
Adaptively Secure Computation for RAM Programs

Laasya Bangalore1, Rafail Ostrovsky2, Oxana Poburinnaya3, and
Muthuramakrishnan Venkitasubramaniam1

1 Georgetown University {lb1264, mv783}@georgetown.edu
2 UCLA rafail@cs.ucla.edu

3 Ligero, Inc. oxanapob@bu.edu

Abstract. In this work, we study the communication complexity of se-
cure multiparty computation under minimal assumptions in the pres-
ence of an adversary that can adaptively corrupt all parties eventually.
Specifically, we are interested in understanding the complexity when
modeling the underlying function as a RAM program. Under minimal
assumptions, the work of Canetti et al. (STOC 2017) and Benhamouda et
al. (TCC 2018) give protocols whose communication complexity grows
quadratically in the circuit size when the computation is expressed as
a Boolean circuit. In this work, we obtain the first two-round two-party
computation protocol, which is secure against adaptive adversaries who
can adaptively corrupt all parties where the communication complex-
ity is proportional to the square of the RAM complexity of the function
up to polylogarithmic factors assuming the existence of non-committing
encryption.

Keywords: Adaptive Security · Garbled RAM · Secure Computation · Oblivi-
ous RAM

1 Introduction

Introduced by Yao [31] and Goldreich, Micali, and Wigderson [21], secure mul-
tiparty computation (MPC) allows a set of mutually distrustful agents to col-
laborate and accomplish a common goal while preserving each agent’s privacy
to a maximal extent. Secure computation enables anonymous electronic elec-
tions, privacy-preserving electronic auctions (or contract biddings), privacy-
preserving data mining, fault-tolerant distributed computations, and more.

Typically, an adversary is modeled as a single computational entity that
has the capability of hacking, or corrupting, an arbitrary subset of the com-
municating parties over a network and launching a coordinated attack. The
classical and most popular model assumes that the set of corrupted parties are
compromised before the target protocol begins. This is referred to as the static
corruption model. The adaptive corruption model, introduced by Canetti et al.
[5], considers a stronger adversary that can hijack a host at any time during the
course of the computation. Arguably, adaptive security provides more mean-
ingful security. In particular, it captures “hacking” attacks where an external

2 L. Bangalore et. al.

attacker breaks into parties’ machines in the midst of a protocol execution, and
can choose its targets adaptively based on the currently available information.
Furthermore, an interesting side-effect of adaptive security is that in many
cases it automatically guarantees some form of resilience against leakage from
side-channel attacks [3,4].

In this work we focus on full adaptive security, namely security against an
adversary who can (eventually) corrupt all participants. Achieving full adaptive
security offers strong protocol compositional features, namely, embedding a
full adaptive secure sub-protocol in a larger system enables arguing security
of the larger system in a modular way even when all participants in the sub-
protocol are corrupted. In the adaptive setting, the case when everybody can be
corrupted is usually the most difficult to deal with; this should be contrasted
with the static setting, where security in such a case comes for free4.

Canetti et al. [7] established the feasibility of fully adaptively secure proto-
col where they designed an O(d)-round protocol to securely realize any func-
tionality. In the static setting, constant-round protocols were known [26,22]
and the gap in round complexity between what was feasible in the static and
fully adaptive regime remained an open problem. When assuming reliable era-
sures, a constant-round protocol was given by Garg and Sahai [19]. The gap
was closed simultaneously in the works of by [18,14,6] where they designed the
first constant round protocol. These protocol assumed the trusted generation of
a common reference string and relied on the strong assumption of existence of
indistinguishability obfuscation. Moreover, these construction required a com-
mon reference string proportional to size of the circuit. More recently, Canetti
et al. in [9] provided the first constant-round fully adaptively secure proto-
col from standard (minimal) assumptions. The question of the precise round
complexity was finally resolved in the work of [2], where they constructed a
two-round fully adaptive protocol. In essence, these works closed the gap in
round complexity between static and fully adaptively secure protocols.

In this work, we are interested in understanding the communication com-
plexity of fully adaptive protocols in the constant-round regime under minimal
assumptions. The works of [18,14,8] achieve essentially an optimal commu-
nication complexity where it is independent of the circuit size. However, as
mentioned above, they rely on strong assumptions and the trusted sampling
of a common reference string that is as large as the circuit being computed.
Moreover, a bound on the size of the circuit to be securely computed was re-
quired at the time of the CRS generation. Another vein of works [8,11] show
how the complexity can be made proportional to the RAM complexity as op-
posed to the circuit complexity. The protocol of Cohen, shelat and Wichs [12]
improve these works to achieve communication and the CRS size that is only
proportional to the depth of the circuit.

Under minimal assumptions, we only have the work of Canetti et al. [9] and
Benhamouda et al. [2] and their communication complexity grows quadrati-

4 Indeed, in this case the static simulator obtains the inputs of all parties in the protocol
and thus can simulate the execution by simply running the protocol.

Adaptively Secure Computation for RAM Programs 3

cally in the circuit size when the circuit is expressed as a boolean circuit. The
main question that is left open is to understand the communication complexity
under minimial assumptions, namely:

What is the communication complexity of constant-round fully adaptive MPC
protocols?

In this work, we make progress in answering this question. Specifically, we
show how to obtain better complexity that [9] when the circuit is expressed as
a RAM computation.

In the static case, RAM-efficient protocols have been obtained in the plain
model via garbled RAM, a primitive introduced by Lu and Ostrovsky in 2013

[28]. This primitive allows to separately garble the memory, the input, and the
RAM program (without converting it into a circuit), such that the size and run-
time of the garbled RAM program is only proportional to the runtime of the
program, up to polylogarithmic factors. The original paper required a strong
circular-security assumption, but in sequence of follow-up works [28,20,17,16]
the assumption was improved to a black-box use of any one-way function
while maintaining poly-logarithmic overhead in all parameters. Equipped with
garbled RAM, several recent works have demonstrated constant round MPC
protocols with communication proportional to the RAM complexity in the
static setting [24,15].

However, the state of affairs in the adaptive setting leaves us with either
a construction proportional to the boolean circuit complexity under minimal
assumptions [9] or relying on strong assumptions with a huge CRS [14,6,8,12].

Therefore, the main question that we ask in this paper is this:

Can we construct constant-round secure computation for RAM programs
with only poly-logarithmic overhead that withstands (full) adaptive corrup-
tions in the plain model?

In this work, we make a significant step towards answering this question
in the affirmtive where we provide a construction whose communication com-
plexity is proportional to the square of the RAM complexity (upto polyloga-
rithmic factors). The question of whether we can reduce the quadratic over-
head to linear remains an intriguing one. We remark that even in the case of
circuits the best construction we have so far is quadratic in circuit size. To ad-
dress the malicious case, we additionally design the first RAM-efficient zero-
knowledge proof system that is adaptively secure [7,27,23]. Previously such
constructions were known only for circuits and required non-constant number
of rounds [23].

1.1 Our Results

In this paper, we provide the first construction of a secure two-party computa-
tion protocol for RAM programs that withstands adaptive corruption of both
parties by an active adversary.

4 L. Bangalore et. al.

Our first result is an ORAM compiler that is adaptively secure. Informally,
we say that an ORAM compiler is adaptively secure if there exists algorithms
Sim1 and Sim2 such that Sim1 given memory size and running time as inputs
can provide the memory access sequence along with some state information,
and Sim2 given state and the actual input x as inputs can output the random-
ness for the compiler that leads to the simulated memory access sequence. We
have the following theorem:

Theorem 1 (Informal). There exists an adaptively secure ORAM with polylog(n)
worst-case computational overhead and polylog(n) memory overhead, where n is the
memory size.

Next, we construct a functionally equivocal encryption scheme that is RAM-
efficient, which we combine with an adaptively-secure ORAM to obtain our
main theorem.

Theorem 2 (Informal). Assume existence of two-round oblivious transfer secure
against passive corruption of both parties by an adaptive adversary then there exists:

– A minimum interaction (i.e., two-message) two-party general function evalua-
tion protocol for functionalities expressed via a RAM program Π that withstands
passive corruption of both parties by an adaptive adversary. The protocol does not
use data erasures.

– If Π’s running time is T, the sum of the input sizes of the parties is n and the
size of the memory accessed by Π is M, then our communication complexity is
Õ((M + n + T)2). Here Õ(·) ignores poly(log T, log n, κ) factors where κ is the
(computational) security parameter.

Noting that the required oblivious transfer protocol from the theorem can
be constructed based on any non-committing encryption scheme [5], we obtain
the first constant-round adaptively secure two-party computation for RAM
programs in the plain model based on standard assumptions.

Finally, we design a (RAM-efficient) adaptive zero-knowledge proof in the
UC-model whose communication complexity is Õ((M + n + T)2) which we
combine with our semi-honest protocol to obtain an adaptively secure 2PC
computation that secure against malicious adversaries.5 Formally, we have:

Theorem 3 (Informal). Assuming collision resistant hashing and dense cryptosys-
tems, there exists a constant-round UC-secure two-party general function evaluation
protocol in the common random string model, in face of active corruption of all parties
by an adaptive adversary, where communication complexity is Õ((M + n + T)2) and
the length of the common random string is independent of the size of the function.

