
Asymptotically Quasi-Optimal Cryptography

Leo de Castro1, Carmit Hazay2, Yuval Ishai3, Vinod Vaikuntanathan1, and
Muthu Venkitasubramaniam4

1 MIT
2 Bar-Ilan University

3 Technion
4 Georgetown University

Abstract. The question of minimizing the computational overhead of
cryptography was put forward by the work of Ishai, Kushilevitz, Os-
trovsky and Sahai (STOC 2008). The main conclusion was that, un-
der plausible assumptions, most cryptographic primitives can be realized
with constant computational overhead. However, this ignores an additive
term that may depend polynomially on the (concrete) computational se-
curity parameter λ. In this work, we study the question of obtaining
optimal efficiency, up to polylogarithmic factors, for all choices of n and
λ, where n is the size of the given task. In particular, when n = λ, we
would like the computational cost to be only Õ(λ). We refer to this goal
as asymptotically quasi-optimal (AQO) cryptography.
We start by realizing the first AQO semi-honest batch oblivious linear
evaluation (BOLE) protocol. Our protocol applies to OLE over small
fields and relies on the near-exponential security of the ring learning
with errors (RLWE) assumption. Building on the above and on known
constructions of AQO PCPs, we design the first AQO zero-knowledge
(ZK) argument system for Boolean circuit satisfiability. Our construc-
tion combines a new AQO ZK-PCP construction that respects the AQO
property of the underlying PCP along with a technique for converting
statistical secrecy into soundness via OLE reversal. Finally, combining
the above results, we get AQO secure computation protocols for Boolean
circuits with security against malicious parties under RLWE.

1 Introduction

The work of Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS08] put forward the
goal of minimizing the computational overhead of cryptography. This was defined
as the asymptotic ratio between the amount of work (say, Boolean circuit size)
required to securely realize a given cryptographic task of size n and the amount
of work required to realize the same task without any security at all. Here, n
denotes the size of a Boolean circuit specifying a functionality, for primitives
such as secure computation or zero-knowledge proofs, and just message size
for simpler primitives such as encryption or commitment. The main conclusion
of [IKOS08] is that, under plausible assumptions, most cryptographic primitives
can be realized with constant computational overhead.

However, this ignores the significant additive term that may depend poly-
nomially on the (concrete) computational security parameter λ.5 That is, the
computational cost of the constant overhead protocol could be O(n + λc) for
some constant c > 1. As a consequence, amortized efficiency may only kick in
when n� λ, namely when the problem size is very big. For smaller instances, ef-
ficiency (measured in terms of communication, computation, or other resources)
can be far from optimal. This is not only a theoretical concern, but also a prac-
tical concern for many primitives that have good amortized efficiency.

Asymptotically Quasi-Optimal Cryptography. The question that motivates our
work is whether this is inherent. Can we get close to the best possible efficiency
for all choices of n and λ, in particular when n = λ? We refer to the goal
of achieving this up to polylogarithmic factors as asymptotically quasi-optimal
(AQO) cryptography. AQO requires that solving a problem of size n with λ bits
of security has computational cost (measured by Boolean circuit size) of Õ(n+λ).
Modulo polylogarithmic factors, this represents the best possible solution, as the
costs of n and λ are both inherent for natural primitives.

We will sometimes also refer to the relaxed goal of AQO communication,
where the communication (or ciphertext size) is Õ(n+λ), but the computational
cost may be larger. Here n refers to the communication complexity of realizing
the same task without security requirements.

We view AQO as a clean theoretical abstraction of a practically relevant
question, with an appealingly simple one-line description:

Solve a size-n cryptographic problem with efficiency Õ(n+ λ).

AQO Cryptography: What’s Known and What Isn’t. In the domain of sym-
metric cryptography, the AQO goal is relatively easy to achieve. For instance,
natural generalizations of popular block ciphers such as AES are conjectured to
be AQO [MV15]. In fact, even with a constant (rather than polylogarithmic)
overhead, most symmetric primitives can be realized under plausible hardness
assumptions. This includes one-way functions [Gol00], pseudorandom genera-
tors [AIK08, BIO14], collision-resistant hashing [AHI+17], and pseudorandom
functions [BIP+18]. For public-key encryption and statistically binding commit-
ments, we have AQO schemes from Ring-LWE [LPR10,LPR13,LS,GHKW17],
and for collision-resistant hashing and statistically hiding commitments, we have
AQO schemes from Ring-SIS [Mic02,PR06,LM06].

Besides these, the case for other central cryptographic primitives such as zero-
knowledge proofs and secure computation, seems to be wide open and for good
5 Throughout this paper, the security parameter λ refers to bits of concrete security,
requiring that no adversary of circuit size 2λ can gain better than 2−λ advantage.
This is a natural and robust notion of concrete security. An alternative notion that
settles for negligible advantage is not as robust, analogously to relaxing standard
security definitions by requiring that every polynomial-time adversary has o(1) ad-
vantage (rather than negligible in the sense of sub-polynomial).

2

Primitive Assumption Reference

Secret-key Encryption

Generalized AES [DR02,MV15]
Ring-LWE [LPR10]
Ring-LPN [HKL+12]

Mod-2/Mod-3 PRFs∗ [BIP+18]

Public-key Encryption Elliptic Curve CDH/DDH† [Gam85]
Ring-LWE [LPR10]

String-OT Elliptic Curve DDH† [NP01,AIR01]
Ring-LWE Folklore‡

Batch-OT Ring-LWE This work
Single-OLE Ring-LWE This work
Batch-OLE Ring-LWE This work

Additively Homomorphic Encryption∗∗ Ring-LWE [LPR10]
(Malicious-Verifier) Zero-Knowledge Ring-LWE This work
(Malicious) Two-party Computation Ring-LWE This work

Table 1: Some representative examples in the AQO Landscape. Entry labeled with ∗ was conjectured
to achieve asymptotically optimal security (i.e., same as AQO but without the polylog factors).
† denotes solutions with AQO communication but not AQO computation, e.g. elliptic curves that
employ exponentiation, making their computational complexity at least quadratic.
‡ The folklore protocol for string-OT uses the fact that the [LPR10] Ring-LWE-based PKE is ad-
ditively homomorphic which gives us a leaky-OT. This can in turn be corrected via randomness
extraction.
∗∗ indicates measuring the complexity of (non-function-private) homomorphic pointwise addition or
scalar multiplication of two vectors of plaintexts.

reasons, as we discuss below. We refer to Table 1 for more examples in the AQO
landscape. By “batch-OT” and “batch-OLE” we refer to a semi-honest secure
two-party protocol for n copies of oblivious transfer (OT) or its generalization
to oblivious linear-function evaluation (OLE) modulo p ≤ poly(λ), which will be
discussed in detail later.

