept several
stages/keys while processing a single message, and TLS 1.3 does this. In order
to handle each stage individually, our model adds artificial pauses after each
acceptance to allow the adversary to interact with the sessions upon each stage
accepting (beyond, as usual, each message exchanged). When a session πiu ac-
cepts in stage s while executing Run, we require Run to set the status of πiu to
accepteds and terminate. We then define a special “continue” message. When
session πiu in state accepteds, receives this message it calls Run again, updates
its status to runnings+1 and continues processing from the point where it left off.

3.2 Key Exchange Security

We define key exchange security via a real-or-random security game, a formal-
ization of which can be found in the full version [13].

7 While our results can be generalized to any distribution on KE.PSKS (based on its
min-entropy), for simplicity, we focus on the uniform distribution in this work.

On the Concrete Security of TLS 1.3 PSK Mode 11

Game oracles. In this security game, the adversary A has access to seven ora-
cles: Initialize, NewSecret, Send, RevSessionKey, RevLongTermKey,
Test, and Finalize, as well as any random oracles the protocol defines. The
game begins with a call to Initialize, which samples a challenge bit b. It ends
when the adversary calls Finalize with a guess b′ at the challenge bit. We say
the adversary “wins” the game if Finalize returns true.

The adversary can establish a random pre-shared key between two users by
callingNewSecret.8 It can corrupt existing users’ pre-shared keys via the oracle
RevLongTermKey. The Send oracle creates new protocol sessions and pro-
cesses protocol messages on the behalf of existing sessions. The RevSessionKey
oracle reveals a session’s accepted session key. Finally, the Test oracle servers
as the challenge oracle: it returns the real session key of a target session or an
independent one sampled randomly from the session key space KE.KS[s] of the
respective stage s, depending on the value of the challenge bit b.

Protocol properties. Keys established in different stages possess different security
attributes, which are defined as part of the key exchange protocol: replayability,
forward secrecy level, and authentication level. Certain stages, whose indices are
tracked in a list INT, produce “internal” keys intended for use only within the
key exchange protocol; these keys may only be Tested at the time of acceptance
of this particular key, but not later. This is because otherwise such keys may be
trivially distinguishable from random, e.g., via trial decryption, due to the fact
that they are used within the protocol. To avoid a trivial distinguishing attack,
we force the rest of the protocol execution to be consistent with the result of such
a Test. That is, a tested internal key is replaced in the protocol with whatever
the Test returns to the adversary (which is either the real internal key or an
independent random key). The remaining stages produce “external” keys which
may be tested at any time after acceptance.

For some protocols, it may be possible that a trivial replay attack can achieve
that several sessions agree on the same session key for stage s, but this is not
considered an “attack”. For example, in TLS 1.3 PSK an adversary can always
replay the ClientHello message to multiple sessions of the same server, which
then all derive the same ETS and EEMS keys (cf. Figure 1). To specify that
such a replay is not considered a protocol weakness, and thus should not be
considered a valid “attack”, the protocol specification may define REPLAY[s] to
true for a stage s. REPLAY[s] is set to false by default.

As we focus on protocols which rely on (pre-authenticated) pre-shared keys,
our model encodes that all protocol stages are at least implicitly mutually au-
8 Our model stipulates that pre-shared keys are sampled uniformly random and hon-
estly. One could additionally allow the registration of biased or malicious PSKs, akin
to models treating, e.g., the certification of public keys [8]. While this would yield
a theoretically stronger model, we consider a simpler model reasonable, because we
expect most PSKs used in practice to be random keys established in prior protocol
sessions. Furthermore, we consider tightness as particularly interesting when “good”
PSKs are used, since low-entropy PSKs might decrease the security below what is
achieved by (non)-tight security proofs, anyway.

12 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

thenticated in the sense of Krawczyk [37], i.e., a session is guaranteed that
any established key can only be known by the intended partner. Some stages
will further be explicitly authenticated, either immediately upon acceptance or
retroactively upon acceptance of a later state. Additionally, the stage at which
explicit authentication is achieved may differ between the initiator and respon-
der roles. For each stage s and role r, the key exchange protocol specification
states in EAUTH[r, s] the stage t from whose acceptance stage s derives explicit
authentication for the session in role r. Note that the stage-s key is not authen-
ticated until both stages s and EAUTH[r, s] have been accepted. If the stage-s
key will never be explicitly authenticated for role r, we set EAUTH[r, s] =∞.

We use a predicate ExplicitAuth to require the existence of an honest partner
for explicitly authenticated stages upon both parties’ completion of the protocol,
except when the session’s pre-shared key was corrupted prior to accepting the
explicitly-authenticating stage (as in that case, we anticipate the adversary can
trivially forge any authentication mechanism).

Motivated by TLS 1.3, it might be the case that initiator and responder
sessions achieve slightly different guarantees of authentication. While responders
in TLS 1.3 are guaranteed the existence of an honest partner in any explicitly
authenticated stage, initiators cannot guarantee that their partner has received
their final message. This issue was first raised by FGSW [26] and led to their
definitions of “full” and “almost-full” key confirmation; it was then extended
to “full” and “almost-full” explicit authentication by DFW [15]. Our definitions
for responders and initiators respectively resemble the latter two notions most
closely, but we rely on session identifiers instead of “key confirmation identifiers”.

We consider three levels of forward secrecy inspired by the KEMTLS work
of Schwabe, Stebila, and Wiggers [49]: no forward secrecy, weak forward se-
crecy 2 (wfs2), and full forward secrecy (fs). As for authentication, each stage
may retroactively upgrade its level of forward secrecy upon the acceptance of
later stages, and forward secrecy may be established at different stages for each
role. For each stage s and role r, the stage at which wfs2, resp. fs, is achieved is
stated in FS[r, s,wfs2], resp. FS[r, s, fs], by the key exchange protocol.

The definition of weak forward secrecy 2 states that a session key with wfs2
should be indistinguishable as long as (1) that session has received the relevant
messages from an honest partner (formalized via matching contributive identi-
fiers below, we say: “has an honest contributive partner”) or (2) the pre-shared
key was never corrupted. Full forward secrecy relaxes condition (2) to forbid cor-
ruption of the pre-shared key only before acceptance of the stage that retroac-
tively provides full forward secrecy. We capture these notions of forward secrecy
in a predicate Fresh, which uses the log of events to check whether any tested
session key is trivially distinguishable (e.g., through the session or its partnered
being revealed, or forward secrecy requirements violated). With forward secrecy
encoded in Fresh, our long-term key corruption oracle (RevLongTermKey),
unlike in the model of [21], handles all corruptions the same way, regardless of
forward secrecy.

On the Concrete Security of TLS 1.3 PSK Mode 13

Session and game variables. Sessions πiu and the security game itself maintain
several variables; we indicate the former in italics, the latter in sans-serif font.

The game uses a counter time, initialized to 0 and incremented with any
oracle query the adversary makes, to order events in the game log for later
analysis. When we say that an event happens at a certain “time”, we mean the
current value of the time counter. The list pskeys contains, as discussed above,
all pre-shared keys, indexed by a tuple (u, v, pskid) containing the two users’ IDs
(u using the key only in the initiator role, v only in the reponder role), and a
unique string identifier. The list revpsk, indexed like pskeys, tracks the time of
each pre-shared key corruption, initialized to revpsk(u,v,pskid) ←∞. (In boolean
expressions, we write revpsk(u,v,pskid) as a shorthand for revpsk(u,v,pskid) 6=∞.)