5 We remark that to obtain our result, it sufficient to obtain a circuit-efficient adaptive
zero-knowledge proof.

Adaptively Secure Computation for RAM Programs 5

1.2 Our Techniques

The Challenge of Adaptive Security. When considering adaptive secure computa-
tion, the best construction for circuits under minimal assumptions has commu-
nication complexity O(s2poly(κ)) for a circuit of s gates. As mentioned before,
a long line of research in MPC has focused on measuring the complexity of
constructions w.r.t the RAM complexity of the underlying function and de-
signed protocols whose complexity are proportional to the RAM complexity
as opposed to the circuit complexity. We recall here that the transforming a
RAM program to a circuit is prohibitive where the best constructions that start
from a T-time program compile into a circuit of size O(T3 log T) [13,29]. Hence,
converting a RAM program to a circuit and relying on the construction by [9]
would result in a construction of complexity O(T6poly(log T, κ)). Following
analogous works in the static setting, our approach is to design a construction
directly for RAM programs.

In a nutshell, our approach extends the equivocal garbling scheme of [9]
to garbled RAM. As we describe next, this will not be a simple combination
of techniques and we need to overcome a few obstacles. Looking ahead, we
will not be able to extend any arbitrary Garbled RAM construction and make
it equivocal. This gives rise to three key obstacles.

Obstacle 1: Deterministic vs Randomized functionality. All Garbled RAM con-
structions rely on a pre-processing step where the memory sequence is made
oblivious, typically by applying an Oblivious RAM (ORAM) compiler. This
means that even when the underlying function that we wish to securely eval-
uate is deterministic, the effective functionality we garble will be randomized.
In the adaptive case, randomized functionalities are tricky and they are im-
possible in the general case [25] at least in the plain model. In the CRS model,
we do have constructions [14,6,8,12] based on indistinguishability obfuscation.
We resolve this by considering the specific randomization used in the con-
struction and show that it is “equivocable”. More precisely, we will need an
Oblivious RAM (ORAM) compiler to be adaptively secure. In other words, we
need an ORAM scheme where the simulator first provides a sequence of mem-
ory accesses before knowing actual program inputs and, later, after learning
the inputs, output randomness for the ORAM compiler that maps the actual
memory sequence to the simulated one. As our first contribution, we provide
the first construction of an ORAM scheme with this adaptive property.

Obstacle 2: Equivocating memory. Performing memory read and write opera-
tions is a challenging component of Garbled RAM constructions as the mem-
ory locations to be read are only known during run time. In order to incorpo-
rate data read from memory into the computation, the labels corresponding to
the data need to be provided as input to the garbled step circuits 6. A common

6 In a RAM program, a step circuit performs CPU computations at a particular time
step.

6 L. Bangalore et. al.

way of doing this is to encrypt the labels under some key and provide a mech-
anism for determining these keys during the run-time, once the data location
to be read is known. Prior works [17,20] incorporate ways to efficiently gener-
ate these keys needed to encrypt the labels for the next circuit. In [20], a master
key is used to generate keys corresponding to the memory location to be read
and then this key is used to encrypt the labels associated with the read bits.
In [17], a tree-based structure is used to pick the appropriate key to encrypt
the labels associated with the data. At a very high-level, their garbled memory
has a tree-structure with the encrypted memory at the leaf nodes. Their con-
struction navigates through the tree towards the data to be read and obtains
the appropriate key to encrypt the label (for the next step circuit). A common
thread between these techniques is that they obtain efficiency by compressing
the keys, either by using a master key to generate other keys or using a tree-
structure of keys. But such a compression makes it hard for the simulator to
“equivocate” the keys. Consequently, we will not be able to rely on the Garbled
RAM constructions of [20,17].

Obstacle 3: RAM-efficient Equivocal Encryption. A crucial ingredient in [9] is
a Functionally Equivocal Encryption (FEE) scheme that allows a private-key
encryption scheme to be equivocated with a key size smaller than the mes-
sage length when the equivocation space can be expressed as the image of a
function over a smaller domain. Specifically, [9] provides an FEE scheme for
functions expressed as a circuit where the ciphertext size is proportional to
the circuit size and the keys are proportional to the input size of the function
(rather than message length being encrypted). As Garbled RAM construction
employs sequence of circuits that are typically garbled, one approach is to
use an FEE scheme to garble these circuits. The issue here is that the func-
tion f that defines the message space is a RAM program and relying on the
FEE scheme from [9] that is constructed for circuits will be inefficient. The
main challenge here is to construct a variant of the equivocal encryption that
is efficient for RAM programs. Following the blueprint of [9], we can convert
a Garbled RAM construction to an encryption scheme where the key size is
small, the main challenge however is to ensure that one can equivocate the ran-
domness consistent with the encryption algorithm. We show how the Garbled
RAM scheme of [17] can be converted to a RAM-efficient equivocal scheme.

Obstacle 4: Obtaining Malicious Security Extending our result to obtain ma-
licious security requires RAM-efficient adaptive zero-knowledge which was
previously known only based on indistinguishability obfuscation [18,9]. We
obtain malicious security by combining our protocol with an adaptive zero-
knowledge proof [7,27,23] using the classic GMW compiler. In order to main-
tain the communication complexity we need a zero-knowledge proof whose
complexity is linear in the circuit size of the NP-relation. The work of [23]
provides such a construction, however, it requires a non-constant number of
rounds. In fact, the round complexity is proportional to circuit size and will
not be sufficient to get our result. We address this by designing a more effi-

Adaptively Secure Computation for RAM Programs 7

cient proof system. In fact, for any NP-relation expressed as a RAM program
we design an adaptive zero-knowledge proof with polylogarithmic overhead.

On Database Size. We remark that the database size influences the online com-
munication complexity (i.e. the size of the garbled input) of our equivocal
garbled RAM. For a database of size M, our equivocal garbled RAM has an
online communication complexity of Õ((M + n) · n). When we consider a sce-
nario M >> T, as is typical in RAM applications, our garbling scheme’s online
complexity will not be efficient (in fact, it is bigger than the size of the com-
putation). On the other hand, if M << T (or even empty) then our garbled
RAM scheme will be online efficient. We emphasize here that our main goal
is to design a secure two-party computation protocol with a desired commu-
nication complexity and the equivocal garbled RAM scheme is only a means
to this goal. In other words, even though the stand-alone primitive garbled
RAM scheme is not efficient in all regimes, in the context of our 2PC protocol
it suffices to consider M << T.

Corruption-adaptive vs. Input-adaptive garbling. We note that the term “adaptive”
is also used in the literature [1] to denote a very different property which we
will call “input-adaptive security”, to distinguish it from “corruption-adaptive
security”. We only focus on achieving “corruption-adaptive security” which
we simply refer to as “adaptive security” in this paper. “Corruption-adaptive
security” says that the garbling should remain secure even if the adversary
prefers to corrupt the evaluator first and sees the communication (i.e. the
garbled circuit and garbled input), and later corrupt the garbler and see its
internal state (i.e. randomness used to garble the circuit). Whereas the “input-
adaptive security” guarantees security against adversaries that can adaptively
choose the input to the circuit even after seeing the garbled circuit. In their
setting, the input to the circuit may not be fixed when the circuit is being gar-
bled. [1] considers the garbling process to have two phases: the circuit garbling
phase followed by the input garbling phase. In particular:

– Input-adaptive garbled circuits remain secure when the input to the com-
putation is chosen adaptively, but lose security properties if randomness
of the garbling is revealed to the adversary.

– Corruption-adaptive garbled circuits remain secure when the randomness
is revealed to the adversary, but lose security for adaptively chosen inputs.

Outline. For the lack of space, we defer the definitions to the full version;
In section 2, we provide an equivocal ORAM compiler. Section 3 contains the
description of RAM-efficient Equivocal Encryption. We give our constructions
of Equivocal Garbling and adaptive ZK for RAM in sections 4 & 5 respectively.

2 Equivocal ORAM

In this section, we prove that the ORAM construction of [10] is adaptively se-
cure. We begin by providing an overview of the ORAM Compiler given by

8 L. Bangalore et. al.

[10]. Consider a client-server setting where a secure client runs a program P
that accesses memory D that belongs to an untrusted server. Informally, the
ORAM compiler ensures that the server does not learn anything about the
client’s computation by examining the memory access pattern (Obliviousness)
while still learning the output of the execution of the RAM program (Correct-
ness)7.

Data Representation. Let the server’s memory D, which is of size n, be divided
into n/α blocks where the size of each block is α (for some α > 0). For any
program P with memory of size n, we maintain two main data structures, one
at the client’s end and the other at the server’s end.

The server maintains a complete binary tree of depth d = blog(n
α)c. A block

is said to be associated with a leaf node if the block is stored in one of the nodes
on the path from the root to that leaf node. Each node can store at most k
tuples of the form (b, l, val), where b denotes the block number, l denotes the
leaf node and val denotes the content of block b. If any node has more than k
tuples, then we say an overflow has occurred.

The client maintains an array of size n/α, denoted by Pos. This array maps
blocks to leaf nodes. More specifically, the ith position of the array i.e. Pos[i],
corresponds to the ith block and stores the leaf node associated with this block.

Construction. Given a program P with memory D, the ORAM compiler C
outputs a program P′ with memory D′. Suppose the execution PD(x) per-
forms m memory access operations. Let the ith operation be represented by
Op(i, addr, val) where addr ∈ [n] denotes the memory address and val denotes
the value at memory address addr. Also, let b := addr/n be the block that con-
tains the memory cell addr and r := addr mod(n) be the relative position of the
memory cell within the block b. After the ORAM compilation, the program
P′ makes 2m memory accesses to D′, which are denoted by {l1, ..., l2m}8. The
compiler C replaces each memory access Op(i, addr, val) made by P with the
following three steps:

1. Fetch: If Pos[b] = ⊥, then set l2i to a randomly sampled leaf node; Oth-
erwise set l2i := Pos[b] i.e. the leaf node associated with block b. Next,
traverse the path from the root to the leaf node l2i, reading and writing
back the contents of each of the nodes on this path. If any of the nodes
contains a tuple of the form (b, l2i, v), then erase this tuple; otherwise set
v = ⊥. Output the value at position r in v.

