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Abstract Subversion attacks undermine security of cryptographic proto-
cols by replacing a legitimate honest party’s implementation with one that
leaks information in an undetectable manner. An important limitation
of all currently known techniques for designing cryptographic protocols
with security against subversion attacks is that they do not automatically
guarantee security in the realistic setting where a protocol session may
run concurrently with other protocols.
We remedy this situation by providing a foundation of reverse firewalls
(Mironov and Stephens-Davidowitz, EUROCRYPT’15) in the universal
composability (UC) framework (Canetti, FOCS’01 and J. ACM’20). More
in details, our contributions are threefold:
– We generalize the UC framework to the setting where each party

consists of a core (which has secret inputs and is in charge of gen-
erating protocol messages) and a firewall (which has no secrets and
sanitizes the outgoing/incoming communication from/to the core).
Both the core and the firewall can be subject to different flavors
of corruption, modeling different kinds of subversion attacks. For
instance, we capture the setting where a subverted core looks like the
honest core to any efficient test, yet it may leak secret information
via covert channels (which we call specious subversion).

– We show how to sanitize UC commitments and UC coin tossing
against specious subversion, under the DDH assumption.

– We show how to sanitize the classical GMW compiler (Goldreich,
Micali and Wigderson, STOC 1987) for turning MPC with security in
the presence of semi-honest adversaries into MPC with security in the
presence of malicious adversaries. This yields a completeness theorem
for maliciously secure MPC in the presence of specious subversion.

Additionally, all our sanitized protocols are transparent, in the sense
that communicating with a sanitized core looks indistinguishable from
communicating with an honest core. Thanks to the composition theorem,
our methodology allows, for the first time, to design subversion-resilient
protocols by sanitizing different sub-components in a modular way.
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1 Introduction

Cryptographic schemes are typically analyzed under the assumption that the
machines run by honest parties are fully trusted. Unfortunately, in real life, there
are a number of situations in which this assumption turns out to be false. In
this work, we are concerned with one of these situations, where the adversary
is allowed to subvert the implementation of honest parties in a stealthy way.
By stealthy, we mean that the outputs produced by a subverted machine still
look like honestly computed outputs, yet, the adversary can use such outputs to
completely break security. Prominent examples include backdoored implementa-
tions [16,15,18] and algorithm-substitution (or kleptographic) attacks [22,23,3,2,4].
The standardization of the pseudorandom number generator Dual_EC_DRBG,
as exposed by Snowden, is a real-world instantiation of the former, while Trojan
horses, as in the case of the Chinese hack chip attack, are real-world instantiations
of the latter.

1.1 Subversion-Resilient Cryptography

Motivated by these situations, starting from the late 90s, cryptographers put
considerable effort into building cryptographic primitives and protocols that
retain some form of security in the presence of subversion attacks.

Yet, after nearly 30 years of research, all currently known techniques to obtain
subversion resilience share the limitation of only implying standalone security,
i.e. they only guarantee security of a protocol in isolation, but all bets are off
when such a protocol is used in a larger context in the presence of subversion
attacks. This shortcoming makes the design of subversion-resilient cryptographic
protocols somewhat cumbersome and highly non-modular. For instance, Ateniese,
Magri, and Venturi [1] show how to build subversion-resilient signatures, which
in turn were used by Dodis, Mironov and Stephens-Davidowitz [17] to obtain
subversion-resilient key agreement protocols, and by Chakraborty, Dziembowski
and Nielsen [11] to obtain subversion-resilient broadcast; however, the security
analysis in both [17] and [11] reproves security of the construction in [1] from
scratch. These examples bring the fundamental question:

Can we obtain subversion resistance in a composable security framework?

A positive answer to the above question would dramatically simplify the design of
subversion-resilient protocols, in that one could try to first obtain security under
subversion attacks for simpler primitives, and then compose such primitives in
an arbitrary way to obtain protocols for more complex tasks, in a modular way.

1.2 Our Contributions

In this work, we give a positive answer to the above question using so-called crypto-
graphic reverse firewalls, as introduced by Mironov and Stephens-Davidowitz [21].
Intuitively, a reverse firewall is an external party that sits between an honest
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party and the network, and whose task is to sanitize the incoming/outgoing
communication of the party it is attached to, in order to annhilate subliminal
channels generated via subversion attacks. The main challenge is to obtain san-
itation while maintaining the correctness of the underlying protocol, and in a
setting where other parties may be completely under control of the subverter
itself.

While previous work showed how to build reverse firewalls for different cryp-
tographic protocols in standalone security frameworks we provide a foundation of
reverse firewalls in the framework of universal composability (UC) of Canetti [7,6].
More in details, our contributions are threefold:

– We generalize the UC framework to the setting where each party consists of a
core (which has secret inputs and is in charge of generating protocol messages)
and a firewall (which has no secrets and sanitizes the outgoing/incoming
communication from/to the core). Both the core and the firewall can be
subject to different flavors of corruption, modeling different kinds of subversion
attacks. For instance, we capture the setting where a subverted core looks
like the honest core to any efficient test, yet it may leak secret information
via covert channels (which we call specious subversion).

– We show how to sanitize UC commitments and UC coin tossing against
specious subversion, under the decisional Diffie-Hellman (DDH) assumption
in the common reference string (CRS) model. Our sanitized commitment
protocol is non-interactive, and requires 2λ group elements in order to commit
to a λ-bit string; the CRS is made of 3 group elements.

– We show how to sanitize the classical compiler by Goldreich, Micali and
Wigderson (GMW) [20] for turning multiparty computation (MPC) with
security against semi-honest adversaries into MPC with security against
malicious adversaries. This yields a completeness theorem for maliciously
secure MPC in the presence of specious subversion.

Additionally, all our sanitized protocols are transparent, in the sense that commu-
nicating with a sanitized core looks indistinguishable from communicating with
an honest core. Thanks to the composition theorem, our methodology allows,
for the first time, to design subversion-resilient protocols by sanitizing different
sub-components in a modular way.

1.3 Technical Overview

Below, we provide an overview of the techniques we use in order to achieve our
results, starting with the notion of subversion-resilient UC security, and then
explaining the main ideas behind our reverse firewalls constructions.

Subversion-resilient UC Security At a high level we model each logical party
Pi of a protocol Π as consisting of two distinct parties of the UC framework, one
called the core Ci and one called the firewall Fi. These parties can be independently
corrupted. For instance, the core can be subverted and the firewall honest, or
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the core could be honest and the firewall corrupted. The ideal functionalities F
implemented by such a protocol will also recognize two UC parties per virtual
party and can let their behavior depend on the corruption pattern. For instance,
F could specify that if Ci is subverted and Fi honest, then it behaves as if Pi is
honest on F . Or it could say that if Ci is honest and Fi corrupt, then it behaves
as if Pi is honest but might abort on F . This is a reasonable choice as a corrupt
firewall can always cut Ci off from the network and force an abort. We then
simply ask that Π UC-realizes F . By asking that Π UC-realizes F we exactly
capture that if the core is subverted and the firewall is honest, this has the same
effect as Pi being honest. See Table 1 for all possible corruption combinations for
Ci and Fi at a glance, and how they translate into corruptions for Pi in an ideal
execution with functionality F .

Unfortunately, it turns out that for certain functionalities it is just impossible
to achieve security in the presence of arbitrary subversion attacks. For instance,
a subverted prover in a zero-knowledge proof could simply output an honestly
computed proof or the all-zero string depending on the first bit of the witness.
Since the firewall would not know a valid witness, these kind of subversion attacks
cannot be sanitized. For this reason, following previous work [21,17,19,11], we
focus on classes of subversion attacks for which a subverted core looks like an
honest core to any efficient test, yet it may signal private information to the
subverter via subliminal channels. We call such corruptions specious. We note
that testing reasonably models a scenario in which the core has been built by an
untrusted manufacturer who wants to stay covert, and where the user tests it
against a given specification before using it in the wild.

By defining subversion resilience in a black-box way, via the standard notion
of UC implementation, we also get composition almost for free via the UC
composition theorem. One complication arises to facilitate modular composition
of protocols. When doing a modular construction of a subversion-resilient protocol,
both the core and the firewall will be built by modules. For instance, the core
could be built from a core for a commitment scheme and the core for an outer
protocol using the commitment scheme. Each of these cores will come with their
own firewall: one sanitizes the core of the commitment scheme; the other sanitizes
the core of the outer protocol. The overall firewall is composed of these two
firewalls. It turns out that it is convenient that these two firewalls can coordinate,
as it might be that some of the commitments sent need to have the message
randomized, while others might only have their randomness refreshed. The latter
can be facilitated by giving the firewall of the commitment scheme a sanitation
interface where it can be instructed by the outer firewall to do the right sanitation.
Note that the protocol implementing the commitment ideal functionality now
additionally needs to implement this sanitation interface.