Each session πiu, identified by (adversarially chosen) user ID and a unique
session ID, furthermore tracks the following variables:

– status ∈ {runnings, accepteds, rejecteds | s ∈ [1, . . . ,STAGES]}, where STAGES
is the total number of stages of the considered protocol. The status should
be accepteds immediately after the session accepts the stage-s key, rejecteds
after it rejects stage s (but may continue running; e.g., rejecting 0-RTT
data), and runnings for some stage s otherwise.

– peerid. The identity of the session’s intended communication partner.
– pskid. The identifier of the session’s pre-shared key.
– accepted[s]. For each stage s, the time (i.e., the value of the time counter)

at which the stage s key was accepted. Initialized to ∞.
– revealed[s]. A boolean denoting whether the stage s key has been leaked

through a RevSessionKey query. Initialized to false.
– tested[s]. The time at which the stage s key was tested. Initialized to ∞

before any Test query occurs. (In boolean expressions, we write tested[s] as
a shorthand for tested[s] 6=∞.)

– sid[s]. The session identifier for each stage s, used to match honest commu-
nication partners within each stage.

– skey[s]. The key accepted at each stage.
– cid initiator[s] and cid responder[s]. The contributive identifiers for each stage s,

where cidrole[s] identifies the communication part that a session in role role
must have honestly received in order to be allowed to be tested in certain
scenarios (cf. the freshness definition in the Fresh predicate). Unlike prior
models, each session maintains a contributive identifiers for each role; one
for itself and one for its intended partner. This enables more fine-grained
testing of session stages in our model.

The predicate Sound captures that variables are properly assigned, in particular
that session identifiers uniquely identify a partner session (except for replayable
stages) and that partnering implies agreement on (distinct) roles, contributive
identifiers, peer identities and the pre-shared key used, as well as the established
session key.

Definition 1 (Multi-stage key exchange security). Let KE be a key ex-
change protocol and GMSKE

KE,A be the key exchange security game defined above. We

14 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

define

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) := 2 ·max

A
Pr
[
GameMSKE

KE,A ⇒ 1
]
− 1,

where the maximum is taken over all adversaries, denoted (t, qNS, qS, qRS, qRL, qT,
qRO)-MSKE-adversaries, running in time at most t and making at most qNS, qS,
qRS, qRL, qT, resp. qRO queries to their respective oracles NewSecret, Send,
RevSessionKey, RevLongTermKey, Test, and RO.

4 Key-Schedule Indifferentiability

In this section we will argue that the key schedule of TLS 1.3 PSK modes, where
the underlying cryptographic hash function is modeled as a random oracle (i.e.,
the left-hand side of Figure 1 with the underlying hash function modeled as a
random oracle), is indifferentiable [46] from a key schedule that uses independent
random oracles for each step of the key derivation (i.e., the right-hand side of
Figure 1 with all TKDFx functions modeled as independent random oracles). We
stress that this step not only makes our main security proof in Section 6 signifi-
cantly simpler and cleaner, but also it puts the entire protocol security analysis
on a firmer theoretical ground than previous works. For some background on the
indifferentiability framework, see the full version [13].

In their proof of tight security, Diemert and Jager [17] previously modeled
the TLS 1.3 key schedule as four independent random oracles. Davis and Gün-
ther [14] concurrently modeled the functions HKDF.Extract and HKDF.Expand
used by the key schedule as two independent random oracles. Neither work pro-
vided formal justification for their modeling. Most importantly, both neglected
potential dependencies between the use of the hash function in multiple contexts
in the key schedule and elsewhere in the protocol. In particular, no construction
of HKDF.Extract and HKDF.Expand as independent ROs from one hash func-
tion could be indifferentiable, because HKDF.Extract and HKDF.Expand both
call HMAC directly on their inputs, with HKDF.Expand only adding a counter
byte. Hence, the two functions are inextricably correlated by definition. We do
not claim that the analyses of [17,14] are incorrect or invalid, but merely point
out that their modeling of independent random oracles is currently not justi-
fied and might not be formally reachable if one only wants to treat the hash
function itself as a random oracle. This is undesirable because the gap between
an instantiated protocol and its abstraction in the random oracle model can
camouflage serious attacks, as Bellare et al. [5] found for the NIST PQC KEMs.
Their attacks exploited dependencies between functions that were also modeled
as independent random oracles but instantiated with a single hash function.

In contrast, in this section we will show that our modeling of the TLS 1.3
key schedule is indifferentiable from the key schedule when the underlying cryp-
tographic hash function is modeled as a random oracle. To this end, we will
require that inputs to the hash function do not appear in multiple contexts. For
instance, a protocol transcript might collide with a Diffie–Hellman group ele-
ment or an internal key (i.e., both might be represented by exactly the same bit

On the Concrete Security of TLS 1.3 PSK Mode 15

string, but in different contexts). For most parameter settings, we can rule out
such collisions by exploiting serendipitous formatting, but for one choice of pa-
rameters (the PSK-only handshake using SHA384 as hash function), an adversary
could conceivably force this type of collision to occur; see the full version [13]
for a detailed discussion. While this does not lead to any known attack on the
handshake, it precludes our indifferentiability approach for that case.

Insights for the design of cryptographic protocols. One interesting insight for pro-
tocol designers that results from our attempt of closing this gap with a careful
indifferentiability-based analysis is that proper domain separation might enable
a cleaner and simpler analysis, whereas a lack of domain separation leads to
uncertainty in the security analysis. No domain separation means stronger as-
sumptions in the best case, and an insecure protocol in the worst case, due to
the potential for overlooked attack vectors in the hash functions. A simple prefix
can avoid this with hardly any performance loss.

Indifferentiability of the TLS 1.3 key schedule. Via the indifferentiability frame-
work, we replace the complex key schedule of TLS 1.3 with 12 independent
random oracles: one for each first-class key and MAC tag, and one more for
computing transcript hashes. In short, we relate the security of TLS 1.3 as de-
scribed in the left-hand side of Figure 1 to that of the simplified protocol on the
right side of Figure 1 with the key derivation and MAC functions TKDFx and
modeled as independent random oracles. We prove the following theorem, which
formally justifies our abstraction of the key exchange protocol by reducing its
security to that of the original key exchange game.

Theorem 1. Let ROH : {0, 1}∗ → {0, 1}hl be a random oracle. Let KE be the
TLS 1.3 PSK-only or PSK-(EC)DHE handshake protocol described on the left
hand side of Figure 1 with H := ROH and MAC, Extract, and Expand
defined from H as in Section 2. Let KE′ be the corresponding (PSK-only or
PSK-(EC)DHE) handshake protocol on the right hand side of Figure 1, with
H := ROTh and TKDFx := ROx, where ROTh, RObinder , . . . , RORMS are ran-
dom oracles with the appropriate signatures (see the full version [13] for the
signature details). Then,

AdvMSKE
KE (t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE′ (t, qNS, qS, qRS, qRL, qT, qRO)

+2(12qS + qRO)2

2hl + 2q2
RO

2hl + 8(qRO + 36qS)2

2hl .