2. Update: Choose a leaf node l? uniformly at random and set Pos[b] := l?.
If val = ⊥ (i.e. it’s a write operation), then update val to v. Add the tuple
(b, l?, val) to the root of the tree. Abort, if an overflow occurs.

3. Evict: Choose another leaf node r uniformly at random and set l2i+1 := r.
Traverse each node on the path from the root to leaf node l2i+1 such that:

7 We adopt the definition of ORAM from [10].
8 Note that for simplicity we only specify the leaf nodes accessed by P′D

′
(x) instead

of specifying each node accessed along the path from the root to the leaf

Adaptively Secure Computation for RAM Programs 9

Sim1(m, n)

1. Choose 2m leaf nodes randomly from [n/α]. Let lsim
i ← [n/α] for each

i ∈ [1, 2m]
2. Output {lsim

1 , ..., lsim
2m }

Fig. 1. Description of Simulator Sim1, which outputs the memory access pattern of an
ORAM

every tuple (b′, l′, v′) is pushed down along the path towards l2i+1 as long
as it is still on the path associated with its leaf node l′. Abort, if an overflow
occurs at any of the nodes.

Recursion. In the above construction, the client’s memory size is O(n) since
it needs to store the position map of size n/α. Instead of storing the position
map directly, it can be simulated using the ORAM compiler C. So, any read
or write operations to the position map will be performed as described in the
construction of C. Now, the client only needs to store a new position of size
n/α2. This reduction in the size of the position map can be done recursively
until the size is reduced to just O(k) i.e. constant.

Theorem 4. [10] The ORAM compiler C described above is adaptively secure and has
worst-case computational complexity of O(n · polylog(n)) and memory complexity of
O(n · polylog(n)) where n is the size of the memory.

Proof. Correctness follows directly from the construction as P′D
′
(x) has the

same output as PD(x) for any deterministic function P, memory D and in-
put x, whenever overflow does not occur. Using the same argument as [10], it
can be shown that overflows occurs with negligible probability.

Obliviousness on the other hand follows trivially from our simulation Sim1
as it simply chooses two independent random leaf nodes to be traversed for
each memory access operation.

Adaptive security can be proved by showing that the adversary can first see
the sequence of memory accesses without knowing the input and later gain
access to the internal randomness that is consistent with the input (as well as
the memory accesses seen earlier). Assume that an overflow does not occur.
We first show that the sequence of memory accesses made by the program P′

can be generated without knowing the input x. This can be done using the
algorithm Sim1 which chooses a sequence of random memory locations given
just the memory size n and the number of memory accesses m (described in
figure 1). Next, given a fixed sequence of memory locations

−→
M, memory D and

input x, we need to show that there exists randomness that accesses memory
locations

−→
M. That is, we need a way of generating randomness req such that

the memory accesses made by P′D
′
(x) exactly correspond to

−→
M, described by

10 L. Bangalore et. al.

Sim2[
−→
M, P](D, x)

Parameters. P is the RAM that runs in T steps. Let
−→
M parsed as {lsim

1 , ..., lsim
2T }

denote the memory accesses made by the program after ORAM compilationa.

1. If |−→M| 6= 2T, then abort. Parse
−→
M as (lsim

0 , ..., lsim
2T−1) where (lsim

τ , lsim
τ+1) are

the two leaf nodes accessed in the τth time step.
2. Compute the original memory addresses

−→
Morig accessed by program P

given input x and data D. Parse
−→
Morig as (addr1, ..., addrT)

3. For every memory access operation τ ∈ [T], rsim
τ is the randomness used to

update the leaf node associated with the fetched block (refer to the Update
procedure described in ORAM construction). The goal is to compute rsim

τ

for each time step τ given
−→
Morig and

−→
M.

4. If there exists a τ′ > τ such that addrτ′ = addrτ , then select the smallest
such τ′ and set rsim

τ ← lsim
2τ′ . Otherwise, set rsim

τ to a randomly chosen leaf
node. More specifically, the simulator computes rsim

τ as follows:
(a) Initialize the set A := {(τ, addrτ , lsim

2τ)}τ∈[T].
(b) Compute the list A′ using A such that all the tuples in A are sorted

based on (addrτ , τ) i.e. the elements in A are first sorted based on
addrτ and all the tuples with the same addrτ are sorted based on τ.
Let A′[i] denote the ith tuple of A.

(c) Initialize R to empty list of size T. For each i ∈ [T], the R[i] is com-
puted as follows:

– Set (τ, addr, l) := A′[i] and (τ′, addr′, l′) := A′[i + 1].
– If addr = addr′, set R[i] = (τ, l′); otherwise set R[i] := (τ, rand)

where rand is a randomly chosen leaf node.
(d) Lastly, sort R based on the first element in the tuple i.e. the time step

τ. Let the sorted list be req := {rsim
1 , ..., rsim

T }
5. Output req.

a We are assuming that the RAM program P accesses at memory every time
step; so the number of memory accesses m made by P is equal to T.

Fig. 2. Description of Simulator Sim2, which outputs the randomness used to compute
the memory access pattern of a ORAM.

algorithm Sim2 in Figure 2. If an overflow occurs, Sim2 outputs overflow instead
of outputting the randomness req. This does not violate adaptive security as
overflow occurs with just negligible probability. The adaptive security hence
follows from the existence of algorithms Sim1 and Sim2.

Cost Analysis of Sim2. The cost of Sim2 is O(T log T). This cost arises from the
sort operations in steps 4(b) and 4(d) in Figure 2, which are used to compute
two consecutive memory accesses that access the same memory address.

Adaptively Secure Computation for RAM Programs 11

3 RAM-efficient Equivocal Encryption

In this section we define and construct RAM-efficient Equivocal Encryption (REE)
which is similar to Functionally Equivocal Encryption from [9]. As motivated
in the introduction, an REE scheme, as opposed to an FEE, provides a more
efficient construction of an equivocal garbled RAM. Similar to an FEE, an REE
is an equivocal encryption, meaning that the simulator can generate a dummy
ciphertext (without knowing the plaintext m ∈ M) and later equivocate it
to some plaintext m′, by providing randomness rEnc and the key k consistent
with plaintext m′ and the dummy (or simulated) ciphertext. There are two
main differences between an REE and an FEE. Firstly, FEE equivocates with
respect to a function, an REE can equivocate with respect to a RAM program P.
Secondly, FEE needs to equivocate based on the input of the function, whereas
REE equivocates based on the input as well as the database corresponding to
the RAM program. This implies that the key for an FEE comprises of just the
garbled input while the key for an REE comprises of the garbled input along
with a garbled database.

We begin with the description of the syntax of REE which comprises of the
following algorithms (Gen,Enc,Dec,SimTrap, SimEnc,Equiv,Adapt).

– Key generation. REE.Gen(1λ, 1n; rGen) takes as input security parameter λ,
equivocation parameter n, and randomness rGen of size poly(λ, n). It sets
the key k := rGen and outputs it.
Note that the key size only depends on equivocation parameter and secu-
rity parameter, but not on the plaintext size.

– Encryption. REE.Enck(params, msg; rEnc) takes as input params (which com-
prises of the description size of the RAM program s and memory size M)
and plaintext msg. It outputs an encryption of m with respect to the params
using randomness rEnc and key k. Let c = (P̃, D̃) be the encryption of msg
where P̃ and D̃ denote garbled RAM program and garbled memory re-
spectively.

– Decryption. REE.Deck(c) decrypts ciphertext c using key k and outputs
plaintext m = PD(x).

– Ciphertext simulation. Simulating a ciphertext comprises of two algo-
rithms (REE.SimTrap,REE.SimEnc). Algorithm REE.SimTrap takes as input
(1λ, 1n; rtd) and outputs the trapdoor td. Algorithm REE.SimEnc on input
(params, td; rSim) outputs a ciphertext ceq = (P̃, D̃) with respect to params
(where params comprises of description of the RAM program P and mem-
ory size M).

– Equivocation. REE.Equiv(x, td) uses the equivocation trapdoor td to gen-
erate a single fake key keq so that each simulated ciphertext ceq decrypts
to PD(x) under keq. Note that the ceq was generated with respect to some
(P, D) and trapdoor td.

– Randomness sampling. REE.Adapt(P, D, td, rSim, x) generates randomness
req, such that REE.Enckeq(params, PD(x); req) = ceq where ceq := REE.SimEnc

(P, D, td; rSim). In other words, the REE.Adapt algorithm comes up with

12 L. Bangalore et. al.

random coins such that the real garbled RAM program and garbled mem-
ory i.e. (P̃, D̃) look like they are simulated, which makes use of the oblivi-
ousness property of Yao’s garbling scheme.

Security. The honestly generated encryptions and the simulated encryptions
along with the messages, the random coins, and the key, are indistinguishable
where the message is the output of the execution of PD(x), x ∈ {0, 1}n is
the input, P is a RAM program from {0, 1}n → {0, 1}` and D is the memory
accessed by P. More formally, we need to show that for any PPT adversary A
the following two distributions are indistinguishable:

Dn
0 = {(P, D, x)← A(1λ, 1n); td← REE.SimTrap(1λ, 1n; rtd);

ceq := (P̃eq, D̃eq)← REE.SimEnc(params, td, rSim);

keq ← REE.Equiv(td, x); req ← REE.Adapt(P, D, td, rSim, x) :
(keq, ceq, req)}

Dn
1 = {(P, D, x)← A(1λ, 1n); k← REE.Gen(1λ, 1n; rGen);

c := (P̃, D̃)← REE.Enck(params, m; rEnc) :
(k, c, rEnc))}

Overview of [17] We give an overview of the garbled RAM construction of [17]
before presenting the REE. Refer to the full paper for a formal description.

