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Abstract. In this paper, we provide several improvements over the ex-
isting differential-linear attacks on ChaCha. ChaCha is a stream cipher
which has 20 rounds. At CRYPTO 2020, Beierle et al. observed a differ-
ential in the 3.5-th round if the right pairs are chosen. They produced an
improved attack using this, but showed that to achieve a right pair, we
need 25 iterations on average. In this direction, we provide a technique to
find the right pairs with the help of listing. Also, we provide a strategical
improvement in PNB construction, modification of complexity calculation
and an alternative attack method using two input-output pairs. Using
these, we improve the time complexity, reducing it to 2221.95 from 2230.86

reported by Beierle et al. for 256 bit version of ChaCha. Also, after a
decade, we improve existing complexity (Shi et al: ICISC 2012) for a
6-round of 128 bit version of ChaCha by more than 11 million times
and produce the first-ever attack on 6.5-round ChaCha128 with time
complexity 2123.04.

Keywords: Stream cipher, ARX, ChaCha, Probabilistic Neutral Bits
(PNBs), Differential attack.

1 Introduction

Symmetric key cryptography is an essential element of communication networks
that protects data secrecy by using a secret key. Symmetric key cryptosystems
have the enormous performance advantage of symmetric primitives, such as tweak-
able block ciphers, stream ciphers, hash functions, or cryptographic permutations,
which is the primary reason for their widespread use. Surprisingly, the only way
to trust these ciphers is to run a continuous analysis that constantly updates the
security margin. With quantum computers on the horizon in the not-too-distant
future, the security of today’s ciphers has been called into doubt. While most of
the commonly used asymmetric primitives would be destroyed, doubling the key
size of symmetric constructions offers the same degree of security when searching
for keys exhaustively.
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The ARX based designs are of immense interest in cryptography. ARX stands
for Addition, Rotation, and XOR, which is a family of lightweight symmetric-key
algorithms that are primarily designed with elementary operations: Modular
addition (x� y), bitwise constant distance rotation (x ≪ n)and exclusive-OR
(XOR, x ⊕ y). Despite not having the best trade-off in hardware, inexplicit
security against the renowned linear and differential cryptanalytic tools [5,18],
the encryption developed by ARX has a good software efficiency with compact
implementation and fast performance in real life.

The concept of ARX is quite old and dates back to 1987 when the block cipher
FEAL [21] used it. ARX machinery is used for both block ciphers (e.g., TEA,
Speck) and stream ciphers (e.g., Salsa20, ChaCha). Hash functions and MAC
algorithms also utilise the ARX machinery. When applying differential/linear
attacks, the only nonlinear operation, viz. modular addition needs special atten-
tion in ARX. Although the linear and differential properties of modular addition
have already been studied [23,16,19], their extension up to the last round is not
very simple. As this design is very speedy, designers use many rounds to secure
it against linear and differential cryptanalysis.

Both Salsa [3] and ChaCha [4] are well-known symmetric stream ciphers based
on ARX machinery. These ciphers have attracted researchers for analysis as
well as various companies for commercial use [25]. Salsa with 12-rounds was put
forward by Bernstein in the year 2005 as a candidate for the eSTREAM [13]
project and was shortlisted among the four finalists in its software profile in
April 2007. Bernstein later in 2008 introduced ChaCha [4] as a Salsa variant,
which aims at speeding up the diffusion without slowing down encryption. The
changes from Salsa to ChaCha are designed to improve the diffusion per turn,
increasing resistance to differential cryptanalysis while preserving the time per
turn [4]. These designs have a total of 20 rounds. These ciphers also have reduced
round variants, of 12-rounds for example. Both these ciphers have 256-bit key
version and 128-bit key version. For ChaCha, we use the notation ChaCha256 and
ChaCha128 to denote the 256-bit key version and 128-bit key version respectively.

ChaCha encryption extends a 256-bit key to 64 bytes keystream. This cipher has
a more conservative design than the AES, and the community quickly gained trust
in the safety of the code. Unlike traditional stream ciphers, Salsa and ChaCha
both use Pseudo Random Functions (PRFs). Google replaced RC4 with ChaCha
in their encryption schemes. ChaCha is in one of the cipher suits of the new
TLS 1.3. Google has developed a specific encryption solution called Adiantum for
lower-cost entry-level handsets. According to Google [25], Adiantum enables it
to use the ChaCha stream cipher in a length-preserving mode that incorporates
ideas from AES-based proposals such as HCTR and HCH.

List of protocols and software that implement ChaCha are given in [24].

Previous Works: Since ChaCha is a variant of Salsa, we start with the first
cryptanalysis of Salsa in 2005. This attack was designed by Crowley [7], where he
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Cipher Rounds Time Data Memory Ref.

ChaCha128

2128 0 0 Brute-force attack
2107 230 0 [1]
2105 228 0 [20]

6 284.39 238.66 0 [our work]
281.58 243.59 0 [our work]

6.5 2123.04 266.94 231 [our work]

ChaCha256

2256 0 0 Brute-force attack
2248 227 0 [1]
2246.5 227 0 [20]
2238.9 296 296 [17]

7 2237.7 296 296 [6]
2235.22 - - [10]
2230.86 248.83 0 [2]
2221.95 290.20 247.31 [our work]

Table 1: Known full key recovery attacks.

cryptanalysed the 5-th round reduced version of Salsa using differential attack. He
received a reward from Bernstein for this attack. After that, a further improvement
was proposed in the next year by Fischer et al. [14], where they extended the
attack to the 6-th round.

In 2008 FSE, the same year in which ChaCha was proposed, Aumasson et al. [1]
introduced a concept called ‘Probabilistic Neutral Bits’(PNBs) to provide a vital
step in the cryptanalysis of both Salsa and ChaCha. Their idea used a meet-in-the-
middle approach, in which they identified a set of key bits that have less influence
over the position of the output difference at some middle round when we go back
from the final state. This idea has been explained in detail in Section 3.2. This
approach led to the first attack on 8-round Salsa256 and 7-round ChaCha256.
Also, they attacked the 7-round Salsa128 and 6-round ChaCha128. Most of the
attacks, hitherto on Salsa and ChaCha became dependent on the premise of
PNBs. Interestingly, for the next 13 years, even after several improvements in
the cryptanalysis, there is no increment of rounds in the attacks against both
the ciphers. Some further improvements have been proposed in this direction
by Shi et al. [20] using column chaining distinguisher (CCD) for both 128 and
256-bit version of the ciphers. In 2015, Maitra [17] provided the idea of chosen
IV cryptanalysis to provide a good improvement in the key recovery of both the
ciphers.

Another important contribution in this direction is by Choudhuri et al. [6], where
the single-bit distinguisher of a round was extended to a multiple bit distinguisher
of a few next rounds using the linear relation. This differential-linear approach
provided the first 6-round distinguisher for Salsa and 5-round distinguisher for
ChaCha. This contribution resulted in a massive improvement in the key recovery
complexity for smaller rounds. However, for higher rounds, it was not that
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effective. After this, Dey et al. [10] improved the set of probabilistic neutral bits
for those attacks and then in [12] they provided a theoretical justification of the
distinguisher of these ciphers.

Another significant step in this direction came in CRYPTO 2020, where Beierle
et al. [2] provided the first 3.5-th round single bit distinguisher for ChaCha. Using
this, they provided a partial key recovery of 36 bits for 6-round of ChaCha256
with complexity only 277 and improved the complexity for the 7-round ChaCha.
This distinguisher was also observed by Coutinho et al. [8] independently. Soon
after that, in Eurocrypt 2021, Coutinho et al. [9] provided a set of a few more
distinguishers for 3.5-th round and provided a further improvement using one
of the distinguishers. However, in recent work of [11] it is demonstrated that
the used distinguisher for the key recovery is incorrect, which makes the attack
invalid. This makes the result of [2] the best-known attack till date against
7-round ChaCha256, which has a complexity of 2230.86.

Our Contribution:

This paper significantly improves the existing differential-linear attacks on
ChaCha128 and ChaCha256. The contribution of this paper can be divided
into several parts.

At CRYPTO 2020, Beierle et al. [2] demonstrated that by minimizing the Ham-
ming weight of the difference matrix after the first round, we could observe a
good differential in the 3.5-th round. However, to achieve one right pair (X,X ′),
which would produce the minimum difference, we need an average of 25 iterations.
Also, this is applicable for 70% of the keys, and the other ones cannot produce a
proper pair. In this direction, we have two contributions.