We establish this result via three modular steps in the indifferentiability
framework introduced by Maurer, Renner, and Holenstein [46]. More specifically
we will leverage a recent generalization proposed by Bellare, Davis, and Günther
(BDG) [5], which in particular formalizes indifferentiability for constructions of
multiple random oracles.

16 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

4.1 Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

We move from the left of Figure 1 to the right via three steps. Each step intro-
duces a new variant of the TLS 1.3 protocol with a different set of random oracles
by changing how we implement H, MAC, Expand, Extract, and eventually
the whole key schedule. Then we view the prior implementations of these func-
tions as constructions of new, independent random oracles. We prove security for
each intermediate protocol in two parts: first, we bound the indifferentiability
advantage against that step’s construction; then we apply the indifferentiability
composition theorem based on [46] given in the full version [13] of this paper to
bound the multi-stage key exchange (MSKE) security of the new protocol.

We give a brief description of each step; all details and formal theorem state-
ments and proofs can be found in the full version [13].

From one random oracle to two. TLS 1.3 calls its hash function H, which
we initially model as random oracle ROH, for two purposes: to hash protocol
transcripts, and as a component of MAC, Extract, and Expand which
are implemented using HMAC[H]. Our eventual key exchange proof needs to
make full use of the random oracle model for the latter category of hashes,
but we require only collision resistance for transcript hashes.
Our first intermediate handshake variant, KE1, replaces H with two new
functions: Th for hashing transcripts, and Ch for use within MAC, Extract,
or Expand. While KE uses the same random oracle ROH to implement Th
and Ch, the KE1 protocol instead uses two independent random oracles ROTh
and ROHMAC. To accomplish this without loss in MSKE security, we exploit
some possibly unintentional domain separation in how inputs to these func-
tions are formatted in TLS 1.3 to define a so-called cloning functor, following
BDG [5]. Effectively, we partition the domain {0, 1}∗ of ROH into two sets
DTh and DCh such that DTh contains all valid transcripts and DCh contains
all possible inputs to H from HMAC. We then leverage Theorem 1 of [5]
that guarantees composition for any scheme that only queries ROCh within
the set DCh and ROTh within the set DTh.
We defer details on the exact domain separation to the full version [13], but
highlight that the PSK-only handshake with hash function SHA384 fails to
achieve this domain separation and consequently this proof step cannot be
applied and leaves a gap for that configuration of TLS 1.3.

From SHA to HMAC. Our second variant protocol, KE2, rewrites the MAC
function. Instead of computing HMAC[ROCh], MAC now directly queries a
new random oracle ROHMAC : {0, 1}hl × {0, 1}∗ → {0, 1}hl . Since ROCh was
only called by MAC, we drop it from the protocol, but we do continue to use
ROTh, i.e., KE2 uses two random oracles: ROTh and ROHMAC. The security
of this replacement follows directly from Theorem 4.3 of Dodis et al. [18],
which proves the indifferentiability of HMAC with fixed-length keys.9

9 This requires PSKs to be elements of {0, 1}hl , which is true of resumption keys but
possibly not for out-of-band PSKs.

On the Concrete Security of TLS 1.3 PSK Mode 17

From two random oracles to 12. Finally, we apply a “big” indifferentia-
bility step which yields 12 independent random oracles and moves us to the
right-hand side of Figure 1. The 12 ROs include the transcript-hash ora-
cle ROTh and 11 oracles that handle each key(-like) output in TLS 1.3’s key
derivation, named RObinder , ROETS, ROEEMS, ROhtkC

, ROCF, ROhtkS
, ROSF,

ROCATS, ROSATS, ROEMS, and RORMS. (The signatures for these oracles are
given in the full version [13].) For this step, we view TKDF as a construc-
tion of 11 random oracles from a single underlying oracle (ROHMAC). We
then give our a simulator in pseudocode and prove the indifferentiability of
TKDF with respect to this simulator. Our simulator uses look-up tables to
efficiently identify intermediate values in the key schedule and consistently
program the final keys and MAC tags.

Combining these three steps yields the result in Theorem 1. In the remainder
of the paper, we can therefore now work with the right-hand side of Figure 1,
modeling H and the TKDF functions as 12 independent random oracles.

5 Modularizing Handshake Encryption

Next will argue that using “internal” keys to encrypt handshake messages on
the TLS 1.3 record-layer does not impact the security of other keys established
by the handshake. In the full version [13], we give a theorem that formulates
our argument in a general way, applicable to any multi-stage key exchange pro-
tocol, so that future analyses of similar protocols might take advantage of this
modularity as well.

Intuitively, we argue as follows. Let KE2 be a protocol that provides multiple
different stages with different external keys (i.e., none of the keys is used in
the protocol, e.g., to encrypt messages), and let KE1 be the same protocol,
except that some keys are “internal” and used, e.g., to encrypt certain protocol
messages. We argue that either using “internal” keys in KE1 does not harm the
security of other keys of KE1, or KE2 cannot be secure in the first place. This
will establish that we can prove security of a variant TLS 1.3 without handshake
encryption (in an accordingly simpler model), and then lift this result to the
actual TLS 1.3 protocol with handshake encryption and the handshake traffic
keys treated as “internal” keys.

Theorem 2. Let KE1 be the TLS 1.3 PSK-only resp. PSK-(EC)DHE mode with
handshake encryption (i.e., with internal stages KE1.INT = {3, 4}) as specified
on the right-hand side in Figure 1. Let KE2 be the same mode without hand-
shake encryption (i.e., KE1.INT = ∅ and AEAD-encryption/decryption of mes-
sages is omitted). Let TransformSend and TransformRecv be the AEAD encryption
resp. decryption algorithms deployed in TLS 1.3 and KTransform = KE1.INT =
{3, 4}. Then we have AdvMSKE

KE1
(t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE

KE2
(t+tAEAD·

qS, qNS, qS, qRS + qS, qRL, qT, qRO), where tAEAD is the maximum time required to
execute AEAD encryption or decryption of TLS 1.3 messages.

18 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

For TLS 1.3 this means that we will not consider any security guarantees pro-
vided by the additional encryption of handshake messages. We consider this as
reasonable for PSK-mode ciphersuites, because the main purposes of handshake
message encryption in TLS 1.3 is to hide the identities of communicating parties,
e.g., in digital certificates, cf. [1]. In PSK mode there are no such identities. The
pskid might be viewed as a string that could identify communicating parties,
but it is sent unencrypted in the ClientHello message, anyway, the encryption
of subsequent handshake messages would not contribute to its protection.

6 Tight Security of the TLS 1.3 PSK Modes

In this section, we apply the insights gained in Sections 4 and 5 to obtain tight
security bounds for both the PSK-only and the PSK-(EC)DHE mode of TLS 1.3.
To that end, we first present the protocol-specific properties of the TLS 1.3 PSK-
only and PSK-(EC)DHE modes such that they can be viewed as multi-stage key
exchange (MSKE) protocols as defined in Section 3. Then, we prove tight security
bounds in the MSKE model in Theorem 3 for the TLS 1.3 PSK-(EC)DHE mode
and for the TLS 1.3 PSK-only mode in the full version [13].