Where do previous techniques fail? The main technical challenge in achieving
AQO is the question of how to amplify soundness or privacy without naïve rep-
etition (or similar techniques). Traditional techniques such as statistical noise-
flooding (for lattice-based OLE), arithmetization over big fields, or cut-and-
choose (for zero knowledge and secure computation) all fall short of this goal.
Even techniques that do achieve this goal in an amortized sense (such as “constant-
overhead” semi-honest 2PC from a local PRG [IKOS08] or ZK based on robust
honest-majority MPC [IKOS07,DIK10]) incur quadratic (in λ) additive terms,
seemingly for inherent reasons.

An additional challenge for public-key AQO cryptography is that standard
“number-theoretic” constructions fail for two reasons. First, common number-
theoretic operations, such as modular exponentiation over a λ-bit modulus, are
only known to have circuits of size Õ(λ2). Second, factoring λ-bit integers or
discrete logarithm modulo a λ-bit prime can be done in time 2λc for c < 1,
which requires working with numbers of size λc′ for c′ > 1.

This leaves us with essentially elliptic curve discrete logarithms and (ring)
learning with errors. In the case of elliptic curves, computations typically re-

3

quire exponentiation, and in the case of learning with errors, computations typi-
cally require matrix multiplication, both of which require superlinear time which
rules out computational quasi-optimality. This leaves us the ring learning with
errors assumption [LPR10,LPR13] with the unique status of helping us go be-
yond communication AQO. On the one hand, the problem is believed to be
quasi-exponentially hard in the bit-length of the instance; and on the other
hand, operations typically involve multiplication of two O(λ)-degree polyno-
mials over a number field, which can be performed in quasi-linear Õ(λ) time
using the (number-field version of) fast Fourier transform. Finally, Ring LWE
has proven itself to be versatile not only in theory, having helped us construct
fully homomorphic encryption [BV11b,BGV12,GHS12], but also in practice with
the NIST standardization effort for post-quantum-secure public-key cryptogra-
phy [Moo16].

Challenges for secure computation. In the semi-honest model, AQO secure com-
putation reduces to an AQO batch-OT via classical techniques [GMW87,Gol04].
This in turn reduces to AQO batch-OLE, which is a more natural target in the
context of lattice-based constructions. Several Ring-LWE based batch-OLE pro-
tocols have been proposed in the literature. The vanilla batch-OLE from Ring-
LWE uses noise-flooding to ensure sender privacy, and this causes the commu-
nication and computation to be of size O(n · λ) where λ is a statistical security
parameter, and hence is not AQO. Alternative techniques for circuit-private
FHE without noise-flooding also fall short of the AQO goal: [DS16] involves λ
iterations of bootstrapping to “rinse out” the noise, and [BPMW16] requires ho-
momorphic evaluation of a branching program of size Ω(λ). Even ignoring AQO,
these approaches do not seem attractive from a concrete efficiency viewpoint.

Challenges for security against malicious parties. Going beyond semi-honest se-
curity and achieving security against malicious parties in the AQO setting poses
additional challenges. Common cut-and-choose techniques in zero-knowledge
proofs and secure computation protocols [LPS08,HKE13,Lin16,WRK17] incur a
multiplicative overhead of at least λ to achieve simulation error 2−λ. This is also
the case when embedding a Boolean computation into an arithmetic computa-
tion over a big field F to achieve soundness O(1/|F|) [BCG+17,XZZ+19,CDI+].

MPC-in-the-head techniques [IKOS07,IPS08,AHIV17,HIMV19] can improve
over standard cut-and-choose techniques by achieving a better amortized over-
head, as low as polylog(λ) [DIK10]. However, the underlying MPC protocols
incur an additive communication overhead of at least Ω(λ2). This also applies
to all known succinct zero-knowledge argument systems, including those based
on classical PCPs and IOPs (e.g., [Kil92, BCS16, BBHR19, BCR+19, ZXZS20,
CY21,RR21]) and linear PCPs [IKO07,Gro10,GGPR13,BCI+13,BISW18].

Finally, there is a rich and productive literature constructing zero-knowledge
protocols for NP statements assuming RLWE [BKLP15,LS18,BBC+18,BLS19,
BLNS20]. To the best of our knowledge, these protocols cannot even achieve
AQO communication, let alone computation. The reason is subtle. Focusing on
ZK protocols for RLWE statements, the protocols seem to fall into one of two

4

categories. The first type incurs large soundness error which is then repeated
Õ(λ) times to get 2−λ soundness, and thus has at least a quadratic in λ overhead.
The second type is a direct proof with exponentially small soundness error and
AQO efficiency, but for a weaker NP statement related to RLWE which does not
seem directly applicable to constructing ZK proofs for general NP statements.6
We refer the reader to an extensive discussion in [BLS19] who, with a great deal
of ingenuity, reduce the number of parallel repetitions required in the first type
of protocols in order to achieve 2−λ soundness from λ to λ/logλ.

1.1 Our Results and Techniques

Our Results, in a Nutshell. Our results are three-fold. First, we show AQO
protocols for batch-oblivious linear evaluation (batch-OLE) and batch-oblivious
transfer (batch-OT)7 which are secure against semi-honest corruptions under
the Ring Learning with Errors (RLWE) assumption.

Secondly, in the case of batch-OLE, we improve this to obtain asymptotic
download rate that approaches 1. This gives an AQO variant of recent rate-
1 constructions from [DGI+19, BDGM19,GH19], which require uncompressing
batched ciphertexts. In contrast, our construction is a simple tweak on an old en-
cryption scheme due to Peikert, Vaikuntanathan andWaters [PVW08], a batched
version of Regev’s encryption [Reg05]. The high rate of our construction gives
rise (via a simple extractor-based transformation [BGI+17]) to an AQO construc-
tion of statistically sender-private (SSP) 2-message OT from RLWE. Beyond the
AQO feature, this gives an alternative route to recent lattice-based constructions
of SSP OT [BD18,DGI+19,MS20].

Finally, we use the batch-OT to construct AQO zero-knowledge and secure
computation protocols for Boolean circuits with security against malicious par-
ties. These protocols too are secure under RLWE.