First of all, we show that if we slightly modify (relax) the criteria of a suitable
pair and allow the Hamming weight to be up to 12 (instead of 10), any key can
form a right pair. Also, on average, 8.94 iterations are required to achieve one
such IV. We use this result to produce an attack on 6-round of ChaCha128.
Next, we show that we can decompose the key space of the input difference col-
umn into two subspaces and construct a memory based on one of these subspaces,
which would contain for each member of the list at least one IV with some unique
property. This would help to reduce the effort of the 25 iterations to achieve the
right pair.

Our third contribution is based on improving the PNBs. We provide a three-stage
strategy to get a good set of PNBs. Using this strategy in the attack of [9] which
achieved their result using 74 PNBs, we have been able to reach up to 79 PNBs to
get our best attack. Also, we applied this to produce the first attack on 6.5-round
of ChaCha128.

We revisit the complexity calculation formula given by Aumasson et al. [1],
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which has been followed afterwards by all the works using PNBs on ChaCha
and Salsa. We provide a modified formula that gives an accurate complexity.
We explain the scenario in which the previous formula is not applicable. We
apply the new formula in one of the attacks against 6-round of ChaCha128. We
also provide an alternative attack on the 6-round of ChaCha128, which is more
effective than the first one.

Coming to the improvements of the results in the existing attacks, we pro-
vide an improvement in 7-round of ChaCha256 by 28.91 in the time complexity
over the attack in [2]. We improve the 6-round of ChaCha128 attack by 219.44.
Also, we provide the first-ever attack on 6.5-round of ChaCha128. We provide
our attack complexities along with the previous attack complexities in Table 1.
Overall, for ChaCha256 with 7 rounds, our attack is as follows: Given an encryp-
tion device with a 256 bit secret key, we run it on 290.20 different initial vectors,
collecting 290.20 bits of keystream, from which we recover all the key bits (177
bits in the first stage and the remaining 79 bits in the second stage). The total
time complexity required for this attack is 2221.95 and memory required is 247.31.
Similarly, for the other versions of the cipher also one can find out the attack
setting from the Table 1.

Paper Outline: Our paper consists of 10 sections. In Section 1, we have given
an introduction about our work and previous works. In Section 2, we describe
the detailed structure of ChaCha256 and ChaCha128. Section 3 describes the
idea of differential-linear cryptanalysis on ChaCha, briefly revisit the work of [2],
introduce the idea of attack using Probabilistic neutral bits and the complexity
calculation. In Section 4, we provide our alternative way of choosing the right pair.
In Section 5, we explain the modification of complexity estimation. In Section 6,
we propose an idea for improving the PNBs. In Section 7, we explain how using
the construction of memory, we can reduce the complexity. In Section 8, we
present our results for 7-round ChaCha256. Next in Section 9, we present our
results on ChaCha128. Section 10 concludes the paper.

2 Structure of ChaCha

First, we take a look at the algorithm of the stream cipher ChaCha. The R-round
variant of ChaCha256 is denoted by R-round ChaCha256. The original cipher
design is of 20 rounds.

The cipher works on sixteen 32-bit words and generates a sequence of 512-bit
keystream blocks. The ChaCha function takes a 256-bit key k = (k0, k1, . . . , k7),
a 96-bit nonce (number used once) v = (v0, v1, v2) and a 32-bit counter t = t0 as
input and produces the keystream blocks Z. There is also a variant of ChaCha
which takes 128-bit keys as input. In that case the key is extended to 256-bit by
simply putting the key twice. The operations of this cipher includes XOR (⊕), left
rotation (≪) and modulo 232 addition (�). Naturally the r-th keystream block,
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0 6 r 6 264 − 1 of the ChaCha function is dependent on the eight keywords,
three nonces and one counter word.
The ChaCha function works on the matrix which consists of 16 words (32-bit
bit-string) arranged in the form of 4× 4 matrix. Among the 4 rows the first row
is a constant string “expand 32-byte k” which is cut into 4 words or constants
c0, c1, c2, and c3, next two rows have the 8 key words (k0, k1, . . . , k7) of key k and
the last row has 1 block counter t0 and 3 nonces v0, v1, and v2 (for 256-bit key
structure). For 128-bit key structure, 4 keywords make a copy of itself and fill up
the matrix’s second and third row. The four constants for 256-bit key structure
are c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.
There is a slight change in the constants for 128-bit key structure. The four
constants for 128-bit key structure are c0 = 0x61707865, c1 = 0x3120646e, c2 =
0x79622d36, c3 = 0x6b206574. The matrix looks as follows.

X =


X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

a b c d

�

⊕

≪ 16

�

⊕

≪ 12

�

⊕

≪ 8

�

⊕

≪ 7

a′′ b′′ c′′ d′′

Fig. 1: One quarterround function in ChaCha

In ChaCha, the RoundR function is a nonlinear operation (quarterround function)
which transforms a vector (a, b, c, d) into (a′′, b′′, c′′, d′′) via an intermediate vector
(a′, b′, c′, d′) by successively calculating (see Figure 2).

a′ = a� b; d′ = ((d⊕ a′) ≪ 16);

c′ = c� d′; b′ = ((b⊕ c′) ≪ 12);

a′′ = a′ � b′; d′′ = ((d′ ⊕ a′′) ≪ 8);

c′′ = c′ � d′′; b′′ = ((b′ ⊕ c′′) ≪ 7);

(1)
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For an initial state matrix X, X(r) is determined after r-rounds, and rounds
are counted from 1, reforming X after every round. Now in the odd rounds the
quarterround function acts on the four columns of X, viz. (X0, X4, X8, X12),
(X1, X5, X9, X13), (X2, X6, X10, X14), and (X3, X7, X11, X15). That is why the
odd number rounds are also called column rounds. In the even number of
rounds the nonlinear operations of Round function is applied to the four diagonals
(X0, X5, X10, X15), (X1, X6, X11, X12), (X2, X7, X8, X13), and (X3, X4, X9, X14).
Consequently these rounds are called diagonal rounds.

Finally the keystream block Z after the R-rounds is computed as Z = X(0) +
X(R), where X(0) is denoted as the initial state and X(R) is the state after
R-rounds of X. Every round of ChaCha is reversible. From any round (r + 1),
X(r) can be obtained by operating the reverse quarterround on X(r+1). Interested
readers can refer to [4] for more design details.

We provide the quarterround function in a diagram form in Figure 1.

Symbol Description
X The state matrix of the cipher consisting of 16 words

X(0) Initial state matrix
X(r) State matrix after application of r-round functions
Xi i-th word of the state matrix X

Xi[j] j-th bit of i-th word in matrix X

x � y Addition of x and y modulo 232

x � y Subtraction of x and y modulo 232

x ⊕ y Bitwise XOR of x and y

x ≪ n Rotation of x by n bits to the left
x ≫ n Rotation of x by n bits to the right

∆X
(r)
i [j]

XOR difference after r-th round of the j-th bit of the
i-th word of X and X′

dim (K) Dimension of the space K

Kmem Set of significant bits/Non-PNBs
Knmem Set of PNBs
Kmem Key Space corresponding to Kmem

Knmem Key Space corresponding to Knmem

ChaCha256 256-key bit version of ChaCha
ChaCha128 128-key bit version of ChaCha
ID Column Column in which input difference is given

Table 2: List of symbols
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3 Idea of Differential-Linear Cryptanalysis

Before going to the attack let us first observe the adversary model. The adversary
has access to the IVs. He can verify a guess by supplying his own key to the
algorithm and check the key’s validity by running the algorithm. He can analyse
the output of the keystream and examine the key guess.

The differential attack was discovered by Biham and Shamir [5] in 1990. This
attack was used initially on block ciphers, but later, it found significant appli-
cations in stream ciphers and hash functions. This is a chosen plaintext attack.
In this attack, the output of the cipher is observed on the basis of changes in
the input. Let P and P ′ be two plaintexts along with their ciphertexts C and C ′

respectively. In a differential attack, a correlation between C and C ′ might be
observed. This correlation, in turn, might be exploited to find out the key.

The linear attack was thought up by Matsui [18] in 1992. In this method, the
attacker first constructs linear relations between plaintext, ciphertext and key
terms with high bias. He then uses these relations together with known plaintext-
ciphertext pairs to find the key.