6.1 TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol

We begin by capturing the TLS 1.3 PSK-only and PSK-(EC)DHE modes, spec-
ified in Figure 1, formally as MSKE protocols. To this end, we must explic-
itly define the variables discussed in Section 3. In particular, we have to define
the stages themselves, which stages are internal and which replayable, the ses-
sion and contributive identifiers, when stages receive explicit authentication, and
when stages become forward secret.

Stages. The TLS 1.3 PSK-only/PSK-(EC)DHE handshake protocol has eight
stages (i.e., STAGES = 8), corresponding to the keys ETS, EEMS, htkS , htkC ,
CATS, SATS, EMS, and RMS in that order. The set INT of internal keys contains
htkC and htkS , the handshake traffic encryption keys. Stages ETS and EEMS
are replayable: REPLAY[s] is true for s ∈ {1, 2} and false for all others.

Session and contributive identifiers. The session and contributive identifiers for
stages are tuples (labels, ctxt), where labels is a unique label identifying stage s,
and ctxt is the transcript that enters key’s derivation. The session identifiers
(sid[s])s∈{1,...,8} are defined as follows:10

sid[1]/sid[2] =
(
“ETS”/“EEMS”, (CH, CKS†, CPSK)

)
,

sid[3]/sid[4] =
(
“htkC”/“htkS”, (CH, CKS†, CPSK, SH, SKS†, SPSK)

)
,

sid[5]/sid[6]/sid[7] = (“CATS”/“SATS”/“EMS”, (CH, . . . , SPSK, EE, SF)) , and
sid[8] =

(
“RMS”, (CH, CKS†, CPSK, SH, SKS†, SPSK, EE, SF, CF)

)
.

10 Components marked with † are only part of the TLS 1.3 PSK-(EC)DHE handshake.

On the Concrete Security of TLS 1.3 PSK Mode 19

To make sure that a server that received ClientHello, ClientKeyShare†, and
ClientPreSharedKey untampered can be tested in stages 3 and 4, even if the
sending client did not receive the server’s answer, we set the contributive iden-
tifiers of stages 3 and 4 such that cidrole reflects the messages that a session in
role role must have honestly received for testing to be allowed. Namely, we let
clients (resp. servers) upon sending (resp. receving) the messages (CH, CKS†, CPSK)
set cid responder[3] = (“htkC”, (CH, CKS†, CPSK)) and cid responder[4] = (“htkS”, (CH,
CKS†, CPSK)). Further, when the client receives (resp. the server sends) the mes-
sage (SH, SKS†, SPSK), they set cid initiator[3] = sid[3] and cid initiator[4] = sid[4]. For
all other stages s ∈ {1, 2, 5, 6, 7, 8}, cid initiator[s] = cid responder[s] = sid[s] is set
upon acceptance of the respective stage (i.e., when sid[s] is set as well).

Explicit authentication. For initiator sessions, all stages achieve explicit au-
thentication when the ServerFinished message is verified successfully. This
happens right before stage 5 (i.e., CATS) is accepted. That is, upon accepting
stage 5 all previous stages receive explicit authentication retroactively and all
following stages are explicitly authenticated upon acceptance. Formally, we set
EAUTH[initiator, s] = 5 for all stages s ∈ {1, . . . , 8}.

Analogously, responder sessions receive explicit authentication right before
accepting stage 8 via the ClientFinished message; i.e., EAUTH[responder, s] = 8
for all stages s ∈ {1, . . . , 8}.

Forward secrecy. Only keys dependent on a Diffie–Hellman secret achieve for-
ward secrecy, so all stages s of the PSK-only handshake have FS[r, s, fs] =
FS[r, s,wfs2] =∞ for both roles r ∈ {initiator, responder}. In the PSK-(EC)DHE
handshake, full forward secrecy is achieved at the same stage as explicit authen-
tication for all keys except ETS and EEMS, which are never forward secret. That
is, for both roles r and stages s ∈ {3, . . . , 8} we have FS[r, s, fs] = EAUTH[r, s].
All keys except ETS and EEMS possess weak forward secrecy 2 upon accep-
tance, so we set FS[r, s,wfs2] = s for stages s ∈ {3, . . . , 8}. Finally, as stages 1
and 2 (i.e., ETS and EEMS) never achieve forward secrecy we set FS[r, s, fs] =
FS[r, s,wfs2] =∞ for both roles r and stages s ∈ {1, 2}.

6.2 Tight Security Analysis of TLS 1.3 PSK-(EC)DHE

We now come to the tight MSKE security result for the TLS 1.3 PSK-(EC)DHE
handshake.

Theorem 3. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE handshake
protocol (with optional 0-RTT) as specified on the right-hand side in Figure 1
without handshake encryption. Let G be the Diffie–Hellman group of order p. Let
nl be the length in bits of the nonce, let hl be the output length in bits of H, and
let the pre-shared key space be KE.PSKS = {0, 1}hl. We model the functions H
and TKDFx for each x ∈ {binder , . . . ,RMS} as 12 independent random oracles

20 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

ROTh,RObinder , . . . ,RORMS. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO) ≤ 2q2

S

2nl · p

+ (qRO + qS)2 + q2
NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl + 4(t+ 4 log(p) · qRO)2

p
.

Remark 1. Our MSKE model from Section 3 assumes pre-shared keys to be
uniformly random sampled from KE.PSKS, where here KE.PSKS = {0, 1}hl . This
matches how pre-shared keys are derived for session resumption, as well as our
analysis of domain separation, which assumes pre-shared keys to be of length hl.

Remark 2. Our bound is easily adapted to any distribution on {0, 1}hl in order
to accommodate out-of-band pre-shared keys that satisfy the length requirement
but do not have full entropy. Expectedly, lower-entropy PSK distributions result
in weaker bounds, due to the increased chance for collisions between PSKs as
well as the adversary guessing a PSK.

Remark 3. In order to deal with small subgroup attacks, note that we assume
that implementations properly validate received key shares by checking for mem-
bership in the appropriate prime-order group. This has to be done explicitly
for NIST curves (secp256r1, secp384r1, and secp521r1 in TLS 1.3 [48, Sec-
tion 4.2.8.2]). Curves like x25519 and x448 rule out small subgroup attacks
implicitly, with a mechanism called “clamping”. In our proof we treat Diffie–
Hellman groups as prime-order groups with uniform exponents in Zp, as com-
mon in the cryptographic literature. However, we stress that clamping as in [43]
makes exponents non-uniform over Zp. Hence, we implicitly assume that this
difference in the DH key generation is indistinguishable for the adversary.

6.3 Proof overview

The proof proceeds via a sequence of games in three phases, corresponding to
the three ways for an adversary to win the MSKE security game. We begin
with Game0, the original MSKE game for protocol TLS1.3-PSK-(EC)DHE described
above. In the first phase, we establish that the adversary cannot violate the
Sound predicate. In the second phase, we establish the same for the ExplicitAuth
predicate. In the third phase, we ensure that all Test queries return random
keys regardless of the value of the challenge bit b, so long as the Fresh predicate
is not violated. After that, the adversary cannot win the game with probability
better than guessing, rendering its advantage to be 0. We bound the advantage
difference introduced by each game hop; collecting these intermediate bounds
yields the overall bound. For space reasons, we only provide a summary of the
proof in the following and refer to the full version [13] for the full details.