We refer the reader to Section 2 for a formal description of our model. Note
that another natural model would have been to have Pi split into three parts
(or tiers), Ci, Ui, and Fi, where: (i) Ui is a user program which gets inputs and
sends messages on the network; (ii) Ci is a core holding cryptographic keys and
implementations of, e.g., signing and encryption algorithms; and (iii) Fi is a
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firewall used by Ui to sanitize messages to and from Ci in order to avoid covert
channels. The above better models a setting where we are only worried that
some part of the computer might be subverted. The generalisation to this case
is straightforward given the methodology we present for the case with no user
program Ui. Since we only look at subversions which are indistinguishable from
honest implementations, having the “unsubvertable” Ui appears to give no extra
power. We therefore opted for the simpler model for clarity. Further discussion
on the three-tier model can be found the full version [12].

Strong sanitation. The main challenge when analyzing subversion security of a
protocol in our framework is that, besides maliciously corrupting a subset of the
parties, the adversary can, e.g., further speciously corrupt the honest parties.
To overcome this challenge, we introduce a simple property of reverse firewalls
which we refer to as strong sanitation. Intuitively, this property says that no
environment, capable of doing specious corruptions of an honest core in the real
world, can distinguish an execution of the protocol with one where an honest
core is replaced with a so-called incorruptible core (that simply behaves honestly
in case of specious corruption). The latter, of course, requires that the firewall of
the honest core is honest.

We then prove a general lemma saying that, whenever a firewall has strong
sanitation, it is enough to prove security in our model without dealing with
specious corruptions of honest parties. This lemma significantly simplifies the
security analysis of protocols in our model.

Commitments In Section 3, we show how to obtain subversion-resilient UC
commitments. First, we specify a sanitizable string commitment functionality
F̂sCOM. This functionality is basically identical to the standard functionality for
UC commitments [8], except that the firewall is allowed to sanitize the value s
that the core commits to, using a blinding factor r; the effect of this sanitation
is that, when the core opens the commitment, the ideal functionality reveals
ŝ = s ⊕ r. Note that this is the sanitation allowed by the sanitation interface.
An implementation will further have to sanitise the randomness of outgoing
commitments to avoid covert channels.

Second, we construct a protocol Π̂sCOM that UC realizes F̂sCOM in the presence of
subversion attacks. Our construction borrows ideas from a recent work by Canetti,
Sarkar and Wang [10], who showed how to construct efficient non-interactive
UC commitments with adaptive security. The protocol, which is in the CRS
model and relies on the standard DDH assumption, roughly works as follows.
The CRS is a tuple of the form (g, h, T1, T2), such that T1 = gx and T2 = hx

′
for

x 6= x′ (i.e., a non-DH tuple). In order to commit to a single bit b, the core of
the committer encodes b as a value u ∈ {−1, 1} and outputs B = gα · Tu1 and
H = hα · Tu2 , where α is the randomness. The firewall sanitizes a pair (B,H) by
outputting B̂ = B−1 · gβ and Ĥ = H−1 · hβ , where β is chosen randomly; note
that, upon receiving an opening (b, α) from the core, the firewall can adjust it by
returning (1− b,−α+ β). Alternatively, the firewall can choose to leave the bit b
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unchanged and only refresh the randomness of the commitment; this is achieved
by letting B̂ = B · gβ and Ĥ = H · hβ ; in this case, the opening is adjusted to
(b, α+ β). In the security proof, we distinguish two cases:

– In case the committer is maliciously corrupt, the simulator sets the CRS as
in the real world but additionally knows the discrete log t of h to the base g.
Such a trapdoor allows the simulator to extract the bit b corresponding to
the malicious committer by checking whether H/T2 = (B/T1)

t (in which case
b = 1) or H · T2 = (B · T1)t (in which case b = 0). If none of the conditions
hold, no opening exists.

– In case the committer is honest, the simulator sets the CRS as a DH-tuple.
Namely, now T1 = gx and T2 = hx for some x known to the simulator. The
latter allows the simulator to fake the commitment as B = gα and H = hα,
and later adjust the opening to any given u ∈ {−1, 1} (and thus b ∈ {0, 1})
by letting α′ = α− u · x.

The above ideas essentially allow to build a simulator for the case of two parties,
where one is maliciously corrupt and the other one has an honest core and a
semi-honest firewall. These ideas can be generalized to n parties (where up to
n− 1 parties are maliciously corrupt, while the remaining party has an honest
core and a semi-honest firewall) using an independent CRS for each pair of parties.
Finally, we show that the firewall in our protocol is strongly sanitizing and thus
all possible corruption cases reduce to the previous case. In particular, strong
sanitation holds true because a specious core must produce a pair (B,H) of the
form B = gα · T ũ1 and H = hα · T ũ2 for some ũ ∈ {−1, 1} (and thus b̃ ∈ {0, 1}), as
otherwise a tester could distinguish it from an honest core by asking it to open
the commitment; given such a well-formed commitment, the firewall perfectly
refreshes its randomness (and eventually blinds the message).

As we show in Section 3, the above construction can be extended to the case
where the input to the commitment is a λ-bit string by committing to each bit
individually; the same CRS can be reused across all of the commitments.

Coin Tossing Next, in Section 4, we show a simple protocol that UC realizes
the standard coin tossing functionality FTOSS in the presence of subversion attacks.
Recall that the ideal functionality FTOSS samples a uniformly random string
s ∈ {0, 1}λ and sends it to the adversary, which can then decide which honest
party gets s (i.e., the coin toss output).

Our construction is a slight variant of the classical coin tossing protocol by
Blum [5]; the protocol is in the F̂sCOM-hybrid model, and roughly works as follows.
The core of each party commits to a random string si ∈ {0, 1}λ through the ideal
functionality F̂sCOM. Then, the firewall of the coin toss instructs the firewall of
the commitment to blind si using a random blinding factor ri ∈ {0, 1}λ which is
revealed to the core. At this point, each (willing) party opens the commitment,
which translates into F̂sCOM revealing ŝj = sj ⊕ rj , and each party finally outputs
s = si ⊕ ri ⊕

⊕
j 6=i ŝj .
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In the security proof, the simulator can fake the string si of an honest party so
that it matches the output of the coin tossing s (received from FTOSS), the strings
sj received from the adversary (on behalf of a malicious core), and the blinding
factor ri received from the adversary (on behalf of a semi-honest firewall). This
essentially allows to build a simulator for the case where up to n − 1 parties
are maliciously corrupt, while the remaining party has an honest core and a
semi-honest firewall. Finally, we show that the firewall in our protocol is strongly
sanitizing and thus all possible corruption cases reduce to the previous case.
Strong sanitation here holds because any string si chosen by a specious core
is mapped to a uniformly random string ŝi via the sanitation interface of the
functionality F̂sCOM.

Completeness Theorem Finally, in Section 5, we show how to sanitize the
GMW compiler, which yields a completeness theorem for UC subversion-resilient
MPC. Recall that in the classical GMW compiler one starts with an MPC
protocol Π tolerating t < n semi-honest corruptions and transforms it into an
MPC protocol tolerating t malicious corruptions as follows. First, the players
run an augmented coin-tossing protocol, where each party receives a uniformly
distributed string (to be used as its random tape) and the other parties receive a
commitment to that string. Second, each party commits to its own input and
proves in zero knowledge that every step of the protocol Π is executed correctly
and consistently with the random tape and input each party is committed to.

As observed by Canetti, Lindell, Ostrovsky and Sahai [9], the above compila-
tion strategy cannot immediately be translated in the UC setting, as the receiver
of a UC commitment obtains no information about the value that was commit-
ted to. Hence, the parties cannot prove in zero knowledge statements relative
to their input/randomness commitment. This issue is resolved by introducing
a commit-and-prove ideal functionality, which essentially allows each party to
commit to a witness and later prove arbitrary NP statements relative to the
committed witness.

In order to sanitize the GMW compiler in the presence of subversion attacks,
we follow a similar approach. Namely, we first introduce a sanitazable commit-and-
prove functionality F̂C&P. This functionality is very similar in spirit to the standard
commit-and-prove functionality, except that the firewall can decide to blind the
witness that the core commits to. In the full version [12], we show how to realize
the sanitizable commit-and-prove functionality in the CRS model from the DDH
assumption, using re-randomizable non-interactive zero-knowledge arguments for
all of NP [13]. In fact, there we exhibit a much more general construction that
can be instantiated from any so-called malleable mixed commitment, a new notion
that we introduce and that serves as a suitable abstraction of our DDH-based
construction from Section 3.

In the actual protocol, we use both the coin tossing functionality FTOSS and
the sanitizable commit-and-prove functionality F̂C&P to determine the random
tape of each party as follows. Each core commits to a random string si via F̂C&P;
the corresponding firewall blinds si with a random ri that is revealed to the core.
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Thus, the players use FTOSS to generate public randomness s∗i that can be used to
derive the random tape of party Pi as s∗i ⊕ (si⊕ ri). Moreover each core commits
to its own input xi, which however is not blinded by the firewall. The above
allows each party, during the protocol execution, to prove via F̂C&P that each
message has been computed correctly and consistently with the committed input
and randomness derived from the public random string s∗i received from FTOSS.

The security analysis follows closely the one in [9], except that in our case we
show that any adversary corrupting up to t parties maliciously, and the firewall
of the remaining honest parties semi-honestly, can be reduced to a semi-honest
adversary attacking Π. Since we additionally show that our firewall is strongly
sanitizing, which essentially comes from the ideal sanitation interface offered by
F̂C&P, all possible corruption cases reduce to the previous case.