Plaintext
x

E1

E1(x)

Em

E2

Differential part

Right pair collection phase

Differenced plaintext
x′

E1

E1(x
′)

Em

E2
Linear part

Input diff. ∆in

Fig. 2: Differential-linear cryptanalysis

The idea of differential-linear cryptanalysis was introduced by Langford and
Hellman [15] in 1994. Here, the cipher E is split into two parts E1 and E2

(E = E2 ◦ E1) such that differential and linear cryptanalyses are applied on
the subciphers, respectively. Suppose a substantial differential exists in the
first subcipher E1 and linear approximation in the second subcipher E2. The
combination of these two attacks on E2 ◦ E1 is the differential-linear analysis.



Revamped Differential-Linear Cryptanalysis on Reduced Round ChaCha 9

See Figure 2. In differential-linear cryptanalysis for each sample, we require two
initial states with the same key but different IVs.

Let X and X ′ = X ⊕∆in be two initial states of subcipher E1 where, ∆in is
called input differential (ID). Also ∆X denotes the difference between two states
X,X ′. The difference after r1-rounds is observed between the two states. This
is called the output differential OD. If a good bias is observed for this, that is
exploited to attack the ciphers.

Differential Linear attack in the context of ChaCha: Though these at-
tack methods were initially developed for block ciphers, they have since been
successfully applied to stream ciphers. However, the situation is slightly different
in the context of stream ciphers. ChaCha being a stream cipher, we explain
the scenario in its context. Particularly for ChaCha, where the state can be
divided into several words, we denote the j-th bit of the i-th word of X,X ′ by
Xi[j] and X ′

i[j] respectively. Here, instead of looking at the output difference
of the entire matrices X,X ′, we choose a particular bit of both the matrices
as the position of the output differential. If this is q-th bit of p-th word, then
∆Xp[q] = Xp[q] ⊕X ′

p[q] denotes the difference. Now, instead of plaintexts, we
consider the IVs for introducing the input difference. Usually it is given at a
single bit of the IV. In the Output difference, we compute the probability of the
event ∆Xp[q] = 0. For this probability, the bias is also known as forward bias
and is denoted by εd, i.e. the probability is 1

2 (1 + εd).

After obtaining the output difference after r1-rounds, we have to look for lin-
ear relation on output differential. The linear approximation is observed from
r1-rounds to (r1 + r2)-rounds of the cipher. The bias for linear approximation
is denoted by εl. Usually for linear approximation, the term correlation is used
instead of bias. The linear approximation is observed for both X and X ′. So the
combined differential-linear bias for (r1 + r2)-rounds is given as εdε

2
l .

3.1 Choosing a Right Pair

In [2], instead of two subciphers E1, E2 the authors divided cipher into three
subciphers E2, Em and E1 such that E = E2 ◦ Em ◦ E1. Here E2 is the linear
extension as before and Em ◦ E1 construct the differential part. In E1, they look
for a desired difference in E1(x) ⊕ E1(x ⊕ ∆in). Let us denote this intended
difference as ∆m. Now, the underlying aim of this difference is to improve the
bias after Em ◦ E1.

The set of initial states X, X ⊕∆in ∈ Fn
2 which satisfy this desired differential

∆m after the E1 are called right pairs. Formally, the set of right pairs is defined
as χ = {X ∈ Fn

2 |E1(X)⊕E1(X ⊕∆in) = ∆m}. The differential bias after Em is
found experimentally, assigning the input difference ∆m before Em. Particularly
for ChaCha, E1 consists of 1 round and ∆m is taken as the minimum possible
Hamming weight of the difference matrix X ⊕X ′ after the 1st round, which is
10.
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Now, let p be the probability to achieve a right pair when the initial states are
randomly chosen, i.e., PrX∈Fn

2
[ E1(X) ⊕ E1(X ⊕ ∆in) = ∆m] = p. Then the

complexity of the attack is computed with the assumption that the initial states
are all right pairs. Finally this complexity is multiplied by p−1 to get the actual
complexity, since on average p−1 randomly chosen (X,X ⊕∆in) pairs give one
right pair on average.

In their attack, they mentioned that in a column of ChaCha, there are ap-
proximately 30% keys which do not have any IVs to form a right pair. These
keys are named as strong keys. For the remaining keys, the probability is
PrXi∈Fn

2
[ E1(Xi)⊕ E1(Xi ⊕∆in) = ∆m] = p ≈ 1

25 .

X =


c0 c1 c2 c3

k0 k1 k2 k3

k4 k5 k6 k7

t0 v0 v1 v2



Round 1

Round 2

Round 3

Round 3.5

Round 4

Rounds 5-7

Z = X �X(7)

Differential part

E1 (Right pair collection phase)

Em

E2Linear part

Fig. 3: Differential-linear cryptanalysis of 7-round ChaCha

ID−OD Pair: In [2] the input difference is ∆X
(0)
13 [6] = 1 and the output differ-

ence is observed at ∆X
(3.5)
2 [0]. Due to column wise symmetric structure one can

consider input difference at any of the four columns of X i.e., ∆X
(0)
12 [6],∆X

(0)
13 [6],

∆X
(0)
14 [6], ∆X

(0)
15 [6] as they will give same approximations after 3.5-th rounds at

∆X
(3.5)
1 [0], ∆X

(3.5)
2 [0], ∆X

(3.5)
3 [0], ∆X

(3.5)
0 [0] respectively.

According to the E2 ◦ Em ◦ E1 approach, for ChaCha E1 is the first round. As
right pairs we consider those initial states for which after the 1st round we obtain
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the difference at only the 10 positions shown below:
∆X

(1)
1 [2], ∆X

(1)
5 [5], ∆X

(1)
5 [29], ∆X

(1)
5 [17], ∆X

(1)
5 [9], ∆X

(1)
9 [30], ∆X

(1)
9 [22],

∆X
(1)
9 [10], ∆X

(1)
13 [30], ∆X

(1)
13 [10].

For Em the cipher is considered after the first round to 3.5-rounds. For this,
the observed forward bias is εd = 2−8.3 = 0.00317 [2] given that the number
of differences after the 1st round is 10. In the next stage E2, a linear relation
between 3.5-th round and 4-th round is found as:

X
(3.5)
2 [0] = X

(4)
2 [0]⊕X

(4)
7 [7]⊕X

(4)
8 [0] with εl = 1.

In [2], the authors obtained a linear relationship between the 3.5-th round and
5-th round. Nevertheless, as we apply the idea of PNBs, we do not use this
relation. So we extend the linear relation only up to the 4-th round with the
linear bias of εl = 1. In our paper, we use the linear combination of bits obtained
after 4-th round as our OD pair. In this paper, input difference (ID) is ∆X

(0)
13 [6]

and output difference (OD) is X
(4)
2 [0]⊕X

(4)
7 [7]⊕X

(4)
8 [0].

3.2 Probabilistic Neutral Bits

The differential cryptanalysis of ChaCha is primarily based on the PNB concept,
which was first proposed by Aumasson et al. [1] in 2008. We explain the concept
assuming a key size of 256. The concept of probabilistic neutrality allows us
to divide the secret key bits into two categories: significant key bits (of size
m) and non-significant key bits (of size 256−m). Significant key bits are those
that have a large influence on the position at which the differential is observed.
Non-significant key bits, on the other hand, are the polar opposite of significant
key bits with a low influence.

To detect the PNBs, we focus on the degree of influence each key bit has on the
cipher’s output.

If we know the full key, we can compute backwards from a given output to observe
the skewed differential bit of round. However, if we do not know the key, we may
have to guess it in order to discover the bias. The PNBs’ goal is to guess the key
in two parts. That is, we make educated guesses about the important bits. That
is to say, we guess the key bits that are significant. Even if the remaining key bits
are incorrectly predicted, the bias must be visible when we compute backwards
bias.

To be more specific, we want to find key bits whose values, if arbitrarily changed,
have no effect on the output on a large scale. These neutral bits are thought to
have a negligible impact. The traditional method of determining the secret key
entails a thorough examination of all 2256 feasible possibilities. However, if the
remaining (256−m) bits are PNBs, we can only search over the sub key of size
m. As a result, the maximum number of guesses is reduced to 2m.
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In the cipher machinery, after a few rounds, we look for output differentials in
the state matrix to use the PNB approach.