Phase 1: Ensuring Sound

The Sound predicate checks that no more than two sessions can be partnered
in a non-replayable stage, and that any two partnered sessions must agree on

On the Concrete Security of TLS 1.3 PSK Mode 21

the stage, pre-shared key identifier, the stage-s key, and each others’ identities
and roles. We defined our session identifiers so that the stage-s session identi-
fier contains (1) a label unique to that stage, (2) a unique ClientHello and
ServerHello message, (3) the binder message: a MAC tag authenticating the
ClientHello and pre-shared key, and (4) sufficient information to fix the stage-s
key. (This does not mean the key is computable from the sid; it is not.)

We then perform three incremental game hops that cause the Finalize or-
acle to return 0 in the event of a collision between two Hello messages, binder
tags, or pre-shared keys. We bound the difference in advantage in the first two
game hops via a birthday bound over the number of potentially colliding values
(i.e., pairs of nonces and KeyShares in G for Hello message collisions, and sam-
pled PSK keys for pre-shared key collisions), and the third hop by a reduction to
the collision resistance of the RObinder random oracle whose advantage in turn is
upper bounded by a birthday bound AdvCR

RObinder
(qRO + qS) ≤ (qRO+qS)2

2hl . The re-
sulting bounds are, in this order: Pr[Game0]−Pr[Game3] ≤ 2q2

S

2nl ·p + q2
NS

2hl + (qRO+qS)2

2hl .
As long as no such collisions occur, each stage-s session identifier uniquely de-
termines one client session, one server session (for non-replayable stages), one
pre-shared key (and therefore one peer and identifier owning that key), and one
stage-s session key. At this point, the Sound predicate will always be true unless
Finalize would return 0, so the adversary cannot win by violating Sound.

Phase 2: Ensuring ExplicitAuth

In the second phase of the proof, we change the key-derivation process to avoid
sampling pre-shared keys wherever possible, instead replacing keys and MAC
tags derived from those pre-shared key by uniformly random strings. We then
make the adversary lose if it makes queries that would allow him to detect these
changes and bound that probability; in particular we ensure that the adversary
does not correctly guess a now-random ClientFinished or ServerFinished
MAC tag. Sessions achieve explicit authentication just after verifying their re-
ceived Finished message; eliminating possible forgeries hence ensures that the
ExplicitAuth predicate cannot be false without Finalize returning 0. All changes
in this phase apply only to sessions whose pre-shared key has not been corrupted.
Game 4. Our first of six game hops eliminates collisions in the “transcript
hash” function ROTh. We reduce to the collision resistance of ROTh and bound
this advantage with a birthday bound: Pr[Game3]− Pr[Game4] ≤ qRO+6qS

2hl . (The
factor 6 comes from the up to 6 transcript hashes computed in any Send query.)
Game 5. Our next game forces Finalize to return 0 if the adversary guesses
any uncorrupted pre-shared key in any random oracle query. Since we assume
pre-shared keys are uniformly random, Pr[Game4]− Pr[Game5] ≤ qRO·qNS

2hl .
Games 6 and 7. In our third game hop, we ask log the stage s key computed in
any session in a look-up table SKEYS under its session identifier. Sessions whose
partners have logged a key can then, in a fourth game hop, copy the key from
SKEYS instead of deriving it. Partnered sessions will always derive the same

22 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

key as guaranteed by the Sound predicate, so the adversary cannot detect the
copying and its advantage does not change. In addition to logging and copying
keys, we also log and copy the three MAC tags: binder , finS , and finC using
another look-up table TAGS. Since MAC tags do not have associated session
identifiers, they are logged under the inputs to RObinder , ROSF, resp. ROCF. This
technique is inspired by the work of Cohn-Gordon et al. [11].
Game 8. In preparation for the final step in this phase, our fifth game hop
eliminates uncorrupted pre-shared keys altogether. We postpone the sampling
of the pre-shared key to the RevLongTermKey oracle so that only corrupted
sessions hold pre-shared keys. As a consequence of this change, we can no longer
compute session keys and MAC tags using the random oracles. Sessions will
instead sample these uniformly at random from their respective range. In another
look-up table, they log the RO queries they would have made so that these
queries can be programmed later if the pre-shared key gets corrupted. Queries
to RO before corruption cannot contain the pre-shared key thanks to the previous
game, so we do not have to worry about consistency with past queries. We
also cannot implement the previous games’ check for guessed pre-shared keys
in RO queries until these keys are sampled, so we sample new pre-shared keys
for all uncorrupted identifiers at the end of the game in the Finalize oracle,
then perform the check. The programming of the random oracles is perfectly
consistent with their responses in earlier games, so the adversary cannot detect
when pre-shared keys are chosen in the game and its advantage does not change.
Game 9. The final game in this phase ensures that either ExplicitAuth = true
or Finalize returns 0. In this game, we return 0 from Finalize if any honest
session would accept the first explicitly-authenticated stage (stage 5 (CATS) for
initiators and stage 8 (RMS) for responders) with an uncorrupted pre-shared
key and no honest partner. By the previous game, we established that sessions
with uncorrupted pre-shared keys randomly sample their MAC tags, unless they
copy a cached result in which case the same computation was made by another
session. Thanks to the way we defined our session identifiers, no unpartnered
session will copy their MAC tags: the computation of the ServerFinished
MAC tag contains the hash of the stage-5 sid (excluding finS); likewise the
ClientFinished tag contains the hash of the stage-8 sid. Since we ruled out hash
collisions in the first game of the phase, any two sessions computing the same
ServerFinished message are stage-5 partners and any two sessions computing
the same ClientFinished message are stage-8 partners. So any unpartnered ses-
sion with an uncorrupted pre-shared key has a random MAC tag, and the odds
of the adversary guessing such a tag is bounded by qS

2hl . With the prior two games
not changing the adversary’s advantange, we have Pr[Game5]−Pr[Game9] ≤ qS

2hl .
We are now guaranteed that any session accepting the stage that achieves

explicit authentication without a corrupted pre-shared key has a partner in that
stage. The Sound predicate guarantees that the partner agrees on the peer and
pre-shared key identities, which is sufficient to guarantee explicit authentication
for all responder sessions. For initiator sessions, we must also note that a partner
in stage 5 will become, upon their acceptance, a partner in stages 6 (SATS) and 7

On the Concrete Security of TLS 1.3 PSK Mode 23

(EMS), whose sids are identical to that of stage 5 apart from their labels. An
initiator’s stage-5 partner will only accept a ClientFinished message identical
to the one sent by the initiator, at which point they will become a partner also
in stage 8. This ensures that the ExplicitAuth predicate can never be false unless
one of the flags introduced in this phase causes Finalize to return 0.

Phase 3: Ensuring the Challenge Bit is Random and Independent

Our goal in the third and last phase is to ensure that all session keys targeted
by a Test query are uniformly random and independent of the challenge bit b
whenever the Fresh predicate is true. Freshness ensures that no session key can
be tested twice or tested and revealed in the same stage either by targeting the
same session twice or two partnered sessions. It also handles our three levels of
forward secrecy.