Our goal was to answer a clean theoretical question. However, as it turned
out, our solution for AQO batch-OLE is competitive in practice, especially for
small instance sizes (and small fields). While the AQO definition may not say
anything about concrete efficiency for real-world parameters, we view this empir-
ical data point of correlation between “AQO security” and “concrete efficiency”
as a promising sign.

We now proceed to describe our results and techniques in more detail.

Semi-Honest Batch-OLE: AQO and Concretely Efficient. Oblivious linear eval-
uation (OLE) is a protocol between two parties S, the sender who has a linear
function Lα,β(x) = αx + β over a finite ring R, and R, the receiver who has
an input m ∈ R. At the end of the protocol, R gets Lα,β(m) = αm + β, and
6 We remark that the statements we want are proofs (of knowledge) of a short secret s
such that As = t over a ring. On the other hand, the second type of protocols prove
that there is a short secret s such that As equals a short multiple of t.

7 Recall that Batch-OT / OLE refers to multiple OT / OLE instances carried out in
parallel.

5

the sender gets nothing. OLE is a generalization of oblivious transfer (OT) over
fields (and rings) larger than F2, and has numerous applications, notably in se-
cure computation. We consider the n-fold repetition of the OLE functionality,
called batch-OLE, where the sender has α, β ∈ Rn, the receiver has m ∈ R and
gets α◦m+β ∈ Rn where ◦ denotes a coordinate-wise product. Here we consider
the case of batch-OLE over a polynomial-size modulus, namely where R = Zp
for p ≤ poly(λ).

We show the first construction of a semi-honest batch-OLE protocol which
is asymptotically quasi-optimal. Our protocol has minimal interaction of just
two rounds, and its security is based on the ring learning with errors (RLWE)
assumption. In the parameter regimes in which our protocol has competitive
concrete efficiency, it can be useful for realizing the distributed seed generation of
pseudorandom correlation generators (PCGs) for OLE and multiplication triples
based on Ring-LPN [BCG+20].

Our starting point is a folklore batch-OLE scheme using a batched version
of the classical Lyubashevsky-Peikert-Regev [LPR10] encryption scheme (hence-
forth called LPR encryption). The encryption scheme works over a message space
Rp := Zp[x]/(xk + 1) where k is a power of 2 and xk + 1 factors completely into
linear factors mod p.8 To encrypt a vector m ∈ Zkp, we first find, using the num-
ber theoretic transform (NTT), a polynomial m̂ such that m̂(ζi) = mi (mod p)
for all i ∈ [k]. Here, ζi ∈ Zp are the k roots of the polynomial xk + 1 (mod p)
which exist by our choice of p = 1 (mod 2k). The ciphertext

ct = (a, as+ e+∆m̂) := (a, b)

where ∆ = dq/pe,9 s is a random ring element and e is a short ring element.
The receiver in our OLE generates a ciphertext ct that encrypts his input m

and sends ct to the sender. By the semantic security of LPR encryption, which
relies on RLWE, the sender learns nothing about m.

The sender has α, β ∈ Zkp and wishes to homomorphically compute the (lin-
ear) OLE function. They do this by computing and returning to the receiver

cteval = (α̂a, α̂b+∆β̂)

which one can easily check is an encryption of α ◦m+ β.
The main problem with this idea is the lack of function privacy. That is, the

homomorphically evaluated ciphertext could contain information not just about
α◦m+β, but about α and β themselves. Indeed, this is not hard to see as the first
component of ct′ reveals α already. This can be solved using rerandomization:
the receiver can send a rerandomization key that allows the sender to generate a
pair (a′, b′ := a′s+ e′) with a (statistically close to) random a′, which they add
to cteval. This results in a rerandomized ciphertext

ct′eval = (α̂a+ a′, α̂b+ b′ +∆β̂)
8 We denote the Ring-LWE dimension by k, and the OLE batch-size by n.
9 We typically pick q to be a multiple of p so the rounding is not necessary.

6

where the first component is statistically close to random. Still, we are not done:
the receiver who knows s can retrieve terms such as α̂e+ e′ which could reveal
significant information about α.

The typical way to get around this problem is to add to ct′ a very-high-
noise encryption of 0 (namely, one with a very large e′) that will mask such
terms. In particular, one appeals to the so-called noise-flooding lemmas [Gen09,
AJL+12,GKPV10] that requires adding noise that is a factor 2λ larger than α̂e
to achieve 2−λ (statistical) security. Unfortunately, this blows up ciphertext sizes
by a multiplicative factor of λ, resulting in a communication of O(kλ), violating
the demands of AQO efficiency. (Recall that we need Õ(k + λ).)

At a high level, our main observation is that noise flooding is too strong
a hammer to achieve function privacy and therefore sender privacy. Instead,
our main contribution is a gentle noise-flooding procedure that gives us AQO
efficiency. We start by imagining what happens if we only add a small amount
of noise to each coordinate, in fact, just a constant factor larger than ‖α̂e‖∞.

To illustrate this concretely, imagine that each coordinate t of α̂e lives in the
interval [0, 10] and we add a noise term η chosen randomly from the interval
[0, 20]. If r = t + η lands up in the interval [10, 20], it reveals no information
about what t was to begin with! Indeed, all values of t in the interval [0, 10] are
equally likely conditioned on such a “good” r. In other words, by adding noise
that is a constant factor larger than ‖α̂e‖∞, one could hope to hide a constant
fraction of the coordinates of α̂e. This is formalized as our gentle noise-flooding
lemma (Lemma 3).

This is still not enough as leaking a constant fraction of α̂e′ is not acceptable.
However, this predicament we are in should point to secret-sharing as a possi-
ble way out. Indeed, our solution is to use a suitable modification of the OLE
extractors of [IKOS09a, BMN18a] to extract fresh OLE instances from these
“leaky” OLE instances. In a nutshell, to achieve AQO efficiency, we instantiate
the compiler of Block, Gupta, Maji and Nguyen [BGMN18] with a Reed-Solomon
code which admits quasi-linear time encoding and erasure-decoding. We can also
achieve AQO batch-OT by embedding OT into OLE using a standard technique.

Finally, we show a simple modification of (a ring version of) the PVW en-
cryption scheme [PVW08] which, when used in place of LPR encryption, gives
us a download-rate-(1 − ε) batch-OLE. Namely, the sender message has length
(1 + ε)klog p for any constant ε > 0. Note that this is smaller than the total
length of the sender input (namely, 2klog p), thus the sender input is somewhat
statistically hidden even if the receiver is malicious.