General idea of PNB and the formal definition: Let X be the initial state
matrix of size 4× 4. Assume we have found a suitable non-zero input difference
(ID) at the j-th bit of the i-th word in the IV say, ∆X

(0)
i [j]. Applying this input

difference to X we get another state X ′. Running X,X ′ for r-rounds (1 6 r < R)

we observe the output difference (OD) at position (p, q), i.e., ∆X
(r)
p [q]. The bias

is given by εd, i.e.,

Pr
v,t

[
∆X(r)

p [q] = 1
∣∣∣ ∆X

(0)
i [j] = 1

]
=

1

2
(1 + εd), (2)

here v, t are IVs and the counter respectively which are considered as random
variables.

Keep in mind that after R-round we have the keystream block generated by X as
Z = X+X(R). Similarly for initial state X ′ we have another keystream block after
R-rounds, viz. Z ′ we have Z ′ = X ′ +X ′(R)

. So, ∆X
(r)
p [q] =

(
X

(r)
p ⊕X ′(r)

p

)
[q],

where the ⊕ is the word-wise XOR of the two matrices X and X ′.

In this situation, we alter one key bit, say the l-th bit, where 0 6 l 6 255, of the
key. Consequently, we again have two states Y and Y ′. Now, we apply the reverse
algorithm of ChaCha on Z − Y and Z ′ − Y ′ by (R− r) rounds, and achieve the
states S and S′ respectively. (Since we apply reverse algorithm, we name the S
matrices in reverse order).

Let ∆Sp[q] = (Sp ⊕ S′
p) [q]. If for the choice of l we have ∆Sp[q] = ∆X

(r)
p [q]

holding with high probability then we assume the key bit to be non-significant.
For this, in the initial approach, a threshold value used to be determined, and
all the key bits for which the above mentioned probability was higher than the
threshold were considered to be non-significant or probabilistically neutral bit.

In that approach, a formal definition for PNB can be given as follows: For a given
input difference ∆Xi[j] = 1 and a predetermined threshold value γ, suppose for a
key bit l, Pr

[
∆X

(r)
p [q] = ∆Sp[q]

∣∣∣ ∆X
(0)
i [j] = 1

]
= 1

2 (1 + γl). Then, l is a PNB
if for that particular bit, γl > γ.

In the context of PNB, we come across Neutrality Measure, which is defined as
γl, where 1

2 (1 + γl) is the chance that changing the l-th bit of the key does not
impact the output. The key bit with neutrality measure 1 does not have any effect
on the output, while having a neutrality measure of 0 means that the key bit
has high influence. We, in general, create a threshold value of γ, where 0 6 γ 6 1
such that any key bit l with neutrality measure γl > γ is PNB. Naturally, the
bigger the γ is, the more negligible effect the PNBs have. We must choose the γ
very optimally so that the time complexity is minimised.
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3.3 Complexity Computation

In the actual attack the attacker guesses the significant bits and puts random
values in the PNBs and run both the states in backward directions. The actual
attack algorithm using PNBs as given in [1] is as follows: 

1. For an unknown key guess, collect N pairs of keystream blocks, each of
which is generated by states with a random nonce and counter (satisfying
the relevant ID).

2. For each choice of the m significant key bits do:

(a) Compute the bias of OD using the N keystream block pairs.

(b) Conduct an extra exhaustive search over the 256 − m non-significant
key bits to test the validity of this filtered significant key bits and to
identify the non-significant key bits if the optimum distinguisher certifies
the candidate as a potentially correct one.

(c) If the correct key is found, stop and output the recovered key.

In this attack the bias in the backward direction when the PNBs are assigned
random values is called backward bias and is denoted by εa. Suppose we have
m functional or relatively non PNBs, so there is a list of 2m possible random
variables among which only one option is correct, and others are not. We take the
null hypothesis H0 as the selected variable is not correct. Hence 2m − 1 variables
satisfy H0 and only one variable satisfies H1, the alternative hypothesis (the
selected is correct). There can be two types of errors in this attack:

1. Non-detection - The selected variable is correct but it is not detected. The
probability of this event is Prnd.

2. The variable selected is incorrect but it gives significant bias, so an incorrect
variable is chosen. The probability of the event is Prfa.

Using the Neyman-Pearson lemma, for Prfa = 2−α and Prnd = 1.3 × 10−2,
required number of samples N to achieve a bound on these probabilities is

N ≈
(√

α log 4 + 3
√
1− εaεd2

εaεd

)2

.

The complexity of the attack is given by the equation

2m(N + 2(256−m)Prfa) = 2mN + 2(256−α). (3)

4 Modification in the Criteria for a Right Pair

As already mentioned, in [2] the right pair is considered for those key-IVs, for
which the Hamming weight of ∆m is 10 after the first round. It helps to get a
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high bias after 3.5-rounds, though the two major drawbacks are the low value of
p and unavailability of IVs for 30% of keys. In this context, we dig a little deeper
inside the structure and try to find whether some modification is possible so that
without significant loss in complexity, the attack can be applicable for all keys.

Now, if we look at the quarterround operation, it has four addition operations,
out of which the first one does not involve any bit with a difference. So, the
minimum Hamming weight is possible if no difference propagates to the next bit
in the remaining three addition operations. Now, in the third addition operation
a′′ = a′ � b′, there is a difference at b′[2], whose propagation cannot be fully
controlled for any key just by choosing a good IV. Except that, in all the remaining
addition operations, the difference propagation can be controlled. However, if we
allow a difference propagation to the next bit only (i.e., up to a′′[3]), proper IVs
can control further propagation. This we have proved in the following proposition:
Proposition 1. In the quarterround function of ChaCha on a tuple (a, b, c, d),
for any value of b, c there exists d such that a′[3] = b′[3].

Proof. As we know (a, b, c, d) denotes elements of m-round and (a′, b′, c′, d′)
denotes elements of m+ 0.5-round. Considering the second ARX round of the
quarterround function we have

b′[3] = b[23]⊕ c′[23]

= b[23]⊕ c[23]⊕ d′[23]⊕ Carry(c,d′)[23].

where Carry(c,d′)[i] denotes i-th carry bit of the sum of c and d′(c� d′).

Using the first ARX round of the quarterround function, d′=(d ⊕ a′) ≪ 16.
Therefore d′[23] = d[7]⊕ a′[7]. This implies

b′[3] = b[23]⊕ c[23]⊕ a′[7]⊕ d[7]⊕ Carry(c,d′)[23].

Case 1. If c[22] = 0, we make d′[22] = 0 by choosing d[6] = a′[6] implies that
Carry(c,d′)[23] = 0. Hence,

b′[3] = b[23]⊕ c[23]⊕ a′[7]⊕ d[7].

∴ If we select d[7] = a[3]⊕ b[3]⊕ c[23]⊕ a′[7], we get b′[3] = a′[3].

Case 2. If c[22] = 1 and if d[6] is chosen as a′[6] ⊕ 1, then d′[22] = 1 implies
that Carry(c,d′)[23] = 0. So, b′[3] = b[23]⊕ c[23]⊕ a′[7]⊕ d[7]⊕ 1. ∴ If we choose
d[7] = a′[3]⊕ 1⊕ a′[7]⊕ c[23]⊕ b[23], we get b′[3] = a′[3].
Thus for both the cases we have b′[3] = a′[3].

However, if there is a difference in a′′[3], then in the immediate next XOR, an
extra difference would propagate in b′[11]. In the next addition, the difference
propagation can be controlled by proper IV.
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Fig. 4: Comparison of the biases for the case when Hamming weight of ∆m is 12
(left) vs 10 (right) after the first round. The experiment is done for 100 random
keys ki (i = 1, 2, . . . , 100). Along x-axis, the i-th vertical line represents the bias
corresponding to ki. For each random key the probability is calculated over 228 random
IVs.

Therefore, if we consider the correct pairs with Hamming weight at most 12, we
can find IVs for any key that constructs a suitable pair. We have experimentally
verified over randomly chosen keys that become a right pair under this relation
of the criteria, 100% of the keys become weak. We experimented with randomly
chosen 106 keys, and for each of them, we selected 4 × 106 IVs randomly. We
observed that at least one IV exists for each key, which, after the first round,
gives differences at 12 positions at most. In Figure 4, we provide in graphical form
the side by side comparison of the biases after 3.5-rounds between the case when
the difference is 10 vs the difference is at most 12 after the first round. We give
this result for 102 randomly chosen keys, and for each of them we experimented
over 228 random IVs. Out of these we computed the bias only for those which
forms the right pair. It is clearly visible that for Hamming weight 6 12 (left),
the biases are lower, but it exists for every key. On the other hand, for Hamming
weight = 10 (right), though the biases are higher, but suitable IVs do not exist
for some keys to form right pair. These are represented by blank.