We can already establish this for Test queries to sessions in non-forward
secret stages 1 (ETS) and 2 (EEMS). These queries violate Fresh unless the
sessions’ pre-shared keys are never corrupted. Since Game8, all sessions with
uncorrupted pre-shared keys either randomly sample their session keys, or copy
random keys from a partner session. If one of these session keys is tested, it
cannot have been output by another Test or RevSessionKey query without
violating Fresh. Therefore the response to the Test query is a uniformly random
string, independent of all other oracle responses and the challenge bit b.

The remaining stages (3–8) have weak forward secrecy 2 until explicit au-
thentication is achieved, then they have full forward secrecy. These stages’ keys
may be tested even if the session’s pre-shared key has been corrupted, so long as
there is a contributive partner (or, in the case of full forward secrecy, that the
corruption occurred after forward secrecy was achieved). We use one last game
hop to ensure these keys are uniformly random when they are tested.
Game 10. In Game10, we cause the Finalize oracle to return 0 if the ad-
versary should ever make a random oracle query containing the Diffie–Hellman
secret DHE of an honest partnered session whose pre-shared key was corrupted.
Without such a query, all keys derived from a Diffie–Hellman secret sampled
uniformly at random by the random oracles.

We bound the probability of this event via a reduction BDHE to the strong
Diffie–Hellman problem in group G. (Recall that G has order p and generator g.)
In this problem, the adversary BDHE gets as input a strong DH challenge (A =
ga, B = gb) as well as access to an oracle stDHa for the decisional Diffie–Hellman
(DDH) problem with the first argument fixed. Given inputs C ← gc and W for
any c ∈ Zp, stDHa(C,W) returns true if and only if W = gac = Ca. The goal
of BDHE is to submit Z to its Finalize oracle such that Z = gab.

The reduction BDHE simulates Game10 for the MSKE adversary A. At a high
level, it uses rerandomization to embed its strong DH challenge A, resp. B, into
the key shares of every initiator session, resp. every partnered responder ses-
sion. To embed a challenge A in its key share, a session samples a “randomizer”
τ $←− Zp, and sets its key share to X ← A · gτ . If A should make an RO query

24 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

containing the Diffie–Hellman secret associated with two embedded key shares,
the reduction can detect this query with its DDH oracle. It then extracts the so-
lution to its strong DH challenge from the query’s DH secret, calls the Finalize
oracle, and wins its own game.

There are a few subtleties to the reduction, which requires us to extend the
technique of CCGJJ [11]. Unlike honest executions of the protocol, the reduc-
tion’s simulated sessions with embedded key shares do not know their own se-
cret Diffie–Hellman exponents. If their pre-shared keys are never corrupted, this
does not matter because session keys and MAC tags are randomly sampled.
Corrupted sessions, however, cannot use the random oracles to compute these
values as they would in Game10. Instead, BDHE samples session keys and MAC
tags uniformly at random and uses several look-up tables to program random
oracle queries and maintain consistency between sessions.

With this infrastructure in place, the reduction proceeds in the following
way. Whenever a partnered session with embedded key share would need its
Diffie–Hellman secret, it searches all past RO queries for this secret. It looks
up the initiator’s stored randomizer τ and the responder’s randomizer τ ′. Then
for each guess Z in a past RO query, the reduction queries the strong Diffie–
Hellman oracle on the responder’s key share SKS and C ← Z · g−τ . This query
will return true if the adversary correctly guessed the Diffie–Hellman secret; in
this case the reduction calls Finalize(Z · g−τ · g−τ ′) and solves its strong DH
challenge. Unpartnered sessions do the same thing, except that the responder has
no randomizer; in response to the strong DH oracle answering true they hence
merely program their session keys instead of calling Finalize. We emphasize
that for tightness, it is crucial to maintain efficiency during this process. We
do so by only checking RO queries whose context matches the hashed protocol
transcript; this ensures BDHE makes at most 2 stDHa queries for each RO query.

After a session chooses its session key or MAC tag, it stores the chosen value,
its transcript, and all known randomizers in a table RndList. When the reduction
answers future RO queries, it will use this table to check if a query contains the
Diffie–Hellman secret of an accepted session using the strong DH oracle as above;
if so, they program or call Finalize in the same way.

This reduction solves the strong Diffie–Hellman problem whenever the adver-
sary makes an RO query containing a partnered session’s Diffie–Hellman secret,
so for reduction BDHE with runtime tBDHE , we have Pr[Game9] − Pr[Game10] ≤
AdvstDH

G (tBDHE , 2qRO). Davis and Günther gave a bound in the generic group
model for the strong DH problem; applying their Theorem 3.3 [14] results in
Pr[Game9]− Pr[Game10] ≤ t2BDHE

p .
At this point in the proof, the adversary A cannot possibly make a RO query

that outputs any tested session key of a forward secret (full or wfs2) stage s.
If the tested session’s pre-shared key is uncorrupted, A cannot make the query
because of Game5. If the session has a contributive partner in stage s, then from
Game10, A cannot make the query because it contains the Diffie–Hellman secret
of a partnered session. If it has accepted with no contributive partner and a
corrupted pre-shared key, then by the guarantees we established in Phase 2, the

On the Concrete Security of TLS 1.3 PSK Mode 25

corruption must have occurred before forward secrecy and explicit authentication
were achieved.

As a result, the output of any Test query (that does not violate Fresh) is a
random string, sampled by either a session or the RO oracle independently of all
other game variables including the challenge bit b. The adversary therefore has
a probability no greater than 1

2 of winning Game10. Collecting this probability
with the other bounds between games in our sequence gives the proof.

6.4 Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

We can finally combine the results of Sections 4, 5, and our key exchange bound
above to produce fully concrete bounds for the TLS 1.3 PSK-(EC)DHE and
PSK-only handshake protocols as specified on the left-hand side of Figure 1. This
bound applies to the protocol with handshake traffic encryption and internal keys
when only modeling as random oracle ROH the hash function H.

First, we define three variants of the TLS 1.3 PSK handshake:

– KE0, as defined in Theorem 1 with handshake traffic encryption and one
random oracle ROH. (This is the variant we want to obtain our overall
result for.)

– KE1, as defined in Theorem 1 with handshake traffic encryption and 12
random oracles ROTh, RObinder , . . . , RORMS.

– KE2: as defined in Theorem 2, with no handshake traffic encryption and 12
random oracles ROTh, RObinder , . . . , RORMS.

Theorem 1 grants that AdvMSKE
KE0

(t, qNS, qS, qRS, qRL, qT, qRO) ≤ AdvMSKE
KE1

(t,
qNS, qS, qRS, qRL, qT, qRO) + 2(12qS+qRO)2

2hl + 2q2
RO

2hl + 8(qRO+36qS)2

2hl .
Next, we apply Theorem 2, yielding the bound AdvMSKE

KE1
(t, qNS, qS, qRS, qRL,

qT, qRO) ≤ AdvMSKE
KE2

(t+ tAEAD · qS, qNS, qS, qRS + qS, qRL, qT, qRO), where tAEAD
is the maximum time required to execute AEAD encryption or decryption of
TLS 1.3 messages.