Garbling the Data. Let m = |D| and d = log(m/κ). The garbled data is in
the form of a binary tree of keys of depth d. The plain version of this tree of
keys comprises of data elements (of size κ) at the leaf nodes and random κ-bit
values (which are used as PRF keys) at the non-leaf nodes. The encrypted version
is computed from the plain version as follows: each non-root node r ∈ {0, 1}κ

is encrypted using its parent s ∈ {0, 1}κ as the key: Fs(left/right, k, rk) (for leaf
nodes, data element Dk is encrypted instead of rk). The protocol GData(1κ , D)
outputs the encrypted version of the tree of keys D̃ and the key corresponding
to the root of the tree.

Garbling the Program. Let T be the running time of the program P. We need
to garble each of the T CPU steps, which perform a read and write to mem-
ory. A CPU step at time step τ is denoted as follows: CP

CPU(state, zread) =

(state’, L, zwrite) where L′ is the memory location to be read at the next time
step i.e. τ + 1, zwrite is the value to be written into the location L′ in the next
time step i.e. τ + 1 and zread is the value read from the memory location L,
where L is the memory location output by the previous time step τ− 1. Here, a
simplifying assumption is that the read and write is made to the same memory
location L. For further ease of exposition, the protocol is provided assuming
Unprotected Memory Access (UMA).

Adaptively Secure Computation for RAM Programs 13

Without loss of generality, we focus on reading an element from location
L and then executing the ith CPU step. Reading an element from the database
is done by navigating through the tree of keys all the way to the leaf nodes
where the data is located (as described earlier). To traverse from the root to the
leaf node of the tree, a sequence of navigation circuits Cnav are used, one for
each level. Cnav works as follows: it takes as input two sibling PRF keys and
chooses one of them (either the left or right PRF key) based on the location L
to be read. Then, Cnav uses this chosen key to decrypt and outputs the keys
corresponding to its children. These two child PRF keys are used as inputs to
the next Cnav in the sequence. After navigating through (d− 1) level of the tree
using Cnav circuits, the last level is processed using Cstep circuit, which does
the following:

– Executes CPU computation for the current time step.
– Writes data element zwrite to location L′.
– Kick starts execution of the next time step by outputting the two PRF keys

corresponding to children of the root. This serves as the input to Cnav at
the start of the next time step.

The outputs of the navigation and step circuits consist of (write, translate,
aux) which we explain below.

1. aux: comprises of (state, L) where state denotes the state of the computa-
tion and L is the memory location to be read. This value is the output of
the CPU computation step.

2. translate: enables reading of data. The goal is to generate the input label
for the next circuit corresponding to the value read from memory. Since
the memory location to be read is generated during runtime, translate can
only be determined during the runtime.

3. write: enables writing of data. If the key corresponding to any node needs
to be modified/written to a new key, it affects two nodes in the garbled
memory: (1) the current node re-encrypts the keys of its children under the
new key and (2) the parent of this node is update to store the encryption
of the new key.

To overcome the circularity issues of Lu-Ostrovsky’s construction, the PRF
keys are replaced with fresh ones each time they are used to read. More specif-
ically, the keys are replaced whenever they are used to compute translate. The
tree structure of the garbled database limits the number of PRF keys that need
to be replaced for each CPU step to be polylogarithmic in the memory size.
Finally, the protocol GProg(1κ , 1log m, 1t, P) outputs the set of garbled circuits
for each CPU step and the set of input keys sin.

Garbling the Input and Evaluation. Let s be the PRF key corresponding to the
root of the garbled database. The protocol for input garbling GInput(1κ , x,
sin, s) outputs translate to enable reading the PRF keys corresponding to the
children of root s. Also, it outputs the selection of the labels corresponding

14 L. Bangalore et. al.

to x in sin. The evaluation of each circuit is similar to evaluating any garbled
circuit. In addition, we need to obtain the input labels of a circuit from the
output labels of the previous circuit in the sequence, which is done using
translate. This is because the outputs of a circuit are passed as inputs to another
circuit.

3.1 Our Construction

We now provide a formal description of the algorithms for our REE. Let
(GenCPA,EncCPA,DecCPA) be a private-key encryption scheme with the follow-
ing two properties: (1) has pseudorandom ciphertexts and (2) decrypting a
random string with the key outputs a pseudorandom plaintext9.

Key Generation: REE.Gen on input (1κ , 1n; rGen) computes key k as follows:

1. Sample lab
inp

= (lab
aux, labread

) where |aux| independent labels labaux
=

(lab1, . . . , lab|aux|) and |read| = 2κ independent labels lab
read

= (lab1,
. . . , lab2κ) using GenCPA(1κ).

2. Set translateinp ← GenTranslate(0, 1, 0d, labread
) (GenTranslate is described

in Fig. 3).
3. Output k = (translateinp, labaux

)

Encryption: Enc with key lab
inp

= (lab
aux, labread

) on input (P, D, y; rEnc), where
|y| = l, generates ciphertext c as follows:

1. Create a file BookKeeping to keep track of the nodes in the memory
that were traversed during the RAM computation.

2. Generate garbled program P̃: Let Lτ ∈ [m] denote the location of the
memory access in time step τ.

For each step τ = t− 1 to 0:
For each level i = d− 1 to 0:
• Sample labels in lab

τ,i
= (lab

τ,i,aux, labτ,i,read
) using GenCPA(1κ).

τ i tag output

{t− 1} {d− 1} final write, aux = (y, Lt−1)

{t− 1, ..., 0} {d− 1} step write, translate, lab
τ+1,0,aux

{t− 1, ..., 0} {d− 2, ..., 0} nav write, translate, lab
τ,i+1,aux

Table 1. Inputs to GSim for different time steps τ and levels i.

• write← GenWrite(τ, i, Lτ)

9 We note that the PRF-based scheme (r, Fk(r)⊕m) satisfies both the properties.

Adaptively Secure Computation for RAM Programs 15

Subprotocols for REE.Enc

GenTranslate(τ, i, L, (lab le f t, k, lab right, k))

– Set rle f t/right, k ← {0, 1}κ and randle f t/right, k ← {0, 1}κ for all k ∈ [κ].
Output

translate :=

{
rle f t, k ⊕ lable f t, k rright, k ⊕ labright, k

randle f t, k randright, k

}
k∈[κ]

– Let l be the i highest order bits of L. Then add the following entries to the
file BookKeeping for all k ∈ [κ]:
• r̂i+1, 2l, k{τ} = rle f t, k

• r̂i+1, 2l+1, k{τ} = rright, k

GenWrite(τ, i, L)

– Let l be the i highest order bits of L. Look through BookKeeping to find
entries r̂i+1, 2l, k{p} and r̂i+1, 2l+1, k{p} such that p > τ and pick smallest
such p if it exists.

– If such a p exists, set αle f t, k = r̂i+1, 2l, k{p} and αright, k = r̂i+1, 2l+1, k{p};
else set αle f t, k ← {0, 1}κ and αright, k ← {0, 1}κ for all k ∈ [κ].

– Output (L, (αle f t, k, αright, k)).

Fig. 3. Subprotocols for REE.Enc

• translate ← GenTranslate(j, k, Lj, lab j,k,read
) where j and k are

chosen as follows:If i = d − 1, set j = τ + 1, k = 0; other-
wise, set j = τ, k = i + 1. The descriptions of GenWrite and
GenTranslate are given in Figure 3.

• If τ = 0, i = 0, then C̃τ,i ← GSim(1κ , Ctag, labinp, output); oth-
erwise C̃τ,i ← GSim(1κ , Ctag, labτ,i, output) where Ctag and y
are chosen based on τ and i as per table 1.

3. Set P̃ := {Cτ,i for τ ∈ [t], i ∈ [d]}.
4. Generate garbled memory P̃: For all i ∈ [d + 1]− {0}, j ∈ [2i], k ∈ [κ],

find the smallest entry r̂i,j,k{τ} in BookKeeping such that τ > 0.
– If such an entry exists, set r̂i,j,k := r̂i,j,k{τ}; Else sample a uniformly

random r̂i,j,k ← {0, 1}κ .
– Set Dj,k := {r̂d,j,k for j ∈ [2d], k ∈ [κ]}.

5. Set D̃ := {r̂i,j,k for all i ∈ [d] − {0}, j ∈ [2i], k ∈ [κ], Dj,k for j ∈
[2d], k ∈ [κ]}.

6. Output ciphertext c = (P̃, D̃).
Decryption. Given ciphertext c = (P̃, D̃) and key k = (translateinp, labaux

),
evaluate the simulated garbled RAM program P̃ with the key k using
GRAM.EvalD̃(P̃, k) and output the result.

16 L. Bangalore et. al.

Simulating ciphertexts. Let n = (|aux|+ |read|). REE.SimTrap(1κ , 1n; rtd) sam-

ples 2n keys using l̂ab
j,0

and l̂ab
j,1

for 1 ≤ j ≤ n using GenCPA(1κ) and

outputs td = (l̂ab
aux

, l̂ab
read

) = (l̂ab
1,0

, l̂ab
1,1

, . . . , l̂ab
n,0

, l̂ab
n,1

).
REE.SimEnc on input (P, td; rSim) computes ceq as follows:
1. Set (P̃, root)← GRAM.Prog(1κ , 1log m, 1t, P, td)
2. Set D̃ ← GRAM.Data(1κ ,D)
3. Finally, output ceq = (P̃, D̃).