The second benefit of this relaxation is that the probability of achieving the
right pair becomes higher, which influence the complexity reduction up to some
extent. If we look at the three addition operations where a word with difference
is involved, there are five positions where the difference may propagate to the
next bit. In each of second and third addition there is one such position and in
the last addition there are three such positions. In case of minimum Hamming
weight all these five propagation should be restricted. On average, out of 25 IVs,
on average one satisfies all the five restrictions.

On the other hand, if we allow 12 differences, then the permission to propagate
the difference at a′′[2] to a′′[3] relaxes the restriction. We experimentally observe
over 105 random keys that this relaxation improves the probability p of achieving
a proper IV for right-pair construction to 1

8.94 ≈ 1
9 . In other words, for randomly
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chosen 9 IVs, on average, one qualifies to form a right pair. Please note that
this probability is computed over any randomly chosen keys, unlike the previous
scenario where p has been computed only over the 70% weak keys.

Hamming weight = 10 6 12

εd 0.00317 0.0021
percentage of weak keys 70 100

probability of satisfying(p) 2−5 2−3.17

p · ε2d 2−21.602 2−20.96

Table 3: Comparison between the two criteria for right pair on the Hamming weights
of the output difference after one round

Besides these two advantages, definitely the apparent disadvantage is that the
bias εd after the 3.5-th round comes down from 0.00317 to 0.0021 (see Table 3).
However, p−1 decreases from 25 to 23.17. It is worth noting that the attack
complexity is inversely proportional to p · ε2d. Thus, even though ed in case 12
is less than in case of 10 difference, the disadvantage does not affect the time
complexity because p−1 is also less in the first case. Therefore, the product p · ε2d
is almost same in both the cases. In fact, from the table one can observe that
it is slightly higher for the second case (6 12), which will actually improve the
complexity.

5 Modification of the Time Complexity Estimation

In the Section 3.3, we have discussed the technique of complexity computation
which has been provided by [1]. Here we provide a modification in the formula
of the complexity to make it more accurate. This modification gives a better
measurement of complexity for any size of PNB.

As we know, only one is correct among 2m possible sequences of significant keys,
so we compute the total number of iterations separately for both the cases.

i. If the guessed key is correct, we run it for N samples to achieve the m
significant key bits. Then in the next step, we run an exhaustive search to
find n PNBs (m+ n = total size of the key), which takes 2n iterations. So
the complexity in this case is N + 2n.

ii. If the guessed key is any of the remaining 2m − 1, then for each such guess,
we have to run it for N samples first. Assuming the probability of false alarm
= 2−α, we can say (2m− 1) · 2−α keys would give false alarm. For these many
keys, we perform a thorough search over 2n sequences of the PNBs. So the
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complexity in this case is

(2m − 1) ·N + (2m − 1) · 2−α · 2n = (2m − 1) ·N + (2m − 1) · 2n−α.

Therefore the total time complexity is

N + 2n + (2m − 1) ·N + (2m − 1) · 2n−α

= 2m ·N + 2n + 2m+n−α − 2n−α

≈ 2m ·N + 2n + 2m+n−α (Since 2n−α is negligible compared to 2m+n−α)

Since n = keysize −m, we can also write the complexity as

2m ·N + 2keysize−m + 2keysize−α.

Now in the final expression of complexity, we observe an extra 2keysize−m term,
which was not there in the formula given by [1]. The reason is since in their
attack and all other attacks given so forth against ChaCha, m is significantly
higher than α, which makes 2keysize−m a negligible term compared to 2keysize−α,
therefore it can be ignored.

However, if we arrive in a scenario where m and α are close, i.e., 2keysize−m is
not negligible compared to 2keysize−α, then we have to consider both the terms
in the complexity. On the other hand if m is considerably smaller than α, then
instead of 2keysize−m, the 2keysize−α can be ignored and the formula becomes
2mN + 2keysize−m.

6 Improving the PNBs

In [2], the authors assigned threshold bias γ to find the PNBs. They received 74
key bits, which gave higher biases than the threshold. This is the conventional
method of searching the PNBs, which was given by Aumasson et al. [1]. In
this work, we provide a systematic three-step strategy to find a good set of
PNBs, which provides better PNBs than the conventional method, and requires
significantly less computation than [10].

Stage 1: Preliminary Shortlisting and Direct inclusion
In this stage we shortlist a number of possible candidates for the PNB.
This is done by assigning a threshold bias γprelim and selecting the
ones which give a higher bias than the threshold. This step is pretty
similar to the conventional method. However, it is not the final set of
PNBs. So, in this case, we keep the threshold slightly lower than the
conventional method. Suppose nprelim candidates are selected in this
step. Among them, we assign a second threshold γdirect which is higher
than the previous one. Key bits with higher biases than this threshold
are directly included in the PNB set. Let the number of such PNBs is
n1.
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Stage 2: Selection of the best candidate in each iteration
Now after the first stage we include some more PNBs (say n2) as follows:
In the i-th iteration we assign random values to the n1 PNBs selected
in Stage 1 and (i− 1) PNBs selected in Stage 2. After that, among the
remaining (nprelim − n1) key bits, we alter the value one at a time and
observe the backward bias. The key bit with the highest bias is selected
as the i-th PNB of Stage 2. This iteration is repeated n2 times. So we
have (n1 + n2) PNBs so far.

Stage 3: Cherry-pick from the remaining while randomising the selected
ones
The requirement of the third stage comes when the computed biases of
the Stage 2 becomes very small. In this scenario, if we further use the
technique of Stage 2, not only do we need a significantly huge number
of iterations, but also there is a chance of getting the wrong candidate.
So, in the third stage, we assign random values to the already selected
PNBs in the first and second stage (n1 +n2 bits) and randomly change
one of the remaining shortlisted nprelim − (n1 + n2) candidates. Then
we compute the backward bias. Up to this, it is similar to Stage 2.
Nevertheless, instead of choosing the best one only, we arrange all the
candidates in descending order of their biases and choose the required
number of PNBs (suppose n3) from the top.

7 Construction of Memory

Here we propose an alternate method of getting a right pair
(
(k, v), (k, v′)

)
with

the use of memory. At first, we partition the set of key bit positions of the ID
column into two subsets Kmem and Knmem. We aim to partition them in such
a way that for a key, only by looking at the values of Kmem bits, we can find
out an IV which would construct a right pair for this key. The benefit of this
is, we can construct a list containing the possible values of only the Kmem bit
position and their corresponding IVs. If it can be done, for an attacker it is no
more required to run p−1 random IVs to get one IV to construct a right pair
because based on their guess of key they can look up in the list to find a proper
IV.

Issue of PNB: In this approach, the probabilistic neutral bits in the ID column
become a vital issue. Since the attacker puts random values on the PNBs, the
favourable IV that the attacker chooses from the list is based on his guess of
key. If the actual values at the PNB positions are different from their assigned
values, the IV chosen by the attacker from the list may not construct a right
pair with the actual key. Suppose k is the actual key and k′ is the key guessed
by the attacker whose significant bits are correct, i.e., same with k. Now, the
IV v which he chooses based on his guess k′, may not work for actual key k to
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form right pair. In that case, even though the significant bit guess is correct, bias
would not be observed.

So, we have to construct our Kmem and Knmem subsets in such a way that this
problem mentioned above can be solved. The easiest solution to this is to include
the PNBs in the Knmem subset. How does it help us we explain it explicitly
in Section 7.2.

7.1 Decomposition into Memory and Non-Memory subspace

In the first round all the columns work independently, and the difference propa-
gation is within the input difference column only. So, for convenience, we take
our E1 as the quarterround of the column in which the input difference is given.
Let KID be the set of key bit positions and KID be the key space corresponding
to the input difference column. So, |KID| = dim(KID). Hence, any key in KID
is of the form (x0, x1, . . . , x|KID|).

Here we introduce one term along with its notation. For any subset K ′ of KID,
we denote K′ to be the subspace corresponding to K ′, which we define as the
collection of keywords {(x0, x1, . . . , x|KID|)} for which the values corresponding
to the bit position which are not in K ′ are 0, i.e.,

K′ =
{
(x0, x1, . . . , x|KID|) | xi = 0 when i /∈ K ′}.