2 A UC Model of Reverse Firewalls

In this section we propose a foundation of reverse firewalls in the UC model [7].
We use the UC framework for concreteness as it is the de facto standard. However,
we keep the description high level and do not depend on very particular details
of the framework. Similar formalizations could be given in other frameworks
defining security via comparison to ideal functionalities, as long as these ideal
functionalities are corruption aware: they know which parties are corrupted and
their behavior can depend on it.

2.1 Quick and Dirty Recap of UC

A protocol Π consists of code for each of the parties P1, . . . ,Pn. The parties
can in turn make calls to ideal functionalities G. More precisely, the code of the
program is a single machine. As part of its input, it gets a party identifier pid
which tells the code which party it should be running the code for. This allows
more flexibility for dynamic sets of parties. Below, we will only consider programs
with a fixed number of parties. We are therefore tacitly identifying n parties
identifiers pid1, . . . , pidn with the n parties P1, . . . ,Pn, i.e., Pi = pidi. We prefer
the notation Pi for purely idiomatic reasons.

A party Pi can call an ideal functionality. To do so it will specify which
G to call (technically it writes down the code of G and a session identifier sid
distinguishing different calls), along with an input x. Then, (sid, pid, x) is given
to G. If G does not exists, then it is created from its code.

There is an adversary A which attacks the protocol. It can corrupt parties via
special corruption commands. How parties react to these corruptions is flexible;
the parties can in principle be programmed to react in any efficient way. As an
example, in response to input active-corrupt, we might say that the party in
the future will output all its inputs to the adversary, and that it will let the
adversary specify what messages the party should send. The adversary can also
control ideal functionalities, if the ideal functionalities expose an interface for
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that. It might for instance be allowed to influence at what time messages are
delivered on an ideal functionality of point-to-point message transmission.

There is also an environment E which gives inputs to the parties and sees
their outputs. The environment can talk freely to the adversary. A real world
execution ExecΠ,A,E is driven by the environment which can activate parties or
ideal functionalities. The parties and ideal functionalities can also activate each
other. The details of activation are not essential here, and can be found in [7].

The protocol Π is meant to implement an ideal functionality F . This is
formulated by considering a run of F with dummy parties which just forward
messages between E and F . In addition, there is an adversary S, called the
simulator, which can interact with F on the adversarial interface, and which
can interact freely with E as an adversary can. The simulation is the process
ExecF,S,E , where we do not specify the dummy protocol but use F for the
dummy protocol composed with F . We say that Π UC-realizes F if there exists
an efficient simulator which makes the simulation look like the real world execution
to any efficient environment:

∃S∀E : ExecΠ,A,E ≈ ExecF,S,E ,

whereA is the dummy adversary (that simply acts as a proxy for the environment),
and where the quantifications are over poly-time interactive Turing machines.

Consider a protocol Π that realizes an ideal functionality F in a setting where
parties can communicate as usual, and additionally make calls to an unbounded
number of copies of some other ideal functionality G. (This model is called the
G-hybrid model.) Furthermore, let Γ be a protocol that UC-realizes G as sketched
above, and let ΠG→Γ be the composed protocol that is identical to Π, with the
exception that each interaction with the ideal functionality G is replaced with a
call to (or an activation of) an appropriate instance of the protocol Γ . Similarly,
any output produced by the protocol Γ is treated as a value provided by the
functionality G. The composition theorem states that in such a case, Π and
ΠG→Γ have essentially the same input/output behavior. Namely, Γ behaves just
like the ideal functionality G even when composed with an arbitrary protocol Π.
A special case of this theorem states that if Π UC-realizes F in the G-hybrid
model, then ΠG→Γ UC-realizes F .

2.2 Modeling Reverse Firewalls

To model reverse firewalls, we will model each party Pi as two separate parties
in the UC model: the core Ci and the firewall Fi. To be able to get composability
for our framework via UC composition, we model them as separate parties each
with their own party identifier (pid, F) and (pid, C). We use pid to denote the two
of them together. Below we write, for simplicity, Pi to denote the full party, Ci
to denote the core, and Fi to denote the firewall. Being two separate parties, the
core and the firewall cannot talk directly. It will be up to the ideal functionality
G used for communication to pass communication with the core through the
corresponding firewall before acting on the communication. It might be that
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F1 F2
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IO1 IO2
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Figure 1. Implementing a normal functionality F using a sanitizable hybrid function-
ality G and a sanitizing protocol Π = (C,F). Cores and firewalls talk to sanitizable
functionalities directly. Cores can additionally talk to the environment to exchange
inputs and outputs. Firewalls only talk to ideal functionalities. We think of ideal
functionalities as sanitizing the communication with the core via the firewall. This
is illustrated in the figure by information from the core going to the firewall, and
information to the core coming via the firewall. There is no formal requirement to what
extent this happens; it is up to the ideal functionality to decide what type of sanitation
is possible, if any.

when G gets a message from Ci it will output this message to Fi and allow
Fi to change the message, possibly under some restrictions. We say that Fi
sanitizes the communication, and we call the interface connecting Fi for G the
sanitation interface of G. We call such an ideal functionality a “sanitizable” ideal
functionality.

Consider a party (Ci,Fi) with core Ci and firewall Fi connected to a sanitizing
ideal functionality G. The idea is that the firewall gets to sanitize all communica-
tion of the core Ci. The UC model seemingly allows a loophole, as the core could
make a call to some other ideal functionality H instead of talking to G. As we
discuss later, this behavior is ruled out if Ci is specious, so we will not explicitly
disallow it. If our model is later extended to allow stronger (non-specious) types
of subversion, then one would probably have to explicitly forbid Ci to use this
loophole.

When using a sanitizable ideal functionality, it is convenient to be able to
distinguish the interface of the ideal functionality from the parties using the
interface. We call the interface of G to which the core of Pi is connected the
input-output interface, IO. We call the party connected to it Ci. We call the
interface of G to which the firewall of Pi is connected the sanitation interface, S.
We call the party connected to it Fi. This is illustrated in Fig. 1.

2.3 Specious Corruptions

A major motivation for studying subversion resilience is to construct firewalls
which ensure that security is preserved even if the core is subverted. In this
section, we describe and discuss how we model subversion in the UC framework.

In a nutshell, we let the adversary replace the code of the core. Clearly, if
the core is arbitrarily corrupted, it is impossible to guarantee any security. We
therefore have to put restrictions on the code used to subvert the core. One can



Universally Composable Subversion-Resilient Cryptography 11

consider different types of subversions. In this work, we will consider a particularly
“benign” subversion, where the subverted core looks indistinguishable from the
honest core to any efficient test. This is a particularly strong version of what has
been called “functionality preservation” in other works [21,17,19,11]. As there are
slightly diverting uses of this term we will coin a new one to avoid confusion.

The central idea behind our notion is that we consider corruptions where
a core Ci has been replaced by another implementation C̃i which cannot be
distinguished from Ci by black-box access to C̃i or Ci. We use the term specious
for such corruptions, as they superficially appear to be honest, but might not be.

More in details, we define specious corruptions via testing. Imagine a test T
which is given non-rewinding black-box access to either Ci or C̃i, and that tries
to guess which one it interacted with. We say that a subversion is specious if it
survives all efficient tests. This is a very strong notion. One way to motivate this
notion could be that C̃i might be built by an untrusted entity, but the buyer of
C̃i can test it up against a specification. If the untrusted entity wants to be sure
to remain covert, it would have to do a subversion that survives all tests. We
assume that the test does not have access to the random choices made by C̃i. This
makes the model applicable also to the case where C̃i is a blackbox or uses an
internal physical process to make random choices. We will allow the entity doing
the subversion to have some auxiliary information about the subversion and its
use of randomness. This will, for instance, allow the subversion to communicate
with the subverter in a way that cannot be detected by any test (e.g., using a
secret message acting as a trigger).

For a machine T and an interactive machine C̃, we use TC̃ to denote that T
has non-rewinding black-box access to C̃. If during the run of TC̃ the machine
C̃ requests a random bit, then a uniformly random bit is sampled and given to
C̃. Such randomness is not shown to T. We define the following game for an
efficiently sampleable distribution D and a test T.

– Sample (C̃, a)← D, where a is an auxiliary string.
– Sample a uniformly random bit b ∈ {0, 1}:
• If b = 0, then run TC̃ to get a guess g ∈ {0, 1}.
• If b = 1, then run TC to get a guess g ∈ {0, 1}.

– Output c = b⊕ g.

Let TestD,T denote the probability that c = 0, i.e., the probability that the
guess at b is correct.

Definition 1 (Specious subversion). We say that D is computationally
specious if for all PPT tests T it holds that TestD,T − 1/2 is negligible.

We return to the discussion of the loophole for specious cores of creating
other ideal functionalities H that are not sanitizing. Note that if a core creates
an ideal functionality that it is not supposed to contact, then this can be seen by
testing. Therefore, such a core is not considered specious. Hence, the notion of
specious closes the loophole.
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The notion of specious is strong, as it requires that no test T can detect the
subversion. At first glance it might even look too strong, as it essentially implies
that the subversion is correct. However, as we show next, a specious subversion
can still signal to the outside in an undetectable manner. To formalize this notion,
we define the following game for an efficiently sampleable distribution D, an
adversary A and a decoder Z.