On Asymptotic Quasi-Optimality vs. Concrete Efficiency. Asymptotic quasi-
optimality is a theoretical framework to capture efficiency of cryptographic pro-
tocols, with an eye towards practicality. To demonstrate the latter, we provide
an implementation of our batch-OLE protocol and benchmark it against sev-
eral competing approaches [BDOZ11, dCJV21,BEP+20], demonstrating that it
achieves as good or better communication and/or computational overhead than
the competing approaches. Due to lack of space, we defer detailed performance
results and comparisons to the full version of this paper. The computational

7

and communication complexity is as good as the rounding protocol in [dCJV21]
and considerably better than other competing approaches [BDOZ11,BEP+20].
For example, doing 10,000 OLEs over a 16-bit field requires a communication of
1.17 MB in our protocol versus 1.31 MB in the protocol of [dCJV21] and 2.09
MB in the protocol of [BEP+20].

AQO Zero Knowledge. We show the first construction of a zero-knowledge proof
for all of NP that is asymptotically quasi-optimal in both computation and
communication. Furthermore, our protocol is constant-round. Our starting point
is an asymptotically quasi-optimal PCP that is implicit in prior works on near-
optimal PCPs [BS08,BCGT13]. We abstract such an AQO PCP via a gap version
of Cook’s theorem (cf. Theorem 4). Our construction proceeds in three steps:
1. We first compile the AQO PCP into an honest-verifier AQO zero-knowledge

PCP (ZKPCP). Recall that in such a ZKPCP, the view of an honest verifier
can be simulated without knowing the witness. Our construction relies on the
“MPC-in-the-head” technique from [IKOS07,IW14]. For the compilation, we
design a specialized MPC protocol that preserves the AQO property of the
underlying PCP.

2. In the next step, we construct an AQO honest-verifier ZK from our ZKPCP,
using batch-OT to emulate the PCP queries. As we are constructing a proof
(with unconditional soundness), we need the batch-OT to be uncondition-
ally secure against a malicious sender. However, we are unable to obtain
such a protocol directly from our semi-honest batch-OT protocol (in fact,
our malicious batch-OT protocol will rely on the zero-knowledge proof sys-
tem designed here). Instead, we design a new AQO batch-OT protocol based
on Ring-LWE with two caveats: it is unconditionally secure against a ma-
licious receiver as opposed to the sender, and it is only entropically secure
in the sense that a malicious receiver obtains some bounded leakage on the
sender’s input. By reversing the OT direction [WW06], we solve the prob-
lem of getting security against a malicious sender. Finally, we show that the
entropy loss in the sender’s input only reduces the ZKPCP soundness in our
honest-verifier ZK proof system by essentially the loss in entropy. By appro-
priately instantiating the parameters, we preserve AQO in this reduction.

3. Finally, to handle a malicious verifier, we have the verifier commit to its
randomness for the honest-verifier ZK system and reveal it to demonstrate
honest behavior. As the verifier can abort at reveal, we need to ensure that
the actual proof is not learned by the verifier before it demonstrates honest
behavior. We achieve this by having the prover commit to the proof and
reveal it after the verifier reveals its randomness. By using an AQO commit-
ment, we ensure this step preserves the AQO property.
Thus, a key insight in this construction is that a leaky (entropically secure)

batch-OLE scheme is good enough because we only use it for soundness.

AQO Secure Function Evaluation. Finally, we discuss how to achieve AQO se-
cure function evaluation (SFE) for Boolean circuits in the presence of semi-
honest and malicious adversaries. Loosely speaking, semi-honest SFE is implied

8

directly by instantiating a variant of the classic GMW protocol [GMW87,Gol04]
with our AQO semi-honest batch-OT. Next, to compile it to achieve malicious
security, we first compile our semi-honest batch-OT protocol to be secure against
malicious parties using our AQO ZK. Our protocol then relies on the semi-honest
GMW protocol where the OTs are instantiated using our maliciously secure OT
protocol. Next, we rely on the observation from [GIP+14] that if we remove the
final output reconstruction round from the semi-honest GMW protocol in the
OT-hybrid model, then it does not reveal any information even to malicious par-
ties. This allows us to use a single zero-knowledge proof (rather than one in each
step of the protocol) to be provided just before the output shares are revealed.
As a corollary, we get an AQO single OLE over an arbitrary modulus.

1.2 Perspectives and Open Problems

Theoretical Motivation. Our original motivation for this work was to design
efficient solutions when the instance size n was small, i.e. n = O(λ) where λ
is the security parameter. We expect that studying this question will lead to
creative ways to solve problems such as OT, OLE, ZK, and MPC.

Our optimism is based on past examples. Several lines of research have started
from clean questions of this kind and turned out to have unexpected theoretical
and practical applications. Some examples include lattice-based cryptography,
black-box reductions and, closer to our work, low-complexity cryptography. A
common feature is that a new theoretical challenge has led to a rich landscape
of new techniques, which have then found other applications.

Practical Motivation. As already mentioned, our (semi-honest) batch-OLE pro-
tocol gives a promising evidence for relevance of the asymptotic AQO question
to concrete efficiency. Batch-OLE can serve as a useful building block for secure
arithmetic computation, and can be used to bootstrap pseudorandom correla-
tion generators for OLE [BCG+20]. In contrast, our current AQO zero-knowledge
protocol is impractical because of its reliance on a classical PCP.

Open Problems. The central creative challenge in achieving AQO is to find new
ways of amplification. While we succeeded in some cases, many questions about
AQO cryptography remain open and motivate future research. We include here
some open questions.

First, while there are AQO constructions of minicrypt objects from a variety
of assumptions, the only AQO public-key encryption scheme we are aware of
is based on Ring-LWE. There are likely to be be other ways to achieve AQO
cryptomania, and we believe this is an interesting challenge for future research.
A second question is obtaining concretely efficient AQO zero-knowledge proofs.
A possible route is by employing a suitable AQO variant of a linear PCP (such
as the one of Gennaro et al. [GGPR13]), where the field size is kept small and
soundness is amplified by using λ queries, but with only a polylogarithmic in-
crease in computation. Third, the notion of AQO reductions (which we used
to construct AQO semi-honest SFE from AQO batch-OT) leaves several open

9

questions. For instance, is there an information-theoretic AQO reduction of zero-
knowledge proofs to batch-OT? Finally, the idea of using leaky functionalities
(such as batch-OT or batch-OLE) in downstream applications, which we used
to construct our AQO ZK protocol, could be useful in other contexts.

2 Preliminaries

Basic notations and conventions. We denote the security parameter by λ and
by the abbreviation PPT to denote probabilistic polynomial-time. We write Õ(·)
to suppress polylogarithmic factors. In this work we consider nonuniform adver-
saries that are modeled by Boolean circuits.