Thus the partition of the key bits into Kmem and Knmem subsets actually provides
a decomposition of the key space into the direct sum of two subspaces. This
means, each of the subsets Kmem and Knmem corresponds to a subspace of the
entire key space of the column. We refer to these subspaces as Kmem subspace
and Knmem subspace.

Then, according to our partition we break the key space into the direct sum of
the two subspaces Kmem and Knmem,

Fdim(KID)
2 = Kmem ⊕Knmem.

Example: Consider a 5 bit key (x0, x1, x2, x3, x4). Then the entire key space
contains a total 25 keys. Now suppose x0, x1, x2 ∈ Kmem and x3, x4 ∈ Knmem.
Then, Kmem is the collection of keys for which x3 = x4 = 0, i.e.,

Kmem =
{
(x0, x1, x2, 0, 0)

}
and Knmem is the collection of keys for which x0 = x1 = x2 = 0, i.e.,

Knmem =
{
(0, 0, 0, x3, x4)

}
Now a right pair

(
(k, v), (k, v′)

)
in that column should satisfy

E1(k, v)⊕ E1(k, v
′) = ∆m where v′ = v ⊕∆in. (4)
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Now for any k ∈ Kmem, k⊕Knmem is a coset which contains 2dim(Knmem) elements.
We aim to find at least one IV v such that ∀ k′ ∈ k⊕Knmem,

(
(k′, v), (k′, v′)

)
is

a right pair, i.e., for every k′ ∈ k ⊕Knmem, E1(k
′, v)⊕ E1(k

′, v′) = ∆m. In this
context we define two terms:
Exploitable key: A key k ∈ KID is a exploitable key with respect to the Knmem

subspace if there exists at least one IV v such that for any key k′ ∈ k ⊕Knmem,(
(k′, v), (k′, v′)

)
forms a right pair. It is easy to note that an exploitable key is

definitely a weak key.
Favourable IV: For an exploitable key k, an IV v is a favourable IV if for any
key k′ ∈ k ⊕Knmem,

(
(k′, v), (k′, v′)

)
forms a right pair.

Let pexp be the probability of getting a key k which has at least one favourable
IV, i.e., among all possible elements of Kmem, pexp is the fraction of keys for
which such IV exist. We form a list of such keys along with at least one of their
favourable IVs. The memory required for this is pexp × 2dim(Kmem).

Now, we use these exploitable keys in our attack with the help of favourable
IVs. So we have to construct the direct sum Knmem and Kmem in such a way
that this pexp is high, i.e., a considerable fraction of the keys are exploitable.
Secondly, as the size of the memory required depends on the dimension of Kmem,
therefore, our aim also is to increase the dimension of Knmem because it would
reduce the memory size. However, it can be understood from the definition of
an exploitable key that more the dimension of Knmem, more is the elements in
a coset k ⊕Knmem. To become an exploitable key, one IV should construct the
right pair with all the keys in the coset. So the fraction of exploitable keys pexp
decreases as dim(Knmem) increases.

7.1.1 Construction of the Knmem subset: Here we provide a heuristic
algorithm for how to choose the key bits which would construct a good Knmem

subset whose corresponding Knmem subspace contains a huge fraction of ex-
ploitable keys. We begin with the PNBs which are in the input difference column.
We call this set PNBID. We include the PNBs directly into the Knmem subset.
For the purpose of this construction we define a temporary subset Ktemp

nmem ⊆ KID
and the corresponding subspace of Ktemp

nmem. We use this temporary subset to
construct the actual Knmem subset. Consider this temporary subset Ktemp

nmem is a
variable subset where we assign different elements at different steps according to
our requirement.

We start with Ktemp
nmem = PNBID. Note that, the PNBID should be such that

for Ktemp
nmem = PNBID, a huge fraction of weak keys are exploitable keys with

respect to the corresponding Ktemp
nmem subspace. If we don’t have such properties

for PNBID, we have to reject some PNBs and start with a smaller PNB set.
Now, once we have such a suitable PNBID, to include further key bits into
Knmem, for each of the remaining key bit positions i, we do as follows: We
take Ktemp

nmem = PNBID ∪ {i} and consider the corresponding Ktemp
nmem. For a
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randomly chosen exploitable key and its favourable IV with respect to Ktemp
nmem

which corresponds to Ktemp
nmem = PNBID, we find the probability that this key

is an exploitable key with the same IV as favourable IV for Ktemp
nmem where

Ktemp
nmem = PNBID ∪ {i}. If this probability is higher than some predetermined

threshold, we include i into Knmem. We write this in a proper algorithm form
in Algorithm 1.

Algorithm 1: Construction of Knmem subset
Input: A set of PNBs in the input difference column (PNBID), a threshold

probability pthres, a collection L of ξ exploitable key-favourable IV
combinations for Ktemp

nmem corresponding to Ktemp
nmem = PNBID, a

counter.
1 for each i ∈ KID such that i /∈ PNBID do
2 counter = 0.
3 Ktemp

nmem = PNBID
⋃

{i}
4 for each exploitable key-favourable IV combination (k, v) ∈ L do
5 if k is an exploitable key with v as its favourable IV for Ktemp

nmem then
6 increase the counter.
7 end
8 end
9 if counter

ξ
≥ pthres then

10 include i in the Knmem.
11 end
12 end

7.2 How to Construct the attack

In the PNB based attack, the attacker assigns random values to the PNBs and
tries to guess the significant key bits correctly. In our approach, we propose
that while guessing the significant key bits, the attacker finds the member from
the list of exploitable keys. The list also contains at least one favourable IV for
each of the keys. Keep in mind that for each key of the list, we can construct
2|Knmem| different keys by changing the values of the Knmem key bits, and the
same favourable key would form a right pair with each one of those keys.

In [2], the authors mentioned that instead of having many strong keys which do
not form a right pair, we would have with high probability at least one column
which has weak keys. Similarly, here if we can keep the percentage of exploitable
key high in each column, then with high probability, we will have at least one
column in which we have an exploitable key. Let the member be k. As already
mentioned, k actually represents a coset k ⊕Knmem. Now, the list also contains
at least one favourable IV vID for k.
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Now, while generating the data for N different IVs, the attackers always use the
same vID for the input difference column and change the values of the IVs in
the remaining columns. According to the structure of ChaCha, we still have 296

different IVs, which ensures that a sufficient number of IVs are always available
to get N data samples.

Now according to our construction of Knmem subset, PNBID ⊆ Knmem. There-
fore, the set of significant key bits in the ID column i.e., Non-PNBID ⊇ Kmem.
Consequently if our guessed non-PNBs/significant bits are correct, this implies
that even if the PNBs are incorrectly guessed, the actual key still lies in k⊕Knmem.
Thus we write in a form of a proposition below.
Proposition 2. If PNBID ⊆ Knmem, then for any exploitable key k and its
favourable IV v with respect to Knmem, if random values are assigned in the bit
positions of PNBID to form a key k′, then v is a favourable IV for k′ as well.

The reason for this is if k, k′ is the guessed key and actual key, respectively, both
lie in the same coset. Therefore the favourable IV vID gives minimum difference
after the first round for k′ as well. So, if we guess only the non-PNBs correctly,
we can find a favourable IV for both the actual key and the guessed key.

Example: Suppose a cipher uses a 10-bit key (k0, k1, k2, k3, k4, k5, k6, k7, k8, k9)
where k8 and k9 are PNBs and Knmem={k7, k8, k9}. While guessing the sig-
nificant key bits we look at the list of exploitable keys. Suppose, we choose
(k0, k1, k2, k3, k4, k5, k6, k7, k8, k9) =(0, 0, . . . , 0) from the list of exploitable keys.
Therefore our guess of significant key bits (k0, k1, k2, k3, k4, k5, k6, k7) is
(0, 0, 0, 0, 0, 0, 0, 0).
Suppose the favourable IV of (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) is v. Therefore v forms a right
pair with each key of (0, 0, 0, 0, 0, 0, 0, 0, 0)⊕Knmem, i.e (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 0, 1, 0), . . . , (0, 0, 0, 0, 0, 0, 0, 1, 1, 1). So in
the attack, the attacker uses v as its IV. If the guess (0, 0, 0, 0, 0, 0, 0, 0) as the
significant key bits is correct then whatever be the actual value of k8, k9, v will
form a right pair with the key (0, 0, 0, 0, 0, 0, 0, 0, k8, k9). So the attacker will
achieve the desired bias for the correct guess of the significant key bits.