– Sample (C̃, a)← D, where a is an auxiliary string.
– Sample a uniformly random bit b ∈ {0, 1}:
• If b = 0, then run AC̃ to get a signal s ∈ {0, 1}∗.
• If b = 1, then run AC to get a signal s ∈ {0, 1}∗.

– Run Z(a, s) to get a guess g ∈ {0, 1}.
– Output c = b⊕ g.

Let SignalD,A,Z denote the probability that c = 0, i.e., the probability that the
guess at b is correct.

Definition 2 (Signaling). We say that D is computationally signalling if there
exists a PPT adversary A and a PPT decoder Z such that SignalD,A,Z − 1/2 is
non-negligible.

Lemma 1. There exist a machine C, and an efficiently sampleable distribution
D, such that D is both computationally specious and signaling.

Proof (Proof sketch). Consider a machine C that when queried outputs a fresh
uniformly random y ∈ {0, 1}λ. Let Φ = {φκ : {0, 1}λ → {0, 1}λ}κ∈{0,1}λ be
a family of pseudorandom permutations. Consider the subversion C̃ of C that
hardcodes a key κ ∈ {0, 1}λ and: (i) when initialised samples a uniformly ran-
dom counter x ∈ {0, 1}λ; (ii) when queried, it returns φκ(x) and increments x.
Moreover, let D be the distribution that picks κ ∈ {0, 1}λ at random and outputs
(C̃, a = κ).

Note that the distribution D is specious, as the key κ is sampled at random
after T has been quantified. In particular, the outputs of φκ are indistinguishable
from random to T. The distribution D is also clearly signaling, as it can be
seen by taking the adversary A that queries its target oracle twice and sends
the outputs y1 and y2 as a signal to the decoder. The decoder Z, given a = κ,
computes xi = φ−1κ (yi) (for i = 1, 2) and outputs 0 if and only if x2 = x1 + 1.

We can also define what it means for a set of subversions to be specious.

Definition 3 (Specious subversions). Given an efficiently sampleable dis-
tribution D with outputs of the form (C̃1, . . . , C̃m, a) ← D, we let Di be the
distribution sampling (C̃1, . . . , C̃m, a) ← D and then outputting (C̃i, (i, a)). We
say that D is specious if each Di is specious.

We now define the notion of a specious corruption. In this paper, we assume that
all specious corruptions are static.
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Definition 4 (Specious corruption). We say that a party accepts specious
corruptions if, whenever it gets input (Specious, C̃) from the adversary, it replaces
its code by C̃. If the input (Specious, C̃) is not the first one received by the party,
then it ignores it. We say that an environment E prepares specious corruptions if
it operates as follows. First, it writes (Specious,D) on a special tape, where D is
specious. Then, it samples (C̃1, . . . , C̃m, a)← D and writes this on the special tape
too. Finally, it inputs (Specious, C̃1, . . . , C̃m) to the adversary. The above has
to be done on the first activation, before any other communication with protocols
or the adversary. We call this a specious environment.

In case of emulation with respect to the dummy adversary, we further require
that if the environment instructs the dummy adversary to input (Specious, C̃)
to a party, then C̃ is from the list in (Specious, C̃1, . . . , C̃m). We say that an
adversary interacting with a specious environment does specious corruptions if
whenever the adversary inputs (Specious, C̃) to a party, then C̃ is from the list
(Specious, C̃1, . . . , C̃m) received from the specious environment. We call such an
adversary specious. In particular, an adversary which never inputs (Specious, C̃)
to any party is specious. We also call an environment specious if it does not write
(Specious,D) on a special tape as the first thing, but in this case we require that
it does not input anything of the form (Specious, C̃1, . . . , C̃m) to the adversary,
and that it never instructs the dummy adversary to input (Specious, C̃) to any
party.

In addition we require that specious environments and adversaries only do
static corruptions and that all corruptions are of the form.

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.
– Core Specious and firewall Honest.
– Core Honest and firewall Malicious.

We assume that all cores accept specious corruptions, and no other parties accept
specious corruptions.

We add a few comments to the definition. First, let us explain why we only
require security for the above four corruption patterns. Of all the corruption
patterns shown in Table 1 giving rise to a Malicious party, the one with core
Malicious and firewall Malicious gives the adversary strictly more power than
any of the other ones, so we only ask for simulation of that case. Similarly, of
the 3 corruption patterns giving rise to an Honest party, the ones with the core
Honest and Specious and the firewall SemiHonest and Honest respectively
are different, as neither gives powers to the adversary which are a subset of the
other, so we ask for simulation of both. The remaining case of Honest core and
Honest firewall we can drop, as it is a special case of the Honest core and
SemiHonest firewall. The only corruption pattern giving rise to an Isolate
party is when the core is Honest and the firewall is Malicious; we therefore
ask to simulate this case too.
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Core C Firewall F Party P in F

Honest Honest Honest
Honest SemiHonest Honest
Specious Honest Honest
Honest Malicious Isolate
Specious SemiHonest Malicious
Specious Malicious Malicious
Malicious Honest Malicious
Malicious SemiHonest Malicious
Malicious Malicious Malicious

Table 1. Corruption patterns for cores and firewalls in our model, and their translation
in the ideal world. The highlighted rows are the cases that one needs to consider when
proving security using our framework.

Second, note that it might look odd that we ask the environment to sample the
subversion C̃i. Could we not just ask that, when it inputs (Specious, C̃i) to a core,
then C̃i is specious? It turns out that this would give a trivial notion of specious
corruption. Recall that in the notion of specious, we quantify over all tests. If we
first fix C̃, and then quantify over all tests when defining that it is specious, then
the universal quantifier could be used to guess random values shared between C̃
and the adversary, like the key κ used in Lemma 1 (demonstrating that a specious
subversion can still be signaling). Therefore, a single C̃ specious subversion cannot
be signalling. Hence, asking for a specific subversion to be specious would make
the notion of specious corruption trivial. By instead asking that a distribution D
is specious, we can allow C̃ and the adversary to sample joint randomness (like a
secret key κ) after the test T has already been quantified. Namely, recall that in
the test game we first fix a T, and only then do we sample D. This allows specious
corruptions which can still signal to the adversary, as demonstrated above. The
reason why we ask the environment to sample D and not the adversary has to do
with UC composition, which we return to later.

2.4 Sanitizing Protocols Implementing Regular Ideal Functionalities

For illustration, we first describe how to implement a regular ideal functionality
given a sanitizing ideal functionality. Later, we cover the case of implementing a
sanitizing ideal functionality given a sanitizing ideal functionality, see Fig. 1.

Consider a sanitizing protocol Π, using a sanitizable ideal functionality G, that
implements a regular ideal functionality F with n parties P1, . . . ,Pn. By regular,
we mean that F itself does not have a sanitation interface. Note that it makes
perfect sense for a sanitizing protocol Π, using a sanitizable ideal functionality
G, to implement a regular ideal functionality. The firewall is an aspect of the
implementation Π and the sanitizable hybrid ideal functionality G. In particular,
this aspect could be completely hidden by the implementation of Π. However,
typically the behavior when the firewall is honest and corrupted is not the same.
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A corrupted firewall can isolate the core by not doing its job. We therefore call a
party Pi where Ci is honest and Fi is corrupt an “isolated” party. We insist that
if Ci is specious and Fi is honest, then it is as if Pi is honest. Hence, F should
behave as if Pi is honest. We would therefore like the behavior of F to depend
only on whether Pi is honest, isolated, or corrupt. To add some structure to this,
we introduce the notion of a wrapped ideal functionality and a wrapper.

A wrapped ideal functionality F should only talk to parties Pi. The wrapper
Wrap will talk to a core Ci and a firewall Fi. The wrapper runs F internally, and
we write Wrap(F). The inputs to and from Ci on Wrap(F) are forwarded to the
interface for Pi on F . The only job of Wrap is to introduce the same parties as
in the protocol and translate corruptions of Ci and Fi into corruptions on Pi. We
say that parties Pi in an ideal execution with F can be Honest, Malicious or
Isolate. The wrapped ideal functionality Wrap(F) translates corruptions using
the following standard corruption translation table.

Honest: If Ci is Honest and Fi Honest, let Pi be Honest on F .
Malicious: If Ci is Malicious, corrupt Pi as Malicious on F .
Isolated: If Ci is Honest and Fi is Malicious, corrupt Pi as Isolate on F .
Sanitation: If Ci is Specious and Fi is Honest, let Pi be Honest on F .
No Secrets: If Ci is Honest and Fi is SemiHonest, let Pi be Honest on F .

We discuss the five cases next. The Honest and Malicious cases are straight-
forward; if both the core and the firewall are honest, then treat Pi as an honest
party on F . Similarly, if the core is malicious, then treat Pi as a malicious party
on F . The Isolated case corresponds to the situation where the core is honest
and the firewall is corrupted, and thus the firewall is isolating the core from
the network. This will typically correspond to a corrupted party. However, in
some cases, some partial security might be obtainable, like the inputs of the core
being kept secret. We therefore allow an Isolate corruption as an explicit type
of corruption. The standard behavior of F on an Isolate corruption is to do a
Malicious corruption of Pi in F .