Equivocation. REE.Equiv on input (x, td) uses the trapdoor td = (l̂ab
aux

, l̂ab
read

)
to compute the key keq = GRAM.Inp(1κ , x, td, root).

Randomness sampling. REE.Adapt on input (P, D, td, rSim, x) needs to gen-
erate a random string req so that REE.Enckeq(params, PD(x); req) = ceq =

(P̃, D̃). To generate req, it proceeds as follows:

1. Let P̃ = (C̃1, . . . , C̃t) and (l̂ab
1
, . . . , l̂ab

t
) denote the input labels which

are determined while generating the RAM program using GRAM.Prog.
Also, let (x1, . . . , xt) denote the inputs corresponding to the circuits
and are determined while evaluating PD(x).

2. rP = (oSamp(1κ , k1, x1), . . . , oSamp(1κ , kt, xt))
3. rD = {r̂i,j ∀i ∈ [d], j ∈ [2i]}
4. For each circuit C̃τ,i−1, let the translateτ,i−1 be:

{
Fri−1,bj/2c(le f t, k, 0)⊕ lable f t,k,0 Fri−1,bj/2c(right, k, 0)⊕ labright,k,0

Fri−1,bj/2c(le f t, k, 1)⊕ lable f t,k,1 Fri−1,bj/2c(right, k, 1)⊕ labright,k,1

}
k∈[κ]

The translate given above is used to read the labels for nodes (ri,j,k, ri,j+1,k)
and is revealed as:

rτ,i−1
translate =

{
rle f t,k ⊕ lable f t,k rright,k ⊕ labright,k

randle f t,k randright,k

}
k∈[κ]

where rle f t,k = Fri−1,bj/2c(le f t, k, ri,j,k) (corresponds to the active row)
and randle f t,k = Fri−1,bj/2c(le f t, k, 1⊕ ri,j,k) ⊕ lable f t,k,1. Similarly, rright,k

and randright,k are defined.
5. For each circuit Cτ,i, let the write be:

writeτ,i = (Fri−1,bj/2c(le f t, k, ri,j,k), Fri−1,bj/2c(right, k, ri,j+1,k))

be revealed as

rτ,i
write = (rle f t,k, rright,k)

6. Let rtranslate = {rτ,i
translate | ∀τ ∈ [t], i ∈ [d]} and rwrite = {rτ,i

write | ∀τ ∈
[t], i ∈ [d]}

7. Output req = (rP, rD, rtranslate, rwrite).

Adaptively Secure Computation for RAM Programs 17

Theorem 5. Assuming the encryption scheme is CPA-secure, REE comprising of
(Gen,Enc,Dec,SimTrap,SimEnc,Equiv,Adapt) is a RAM-efficient Equivocal Encryp-
tion scheme with Õ(T + M + n) decryption time complexity and Õ(T + M + n) ci-
phertext size where T, M and n are the running time, memory size and input size of
the RAM program P respectively.

The proof of this theorem is similar to proof of security of the Garbled
RAM from [17] and is given in the full version of our paper.

4 Equivocal Garbled RAM

In this section we discuss how to construct an equivocal garbled RAM by ex-
tending [9]’s framework to RAM programs. Roughly speaking, to equivocate
RAM programs, we use REE instead of FEE to encrypt the rows of the garbled
gates. The garbled RAM construction of [16] primarily involves “communicat-
ing” garbled circuits. So the problem of obtaining an equivocal garbled RAM
can be reduced to adaptively garbling each of the sub-circuits. In this section,
we focus on how to garble the sub-circuits using REE with equivocation. We
first define an equivocal garbling scheme for RAM programs and then give an
overview of the [16] construction.

Definition 1 (Equivocal garbling scheme for RAM programs). We say that
GRAM comprising of (Data, Prog, Inp, Eval) is an equivocal garbling scheme for
RAM programs, if the following properties hold:

– Correctness: For any RAM program P, Data D and input to the RAM program
x we require the following to hold:

Pr[r ← {0, 1}|r| ; K ← Gen(1λ); D̃, root← GRAM.Data(1κ , D), P̃← GRAM.Prog
(1κ , K, P, root; r); {x̃} ← GRAM.Inp(1κ , K, x) :

GRAM.Eval(P̃, D̃, x̃) = PD(x)] > 1− negl(λ);

– Security: There exists a pair of PPT algorithm (Sim1,Sim2), such that any PPT
adversary A wins the following game with at most negligible advantage:
1. A gives a RAM program P, memory D and an input x to the challenger;
2. The challenger flips a bit b.

If b = 0:
• It chooses random garbling key K and randomness r;
• It sets (D̃, root← GRAM.Data(1κ , D), P̃← GRAM.Prog(1κ , K, P, root; r),
{x̃} ← GRAM.Inp(1κ , K, x);

• It sends P̃, D̃, x̃, K, r to the adversary.
If b = 1:
• It sets y = PD(x);
• It runs the simulator (P̃, D̃, x̃, state)← Sim1(P, D, y)
• It runs the simulator (Keq, req)← Sim2(state, x)
• It sends P̃, D̃, x̃, Keq, req to the adversary.

3. The adversary outputs a bit b′.
The adversary wins if b = b′.

18 L. Bangalore et. al.

Overview of [16] Garg et. al. [16] presented a black box approach to garble RAM
programs. Roughly, their construction represents the entire RAM program (in-
cluding the memory) as a set of circuits which are then garbled. Each circuit
communicate with the next circuit by outputting the input labels corresponding
to the next circuit. Looking ahead, the observation that all the garbled circuit
just output labels corresponding to the input of other garbled circuits in [16]
is crucial to the construction of our Equivocal RAM construction.

The mechanism for enabling memory access in [16] is to maintain the gar-
bled data as a tree of garbled circuits, known as memory circuits, that can com-
municate with the neighboring garbled circuits. This communication happens
when a garbled circuit outputs the appropriate input labels corresponding to
the garbled circuit it intends to communicate with. In order to read/write,
the garbled RAM program first passes the control to the root circuit of the
garbled database. Depending on the location to be read/written, control is
passed through a path of garbled circuits from the root to the leaf node that
stores the data that needs to read or written. The leaf garbled circuit, which
stores the data, passes control back to the RAM program along with labels
corresponding to the data. Over the course of the RAM computation, the con-
trol may be passed multiple times to the root garbled circuit, once for each
read/write. However, garbled circuits offer no security if they are used more
than once i.e., they are evaluated over multiple inputs. So, the root garbled cir-
cuit must be refreshed to maintain security. This refreshing of garbled circuits
needs to be done with care as it should maintain the property of each of the
circuit to communicate with its neighboring circuit. This results in the following
two main challenges: (i) the used garbled circuits must be replaced with fresh
ones and (ii) the garbled circuit must know the input labels of the circuit it
communicates with.

The first issue involves replacing the entire path of garbled circuits from
the root to the leaf node with fresh garbled circuits for every memory access.
A simple approach of replacing garbled circuits is as follows. If there were T
memory accesses overall, then let each node of the garbled tree can have T
garbled circuits such that the ith garbled circuit in any node can communicate
with the ith garbled circuit at the left and right child nodes. This approach will
work but comes at a prohibitively high cost, namely the garbled data size will
be O(TM). [16] observed that in this solution most of the garbled circuits are
not used, especially at layers closer to the leaf nodes. All the T circuits at the
root node are used up because the root is accessed for each of the T steps.
But at the next layer there are 2T garbled circuit of which only T are used. If
we assume memory accesses form a uniform distribution, then each of the left
and right children in the first layer would use T/2 garbled circuits on average
and each node in the second layer would use T/4 garbled circuits on average
and so on. The reduction in the number of circuits in the subsequent number
of layers needs to be done carefully taking into consideration that the number
of circuits used can deviate from the expectation. By carefully bounding the
number of garbled circuits at each node in every level one can ensure that

Adaptively Secure Computation for RAM Programs 19

the probability with which the circuits at these nodes will be over-consumed
is negligible while still being efficient. [16] shows that the number of garbled
circuits reduces from O(MT) to O(M).

The second issue is to allow a garbled circuits to communicate with “next”
garbled circuit within this tree structure of garbled data. In slightly more de-
tail, the garbled data is represented as a tree with each node comprising of a
sequence of garbled circuits. A garbled circuit at any node can communicate
with (i) its successor i.e. the garbled circuit that is next in sequence at that
node, and (ii) its children (more specifically, a window of κ garbled circuits in
each of the left and right child nodes). Enabling this communication between
garbled circuits is one of the key aspects of the GRAM.Data algorithm. Suppose
a garbled circuit CA needs to communicate with another garbled circuit CB,
then CA needs to output the input labels for CB. CA can either have the input
labels of CB passed as input to it or hard-coded within it. The key aspect of the
GRAM.Data is to ensure that the garbled circuits have the appropriate labels
to be able to communicate with other circuits. Now we look at the two main
types of circuits present in the tree, one corresponding to the internal nodes
and the other to the leaf nodes of the tree, which we briefly describe below.

Internal nodes. Each internal node of the tree is associated with a sequence of
circuits, each of which are denoted by Cnode. These circuits help in navigat-
ing control from the root to the leaf node which ultimately enables reading
from or writing to memory. Any given circuit can pass control to (1) the next
circuit at the same node, (2) one of the circuits located in its left child node
or (3) a circuit located in its right child node. The circuits need to know the
input labels of the circuits to which control is passed. So, each Cnode circuit
has input labels, corresponding to the three types of circuits mentioned above,
hardcoded within it. This elaborate set of connections between the circuits is
needed to refresh the circuits as and when they are used up.