8 Attack on 7-round ChaCha256

In our simulations, we used the GCC compiler version 9.3.0 and the drand48()
function in the programmes for 32-bit random number generation.

In reference to [2] taking the input difference as ∆X
(0)
13 [6] and obtaining output

difference at ∆X
(4)
2 [0]⊕∆X

(4)
7 [7]⊕∆X

(4)
8 [0], we have bias 2−8.3 = 0.00317. Here

we will go 4-rounds forward and 3-rounds backward. In ChaCha256 we apply our
proposed strategy from Section 6 in the following manner.

Preliminary Shortlisting of PNB: In the first step we shortlist the prelimi-
nary candidates for the PNB by assigning threshold γprelim = 0.2. We achieve to-
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tal nprelim = 96 candidates with higher bias than this. Among this, the bits which
are in the input difference column are {39, 47, 48, 49, 51, 52, 59, 168, 169, 191}.

Construction of Knmem: We apply Algorithm 1 to find the key bits which
are from Knmem. For this, we have to start with the PNBs of this column. We
observe that if we include all the 9 bits mentioned above, we do not get any
favourable IVs for any key. So we reject some PNBs and consider only 5 PNBs in
that column which are PNBID = {39, 47, 48, 168, 191}. We assign the threshold
pthres = 0.8 and find out total 13 bits which gives higher values than pthres.
Including these into the Knmem set along with the PNBs we achieve Knmem =
PNBID

⋃
{163, 164, 165, 171, 172, 173, 174, 175, 176, 183, 184, 185, 186}.

Therefore, the dimension of Kmem is 64 − 18 = 46. We observe that among
all the keys of KID approximately 62% are exploitable keys. Please note that
only 70% keys are weak keys anyway, so only 8% weak keys do not qualify as
exploitable keys. So for each column, we have to construct a list of approximately
0.62× 246 = 245.31 possible keys along with their favourable IVs. Hence the total
memory required is 247.31.

Remaining PNB Construction: Among them, by assigning the second thresh-
old as γdirect = 0.45, we achieve n1 = 67 bits which we include directly in the
PNB set. Next, in stage 2, we include n2 = 9 more candidates by choosing the
best candidate at each iteration. In stage 3, we assign random values to the
chosen 76 PNBs. Now, along with this, we alter the value of one bit at a time
from the remaining shortlisted candidates. We choose the best n3 = 3 bits among
them. Finally, we have a set of 79 PNBs which we provide below:

{219, 220, 221, 222, 223, 255, 77, 78, 79, 66, 67, 80, 68, 81, 69, 102, 82, 103, 70,
104, 83, 105, 71, 84, 106, 123, 124, 72, 85, 107, 125, 244, 126, 127, 225, 86, 109,
199, 47, 192, 207, 155, 2, 156, 3, 157, 224, 245, 108, 4, 158, 159, 168, 73, 246, 226,
193, 90, 211, 74, 200, 48, 87, 208, 95, 91, 191, 5, 6, 110, 212, 111, 227, 213, 92, 194,
115, 201, 39}.

In Figure 5, we mark the achieved PNBs according to their position in the key.
The PNBs selected as direct inclusion (Stage 1), best Candidate in each iteration
(Stage 2) and Cherry-picked (Stage 3) are respectively denoted by the colors red,
blue and green. Also, for each category, the intensity of the color of the PNB
signifies their influence as PNB. For example, among the Stage 1 PNBs (red),
highest intensity of red denotes the bit which was included at first into the PNB
set, and lowest intensity of red denotes the last (67-th) PNB (in Stage 1). Same
is true for Stage 2 and Stage 3 as well.

Complexity: We have the backward bias εa = 0.00057 for these 79 PNBs.
As already mentioned, εd = 0.00317. For α = 38.8, this gives N = 244.89 and
time complexity 2221.95. Now, since we have 245.31 exploitable keys in the input
difference column, and for each guess we need N = 244.89 data the overall data
complexity becomes 244.89 × 245.31 = 290.2.
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0-31 32-63

64-95 96-127

128-159 160-191

192-223 224-255

Fig. 5: : Non-PNBs, : Stage 1 PNBs, : Stage 2 PNBs, : Stage 3 PNBs

8.1 Practical observations to confirm the theoretical estimations

To validate statistical assumptions, we performed experiments for 232 many
random keys. We take 25 PNBs.

1. In this case we see εa = 0.84822. Since εd = 0.00317, the estimated bias is
εa · εd = 0.00269. We verify this by experimental observation, which gives the
value 0.00266, which is very close to estimated value.

2. Next we take Prfa = 2−α for α = 5.9. Then, according to the formula, N will
be 4749558 = 222.18. We assign a fixed value to non-PNBs and random value
to PNBs and perform experiment for N times. We need another parameter T
to check whether the assigned non-PNBs are correct or not. For more details
one can see [22, Section II]. One can check from [22], Prfa = Q

(∣∣ T√
N

∣∣)
and Prnd = Q

(∣∣ 2Nεaεd−T

2
√

N( 1
4−ε2aε

2
d)

∣∣), where Q(x) = 1√
2π

∫∞
x

y2 dy. For T = 4930,

according to these two error formulas, theoretically we get Prfa < 2−α and
Prnd < 1.3× 10−2.

Now, to verify these error probabilities experimentally, we perform our
experiment on 214 random keys. We achieve Prfa = 93

214 < 2−α and Prnd =
7

214 < 1.3× 10−2.

Therefore, this experimental verification validates the theoretical estimations.

9 Results on ChaCha128

9.1 Attack on 6.5-round ChaCha128

Now we provide the first-ever key recovery attack on a 6.5-round of ChaCha128.
For this we use the memory approach and consider as right pairs those which
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have Hamming weight 10 after the first round with input difference at ∆X
(0)
6 [13]

and output difference at ∆X
(4)
2 [0]⊕∆X

(4)
7 [7]⊕∆X

(4)
8 [0].

Preliminary shortlisting of PNB: At first we assign a threshold γprelim =
0.15 to shortlist the PNBs for the attack. Total 53 bits surpassed γprelim. Among
them there are 5 bits (viz. 32, 40, 41, 52, 63), which comes from the ID column.
Since we have to construct an appropriate Knmem subset containing the PNBs of
ID columns before finalizing the PNBs, we construct the Knmem subspace first.

Knmem construction: Among the 5 shortlisted PNBs from ID column, we
can only include 63, 40, and 41 into our Knmem subset. If we include any of the
remaining two, we do not get a high fraction of exploitable keys. We can neither
extend this set. The reason for such a small size of Knmem is that in ChaCha128
if we recall the initial state matrix, then we see that X5 and X9 are the same,
and if any particular key bit is a good candidate for Knmem, then it should be
from both X5 and X9. In other words, there are very few bits i for which X5[i]
and X9[i] both are good candidates for Knmem. The key space of ChaCha128 is
of dimension 32 only for each column. This helps to make a list of keys of Kmem

of size 229 only for each column. So, the memory required is 231.

Final PNB construction: So from our 53 shortlisted PNBs, we reject {32,
40} since those reduces the fraction of exploitable keys. From the remaining 51
bits, at first we directly include 41 bits into the PNB set by assigning threshold
γdirect = 0.27. After that, we use the second step of our strategy to include 2
more PNBs. The third stage is not used here. The list of 43 PNBs is

{7, 12, 13, 14, 26, 27, 28, 29, 30, 31, 40, 63, 64, 65, 66, 71, 72, 79, 80, 83, 84, 85,
86, 91, 92, 93, 94, 95, 96, 97, 98, 99, 104, 105, 115, 116, 117, 118, 119, 124, 127, 87,
15}

Complexity: The forward bias for this PNB set is εd = 0.00317 as before. The
backward bias is εa = 0.0040. For α = 8.5, N = 237.94 the time complexity is
2123.04. Since there are 229 exploitable keys for the input difference column, the
data complexity is 237.94 × 229 = 266.94.

9.2 Attack on 6-round ChaCha128

We provide two attacks on the 6-round ChaCha128 using our PNB search strategy
and new criteria for correct pairs. The first attack goes with the usual 2-step
technique where we first find the significant bit values and then find the PNB
values. In the second attack, we propose an alternative 3-step attack which further
reduces the complexity.