Theorem 3 then finally and entirely bounds the advantage against the MSKE
security of KE2. Collecting these bounds yields the following overall result for
the MSKE security of the TLS 1.3 PSK-(EC)DHE handshake protocol.

Corollary 1. Let TLS1.3-PSK-(EC)DHE be the TLS 1.3 PSK-(EC)DHE hand-
shake protocol as specified on the left-hand side in Figure 1. Let G be the Diffie–
Hellman group of order p. Let nl be the length in bits of the nonce, let hl be
the output length in bits of H, and let the pre-shared key space be KE.PSKS =
{0, 1}hl. Let H be modeled as a random oracle ROH. Then,

AdvMSKE
TLS1.3-PSK-(EC)DHE(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl · p
+ (qRO + qS)2 + q2

NS + (qRO + 6qS)2 + qRO · qNS + qS
2hl

+ 4(t+ tAEAD · qS + 4 log(p) · qRO)2

p

26 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

Adversary resources Security bound
b t #N #S #RO Target Mode DFGS [21] Us (Cor. 1, 2)
128 260 225 235 250 2−68 PSK-only ≈ 2−119 ≈ 2−152

128 280 235 255 270 2−48 PSK-only ≈ 2−59 ≈ 2−112

128 260 225 235 250 2−68 secp256r1 ≈ 2−61 ≈ 2−132

128 280 235 255 270 2−48 secp256r1 1 ≈ 2−92

128 260 225 235 250 2−68 x25519 ≈ 2−57 ≈ 2−128

128 280 235 255 270 2−48 x25519 1 ≈ 2−88

192 260 225 235 250 2−132 secp384r1 ≈ 2−189 ≈ 2−259

192 280 235 255 270 2−112 secp384r1 ≈ 2−108 ≈ 2−219

224 260 225 235 250 2−164 x448 ≈ 2−200 ≈ 2−280

224 280 235 255 270 2−144 x448 ≈ 2−110 ≈ 2−240

256 260 225 235 250 2−196 secp521r1 ≈ 2−200 ≈ 2−280

256 280 235 255 270 2−176 secp521r1 ≈ 2−110 ≈ 2−240

Table 1. Exemplary concrete advantages of a key exchange adversary with given re-
sources t (running time), #N (number of pre-shared keys), #S (number of sessions),
and #RO (number of random oracle queries) in breaking the security of the TLS 1.3
PSK handshake protocols. Numbers based on the prior bounds by Dowling et al. [21]
and our bounds for PSK-(EC)DHE and PSK-only (in Corollaries 1 resp. 2). “Target”
indicates the maximal advantage t/2b tolerable for a given bound on t when aiming for
the respective curve’s (or hash function’s, in case of PSK-only mode) bit security level b;
entries in green -shaded cells meet that target. Mode indicates PSK-only mode (with
SHA384) or otherwise PSK-(EC)DHE mode with the given curve secp256r1, x25519
(with SHA256), or secp384r1, x448, secp521r1 (with SHA384).

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl .

For the PSK-only mode, we obtain a similar bound, naturally omitting the
strong Diffie–Hellman and group-element collision terms. Due to space restric-
tions, we only state the final PSK-only bound here and defer further details to
the full version [13].

Corollary 2. Let TLS1.3-PSK be the TLS 1.3 PSK-only handshake protocol as
specified on the left-hand side in Figure 1. Let nl be the length in bits of the
nonce, let hl be the output length in bits of H, and let the pre-shared key space
be KE.PSKS = {0, 1}hl. Let H be modeled as a random oracle ROH. Then,

AdvMSKE
TLS1.3-PSK(t, qNS, qS, qRS, qRL, qT, qRO)

≤ 2q2
S

2nl + (qRO + qS)2 + q2
NS + (qRO + 6qS)2 + qRO · qNS + qS

2hl

+ 2(12qS + qRO)2 + 2q2
RO + 8(qRO + 36qS)2

2hl .

On the Concrete Security of TLS 1.3 PSK Mode 27

7 Evaluation

Asymptotically, our tighter security bounds improve on prior analysis of TLS 1.3
by a quadratic factor. We evaluate ours and prior bounds over a wide range of
fully concrete resource parameters, following the approach of Davis and Gün-
ther [14]. Table 1 shows exemplary concrete advantages; the full range of eval-
uated parameters is given in extended tables in the full version [13], along with
reasoning for how we chose the various ranges of resource parameters. The tables
show that while the prior PSK-(EC)DHE bound by Dowling et al. [21] meets
the target security goals in a number of configurations, there are at least some
settings for all elliptic-curve groups in which the targeted security is not met.
Our bounds do significantly better than the target in all configurations we con-
sidered. The gap for the PSK-only handshake is less significant as the loosest
prior reduction for TLS 1.3 was to the Diffie–Hellman problem.

Overall, our bounds improve on previous analyses of the PSK-only handshake
by 15 to 53 bits of security, and those of the PSK-(EC)DHE handshake by 60
to 131 bits of security, across all our parameters evaluated.

References

1. Arfaoui, G., Bultel, X., Fouque, P.A., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. PoPETs 2019(4), 190–210 (Oct 2019). https://doi.org/10.
2478/popets-2019-0065 18

2. Avoine, G., Canard, S., Ferreira, L.: Symmetric-key authenticated key exchange
(SAKE) with perfect forward secrecy. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS,
vol. 12006, pp. 199–224. Springer, Heidelberg (Feb 2020). https://doi.org/10.
1007/978-3-030-40186-3_10 2

3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenti-
cated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS,
vol. 9014, pp. 629–658. Springer, Heidelberg (Mar 2015). https://doi.org/10.
1007/978-3-662-46494-6_26 4

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5_10 4

5. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs,
oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 3–32. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2_1 4, 14, 15, 16

6. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-
Béguelin, S.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Sym-
posium on Security and Privacy. pp. 506–525. IEEE Computer Society Press (May
2016). https://doi.org/10.1109/SP.2016.37 5

7. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_14 5

https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-030-40186-3_10
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1007/978-3-662-44381-1_14
https://doi.org/10.1007/978-3-662-44381-1_14

28 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

8. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.:
ASICS: Authenticated key exchange security incorporating certification sys-
tems. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS,
vol. 8134, pp. 381–399. Springer, Heidelberg (Sep 2013). https://doi.org/10.
1007/978-3-642-40203-6_22 11

9. Boyd, C., Davies, G.T., de Kock, B., Gellert, K., Jager, T., Millerjord, L.: Sym-
metric key exchange with full forward security and robust synchronization. In:
ASIACRYPT 2021 (2021), to appear. Available as Cryptology ePrint Archive, Re-
port 2021/702. https://ia.cr/2021/702 2

10. Brzuska, C., Delignat-Lavaud, A., Egger, C., Fournet, C., Kohbrok, K., Kohlweiss,
M.: Key-schedule security for the TLS 1.3 standard. Cryptology ePrint Archive,
Report 2021/467 (2021), https://eprint.iacr.org/2021/467 5

11. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Hei-
delberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8_25 4, 6, 22,
24

12. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy. pp. 470–485. IEEE Computer Society
Press (May 2016). https://doi.org/10.1109/SP.2016.35 6