Leaf nodes. The sub-circuits associated with the leaf nodes, say Clea f , enable
reading and writing of data into memory. Each leaf node comprises of a se-
quence of garbled circuits, similar to the internal nodes. The data is stored in
these circuits by continually receiving it as input from its predecessor. When
the data needs to be read, the Clea f outputs the labels corresponding to data
that are later fed into the CPU step circuit. In addition to outputting the input
labels for CPU step circuit, it also passes on the data labels as input to the
next Clea f sub-circuit in the sequence. To write data into memory, the labels
corresponding to the new data are passed as inputs to its successor.

Garbled Program. Garbling a RAM program P essentially involves garbling
sub-circuits that carry out CPU computations at every time step. Each of these
garbled step circuits outputs the labels for the new CPU state and the memory
access information. The new CPU state is fed as input to the next step circuit.
The memory access information comprises of labels of (1) the root circuit of
the garbled data, (2) the location to read/write and (3) the data to be written.

20 L. Bangalore et. al.

The labels for the root circuit enable passing control from the root to the leaf
nodes of the tree of circuits. The leaf nodes store the labels corresponding to
the data to be read, which is passed as input to the next step circuit. Thus, the
next step circuit receives the labels corresponding to the data as well as the
CPU state, which are enough to proceed to the next time step.

Equivocating GRAM. At a high-level, we garble circuits output by the [16] con-
struction using the equivocal garbling scheme of [9] where the underlying
encryption scheme is instantiated with an REE (as opposed to an FEE). We
provide the details of our construction and a proof sketch below.

4.1 Our Construction

We now present our equivocal garbled RAM construction.

Conventions. Consider a RAM program P with memory D and inputs x with
running time T. Let n = |x|. We denote the output of the RAM program
by PD(x). We use [16] construction to garble the RAM program and let the
garbled versions of these programs be denoted by P̃, D̃, x̃.The garbled program
and data comprise of three main sub-circuits: Cstep, Cnode and Clea f . For the rest
of this section, we show how to garble C which could potentially be any of the
sub-circuits. Let κ be the security parameter. For any wire w in gate g, let k0

w, k1
w

be the λ-bit labels associated with the wires where λ = nκ + 1 and bitw be the
actual bit assigned to w during PD(x). We consider some gate g with input
wires α, β and output wire γ. We also assume without loss of generality that
all gates are fan-in two gates.

Garbling Data and Program. GRAM.Data(1κ , m) outputs the garbled data (D̃, root)
and GRAM.Prog (1κ , 1log m, P, root) outputs (P̃, sin). At a high-level, we follow
the garbled RAM construction of [16] to generate P̃ and D̃ with two key tech-
nical differences. First, we use an approach similar to equivocal garbling [8]
to garble the sub-circuits instead of Yao’s Garbling [30]. Secondly, the encryp-
tion scheme used to garble the gates is REE instead of FEE used [8] or regular
CPA-secure encryption scheme used in Yao’s construction.

Recall that the GRAM.Data and GRAM.Prog comprises of garbled circuits
communicating with other garbled circuits. So we show how to garble the
sub-circuits used in P̃ and D̃. Let C be some sub-circuit with n′-bit input string
xsub. We denote by m = n + gates(C) the total number of wires in C where
gates with fan-out more than 1 are counted only once.

We first generate two labels (k0
w, k1

w) for every wire w in C using REE.Gen
and then the garbler generates the following 4 pairs of ciphertexts for each
gate g:

c00
g,left = REE.Enck0

α
(s00

g,left), c00
g,right = REE.Enck0

β
(s00

g,right),

c01
g,left = REE.Enck0

α
(s01

g,left), c01
g,right = REE.Enck1

β
(s01

g,right),

Adaptively Secure Computation for RAM Programs 21

c10
g,left = REE.Enck1

α
(s10

g,left), c10
g,right = REE.Enck0

β
(s10

g,right),

c11
g,left = REE.Enck1

α
(s00

g,left), c11
g,right = REE.Enck1

β
(s11

g,right),

Garbling Inputs. GRAM.Inp(1κ , x, sin, s) outputs x̃ which are the labels corre-
sponding to the input x.

Garbled Evaluation. GRAM.Eval(P̃, D̃, x̃) evaluated the garbled program and out-
puts P̃D̃(x̃). This function is similar to [16] except that REE.Dec is used to de-
crypt the garbled gates.

Simulation. The simulation has two main parts: (i) simulating the garbled pro-
gram P̃, garbled data D̃ and garbled inputs x̃ such that P̃D̃(x) = PD(x) and (i)
simulating the internal randomness consistent with the revealed inputs.

Simulation of Garbled Program, Garbled Data and Garbled Input. The first step of
the simulator is to run ORAM.Sim1(T, m) and obtain the sequence of mem-
ory accesses

−→
M. Similar to the real garbling, it’s enough to focus on how to

simulate each of the garbled sub-circuits, say C, of P̃ and D̃. For each wire
w in C, the simulator chooses nκ-bit REE keys, random bit Λw and an REE
trapdoor tdw ← REE.SimTrap(1κ , n). The simulated garbled gate is computed
using REE.Enc and REE.SimEnc as shown in table 3. Note that each RAM pro-
gram PCtype,g used in REE.SimEnc has P, Ctype, g, kγ, tdγ, Λγ,

−→
M, τ, m hardcoded

within its description, where γ is an output wire of g.

Row number Left ciphertext REE Right ciphertext REE

(Λα, Λβ) Enckα
(s

Λα ,Λβ

g,left) Enckβ
(s

Λα ,Λβ

g,right)

(Λα, 1⊕Λβ) Enckα
(s

Λα ,1⊕Λβ

g,left) SimEnc(PDin
in [prms, s

Λα ,1⊕Λβ

g,left])

(1⊕Λα, Λβ) SimEnc(PDin
in [prms, s

1⊕Λα ,Λβ

g,right]) Enckβ
(s

1⊕Λα ,Λβ

g,right)

(1⊕Λα, 1⊕Λβ) SimEnc(Const[prms, s
1⊕Λα ,1⊕Λβ

g,left]) SimEnc(PDin
in [prms, s

1⊕Λα ,1⊕Λβ

g,left])

Table 2. Garbled gate g generated by the simulator.

The simulator orders 4 rows of each garbled gate as per (Λα, Λβ) and
outputs the 8 ciphertexts. Lastly, the garbled input comprising of the labels
(k1, . . . , kn) corresponding to the input x (which are the active labels) are out-
put by the simulator.

Simulation of the internal state of the garbler. To simulate the internal state of the
garbled, we need to present the two main components: (i) the inactive keys
k̂w for each wire w and (ii) randomness used to generate P̃, D̃ and x̃ and is

22 L. Bangalore et. al.

consistent with the input. We start by focusing on obtaining the internal sate
for the garbled sub-circuits used with the P̃. This approach can be applied to
all the sub-circuits in order to obtain the internal state of the garbler.

Given the input x and data D, the modified input for the program Pin is
x||D. The inactive keys are chosen as k̂w for each wire w. It generates these
keys by running k̂w ← REE.Equiv(tdw; x̂) for each wire w. Now the garbling of
Pin looks like the real garbling with keys kα, k̂α, kβ, k̂β where kα, kβ are active

for the computation PDin
in (x̂).

The second component of the internal state is to present the randomness
used in the garbling which is essentially the randomness used to encrypt the
ciphertexts in each of the garbled gates. The simulator presents all the ran-
domness used for encryption, a pair of keys per gate as internal state of the
garbler and 8 secret shares ciphertexts per garbled gate.

Theorem 6. Assuming the existence of RAM-efficient equivocal encryption, GRAM
comprising of (Data, Prog, Inp, Eval) is a Equivocal Garbled RAM scheme with a
garbled database size of Õ((M + n + T) ·M), garbled input size of Õ((M + n) · n),
garbled program size and evaluation time of Õ((M + n + T) · T), where T, M and n
are the running time, memory size and input size of the RAM program P respectively.

Proof Sketch. The correctness of our Equivocal garbled RAM follows from the
correctness of the Garbled RAM construction of [16] along with the correctness
of the underlying REE. By induction, at each step, the evaluator gets the correct
key kbitγ

γ and the correct pointer Λγ for the next gate’s row.

Description of Hybrids. We define a sequence of hybrids H0, Horam
0 , H1, ..., Ht,

Ht+1. The first hybrid H0 corresponds to the real execution and the hybrid
Ht+1 to simulation. Further, we define m sub-hybrids between each Hi and
Hi+1 where i ∈ {1, ..., t − 1}: Hsubcirc

i,1 , ..., Hsubcirc
i,m where Hsubcirc

i,m switches the

key kbitm−i
m−i from real to simulated. Here the wires are sorted according to the

topological order of the circuit, i.e. that output wires of each gate have larger
index than both input wires of that gate (note that our notation 1, . . . , n for
input wires and m for an output wire is consistent with topological order).
The descriptions of these hybrids are provided below.

Hybrid Horam
0 . In this hybrid we change how the permutation of ciphertexts

is generated, without changing the distribution of the hybrid. Instead of
generating the memory access sequence by evaluating the program PD(x),
we generate it using the ORAM simulator Sim1 . The garbled P̃, D̃, x̃ are
generated as follows:

1. Generate the memory access
−→
M ← ORAM.Sim1(T, m).

2. Compute the randomness roram ← ORAM.Sim2(
−→
M)

3. Compute Poram ← ORAM.Prog(P, roram) and garbled data Doram ←
ORAM.Data(D)

Adaptively Secure Computation for RAM Programs 23

Description of Program Pin[prms, mask] and Memory Din

Constants: P, kγ, tdγ, Λγ,
−→
M, τ, m, prms = {τ, Ctype, g, bα ⊕Λα, bβ ⊕Λβ}

Input: xin
Description of Din. Initialize Din to be an empty database of size |D|.
Description of Pin. The description of Pin follows.