2.1 Asymptotic Quasi-Optimality

In this section, we define the notion of asymptotic quasi-optimality (AQO) for the
cryptographic primitives we explore in this work. Recall that a major distinction
between this notion and some earlier notions of asymptotic (quasi)-optimality
from the literature [IKOS08,DIK10,BCG+17,BISW18] is that here, we demand
(and obtain) a near-optimal tradeoff between security and efficiency for every
instance size and security level, as opposed to sufficiently big polynomial-size (in
the security parameter) instances. In contrast, previous works neglect additive
terms that depend polynomially on the security parameter. For all primitives,
we define a notion of instance size that we denote by n and a security parameter
λ. Informally, asymptotic quasi-optimality demands that the algorithms for the
primitives run in time Õ(n+λ) and provides 2−λ-security against adversaries of
size 2λ.

We now describe how such a definition manifests in the case of two-party
secure function evaluation. Here, the instance size n refers to the size of a Boolean
circuit implementing the underlying functionality. Such protocols are formally
captured by a polynomial-time protocol compiler that, given inputs the security
parameter 1λ and a circuit C, outputs a pair of circuits (P0, P1) that implements
the next message function of the two parties in the protocol. The AQO efficiency
requirement is that the size of the circuits P0 and P1 output by the compiler is
quasilinear in n+ λ.

While the correctness requirement (when no party is corrupted) should hold
irrespective of the choice of λ,C, the security requirement only considers adver-
saries of size at most 2λ. The definition follows the standard definition of security
for two-party secure function evaluation [Gol04] with the exception that we use
the following “exact” notion of 2λ-indistinguishability:
Definition 1. Let X = {X(λ, a)}λ∈N,a∈{0,1}∗ and Y = {Y (λ, a)}λ∈N,a∈{0,1}∗
be two distribution ensembles. We say that the ensembles X and Y are 2λ-
indistinguishable, denoted X ≈2λ Y , if for every non-uniform circuit D of size
at most 2λ, every a ∈ {0, 1}∗, and all sufficiently large λ,∣∣∣∣Pr

[
D(X(λ, a), 1λ, a) = 1

]
− Pr

[
D(Y (λ, a), 1λ, a) = 1

] ∣∣∣∣ ≤ 2−λ.

10

The definitions for other AQO primitives considered in this paper follow as
special cases of AQO secure function evaluation. We defer the formal definitions
to the full version of this paper.

2.2 Ring Learning with Errors

Define the ring R := Z[x]/(xk + 1), where we take k to be a positive power of 2.
For a modulus q, let Rq = Zq[x]/(xk+1). Let U(Rq) be the uniform distribution
over Rq. For σ ∈ R+, let χ denote the error distribution, which is a discrete,
zero-centered Gaussian distribution with variance σ2 over R. A sample e ← χ
is produced by sampling each coefficient from a discrete, zero-centered Gaussian
with variance σ2. We now define the decisional Ring-LWE problem [LPR10],
borrowing formalisms from [BEP+20].

Definition 2 (Decisional Ring Learning with Errors Problem). For a
modulus q ∈ N+, k a power of 2, and a standard deviation σ ∈ R+, let Rq and
χ be as defined above. We say that an algorithm A has advantage ε in solving
the problem RLWEn,q,χ if the following holds:∣∣∣Pr[b = 1 | a← U(Rq), s, e← χ, b← A(a,as + e)]

− Pr[b = 1 | a← U(Rq), u← U(Rq)), b← A(a,u)]
∣∣∣ ≥ ε

The decisional ring-LWE assumption postulates that every 2λ-time adversary has
advantage at most 2−λ in the distinguishing game above.

In order to achieve the definition, one would set k = k(λ) to be a large enough
polynomial function of λ. The cryptanalytic state of the art suggests that k(λ)
can be quasi-linear in λ.

2.3 Ring-LWE Encryption

We describe a batched version of an encryption scheme from Lyubashevsky,
Peikert and Regev [LPR10] (henceforth called batch-LPR). There are four pa-
rameters that define the scheme: k = k(λ), the ring dimension; q = q(λ), the
ciphertext modulus; p = p(λ), the plaintext modulus; and χ, an error distribu-
tion. There are several constraints on these parameters that we will describe in
the sequel.

The scheme operates over the polynomial ring Rq = Zq[x]/(f(x)) where f(x)
is a degree-k polynomial that is irreducible over Q[x]. Typically, and throughout
this paper, we consider f(x) = xk + 1 where k is a power of two.

We will let χ be a (truncated) discrete Gaussian distribution over Zk which is
interpreted as a distribution over the coefficient embedding of R = Z[x]/(xk+1).
Thus, a polynomial v ∈ R is sampled according to the distribution by sampling
each coefficient independently from a truncated discrete Gaussian, namely a
discrete Gaussian with standard deviation σ whose support is contained in an

11

Euclidean ball of radius σ
√
k. Note that we truncate the Gaussian distribution

to have statistical distance of at most 2−k ≤ 2−λ from the untruncated Gaussian
distribution [MR04], hence truncation adds a 2−λ factor in security games, which
we typically ignore. Let U(Rq) be the uniform distribution over Rq.

Encryption Scheme The encryption scheme proceeds as follows. The param-
eters k, p, q and σ are assumed to be known to all the algorithms.

– LPR.KeyGen(1λ): Choose a1, . . . , a`, s ← U(Rq) and e1, . . . , e` ← χ, where
` is a tunable parameter that will be set later during the rerandomization
procedure. Output the secret key sk = s and the rerandomization key rk =
(a1, . . . , a`, a1s+ e1, . . . , a`s+ e`).

– LPR.Encode(p,m) and LPR.Decode(p, m̂): The public, deterministic, encod-
ing algorithm transforms the message into a form that will be used by the
encryption algorithm, and the public decoding algorithm is its inverse oper-
ation. Both operations are linear.
The plaintext space for batch-LPR is Zkp. To encode m ∈ Zkp, apply the
number-theoretic transform (NTT) over Rp := Zp[x]/(xk + 1) to convert it
into m̂ ∈ Rq. The key property is that for every m1,m2 ∈ Zkp, m1 ◦m2 =
LPR.Decode(m̂1 · m̂2) where · denotes multiplication of polynomials in Rp
and ◦ denotes coordinate-wise multiplication of vectors in Zkp.