The Sanitation case essentially says that the job of the firewall is to turn
a specious core into an honest core. This, in particular, means that the firewall
should remove any signaling. We add the No Secrets case to avoid trivial solu-
tions where the firewall is keeping, e.g., secret keys used in the protocol. We want
secret keys to reside in the core, and that firewalls only sanitize communication of
the core. We also do not want that the core just hands the inputs to the firewall
and lets it run the protocol. A simple way to model this is to require that the
protocol should tolerate a semi-honest corruption of the firewall when the core is
honest. We do not require that we can tolerate a specious core and a semi-honest
firewall. Removing signaling from a core will typically require randomizing some
of the communication. For this, the firewall needs to be able to make secret
random choices. Note that, with this modeling, a core and a firewall can be seen
as a two-party implementation of the honest party, where one can tolerate either
a specious corruption of the core or a semi-honest corruption of the firewall.

Definition 5 (Wrapped subversion-resilient UC security). Let F be an
ideal functionality for n parties P1, . . . ,Pn. Let Π be a sanitizing protocol with
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n cores C1, . . . ,Cn and n firewalls F1, . . . ,Fn. Let G be a sanitizable ideal func-
tionality which can be used by Π as in Fig. 1. We say that Π wsrUC-realizes
F in the G-hybrid model if Π UC-realizes Wrap(F) in the G-hybrid model with
the restriction that we only quantify over specious environments and specious
adversaries.

The typical behavior of a sanitizing ideal functionality is that, when it receives
a message from the core, it will output the received message to the firewall, or
output some partial information about the message to the firewall. Later, it will
receive some new message or sanitation instruction from the firewall. Given this,
it constructs the actual information to pass to the core functionality of G. This
might later end up at a firewall of another party, and after sanitation end up
at the core of that party. The latter is illustrated in Fig. 1, and an example is
given below. Note that this is not a formal requirement, but just a description of
idiomatic use of sanitation to give an intuition on the use of the model.

To illustrate the use of sanitizable ideal functionalities, we specify an ideal
functionality FSAT for sanitizable authenticated communication. The communica-
tion between cores goes via the firewall which might change the messages. Note
that firewalls can be sure which other firewall they talk to, but corrupted firewalls
can lie to their local core about who sent a message. In fact, they can pretend
a message arrived out of the blue. We also equip FSAT with the possibility for
distributing setup, as this is needed in some of our protocols. We assume a setup
generator Setup which samples the setup and gives each party their corresponding
value. The firewalls also get a value. This, e.g., allows to assume that the firewalls
know a CRS. Since we do not want firewalls to keep secrets, we leak their setup
values to the adversary. This would not be a problem if the setup values is a
CRS.

Functionality FSAT

– Initially sample ((v1, w1), . . . , (vn, wn))← Setup() and output vi on IOi and wi
on Si. Leak wi to the adversary.

– On input (Send, a,Pj) on IOi, output (Send, a,Pj) on Si. To keep the descrip-
tion simple we assume honest parties sends the same a at most once. Adding
fresh message identifiers can be used for this in an implementation.

– On input (Send, b,Pk) on Si, leak (Send,Pi, b,Pk) to the adversary and store
(Send,Pi, b,Pk).

– On input (Deliver, (Send,Pi, b,Pk)) from the adversary, where
(Send,Pi, b,Pk) is stored, delete this tuple and output (Receive,Pi, b)
on Sk.

– On input (Receive,Pm, c) on Sk, output (Receive,Pm, c) on IOi.

Remark 1 (on FSAT). We note that all protocols in this work, even if not explicitly
stated, are described in the FSAT-hybrid model. Moreover, whenever we say that
the core sends a message to the firewall (or vice-versa) we actually mean that
they communicate using FSAT.
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Figure 2. Implementing F via protocol Π = (CF ,FF ) using G.

2.5 General Case

We now turn our attention to implementing sanitizable ideal functionalities.
When a protocol Π implements a sanitizable ideal functionality, we call Π a
sanitizable protocol. Notice the crucial difference between being a sanitizable
protocol and a sanitizing protocol. A sanitizable protocol Π implements the
sanitization interface Si of F . Whereas a sanitizing protocol Π would have a
firewall using the sanitization interface Si of G.

When implementing a sanitizable ideal functionality F , the protocol should
implement the sanitation interface SF for F. This means that the protocol will be
of the form Π = (IO,S) where IO = (IO1, . . . , IOn) and S = (S1, . . . ,Sn). Notice
that Ci and Fi formally are separate parties, so they cannot talk directly.

It is natural that it is the firewall of the implementation Π = (IO,S) which
handles this. The firewall has access to the sanitation interface of G, which it
can use to sanitize Π. This means that F gets what could look like a double role
now. First, it sanitizes Π using SG . Second, it has to implement the sanitation
interface SF of Π (matching that of F). Note, however, that this is in fact the
same job. The sanitation interface SF of Π is used to specify how Π should be
sanitized. It is natural that FF needs to knows this specification. It then uses SG
to implement the desired sanitation. This is illustrated in Fig. 2.

F

S1 S2

IO1 IO2

L1 L2

Figure 3. The wrapper Wrap(F ,L1, . . . ,Ln)).

When defining security of a protocol implementing a sanitizable ideal func-
tionality, we do not need to use a wrapper as when implementing a normal ideal
functionality, as F already has the same parties as in the protocol. It is however
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still convenient to use a wrapper to add some structure to how we specify a
sanitizable ideal functionality. We assume a central part which does the actual
computation, and outer parts which sanitize the inputs from Pi before they are
passed to the central part.

Definition 6 (Well-formed sanitizing ideal functionality). A well-formed
sanitizing ideal functionality consists of an ideal functionality F , called the
central part, with an interface Pi for each party. The interface Pi can be Honest,
Malicious, or Isolate. There are also n outer parts L1, . . . ,Ln where Li has
an interface IOi for the core and Si for the firewall. The outer part Li can only
talk to the central part on Pi and the outer parts cannot communicate with each
other. The interface IOi can be Honest, Malicious, or Specious. The interface
Si can be Honest, Malicious, or SemiHonest. The corruption of F .IOi is
computed from that of Li.IOi and Li.Si using the standard corruption translation
table.
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Figure 4. Implementing G via protocol Γ = (CG ,FG) using H.

Definition 7 (Subversion-resilient UC security). Let F be an ideal func-
tionality for n cores CF1 , . . . ,C

F
n and n firewalls FF1 , . . . ,F

F
n , and let Π be a

sanitizing protocol with n cores CF1 , . . . ,C
F
n and n firewalls FF1 , . . . ,F

F
n . Let G be

a sanitizable ideal functionality which can be used by Π as in Fig. 2. We say that
Π srUC-realizes F in the G-hybrid model if F can be written as a well-formed
sanitizing ideal functionality, and Π UC-realizes F in the G-hybrid model with
the restriction that we only quantify over specious environments and specious
adversaries.

2.6 Composition

We now address composition. In Fig. 2, we illustrate implementing F in the
G-hybrid model. Similarly, in Fig. 4, we implement G given H. In Fig. 5, we
illustrate the effect of composition. We can let Ci = CFi ◦ CGi and Fi = FFi ◦ FGi .
Then, we again have a sanitizing protocol ΠG→Γ = (C,F). For composition to
work, we need that specious corruptions respect the composition of a core.
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Figure 5. Implementing F via protocol ΠG→Γ using H.

Definition 8 (Specious corruption of a composed core). We say that an
adversary does a specious corruption of a composed core Ci = CFi ◦CGi if it inputs
(Specious, C̃Fi , C̃

G
i ), where both CFi and CGi are specious. In response CFi replaces

its code with C̃Fi , and CGi replaces its code with C̃Gi .

Note that one could imagine a specious corruption of a composed core Ci which
could not be written as the composition of specious subversions C̃Fi and C̃Gi .

Theorem 1 (srUC Composition). Let F and G be ideal functionalities, and
let Π and Γ be protocols. Assume that all are subroutine respecting and subroutine
exposing as defined in [6]. If Π srUC-realizes F , and Γ srUC-realizes G, then
ΠG→Γ srUC-realizes F .

The proof of Theorem 1 appears in the full version [12].
Note that if, e.g., G in the composition is well-formed and therefore wrapped,

then it is the wrapped functionality which is considered at all places. Therefore,
in Fig. 4 the ideal functionality G being implemented will be the wrapped ideal
functionality, and in Fig. 2 the hybrid ideal functionality G being used would
again be the wrapped one. There is no notion of “opening up the wrapping”
during composition. If F is a regular ideal functionality then Wrap(F) can be
written as a well-formed sanitizing ideal functionality. Therefore wsrUC security
relative to F implies srUC security relative to Wrap(F). During composition it
would be Wrap(F) which is used as a hybrid functionality. This is basically the
same as having F under the standard corruption translation.