1. Modify the program P to first write the input x into memory Din and then
proceed with the logic of P.

2. Run ORAM.Sim2[
−→
M, P](D, xin) and write the output req onto the random

tape of the RAM program.
3. Run the compiler ORAM.Prog with input P and randomness req. Let the

resulting program be referred to as P′.
4. For every time step τ ∈ T, the bit assignments bitα, bitβ of input wires α, β

of gate g are inferred depending on the type of circuit this gate belongs to:
Cases Clea f and Cstep: Evaluate the program P′ using memory Din with

some input to compute the bit assignments corresponding to the in-
puts of Clea f and Cstep circuits. Then the bit assignments of the gate g
within these circuits can be computed using the inputs.

Case Cnode: The bit assignments of all the inputs to Cnode have already
been computed and hence the bits corresponding to gate g can be
computed from the inputs without having to evaluate the program P′

using memory Din with some input.
5. Generate k̂γ ← REE.Equiv(tdγ, x). If g(bitα, bitβ) = g(bα ⊕ bitα, bβ ⊕ bitβ)

then output kγ ⊕mask. Else output k̂γ ⊕mask.

Description of Program Const[const]

The program is padded to the size of programs Pin with memory Din and is
the RAM program that outputs the constant const.

Fig. 4. RAM programs and memory used in REE simulation

4. Lastly, compute P̃← GRAM.Prog(Poram), D̃ ← GRAM.Data(Doram) and
x̃ ← GRAM.Inp(x)

The hybrid Horam
0 has a distribution similar to he real execution.

Hybrid Hi for i = 1, ..., t. Let the sequence of circuits evaluated during the ex-
ecution of GRAM.Eval(P̃, D̃, x̃) be C1, ..., Ct. In hybrid Hi, the first i circuits
are simulated and the rest are generated as per the real execution. More
specifically, this hybrid is computed as follows: simulate the first i circuits
in the reverse order i.e. Ci, ..., C1. This sequence of hybrids are identical to
the ones considered in [16]. The main observation from [16] is that in Hy-
brid Hi, we can replace the real garbling of the ith circuit with a simulated
one as the input labels of the ith circuit have been decoupled from the rest
of the outputs. We will pursue the same approach with the exception that

24 L. Bangalore et. al.

our real and simulated garbling schemes are according to the equivocal
garbling procedure [9] with REE encryption.
We consider a sequence of sub-hybrids following [9] between the hybrids
Hi and Hi+1 for i = 1, ..., t− 1. The indistinguishability follows essentially
as in [9], we present the hybrids explicitly rather than defining an equivocal
garbling scheme instantiated with the REE.
Sub-Hybrid Hsubcirc

i,j for j = 1, ..., m. In this hybrid, the aim is to replace the
wires in real garbled circuit Ci+1 with simulated garbled circuits iden-
tical to the hybrids defined in [8] with the difference that REE is used
instead of FEE. The real keys k j corresponding to the jth wire in circuit
Ci+1 are replaced with simulated keys. The ciphertexts corresponding
to the simulated labels K̂j are also re simulating the ciphertext gen-
erated using these simulated keys. In this hybrid we convert the real

labels k
1⊕bitj
j to simulated labels. We essentially replace all the invoca-

tions to FEE functions with that of REE function in the hybrids of [8].
The indistinguishability of sub-hybrids Hsubcirc

i,j and Hsubcirc
i,j+1 reduces to

the security of the underlying REE scheme which has already been
shown to be secure.

Hybrid Ht+1. In the previous hybrids Ht only the circuits executed during
GRAM.Eval(P̃, D̃, x̃) have been simulated so far. In this hybrid, those gar-
bled circuits that haven’t been evaluated will be considered. Note that
some of these garbled circuits that weren’t evaluated may contain labels
to a (proper) subset of the input wires (i.e. partial inputs). These circuits
can be topological ordered such that the outputs any circuit only goes as
input to the subsequent circuits in the ordering and simulated in the re-
verse topological ordering.

4.2 Putting it together

We can essentially use an equivocal garbled RAM scheme in the standard Yao
protocol assuming the existence of an adaptively secure oblivious-transfer pro-
tocol. The only difference from the standard construction is that we need to
rely on the OT-functionality as a communication channel to transmit the gar-
bled circuit and garbled inputs (of the the garbler). Another way of achieving
this is to additionally assume a non-committing encryption (NCE) scheme and
transmitting the data using NCE. We obtain the following theorem.

Theorem 7. Let f be a two-party functionality expressed via a RAM program π.
Assume the existence of a bit-decomposable equivocal garbled RAM scheme and the
existence of a 2-round oblivious-transfer protocol secure against passive corruption by
an adaptive adversary. Then there exists a 2-round 2-party protocol secure against
passive corruption by an adaptive adversary where the communication complexity is
Õ(T2 + n) where n is the sum of the input size of the two parties to f and T is the
upper bound of the running time of π. Here Õ(·) ignores poly(log T, log n, κ) factors
where κ is the (computational) security parameter.

Adaptively Secure Computation for RAM Programs 25

5 Adaptive Zero-Knowledge for RAM

In this section, we describe a simple construction of a UC zero-knowledge
proof system for relations expressed as RAM computation. We build it from
UC commitments and garbled RAM with a certain property which we call
splitability We note that our construction also naturally works for circuits. We
show that the GRAM construction of [17] is splitable in the full version.

Our proof system is RAM-efficient, meaning that its computation and com-
munication complexity is only proportional to Õ(T). We then use the standard
transformations [21,7] to compile any protocol from active to passive security.
In particular, our protocol from theorem 7 results in an active protocol with
computation and communication complexity Õ(T2).

Theorem 8 (Adaptive ZK for RAM). Assume the existence of a UC-secure com-
mitment scheme secure against adaptive adversary, and the existence of static splitable
garbled RAM. Then there exists a zero-knowledge proof of knowledge proof system
secure against active corruption by an adaptive adversary where the communication
complexity is Õ(T2 + n) where n is the sum of the length of the statement and the
witness, and T is the upper bound of the running time of the relation Rx. Here Õ(·)
ignores poly(log T, log n, κ) factors where κ is the (computational) security parameter.

Theorem 9 (Adaptive, active 2PC for RAM). Let f be a two-party functionality
expressed via a RAM program π. Assume the existence of a bit-decomposable equivocal
garbled RAM scheme, the existence of a UC-secure 2-round oblivious-transfer protocol
secure against active corruption by an adaptive adversary, the existence of adaptive
UC-secure commitment scheme, and the existence of static splitable garbled RAM.
Then there exists a 2-party protocol secure against active corruption by an adaptive
adversary where the communication complexity is Õ(T2 + n) where n is the sum of
the input size of the two parties to f and T is the upper bound of the running time
of π. Here Õ(·) ignores poly(log T, log n, κ) factors where κ is the (computational)
security parameter.

5.1 Splitable Garbling

The property of splitability can be defined both for garbled circuits and gar-
bled RAM. For simplicity, we first informally describe it for circuits, but later
give a formal definition for RAM programs (since this is what we use in the
protocol); the differences are only syntactic.

Let C, x be a circuit and its input. Intuitively, splitability says that the “gar-
bling information” G - i.e. garbled circuit and all labels - can be split into active
part Ga and inactive part Gi, with the property that Ga is enough to learn the
output C(x). Further, we require that the garbling can be generated in different
order: that is, one can either generate the full garbling information G and later,
given x, compute Ga; or, one can generate Ga, without knowing x (only C(x)),
and later complete it to full G, once w is given. We note that we require that
the latter method generates the correct distribution of G and Ga (not merely

26 L. Bangalore et. al.

an indistinguishable one). Next, we require verifiability: given G, it should be
possible to determine which circuit (or, RAM program) it evaluates. Finally,
we require input extractability: given G and Ga corresponding to input x, it
should be possible to extract x in polynomial time.

For ease of exposition of our protocol, we also require that G = Ga ∪ Gi

can be further split into
{

Ga
j
}

,
{

Gi
j
}

, such that, when they are shuffled, they
jointly don’t leak any information about the computation of C on x.

Syntax of splitable garbled RAM. For simplicity we assume that the memory D
of the computation is empty (but there is still an input x). This will be sufficient
for our ZK protocol.

– G ← GRAM.Full(P; rGen) computes the full garbling information G;
– {Ga, I} ← GRAM.Project(G, x) computes an active part Ga for computa-

tion P(x), and a set of indices I such that Ga is a subset of G corresponding
to positions I, i.e. Ga = GI .

– {Ga, state, I} ← GRAM.Active(P, y) computes an active part Ga for pro-
gram P and its output y, together with positions I.

– {G, rGen} ← GRAM.Complete(Ga, x, state) computes the full garbling in-
formation G and proper generation randomness rGen, such that Ga is con-
sistent with x.

– y← GRAM.Eval(Ga) computes the output y (supposedly equal to P(x));
– {acc, rej} ← GRAM.Veri f y(G, P) verifies whether G is a garbled RAM for

the program P with empty memory;
– x ← GRAM.Extract(G, Ga) outputs x such that P(x) = GRAM.Eval(Ga).
– GRAM.Perm(G) outputs a permuted description of G, such that revealing

the location of Ga doesn’t leak any information beyond P(x).