– LPR.Enc(sk,m): Sample a ← Rq and e ← χ. Let ∆ = dq/pc and let m̂ =
LPR.Encode(p,m). Output the ciphertext

ct = (a, as+ e+∆m̂) ∈ R2
q

(In this paper, q will be chosen as a multiple of p, so ∆ = q/p.)
– LPR.Dec(sk, ct): Parse sk = s. Decryption of a ciphertext ct = (a, b) proceeds

by computing

m̂ =
⌊
b− as
∆

⌋
Output LPR.Decode(p, m̂).

Correctness, Security and Parameter Settings. There are several interrelated
constraints on the parameters that must be balanced when instantiating the
scheme. For correctness, we need that

||b− as||∞ ≤ ∆/2 ≈ q/2p

This places a lower bound on q = Ω(pσ2
√
k). Since we insist on full utilization of

all k plaintext slots, we require Z[x]/(xk+1) to split completely mod p, requiring
us to have p = 1 (mod 2k). Thus, we have q > p ≥ 2k + 1. (Additionally to
support quasi-linear time operations, we will also need to support NTT mod q,
so we requires the factors of q to be 1 (mod 2k) as well.)

The relationship between parameters is further complicated because of ho-
momorphic operations, which can grow the error term in the ciphertext. To

12

maintain correctness, this may require the ciphertext modulus q to grow. In-
creasing q can raise the lower bound on k since the known attacks on Ring-LWE
improve in quality as the ratio between q and σ increases; to compensate for
it, one needs to increase k. In turn, this increases the smallest p that can be
supported.

Homomorphic Operations We now define two basic homomorphic operations
on the encryption scheme that allow us to construct a batch-OLE protocol. The
first operation Lin supports linear functions of the form fα,β(m) = α ◦m+ β. It
is often desirable that homomorphic operations produce a ciphertext that does
not leak the circuit computed to generate the ciphertext, even to the party that
generated the input ciphertext and who knows the secret key. This property
is often called function privacy [Gen09,GHV10] and is not satisfied by the Lin
algorithm. To achieve this function-hiding property, we need a rerandomization
algorithm ReRand.

– LPR.Lin(ct, α, β): The homomorphic addition algorithm outputs a ciphertext
ct′ that decrypts to α ◦ m + β if ct encrypts m. Letting ct = (a, b), the
algorithm outputs

ct′ = (α̂a, α̂b+∆β̂)

where α̂ = LPR.Encode(p, α) and β̂ = LPR.Encode(p, β). Note that while
we think of the output of LPR.Encode as living in Rp, we think of it as a
polynomial over R when multiplying it with a and b.
Denoting α̂a by a′, the ciphertext ct′ is of the form (a′, a′s+α̂e+∆(α̂m̂+ β̂).
Assuming that α̂e is small enough, decrytion recovers α̂m̂+ β̂ and decoding
it recovers α ◦m+ β.

– LPR.ReRand(rk, ct, B): Let χflood be the uniform distribution over [−B, . . . , B].
The rerandomization operation parses rk = (a1, a2, . . . , a`, b1, b2, . . . , b`) and
ct = (a, b) and outputs

(a+
∑̀
i=1

riai + r0, b+
∑̀
i=1

ribi + f)

where ri are polynomials with coefficients from a discrete Gaussian distri-
bution, and f is a random polynomial with coefficients chosen from χflood.
Denoting the first component of the above ciphertext by a′, and assuming
that b = as + e + ∆m̂, the second component can be written as a′s + e +∑`
i=1 riei+∆m̂. This is an encryption of m̂ as long as the error e+

∑`
i=1 riei

is small enough.

The rerandomization procedure is often used with B > 2λ · pσ2k. Indeed,
pσ2k is an upper bound on the `∞ norm of the noise term in the output of
Lin. By the noise-flooding lemma [Gen09,GKPV10,AJL+12], this gives us 2−λ
statistical security of LPR.ReRand. In this work, we will use a narrower flooding
distribution.

13

2.4 Entropy and Extraction

The min-entropy of a random variable X is H∞(X) = −log maxx Pr[X = x].
The conditional min-entropy of X given Y , defined in [DORS08], is H̃∞(X|Y) =
−log Ey[maxx Pr[X = x|Y = y]]. We need the following fact.

Lemma 1 (Lemma 2.2 in [DORS08]). Let X,Y, Z be random variables where
Y takes at most 2` possible values. Then,

H̃∞(A|B,C) ≥ H̃∞(A,B|C)− ` ≥ H̃∞(A|C)− ` .

We also need the following regularity lemma [Mic02,LPR13].

Lemma 2 (Corollary 7.5 in [LPR13]). Let a1, . . . , a` be chosen at random
from Rq = Z[x]/(xk + 1) where k is a power of two, and let r0, r1, . . . , r` be
ring elements each of whose coefficients is chosen from a discrete Gaussian with
parameter σ ≥ 2k · q(n+2)/n`. Then the distribution of r0 +

∑`
i=1 riai (given

a1, . . . , a`) has statistical distance at most 2−Ω(k) from the uniform distribution
over Rq.

3 AQO Semi-Honest Batch-OLE and Batch-OT

We begin this section with our first technical contribution, namely a gentle
noise-flooding procedure. We then use this to construct our asymptotically quasi-
optimal batch-OLE and batch-OT schemes in Section 3.3.

3.1 Gentle Noise-Flooding

The noise-flooding lemma (e.g. [Gen09,GKPV10]) states that for every integer
x ∈ [−P, P], the distribution of x+ y where the integer y is chosen uniformly at
random from the interval [−Q,Q] is statistically close to the uniform distribution
over the interval [−Q,Q]. Specifically, the statistical distance is O(P/Q). Typi-
cally, this lemma is used with Q ≥ P · 2λ so as to result in exponentially small
statistical distance. Our gentle noise-flooding lemma below shows a qualitatively
stronger statement: the distribution of x + y can be perfectly simulated by an
algorithm that gets x with probability 2P/(2Q + 1) (and ⊥ otherwise). This is
a specific, simple, instance of a statistical-to-perfect lemma as in [IKO+11].

Let D = {Da}a∈A be an ensemble of distributions indexed by a variable a ∈
A. An ε-leaky perfect simulator for D is an algorithm S such that the distribution
obtained by outputting S(a) with probability ε and S(⊥) with probability 1− ε
is identically distributed to Da.

Lemma 3 (Gentle Noise Flooding Lemma). Let P,Q be integers with P <
Q. Let the encoding of a ∈ [−P, P], denoted Encode(a) be s = a + r where r is
chosen uniformly from [−Q,Q]. Then, there exists a 2P/(2Q + 1)-leaky perfect
simulation for the encoding scheme.