Fsat

C1

ID S1 S2

IO1 IO2

Fsat

C1

F1 S1 S2

IO1 IO2

Figure 6. A core with its matching firewall or with the identity firewall.
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2.7 Computational Transparency

A central notion in the study of reverse firewalls is the notion of transparency.
The firewall is only supposed to modify the behavior of a subverted core. If the
firewall is attached to an honest core, it must not change the behavior of the
core. We define transparency in line with [21], namely, an honest core without a
firewall attached should be indistinguishable from an honest core with a firewall
attached.

Notice that this does not make sense if the party is implementing a saniti-
zable ideal functionality, like in Fig. 2. Without a firewall FF1 , no entity would
implement the interface SF1 , which would make a core without a firewall trivially
distinguishishable from a core with a firewall. Presumably, the interface SF1 is
present because different inputs on this interface will give different behaviors.
We therefore only define transparency of firewalls implementing a regular ideal
functionality, as in Fig. 1. Note also that if G in Fig. 1 has a complex interaction
with Fi, then an execution without Fi might not make sense. Therefore, we
additionally only consider transparency in the FSAT-hybrid model. In this model
we can let Fi be an identity firewall which does not modify the communication.
This has the desired notion of no firewall being present.

Definition 9 (Transparency). Let (Ci,Fi) be a party for the FSAT-hybrid model.
Let Πi be the protocol for the FSAT-hybrid model where party number i is (Ci,Fi),
and all other parties are dummy parties. Let ID be the firewall which always
outputs any message it receives as input. Let Π ′i be the protocol for the FSAT-hybrid
model where party number i is (Ci, ID), and all other parties are dummy parties.
These two protocols are illustrated in Fig. 6. We say that Fi is computationally
transparent if, for all poly-time environments E which do not corrupt Ci or Fi/ID,
it holds that ExecE,Πi,A ≈ ExecE,Π′

i,A, where A is the dummy adversary.

G

C1

F1 S1 S2

IO1 IO2

G

˜
C1

F1 S1 S2

IO1 IO2

Figure 7. An honest core with its matching firewall or a specious core with the same
firewall.

2.8 Strong Sanitation

Another central notion in the study of reverse firewalls is the notion that we call
sanitation. Namely, if you hide a specious core behind a firewall, then it looks
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like an honest core behind a firewall. So far, we have defined this implicitly by
saying that a specious corruption of a core plus an honest firewall should be
simulatable by having access to an honest party on the ideal functionality being
implemented. This actually does not imply that the network cannot distinguish
between a specious core or an honest core behind the firewall. It only says that
the effect of a specious core behind a firewall are not dire enough that you cannot
simulate given an honest party in the ideal world.

In this section, we give a game-based definition of sanitation capturing the
stronger notion that, behind a firewall, a specious core looks like an honest core.
Recall that a core Ci is capable of receiving a specious corruption (Specious, C̃)
from the environment, in which case it replaces its code by C̃. For such a core,
let Ĉ be the incorruptible core which when it receives a specious corruption
(Specious, C̃) will ignore it and keep running the code of C.

Definition 10 (Strong sanitation). Let (Ci,Fi) by a party for the G-hybrid
model. Let Ĉi be the corresponding incorruptible core. Let Πi be the protocol for
the FSAT-hybrid model where party number i is (Ci,Fi), and all other parties are
dummy parties. Let Π ′i be the protocol for the FSAT-hybrid model where party
number i is (Ĉi,Fi), and all other parties are dummy parties. Note that if the
environment does a (Specious, C̃) corruption of core number i, then in Πi core
i will run C̃, whereas in Π ′i it will run Ci. These two outcomes are illustrated in
Fig. 7. We say that Fi is strongly sanitising if, for all poly-time environments E
which do not corrupt Fi, but which are allowed a specious corruption of the core,
it holds that ExecE,Πi,A ≈ ExecE,Π′

i,A, where A is the dummy adversary.

It is easy to see that the definition is equivalent to requiring that, for all poly-
time environments E which do not corrupt Ci or Fi/ID, it holds that ExecE,Πi,A ≈
ExecE,Π′

i,A, where A is the dummy adversary.

Lemma 2. Consider a protocol Π where for all parties (Ci,Fi) it holds that Fi
has strong sanitation. Then it is enough to prove security for these cases:

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.
– Core Honest and firewall Malicious.

If in addition we assume the standard corruption behavior for Isolate, it is
enough to prove the cases:

– Core Malicious and firewall Malicious.
– Core Honest and firewall SemiHonest.

If in addition the protocol Π is for the FSAT-hybrid model and has computational
transparency, then it is enough to prove the case:

– Core Malicious and firewall Malicious.
– Core Honest and firewall Honest.
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Proof. We prove the first claim. Note that relative to Definition 7 we removed
the case with the core Specious and the firewall Honest. We show that this
reduces to the case with core Honest and the firewall Honest. First replace
each Ci by Ĉi. This cannot be noticed due to strong sanitation. Then notice that
we can replace an environment E doing specious corruption by E ′ which just
internally do not pass on (Specious, C̃) to the core. Namely, it does not matter
if Ĉi ignores the commands or we let E ′ do it. Then, we can replace Ĉi by Ci as
there are no commands to ignore. So it is enough to prove security for the core
Honest and the firewall Honest. This case follows from the case with the core
Specious and the firewall Honest as being honest is a special case of being
specious.

The second claim follows from the fact that under standard corruption
behavior for Isolate the party Pi on the ideal functionality is Malicious when
the firewall is Malicious. So the simulator has the same power when simulating
an honest core and malicious firewall as when simulating a malicious core and a
malicious firewall. Then note that being an honest core is a special case of being
a malicious core.

In the last claim, we have to prove that assuming computational transparency
one does not have to prove the case with the core Honest and the firewall
SemiHonest. One can instead prove the case with the core Honest and the
firewall Honest. To see this note that, by definition of transparency, we can
replace the firewall with the identity firewall ID. For this firewall, an Honest
corruption is as powerful as a SemiHonest corruption. This is because the only
effect of a semi-honest corruption of ID is to leak the internal value wi from the
setup and the communication sent via ID. The ideal functionality FSAT already
leaks that information when ID is honest.

3 String Commitment

In this section, we show how to build UC string commitments with security in
the presence of subversion attacks. In particular, after introducing the sanitizable
commitment functionality, we exhibit a non-interactive commitment (with an
associated reverse firewall) that UC realizes this functionality in the CRS model,
under the DDH assumption.

3.1 Sanitizable Commitment Functionality

The sanitazable commitment functionality F̂sCOM, which is depicted below, is an
extension of the standard functionality for UC commitments [8]. Roughly, F̂sCOM

allows the core of a party to commit to a λ-bit string si; the ideal functionality
stores si and informs the corresponding firewall that the core has sent a commit-
ment. Hence, via the sanitation interface, the firewall of that party is allowed to
forward to the functionality a blinding factor ri ∈ {0, 1}λ that is used to blind
si, yielding a sanitized input ŝi = si ⊕ ri. At this point, all other parties are
informed by the functionality that a commitment took place. Finally, each party
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is allowed to open the commitment via the functionality, in which case all other
parties learn the sanitized input ŝi.

Functionality F̂sCOM

The sanitizable string commitment functionality F̂sCOM runs with parties P1, . . . ,Pn
(each consisting of a core Ci and a firewall Fi), and an adversary S. The functionality
consists of the following communication interfaces for the cores and the firewalls
respectively.

Interface IO
– Upon receiving a message (Commit, sid, cid,Ci, si) from Ci, where si ∈ {0, 1}λ,

record the tuple (sid, cid,Ci, si) and send the message (Receipt, sid, cid,Ci) to
Fi. Ignore subsequent commands of the form (Commit, sid, cid,Ci, ·).

– Upon receiving a message (Open, sid, cid,Ci) from Ci, proceed as follows: If
the tuple (sid, cid,Ci, ŝi) is recorded and the message (Blind, sid, cid,Ci, ·) was
sent to F̂sCOM, then send the message (Open, sid, cid,Ci, ŝi) to all Cj 6=i and S.
Otherwise, do nothing.

Interface S
– Upon receiving a message (Blind, sid, cid,Ci, ri) from Fi, where ri ∈ {0, 1}λ,

proceed as follows: If the tuple (sid, cid,Ci, si, ·) is recorded, then modify the tu-
ple to be (sid, cid,Ci, ŝi = si⊕ri) and send the message (Blinded, sid, cid,Ci, ri)
to Ci, and (Receipt, sid, cid,Ci) to all Cj 6=i and S; otherwise do nothing. Ignore
future commands of the form (Blind, sid, cid,Ci, ·).

3.2 Protocol from DDH

Next, we present a protocol that UC-realizes F̂sCOM in the FSAT-hybrid model. For
simplicity, let us first consider the case where there are only two parties. The CRS
in our protocol is a tuple crs = (g, h, T1, T2) satisfying the following properties:

– The element g is a generator of a cyclic group G with prime order q, and
h, T1, T2 ∈ G. Moreover, the DDH assumption holds in G.5

– In the real-world protocol, the tuple (g, h, T1, T2) corresponds to a non-DH
tuple. Namely, it should be the case that T1 = gx and T2 = hx

′
, for x 6= x′.