13. Davis, H., Diemert, D., Günther, F., Jager, T.: On the Concrete Security of TLS 1.3
PSK Mode. Cryptology ePrint Archive (2022), https://eprint.iacr.org/2022/
246 4, 8, 9, 10, 14, 15, 16, 17, 18, 20, 26, 27

14. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In: 19th International Conference on Applied Cryptography and Net-
work Security (ACNS 2021) (2021) 3, 4, 5, 6, 9, 14, 24, 27

15. de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-exchange:
Definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF 2020
Computer Security Foundations Symposium. pp. 288–303. IEEE Computer Society
Press (2020). https://doi.org/10.1109/CSF49147.2020.00028 12

16. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures
with tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol.
12711, pp. 1–31. Springer, Heidelberg (May 2021). https://doi.org/10.1007/
978-3-030-75248-4_1 4

17. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically sound
cryptographic parameters for real-world deployments. Journal of Cryptology 34(3),
30 (Jul 2021). https://doi.org/10.1007/s00145-021-09388-x 3, 4, 5, 6, 14

18. Dodis, Y., Ristenpart, T., Steinberger, J.P., Tessaro, S.: To hash or not to hash
again? (In)differentiability results for H2 and HMAC. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (Aug
2012). https://doi.org/10.1007/978-3-642-32009-5_21 16

19. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015. pp. 1197–1210. ACM Press (Oct 2015). https://doi.org/10.
1145/2810103.2813653 3, 5, 6

20. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016), https://eprint.iacr.org/2016/081 3, 6

https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-642-40203-6_22
https://ia.cr/2021/702
https://eprint.iacr.org/2021/467
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://eprint.iacr.org/2022/246
https://eprint.iacr.org/2022/246
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/978-3-030-75248-4_1
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/s00145-021-09388-x
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1007/978-3-642-32009-5_21
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://eprint.iacr.org/2016/081

On the Concrete Security of TLS 1.3 PSK Mode 29

21. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol. Journal of Cryptology 34(4), 37 (Oct 2021).
https://doi.org/10.1007/s00145-021-09384-1 3, 5, 6, 9, 12, 26, 27

22. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the
TLS protocol. In: Foo, E., Stebila, D. (eds.) ACISP 15. LNCS, vol. 9144, pp.
270–288. Springer, Heidelberg (Jun / Jul 2015). https://doi.org/10.1007/
978-3-319-19962-7_16 5, 6

23. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. Journal of Cryp-
tology 34(3), 27 (Jul 2021). https://doi.org/10.1007/s00145-021-09387-y 10

24. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 1193–1204.
ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660308 5, 6

25. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017. pp. 60–75. IEEE (Apr 2017) 3, 5, 6

26. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: A formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy. pp. 452–469. IEEE Computer Society Press (May
2016). https://doi.org/10.1109/SP.2016.34 12

27. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 387–398. ACM
Press (Nov 2013). https://doi.org/10.1145/2508859.2516694 5

28. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018). https:
//doi.org/10.1007/978-3-319-96881-0_4 4, 6

29. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J., Van-
dewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 29–37. Springer, Heidel-
berg (Apr 1990). https://doi.org/10.1007/3-540-46885-4_5 2

30. Günther, F.: Modeling Advanced Security Aspects of Key Exchange and Secure
Channel Protocols. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt,
Germany (2018), http://tuprints.ulb.tu-darmstadt.de/7162/ 6

31. Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–
700. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/
978-3-030-84259-8_23 4, 6

32. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key ex-
change, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021,
Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (Oct 2021). https:
//doi.org/10.1007/978-3-030-77870-5_5 6

33. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012). https://doi.org/10.
1007/978-3-642-32009-5_17 5, 6

34. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and QUIC
against weaknesses in PKCS#1 v1.5 encryption. In: Ray, I., Li, N., Kruegel, C.
(eds.) ACM CCS 2015. pp. 1185–1196. ACM Press (Oct 2015). https://doi.org/
10.1145/2810103.2813657 6

https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1145/2508859.2516694
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/3-540-46885-4_5
http://tuprints.ulb.tu-darmstadt.de/7162/
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657

30 Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager

35. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (Informational) (Feb 1997). https://doi.org/10.17487/
RFC2104, https://www.rfc-editor.org/rfc/rfc2104.txt, updated by RFC 6151
9

36. Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (Informational) (May 2010). https://doi.org/10.
17487/RFC5869, https://www.rfc-editor.org/rfc/rfc5869.txt 7, 9

37. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryp-
tology ePrint Archive, Report 2005/176 (2005), https://eprint.iacr.org/2005/
176 12

38. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7_34 7

39. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In: Weippl, E.R., Katzen-
beisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 1438–
1450. ACM Press (Oct 2016). https://doi.org/10.1145/2976749.2978325 6

40. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (Aug 2013). https://doi.
org/10.1007/978-3-642-40041-4_24 5, 6

41. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. Cryptology ePrint Archive, Report 2013/339 (2013), https:
//eprint.iacr.org/2013/339 5

42. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE
European Symposium on Security and Privacy. pp. 81–96. IEEE (Mar 2016).
https://doi.org/10.1109/EuroSP.2016.18 3

43. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748
(Informational) (Jan 2016). https://doi.org/10.17487/RFC7748, https://www.
rfc-editor.org/rfc/rfc7748.txt 20

44. Li, Y., Schäge, S., Yang, Z., Kohlar, F., Schwenk, J.: On the security of the
pre-shared key ciphersuites of TLS. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 669–684. Springer, Heidelberg (Mar 2014). https://doi.org/10.
1007/978-3-642-54631-0_38 5

45. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64834-3_27 6

46. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (Feb 2004).
https://doi.org/10.1007/978-3-540-24638-1_2 4, 14, 15, 16

47. National Institute of Standards and Technology: FIPS PUB 180-4: Secure Hash
Standard (SHS) (2012) 7

48. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Proposed Standard) (Aug 2018). https://doi.org/10.17487/RFC8446, https:
//www.rfc-editor.org/rfc/rfc8446.txt 2, 3, 20

49. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake sig-
natures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp.
1461–1480. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3423350
9, 12

https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://www.rfc-editor.org/rfc/rfc5869.txt
https://eprint.iacr.org/2005/176
https://eprint.iacr.org/2005/176
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1145/2976749.2978325
https://doi.org/10.1145/2976749.2978325
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://eprint.iacr.org/2013/339
https://eprint.iacr.org/2013/339
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/rfc/rfc7748.txt
https://www.rfc-editor.org/rfc/rfc7748.txt
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-642-54631-0_38
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350

	On the Concrete Security of TLS 1.3 PSK Mode
	Introduction
	The TLS 1.3 Pre-shared Key Handshake Protocol
	Code-based MSKE Model for PSK Modes
	Key Exchange Syntax
	Key Exchange Security

	Key-Schedule Indifferentiability
	Indifferentiability for the TLS 1.3 Key Schedule in Three Steps

	Modularizing Handshake Encryption
	Tight Security of the TLS 1.3 PSK Modes
	TLS 1.3 PSK-only/PSK-(EC)DHE as a MSKE Protocol
	Tight Security Analysis of TLS 1.3 PSK-(EC)DHE
	Proof overview
	Full Security Bound for TLS 1.3 PSK-(EC)DHE and PSK-only

	Evaluation