9.2.1 First Attack method on 6-round ChaCha128
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Preliminary shortlisting of PNB: In the first step, we shortlist the prelimi-
nary candidates for the PNB by assigning threshold γprelim = 0.35. We achieve
nprelim = 88 candidates with higher bias than this. Among them, by assigning
the second threshold as γdirect = 0.65, we achieve n1 = 73 bits which we include
directly in the PNB set.
Next in step 2, we start with nprelim − n1 = 15 remaining key bits. From there,
we include n2 = 10 more candidates by choosing the best candidate at each
iteration. We do not go to stage 3 of PNB construction in this attack. So, our
total PNB size is n = 83. Exploitable keys are unavailable because of the huge
number of PNBs with high backward biases in the input difference column. If we
reject a significant number of PNBs from this column, the complexity will get
affected. This is why go back to the technique proposed in [2] where we randomly
guess IVs to achieve the right pairs. However, we choose the criterion of the
right pair to be at most 12 differences after the first round. This brings down
the forward bias from 0.00317 to 0.0021. However, on the other hand, now, in a
column, all the keys are weak.

Complexity: In 6-round ChaCha128 we will go 4 rounds forward and 2-rounds
backward. Here, we have forward bias εd = 0.00217. The PNB set we get is

{0, 1, 7, 12, 13, 14, 15, 16, 17,18, 19, 20, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 46,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 79, 80, 81, 82, 83, 84, 85, 90, 91,
92, 93, 94, 95, 96, 104, 115, 116, 117, 118, 119, 120, 121, 122, 127, 35, 86, 22, 123,
47, 8, 105, 97, 109, 2, 39, 64, 40, 65, 71, 98, 124, 87, 36, 110, 48, 41, 9, 23}.

For 83 PNBs we get backward bias εa = 0.025. Now, on average, we need
p−1 = 23.18 iterations we achieve the right pair. So, our formula becomes p−1 ·
(2m ·N +2(128−α)) + 2n. Please note that the p−1 does not need to be multiplied
with 2n because this term comes in the second step of only for the case when
the significant key bits are correctly guessed, and a favourable IV is achieved to
form a right pair. We achieve our best result for α = 52. This gives N = 235.48.
However, since we have to multiply it by p−1, so the final data complexity is
238.66. The time complexity is 284.39. If we increase the number of PNBs further,
the attack complexity starts increasing. The reason for this is the additional 2n
terms involved in the attack. This affects the overall complexity even though the
remaining complexity decreases up to a few more PNBs. We provide in Table 4
the complexities for different sizes of the PNB set.

9.2.2 Alternative Attack on 6-round ChaCha128

Now we propose a slightly modified model of attack. This attack is beneficial when
the PNB set size is very high. Instead of finding the significant key bits for a fixed
input-output pair, we consider two input-output positions. Due to the column wise
symmetric structure of ChaCha, we observe similar biases for the ID−OD pairs
(∆X

(0)
13 [6], X

(4)
2 [0]⊕X

(4)
7 [7]⊕X

(4)
8 [0]) and (∆X

(0)
12 [6], X

(4)
1 [0]⊕X

(4)
6 [7]⊕X

(4)
11 [0]).

we involve both of them into our attack.
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PNB size εa α Complexity
80 0.042 65 285.39

81 0.035 50 284.84

82 0.030 55 284.46

83 0.025 52 284.39

84 0.021 53 284.65

85 0.018 54 285.26

Table 4: Complexities for 6-Round ChaCha for different PNB sizes using the first
attack method

Attack Procedure: Suppose the two input-output positions are denoted as
ID − OD1 and ID − OD2. Suppose, we consider m1 significant key bits and
remaining keysize−m1 PNBs for ID−OD1. Similarly, for the other input-output
difference position, we have a different set of significant bits and PNBs. Among
the significant key bits of ID − OD2, we consider only those which are not
common with the significant key bits of ID −OD1. Let there be m2 such bits.
Instead of the usual two-step key recovery technique where we first find the
significant key bits and then find PNBs, we propose a 3-step technique. In this,
we first find the significant key bits corresponding to ID−OD1. Once we achieve
it, we go for the remaining m2 significant key bits corresponding to ID −OD2

pair. Once we achieve them, we go for the usual exhaustive search over the
remaining bits in the third step. The attack is provided below in an algorithm
form in Algorithm 2.

Complexity: For each of the 2m1 possible values of the significant bits, we have
to run N1 pairs. So, we have 2m1 ·N1 operations. Now, if the probability of false
alarm is 2−α, then for 2m1−α possible wrong keys we receive false alarm. However,
if α is considerably higher than m1, we can ignore the occurrence of any false
alarm, i.e., only the right key gives a higher bias than the threshold. In the next
step, we go through 2m2 possible key bit values, each run on N2 samples, which
gives a complexity 2m2 ·N2. Here also, we ignore the occurrence of false alarms
since α is high. In the final step, we run an exhaustive search over 2128−(m1+m2)

possible values of non PNBs.
Therefore, if p is the probability of getting a right pair in case of both the ID −OD
pairs, then the overall complexity p−1(2m1 ·N1 + 2m2 ·N2) + 2128−(m1+m2). The
data complexity is p−1(N1 +N2).
Application on ChaCha128: We consider total 89 PNBs for each ID −OD
pair. So, we have 39 significant bits for each pair. Instead of listing down the
PNBs, we list the significant bits since they are less in numbers.

ID − OD1 :
ID := ∆X

(0)
13 [6] OD := (X

(4)
2 [0]⊕X

(4)
7 [7]⊕X

(4)
8 [0]).



28 S. Dey et al.

Algorithm 2:
Input: N1 pairs of keystream (Z,Z′) corresponding to ID −OD1, N2 pair of

keystream (Z,Z′′) corresponding to ID −OD2.
1 for each possible 2m1 values of significant key bits of ID −OD1 do
2 Assign random values to 128−m1 PNBs and run the reverse round by 2

rounds on Z −X and Z′ −X ′.
3 if the bias observed for the OD position higher than the predetermined

threshold then
4 for each possible 2m2 values of the significant key of ID −OD2 do
5 Keep the same values of m, significant key bits of ID −OD1 pair.
6 Assign random values to the PNBs corresponding to ID −OD2 .
7 For N2 samples of Z −X,Z′′ −X ′′ run the reverse round for 2

rounds.
8 if the bias at second OD position is higher than the predetermined

threshold then
9 perform an exhaustive search over 128− (m1 +m2) remaining

key bits, and stop if the correct key is found.
10 end
11 end
12 end
13 end

Significant key bits

{3, 4, 5, 6, 10, 11, 25, 37, 38, 43, 44, 45, 49, 50, 67, 68, 69, 70, 72, 73, 74, 75, 76,
77, 78, 88, 89, 99, 100, 101, 102, 103, 107, 108, 112, 113, 114, 125, 126}

ID − OD2 :
ID := ∆X

(0)
12 [6] OD := (X

(4)
1 [0]⊕X

(4)
6 [7]⊕X

(4)
11 [0]).

Significant key bits

{5, 6, 11, 12, 13, 17, 18, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 55, 56, 57, 67, 68, 69,
70, 71, 75, 76, 80, 81, 82, 94, 99, 100, 101, 102, 106, 107, 120, 121}

One can see that 19 bits are common. So in our notations, m1 = 39,m2 = 20.
We consider α to be significantly higher than m1. Here, for α = 50, we see
that, on average, among 250 keys, only one key is there, which will give a false
alarm. However, since our total number of guesses is 2m1 , therefore we can ignore
the influence of any false alarm. By the same logic, in the second step, also we
ignore the false alarm. For 89 PNBs we get εa = 0.0063 in both the cases. For
α = 50, N1 = N2 = 239.41. However, to get the right pair, we have to go for 23.18

random IVs. So, the data complexity is 23.18 × 2× 239.41 = 243.59 and the time
complexity is 281.58.
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10 Conclusion

In this paper, we first present an idea to improve the forward bias by the help
of list. Also, we show how one can choose a suitable IV to reduce the memory
size of this list. Next, we present a new technique to construct probabilistic
neutral bit set. This choice gives a significant improvement in the backward
bias. As a result, we get around 28.91 times better time complexity than [2] for
7-round of ChaCha256. Also, we obtain 223.42 times better complexity for 6-round
ChaCha128 than the existing work [20], and we report first-time cryptanalysis
for 6.5-round ChaCha128. We are very hopeful that our ideas can work on other
ARX designs.
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