– In the security proof, the simulator will set the CRS as (g, h, T1, T2), where
T1 = gx and T2 = hx. By the DDH assumption, this distribution is computa-
tionally indistinguishable from the real-world distribution. In addition, the
simulator will be given the trapdoor (x, t) for the CRS crs = (g, h, T1, T2),
such that h = gt and T1 = gx.

As explained in Section 1.3, the above ideas can be generalized to the multi-
party setting by using a different CRS for each pair of parties.

5 Recall that the DDH assumption states that the distribution ensembles {g, h, gx, hx :

x← Zq} and {g, h, gx, hx
′
: x, x′ ← Zq} are computationally indistinguishable.
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Protocol Π̂sCOM (Sanitizable UC Commitment Protocol)

The protocol is executed between parties P1, . . . ,Pn each consisting of a core Ci
and a firewall Fi. In what follows, let party Pj = (Cj ,Fj) be the committer, and
all other parties Pk 6=j act as verifiers.

Public inputs: Group G with a generator g, field Zq, and crs =
(crsj,k)j,k∈[n],k 6=j = (gj,k, hj,k, T1,j,k, T2,j,k)j,k∈[n],k 6=j .
Private inputs: The committer (or core) Cj has an input s ∈ {0, 1}λ which we
parse as s = (s[1], · · · , s[λ]). We will encode each bit s[i] ∈ {0, 1} with a value
u[i] ∈ {−1, 1}, so that u[i] = 1 if s[i] = 1 and u[i] = −1 if s[i] = 0. The firewall Fj
has an input r = (r[1], · · · , r[λ]) ∈ {0, 1}λ (i.e., the blinding factor).
Commit phase: For all i ∈ [λ], the core Cj samples a random αj,k[i]← Zq and
computes the values Bj,k[i] = g

αj,k[i]

j,k ·Tu[i]1,j,k and Hj,k[i] = h
αj,k[i]

j,k ·Tu[i]2,j,k. Hence, it
sends cj,k = (cj,k[1], · · · , cj,k[λ]) to the firewall Fj where cj,k[i] = (Bj,k[i], Hj,k[i]).
For all i ∈ [λ], the firewall Fj picks random βj,k = (βj,k[1], · · · , βj,k[λ]) ∈ Zλq and
does the following:
– If r[i] = 0, it lets B̂j,k[i] = Bj,k[i] · g

βj,k[i]

j,k and Ĥj,k[i] = Hj,k[i] · h
βj,k[i]

j,k ;

– Else if r[i] = 1, it lets B̂j,k[i] = Bj,k[i]
−1 ·gβj,k[i]j,k and Ĥj,k[i] = Hj,k[i]

−1 ·hβj,k[i]j,k .
Hence, Fj sends ĉj,k = (ĉj,k[1], · · · , ĉj,k[λ]) to all other parties Pk 6=j , where ĉj,k[i] =
(B̂j,k[i], Ĥj,k[i]).
Opening phase: The core Cj sends (s, αj,k) to the firewall Fj , where s ∈ {0, 1}λ
and αj,k ∈ Zλq . Upon receiving (s, αj,k) from Cj , the firewall Fj parses s =
(s[1], · · · , s[λ]) and αj,k = (αj,k[1], · · · , αj,k[λ]). Thus, for all i ∈ [λ], it does the
following:
– If r[i] = 0, it lets ŝ[i] = s[i] and α̂j,k[i] = αj,k[i] + βj,k[i];
– Else if r[i] = 1, it lets ŝ[i] = −s[i] and α̂j,k[i] = −αj,k[i] + βj,k[i].
Hence, Fj sends (ŝ, α̂j,k) to all other parties Pk 6=j , where ŝ = (ŝ[1], · · · , ŝ[λ]) and
α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]).
Verification phase: Upon receiving (ĉj,k, (ŝ, α̂j,k)) from Pj , each
party Pk 6=j parses ĉj,k = ((B̂j,k[1], Ĥj,k[1]), · · · , (B̂j,k[λ], Ĥj,k[λ])),
α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]), and encodes ŝ = (ŝ[1], · · · , ŝ[λ]) ∈ {0, 1}λ as
û = (û[1], · · · , û[λ]) ∈ {−1, 1}λ. Hence, for all i ∈ [λ], it verifies whether
B̂j,k[i] = g

α̂j,k[i]

j,k · T û[i]1,j,k and Ĥj,k[i] = h
α̂j,k[i]

j,k · T û[i]2,j,k. If for any i ∈ [λ], the above
verification fails, party Pk aborts; otherwise Pk accepts the commitment.

Theorem 2. The protocol Π̂sCOM srUC-realizes the F̂sCOM functionality in the
FSAT-hybrid model in the presence of up to n− 1 static malicious corruptions.

We defer the proof of Theorem 2 to the full version [12].

4 Coin Tossing

In this section, we build a sanitizing protocol that implements the regular coin
tossing functionality. Our protocol is described in the F̂sCOM-hybrid model, and
therefore must implement the firewall that interacts with the F̂sCOM functionality.
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4.1 The Coin Tossing Functionality

We start by recalling the regular FTOSS functionality below. Intuitively, the func-
tionality waits to receive an initialization message from all the parties. Hence,
it samples a uniformly random λ-bit string s and sends s to the adversary. The
adversary now can decide to deliver s to a subset of the parties. The latter
restriction comes from the fact that it is impossible to toss a coin fairly so that no
adversary can cause a premature abort, or bias the outcome, without assuming
honest majority [14].

Functionality FTOSS

The coin tossing functionality FTOSS runs with parties P1, . . . ,Pn, and an adversary
S. It consists of the following communication interface.

– Upon receiving a message (Init, sid,Pi) from Pi: If this is the first such message
from Pi then record (sid,Pi) and send (Init,Pi) to S. If there exist records
(sid,Pj) for all (Pj)j∈[n], then sample a uniformly random bit string s ∈ {0, 1}λ
and send s to the adversary S.

– Upon receiving a message (Deliver, sid,Pi) from S (and if this is the first such
message from S), and if there exist records (sid,Pj) for all (Pj)j∈[n], send s to
Pi; otherwise do nothing.

4.2 Sanitizing Blum’s Protocol

Next, we show how to sanitize a variation of the classical Blum coin tossing
protocol [5]. In this protocol, each party commits to a random string si and later
opens the commitment, thus yielding s = s1⊕ · · · ⊕ sn. The firewall here samples
an independent random string ri which is used to blind the string si chosen by
the (possibly specious) core. We defer the security proof to the full version [12].

Protocol Π̂TOSS (Sanitizing Blum’s Coin Tossing)

The protocol is described in the F̂sCOM-hybrid model, and is executed between
parties P1, . . . ,Pn each consisting of a core Ci and a firewall Fi. Party Pi = (Ci,Fi)
proceeds as follows (the code for all other parties is analogous).

1. The core Ci samples a random string si ∈ {0, 1}λ and sends
(Commit, sidi, cidi,Ci, si) to F̂sCOM.

2. Upon receiving (Receipt, sidi, cidi,Ci) from F̂sCOM, the firewall Fi samples a
random string ri ∈ {0, 1}λ and sends (Blind, sidi, cidi,Ci, ri) to F̂sCOM.

3. Upon receiving (Blinded, sidi, cidi,Ci, ri) from F̂sCOM, as well as
(Receipt, sidj , cidj ,Cj) for all other cores Cj 6=i, the core Ci sends the
message (Open, sidi, cidi,Ci) to F̂sCOM.
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4. Upon receiving (Open, sidj , cidj ,Cj , ŝj) from F̂sCOM, for each core Cj 6=i, the core
Ci outputs s := si ⊕ ri ⊕

⊕
j 6=i ŝj . (If any of the cores Cj do not open its

commitment, then Ci sets ŝj = 0λ.)

Theorem 3. The protocol Π̂TOSS wsrUC-realizes the FTOSS functionality in the
(FSAT, F̂sCOM)-hybrid model in the presence of up to n− 1 malicious corruptions.

5 Completeness Theorem

In this section, we show how to sanitize the classical compiler by Goldreich, Micali
and Wigderson (GMW) [20], for turning MPC protocols with security against
semi-honest adversaries into ones with security against malicious adversaries.
On a high level, the GMW compiler works by having each party commit to its
input. Furthermore, the parties run a coin tossing protocol to determine the
randomness to be used in the protocol; since the random tape of each party must
be secret, the latter is done in such a way that the other parties only learn a
commitment to the other parties’ random tape. Finally, the commitments to each
party’s input and randomness are used to enforce semi-honest behavior: Each
party computes the next message using the underlying semi-honest protocol, but
also proves in zero knowledge that this message was computed correctly using
the committed input and randomness.

5.1 Sanitizable Commit & Prove

The GMW compiler was analyzed in the UC setting by Canetti, Lindell, Ostrovsky
and Sahai [9]. A difficulty that arises is that the receiver of a UC commitment
obtains no information about the value that was committed to. Hence, the parties
cannot prove in zero knowledge statements relative to their input/randomness
commitment. This issue is solved by introducing a more general commit-and-prove
functionality that essentially combines both the commitment and zero-knowledge
capabilities in a single functionality. In turn, the commit-and-prove functionality
can be realized using commitments and zero-knowledge proofs.