Now we list the required properties:

– Correctness: For all P and x,

Pr[y 6= P(x) : rGen ← {0, 1}|rGen| , G ← GRAM.Full(P; rGen),

Ga ← GRAM.Project(G, x), y← GRAM.Eval(Ga)] ≤ negl(κ)
– Alternative generation: For any x, P, and y = P(x), the following distri-

butions are the same:

{(G, Ga, rGen, I) : rGen ← {0, 1}|rGen| , G ← GRAM.Full(P; rGen),

{Ga, I} ← GRAM.Project(G, x)} and

{(G, Ga, rGen, I) : {Ga, I, state} ← GRAM.Active(P, y),

{G, rGen} ← GRAM.Complete(Ga, x, state)}.
– Verifiability and Extractability: For any P, any x, any string G and any

substring Ga = GI (for some set I), if GRAM.Eval(Ga) = y 6= ⊥, GRAM.
Veri f y(G, P) = acc, and x′ ← GRAM.Extract(G, Ga), then P(x′) = y.
Naturally, we require that GRAM.Veri f y(G, P) = acc for honestly gener-
ated G.

Adaptively Secure Computation for RAM Programs 27

The adaptive UC zero-knowledge protocol

Prover’s input: statement x and the corresponding relation Rx; witness w.
Verifier’s input: statement x and the corresponding relation Rx.
The protocol:

1. The prover chooses random rGen ← {0, 1}|rGen| and computes the splitable
garbling of the relation Rx: G = GRAM.Full(Rx; rGen). Then it computes
Ga, I ← GRAM.Project(G, w) and sets Gi = G \ Ga.
The prover sends the verifier N UC commitments, where the committed
value in commitment j is Perm(G)j.

2. The verifier sends a random bit b to the prover.
3. If b = 0, the prover sends G together with decommitment information

for all commitments to the verifier. If b = 1, the prover sends Ga together
with decommitment information for indices j ∈ I (which correspond to
committed Ga) to the verifier.

4. If b = 0, the verifier accepts iff GRAM.Veri f y(G, Rx) accepts and all de-
commitments verify. If b = 1, the verifier accepts iff GRAM.Eval(Ga) = 1
and the decommitments verify.

The simulation:

1. The simulator simulates N executions of the UC commitment.
2. If b = 0, the simulator generates G = GRAM.Full(Rx; rGen), computes

Perm(G), and equivocates each commitment j, j = 1, . . . , N, to Gj. It sets G
and all the decommitments to be the simulated message of the prover. If
b = 1, the simulator generates Ga, I ← GRAM.Active(Rx, 1), equivocates
commitments j ∈ I to Ga

j for each j, and sets Ga and the decommitment
information to be the simulated message of the prover.

3. Upon corruption of the prover, the simulator learns w such that
Rx(w) = 1. If b = 0, the simulator runs Ga, I ← GRAM.Project(G, w)
and sets Gi = G \ Ga. If b = 1, the simulator runs {G, rGen} ←
GRAM.Complete(Ga, w, state) It sets rGen, Ga, G, I, and the simulated coins
of the commitment schemes to be the simulated state of the prover.

Fig. 5. The adaptive UC zero-knowledge protocol

5.2 Our Adaptive UC ZK Protocol

Our protocol is described on Figure 5. Completeness follows from correctness
of the garbled RAM and correctness of UC commitment. We now explain why
proof of knowledge and zero-knowledge properties hold.

Proof sketch. Intuitively, proof of knowledge (and soundness against unbounded
provers) follows from extractability of splitable garbling and binding property
of commitments. Let P be a prover which causes an honest verifier to accept
with non-negligible probability. Consider an extractor which runs P till the end
with verifier message 0, then rewinds P and runs it with verifier message 1. As

28 L. Bangalore et. al.

a result, the extractor obtains G, Ga, and the decommitment information for
both values, such that all decommitments verify, GRAM.Veri f y(G, Rx) = acc,
and GRAM.Eval(Ga) = 1.

The extractor computes w′ = GRAM.Extract(G, Ga). By the binding prop-
erty of commitments, it follows that Ga = GI for some set I. It then fol-
lows from extractability and from the fact that GRAM.Veri f y(G, P) = acc,
GRAM.Eval(Ga) = 1, Rx(w′) = 1.

To prove adaptive security, we need to simulate the protocol for an ad-
versary which can adaptively corrupt potentially both parties (simulator de-
scribed in Figure 5). Since the verifier is public-coin, it is enough to simu-
late the case where the adversary first lets the protocol finish and then cor-
rupts the prover. Note that simulatability of this case immediately implies
zero-knowledge, since the simulator doesn’t have access to the witness when
simulating the transcript. We argue that the simulation is computationally in-
distinguishable from the real execution.

– If b = 0, the simulator generates G and Ga honestly. The only difference
between simulation and the real execution is that commitments are simu-
lated and later equivocated to G. Indistinguishability follows immediately
from the hiding property of commitments.

– If b = 1, the simulator uses alternative generation to generate Ga and later
complete it to G. Recall that G, Ga, generated in this way, are required to be
distributed correctly. Thus, the only difference between simulation and the
real execution is that commitments are simulated and later equivocated to
G. Indistinguishability follows from the hiding property of commitments.

6 Acknowledgments

Work of Rafail Ostrovsky was supported by NSF award #2001096, US-Israel
BSF grant 2015782, a Google Faculty Award, a JP Morgan Faculty Award, an
IBM Faculty Research Award, a Xerox Faculty Research Award, an OKAWA
Foundation Research Award, a B. John Garrick Foundation Award, a Teradata
Research Award, a Lockheed-Martin Research Award, and the Sunday Group.

References

1. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applications
to one-time programs and secure outsourcing. In: Advances in Cryptology - ASI-
ACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceed-
ings. pp. 134–153 (2012)

2. Benhamouda, F., Lin, H., Polychroniadou, A., Venkitasubramaniam, M.: Two-round
adaptively secure multiparty computation from standard assumptions. In: Beimel,
A., Dziembowski, S. (eds.) Theory of Cryptography - 16th International Conference,
TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 11239, pp. 175–205. Springer (2018)

Adaptively Secure Computation for RAM Programs 29

3. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings. pp. 266–284 (2012)

4. Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Advances in Cryptology - CRYPTO 2014 -
34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II. pp. 146–163 (2014)

5. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party com-
putation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 639–
648 (1996)

6. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computa-
tion from indistinguishability obfuscation. In: Theory of Cryptography - 12th The-
ory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II. pp. 557–585 (2015)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC. pp. 494–503 (2002)

8. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Better two-round adaptive
multiparty computation. IACR Cryptology ePrint Archive 2016, 614 (2016), http:
//eprint.iacr.org/2016/614

9. Canetti, R., Poburinnaya, O., Venkitasubramaniam, M.: Equivocating yao: constant-
round adaptively secure multiparty computation in the plain model. In: Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. pp. 497–509 (2017)

10. Chung, K.M., Pass, R.: A simple oram. Tech. rep., CORNELL UNIV ITHACA NY
(2013)

11. Cohen, R., Peikert, C.: On adaptively secure multiparty computation with a short
CRS. In: Security and Cryptography for Networks - 10th International Conference,
SCN 2016, Amalfi, Italy, August 31 - September 2, 2016, Proceedings. pp. 129–146

(2016)
12. Cohen, R., shelat, A., Wichs, D.: Adaptively secure MPC with sublinear communi-

cation complexity. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 11693, pp. 30–60. Springer (2019)

13. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. Journal of
Computer and System Sciences 7(4), 354–375 (1973)

14. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multi-party computation in constant rounds. In: Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part II. pp. 557–585 (2015)

15. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation in
constant rounds. In: Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I. pp.
491–520 (2016)

16. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled ram. Cryptology ePrint Archive,
Report 2015/307 (2015), https://eprint.iacr.org/2015/307

17. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled ram from one-way functions.
Cryptology ePrint Archive, Report 2014/941 (2014), https://eprint.iacr.org/
2014/941

http://eprint.iacr.org/2016/614
http://eprint.iacr.org/2016/614
https://eprint.iacr.org/2015/307
https://eprint.iacr.org/2014/941
https://eprint.iacr.org/2014/941

30 L. Bangalore et. al.

18. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Theory of Cryptography - 12th Theory of Cryptogra-
phy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II. pp. 557–585 (2015)

19. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest ma-
jority. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7417, pp. 105–123.
Springer (2012)

20. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM
revisited. In: Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. pp. 405–422 (2014)

21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC. pp. 218–229 (1987)

22. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC (2011)

23. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computa-
tion. To Appear in CRYPTO 2016 2016, 74 (2016)

24. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation in
the RAM model. In: Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I. pp.
521–553 (2016)

25. Ishai, Y., Kumarasubramanian, A., Orlandi, C., Sahai, A.: On invertible sam-
pling and adaptive security. In: Abe, M. (ed.) Advances in Cryptology -
ASIACRYPT 2010 - 16th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Singapore, December 5-9,
2010. Proceedings. Lecture Notes in Computer Science, vol. 6477, pp. 466–482.
Springer (2010). https://doi.org/10.1007/978-3-642-17373-8 27, https://doi.org/
10.1007/978-3-642-17373-8_27

26. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: STOC (2011)

27. Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively secure
oblivious transfer. J. Cryptology 24(4), 761–799 (2011)

28. Lu, S., Ostrovsky, R.: How to garble RAM programs. In: Johansson, T., Nguyen,
P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7881, pp. 719–734. Springer (2013). https://doi.org/10.1007/978-3-642-38348-
9 42, https://doi.org/10.1007/978-3-642-38348-9_42

29. Pippenger, N., Fischer, M.J.: Relations among complexity measures. Journal of the
ACM (JACM) 26(2), 361–381 (1979)

30. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS. pp.
160–164 (1982)

31. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS. pp.
162–167 (1986)

https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-17373-8_27
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42

	Adaptively Secure Computation for RAM Programs