14

Proof. We first analyze the distribution Encode(a). Consider two cases.

– Case 1: P−Q ≤ s ≤ Q−P . In this case, we argue that no information about
a is leaked. For any s such that P −Q ≤ s ≤ Q − P , and any a ∈ [−P, P],
there is a unique r ← [−Q,Q] such that s = a+ r. This implies that for any
a,

Pr[Encode(a) = s | s ∈ [Q− P, P −Q]] = 1/(2Q− 2P).
Furthermore, the probability that we are in Case 1, i.e., s ∈ [P −Q,Q− P]
is exactly (2Q− 2P + 1)/(2Q+ 1).

– Case 2: s < P − Q or s > Q − P . In this case, s leaks something about
a. As the number of r’s that result in Case 1 is exactly 2Q − 2P + 1, the
number of bad r’s is exactly 2P . Therefore, the probability that this case
occurs is 2P/(2Q+ 1).

We now define S to be the algorithm that works as follows. On input ⊥, it
simply outputs a uniformly random value in [P −Q,Q− P]; and on input a, it
outputs a+r conditioned on a+r 6∈ [P−Q,Q−P] where r is chosen uniformly at
random from [−Q,Q]. The distributions induced by S(⊥) and S(a) are identical
to the distributions from Cases 1 and 2 respectively. Since Case 2 occurs with
2P/(2Q+ 1) probability, we achieve 2P/(2Q+ 1)-leaky perfect simulation. ut

Corollary 1. Let Q ≥ kP . Let a ∈ [−P, P]k be arbitrary and let s = a + r
where r ← [−Q,Q]k is chosen at random. Then, there exists a simulator S that
takes O(λ · (logP + logk)) bits of information on a and simulates the distribution
of s to within statistical distance 2−Ω(λ).

The statistical-to-perfect simulator S in the proof of Lemma 3 uses 2P/(2Q+
1) · k < 2 coordinates of a (their values together with their locations) in expec-
tation. The corollary follows by a Chernoff bound.

3.2 Entropically Secure Batch-OLE Protocol

We first present a “leaky” batch-OLE protocol which guarantees that the sender’s
input has residual entropy given the (semi-honest) receiver’s view. The receiver
is guaranteed simulation security against a semi-honest sender.

The receiver starts with input m ∈ Zkp and the sender has input α, β ∈ Zkp.
For convenience, one can imagine that α and β are random. At the end of the
protocol, the receiver gets γ = α ◦m + β, where all operations are component-
wise. Let k, p, q and σ be the parameters of the LPR scheme.

1. The receiver generates a key pair (sk, rk)← LPR.KeyGen(1λ). It encrypts m
into a ciphertext ct← LPR.Enc(sk,m), and sends (rk, ct) to the sender.

2. The sender computes a ciphertext ct′ ← ReRand(rk, Lin(ct, α, β), Q) where
Q = Ω(pk2σ) and returns ct′ to the client.

3. The receiver outputs γ ← Dec(sk, ct′).

Correctness follows from the properties of the LPR encryption scheme in
Section 2.3. The entropic security statement is captured by the lemma below.

15

Lemma 4 (Entropically Secure Semi-Honest Batch OLE). Let the pa-
rameters k = k(λ), p = p(λ), σ = σ(λ), Q = Ω̃(pk2σ) and q = Ω(pQ). Condi-
tioned on the receiver’s view, the sender input α has residual entropy at least
H∞(α)−O(λlogQ).

Proof. The receiver’s view consists of the LPR secret key s, the public poly-
nomials a, a1, . . . , a`, the error polynomials e1, . . . , e`, the input m (which we
collectively denote by view0) and the sender message ct′. The latter is

ct′ = (a′, b′) = (α̂a+
∑̀
i=1

riai + r0, α̂b+∆β̂ +
∑̀
i=1

ribi + f)

=
(
α̂a+

∑̀
i=1

riai + r0, (α̂a+
∑̀
i=1

riai + r0)s+ (α̂e+
∑̀
i=1

riei + f) +∆(α̂m̂+ β̂)
)

Note that ct′ can be generated given A := α̂a +
∑`
i=1 riai + r0, E := α̂e +∑`

i=1 riei+f and α̂m̂+ β̂. Since β̂ is random and independent of α̂, so is α̂m̂+ β̂.
Since the coordinates of α̂e+

∑`
i=1 riei are bounded by Õ(pkσ), an application

of the gentle noise-flooding lemma (Corollary 1) tells us that E can be simu-
lated given O(λ) of its coordinates, and therefore O(λlogQ) bits. An application
of Lemma 1 tells us that H̃∞(α|A,E) ≥ H∞(α|A) − O(λlogQ). (We implic-
itly condition all entropy expressions on view0.) Finally, the regularity lemma
(Lemma 2) tells us that A is 2−Ω(λ)-close to uniform. Putting this together, we
get that H̃∞(α|A,E) ≥ H∞(α)−O(λlogQ). ut

Finally, we note that for a sufficiently large value of k (as a function of λ),
the residual entropy is a constant fraction of the entropy of α.

3.3 Our Batch-OLE and Batch-OT Schemes

AQO Batch-OLE. Block et al. [BGMN18], building on [IKOS09a, BMN18b],
showed a compiler that converts leaky OLE to fresh OLE. Our main observation
is that their compiler preserves asymptotic quasi-optimality as long as one uses
an error-correcting code that permits quasi-linear time encoding and erasure-
decoding, both of which are satisfied by the Reed-Solomon code. This gives us
the following theorem. We defer details and concrete optimizations to the full
version of this paper.

Theorem 1. There exists an asymptotically quasi-optimal BOLE protocol under
the 2λ-hardness of the RLWE assumption.

AQO Batch-OT. Since our Batch-OLE protocol works over polynomial-sized
fields, we can get a batch-OT protocol by naïvely embedding a single-bit OT
into a single instance of OLE over Zp. The naïve embedding loses a factor of
log p in the rate. We remark that it may be possible to reclaim this and achieve
a constant rate by working with an extension field of F2, i.e., F2` for some

16

`, and using ideas from [CCXY18, BMN18a] to embed F`′2 into F2` . We leave
the exploration of this avenue to a future work. An alternative approach that
achieves a near-constant rate is described in Section 4.1.