In order to sanitize the GMW compiler, we follow a similar approach. Namely,
we introduce a sanitazable commit-and-prove functionality (denoted F̂C&P and
depicted below) and show that this functionality suffices for our purpose. Intu-
itively, F̂C&P allows the core Ci of each party Pi to (i) commit to multiple secret
inputs x, and (ii) prove arbitrary NP statements y (w.r.t. an underlying relation
R that is a parameter of the functionality) whose corresponding witnesses consist
of all the values x. Whenever the core Ci commits to a value x, the firewall Fi
may decide to blind x with a random string r (which is then revealed to the core).
Similarly, whenever the core proves a statement y, the firewall Fi may check if the
given statement makes sense, in which case, and assuming the statement is valid,
the functionality informs all other parties that y is indeed a correct statement
proven by Pi.
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Functionality F̂C&P

The sanitizable commit-and-prove functionality F̂C&P is parameterized by an NP
relation R, and runs with parties P1, . . . ,Pn (each consisting of a core Ci and
a firewall Fi) and an adversary S. The functionality consists of the following
communication interfaces for the cores and the firewalls respectively.

Interface IO
– Upon receiving a message (Commit, sid, cid,Ci, x) from Ci, where x ∈ {0, 1}∗,

record the tuple (sid, cid,Ci, x) and send the message (Receipt, sid, cid,Ci) to
Fi. Ignore future commands of the form (Commit, sid, cid,Ci, ·).

– Upon receiving a message (Prove, sid,Ci, y) from Ci, if there is at least one
record (sid, cid,Ci, ·) and a corresponding (Blind, sid, cid,Ci, ·) message was
sent to F̂C&P, then send the message (Sanitize, sid,Ci, y) to Fi.

Interface S
– Upon receiving a message (Blind, sid, cid,Ci, r) from Fi, where r ∈ {0, 1}∗,

proceed as follows: if the tuple (sid, cid,Ci, x) is recorded, modify the tuple
to be (sid, cid,Ci, x̂ = x⊕ r) and send the message (Blinded, sid, cid,Ci, r) to
Ci, and (Receipt, sid, cid,Ci) to all Cj 6=i and S; otherwise do nothing. Ignore
future commands of the form (Blind, sid, cid,Ci, ·).

– Upon receiving a message (Continue, sid,Ci, y) from Fi, retrieve all tuples of the
form (sid, ·,Ci, x̂) and let x be the list containing all (possibly sanitized) witnesses
x̂. Then compute R(y, x): if R(y, x) = 1 send the message (Proved, sid,Ci, y)
to all Cj 6=i and S, otherwise ignore the command.

In the full version [12], we show how to realize the sanitazable commit-and-
prove functionality from malleable dual-mode commitments, a primitive which we
introduce, and re-randomizable NIZKs for all of NP. Our commitment protocol
from Section 3 can be seen as a concrete instantiation of malleable dual-mode
commitments based on the DDH assumption.

5.2 Sanitizing the GMW Compiler

We are now ready to sanitize the GMW compiler. Let Π be an MPC protocol.
The (sanitized) protocol Π̂GMW is depicted below and follows exactly the ideas
outlined above adapted to the UC framework with reverse firewalls.

Protocol Π̂GMW (Sanitizing the GMW compiler)

The protocol is described in the (F̂C&P,FTOSS)-hybrid model, and is executed
between parties P1, . . . ,Pn each consisting of a core Ci and a firewall Fi. Party
Pi = (Ci,Fi) proceeds as follows (the code for all other parties is analogous).

Random tape generation: When activated for the first time, party Pi gener-
ates its own randomness with the help of all other parties:
1. The core Ci picks a random si ∈ {0, 1}λ and sends (Commit, sidi, cidi, si) to
F̂C&P.
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2. Upon receiving (Receipt, sidi, cidi,Ci) from F̂C&P, the firewall Fi picks a ran-
dom ri ∈ {0, 1}λ and sends (Blind, sidi, cidi,Ci, ri) to F̂C&P.

3. All the cores interact with FTOSS in order to obtain a public random string
s∗i that is used to determine the random tape of Ci. Namely, each core Cj ,
for j ∈ [n], sends (Init, sidi,j ,Pj) to FTOSS and waits to receive the message
(Delivered, sidi,j ,Pj , s∗i ) from the functionality.

4. Upon receiving (Blinded, sidi, cidi,Ci, ri) from F̂C&P, the core Ci defines r̂i =
s∗i ⊕ (si ⊕ ri).

Input commitment: When activated with input xi, the core Ci sends
(Commit, sidi, cid′i, xi) to F̂C&P and adds xi to the (initially empty) list of in-
puts xi (containing the inputs from all the previous activations of the proto-
col). Upon receiving (Receipt, sidi, cid′i,Ci) from F̂C&P, the firewall Fi sends
(Blind, sidi, cid′i,Ci, 0|xi|) to F̂C&P.
Protocol execution: Let τ ∈ {0, 1}∗ be the sequence of messages that were
broadcast in all activations of Π until now (where τ is initially empty).
1. The core Ci runs the code of Π on its input list xi, transcript τ , and random

tape r̂i (as determined above). If Π instructs Pi to broadcast a message, proceed
to the next step.

2. For each outgoing message µi that Pi sends in Π, the core Ci sends
(Prove, sidi,Ci, (µi, s∗i , τ)) to F̂C&P, where the relation parameterizing the
functionality is defined as follows:

R := {((µi, s∗i , τ), (xi, si, ri)) : µi = Π(xi, τ, s
∗
i ⊕ (si ⊕ ri))} .

In words, the core Ci proves that the message µi is the correct next message
generated by Π when the input sequence is xi, the random tape is r̂i =
s∗i ⊕ (si ⊕ ri), and the current transcript is τ . Thus, Ci appends µi to the
current transcript τ .

3. Upon receiving (Sanitize, sidi,Ci, (µi, s∗i , τ)) from F̂C&P, the firewall Fi veri-
fies that s∗i is the same string obtained via FTOSS and that τ consists of all
the messages that were broadcast in all the activations up to this point. If
these conditions are not met, Fi ignores the message and otherwise it sends
(Continue, sidi,Ci, (µi, s∗i , τ)) to F̂C&P and appends µi to the current transcript
τ .

4. Upon receiving (Proved, sidj ,Cj , (µj , s∗i , τ)) from F̂C&P, both the core Ci and
the firewall Fi append µj to the transcript τ and repeat the above steps.

Output: Whenever Π outputs a value, Π̂GMW generates the same output.

A few remarks are in order. First, and without loss of generality, we assume
that the underlying protocol Π is reactive and works by a series of activations,
where in each activation, only one of the parties has an input; the random tape
of each party is taken to be a λ-bit string for simplicity. Second, each party needs
to invoke an independent copy of F̂C&P; we identify these copies as sidi, where
we can for instance let sidi = sid||i. Third, we slightly simplify the randomness
generation phase using the coin tossing functionality FTOSS. In particular, each
core Ci commits to a random string si via F̂C&P; the corresponding firewall Fi
blinds si with a random string ri. Thus, the parties obtain public randomness
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s∗i via FTOSS, yielding a sanitized random tape r̂i = s∗i ⊕ (si ⊕ ri) for party Pi.
Note that it is crucial that the parties obtain independent public random strings
s∗i in order to determine the random tape of party Pi. In fact, if instead we
would use a single invocation of FTOSS yielding common public randomness s,
two malicious parties Pi and Pj could pick the same random tape by choosing
the same values si, ri, sj , rj . Clearly, the latter malicious adversary cannot be
reduced to a semi-honest adversary.
The theorem below states the security of the GMW compiler with reverse firewalls.
The proof is deferred to the full version [12].

Theorem 4. Let F be any functionality for n parties. Assuming that Π UC
realizes F in the presence of up to t ≤ n− 1 semi-honest corruptions, then the
compiled protocol Π̂GMW wsrUC realizes F in the (FSAT, F̂C&P,FTOSS)-hybrid model
in the presence of up to t malicious corruptions.

6 Conclusions and Future Work

We have put forward a generalization of the UC framework by Canetti [7,6],
where each party consists of a core (which has secret inputs and is in charge of
generating protocol messages) and a reverse firewall (which has no secrets and
sanitizes the outgoing/incoming communication from/to the core). Both the core
and the firewall can be subject to different flavors of corruption, modeling the
strongly adversarial setting where a subset of the players is maliciously corrupt,
whereas the remaining honest parties are subject to subversion attacks. The
main advantage of our approach is that it comes with very strong composition
guarantees, as it allows, for the first time, to design subversion-resilient protocols
that can be used as part of larger, more complex protocols, while retaining
security even when protocol sessions are running concurrently (under adversarial
scheduling) and in the presence of subversion attacks.

Moreover, we have demonstrated the feasibility of our approach by designing
UC reverse firewalls for cryptographic protocols realizing pretty natural ideal
functionalities such as commitments and coin tossing, and, in fact, even for
arbitrary functionalities. Several avenues for further research are possible, in-
cluding designing UC reverse firewalls for other ideal functionalities (such as
oblivious transfer and zero knowledge), removing (at least partially) trusted
setup assumptions, and defining UC subversion-resilient MPC in the presence of
adaptive corruptions.
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