4 AQO Batch-OLE: The Malicious Setting

In this section, we show how to achieve a two-round AQO leaky batch-OLE that
is entropically secure against a malicious receiver. In particular, we will show
that for every (possibly maliciously chosen) receiver message, the sender input a
has residual entropy conditioned on his message to the receiver. The sender will
be assumed to be semi-honest. We defer the exact notion of entropic security to
Theorem 2 and instead start with the protocol itself.

4.1 Entropically Secure OLE against a Malicious Receiver

Our starting point is to develop an additively homomorphic encryption scheme
with good “post-evaluation rate”, namely one where the size of homomorphically
evaluated ciphertexts are approximately the same as the size of the messages they
encrypt. Such schemes were developed very recently in a collection of indepen-
dent works [BDGM19,GH19,DGI+19]. We observe that a simple tweak on an
encryption scheme due to Peikert, Vaikuntanathan and Waters [PVW08] already
gives us good post-evaluation rate together with good concrete efficiency. In con-
trast, all the cited works construct somewhat more complex and concretely less
efficient schemes. We do pay a price, namely, freshly encrypted ciphertexts are
not rate-1; in fact, they are somewhat larger than they would be otherwise.
Yet, this does not matter much for us: indeed for our application to entropically
secure OLE, only the size of the homomorphically evaluated ciphertext matters.

Our scheme, denoted EntOLE, is parametrized by a dimension k, plaintext
modulus p, ciphertext (Ring-LWE) modulus q and a noise parameter σ. We de-
fine two additional parameters: η that will govern the message sizes, and a com-
pressed ciphertext modulus q′. One challenge that must be overcome to achieve
a low post-evaluation rate is a reduction of the ciphertext modulus. Since our ho-
momorphic computation must support one plaintext-ciphertext multiplication,
our starting ciphertext modulus q must be greater than p2, since we must have
log p bits for the message and an additional log p bits to account for the growth of
the error term. The resulting ciphertext modulus q′ will only be a few bits larger
than p. To switch to this modulus we employ the modulus reduction operation
from Brakerski & Vaikuntanathan [BV11a].

Modulus Reduction [BV11a, BGV12]. For ciphertext moduli q, q′ such that q′
divides q, the modulus reduction operation ModRedq,q′ takes in an element a ∈
Rq and outputs a′ ∈ Rq′ where a′ =

⌊
q′

q a
⌋
.

µ =
⌊
b′ − a′s mod q′

∆′

⌋

17

We now describe a secret-key linearly homomorphic encryption scheme with
post-evaluation rate close to 1.

– EntOLE.KeyGen(1λ, η) : For each i ∈ [η], sample si ← χ and output

sk = (s1, . . . , sη) ∈ Rηq

– EntOLE.Enc (sk, (µ1, . . . , µη)) : Takes as input a secret key and a message
vector (µ1, . . . , µη) where each µi is in Zkp. For i ∈ [η], sample ai ← U(Rq),
where U denotes the uniform distribution. Let a denote the column vector
of length η consisting of the ai polynomials. Similarly, let s be a row vector
of length η consisting of the secret polynomials. Define the matrix M ∈
Rη×ηq where M[i, j] = 0 for i 6= j and M[i, i] = LPR.Encode(µi) for each
i ∈ [η]. Finally, sample a matrix E ∈ Rη×ηq such that each E[i, j]← χ is an
independently sampled error polynomial. Output the following ciphertext:

ct = (a | a · s+M∆+ E) ∈ Rη×(η+1)
q

(Note that a · s is an η× η matrix which is the outer product of the vectors
a and s.)

– EntOLE.Eval(ct, {αi}ηi=1, {βi}
η
i=1) : Takes as input a ciphertext ct and the

sender’s BOLE inputs where each input is in Zkp. Let α be the column vector
of length η such that α[i] = LPR.Encode(αi) for i ∈ [η]. Let β be the column
vector of length η + 1 such that β[i + 1] = LPR.Encode(βi) for i ∈ [η], and
set β[1] = 0. Compute an encryption of the BOLE result as follows:

ctbole = (α)T · ct+∆β ∈ Rη+1
q

This ciphertext consists of η + 1 elements in Rq.
To achieve a high rate for the output ciphertext, we perform the modulus
switching operation [BV11a, BGV12] to reduce our modulus from q to q′.
We define the output ciphertext ctres ∈ Rη+1

q′ as follows:

ctres[i] := ModRedq,q′(ctbole[i]) for i ∈ [η + 1]

– EntOLE.Dec(sk, ctres) : Takes as input a vector of η secret keys and a ci-
phertext in Rη+1

q′ . Decryption proceeds by first computing µi for i ∈ [η] as
follows:

µi :=
⌊
ctres[i+ 1]− ctres[1] · sk[i]

∆′

⌋
where ∆′ = bq′/pc. Set µi := LPR.Decode(µi), and output {µi}ηi=1 ∈ Rηp.

The entropically secure OLE protocol is described in Figure 1. The following
theorem states the correctness and security properties of the protocol; the proof
is deferred to the full version of this paper.

18

Entropically Sender-Secure Batch OLE protocol

Receiver Input: m = (m1, . . . ,mkη) ∈ Zkηp .
Sender Input: a = (a1, . . . , akη) ∈ Zkηp and b = (b1, . . . , bkη) ∈ Zkηp .

Receiver does the following:

– Splits m into η vectors in Zkp to get {µi}ηi=1, where each µi is in Zkp.
– Samples sk ← EntOLE.KeyGen(1λ, η).
– Computes ct← EntOLE.Enc(sk, {µi}ηi=1) and sends ct to the receiver.

Sender does the following:

– Splits a and b each into η vectors in Zkp to get {αi}ηi=1 and {βi}ηi=1, where each
αi and βi is in Zkp.

– Compute ctres = EntOLE.EvalOLE(ct, {αi}ηi=1, {β}
η
i=1) and return ctres to the re-

ceiver.

Receiver computes {yi}ηi=1 ← EntOLE.Dec(sk, ctres) and concatenates the result vec-
tors into a single vector y ∈ Zkηp . Outputs y.

Fig. 1: Entropically Secure Batch-OLE Scheme

Theorem 2. Fix η ∈ N. For a security parameter λ, let k, σ, q be parameters
that give 2λ security of ring LWE. Let p be the plaintext modulus, and let q′
be a ciphertext modulus such that p divides q′ and q′ divides q. In addition, let
q′ > pkσ and let q > p2k2σ. Then, there exists a BOLE protocol with batch size
n = kη with the following properties.

1. The communication from the receiver to the sender is (η+ 1)η · k · log q bits.
2. The communication from the sender to the receiver is k(η + 1)log q′ bits.
3. The receiver’s runtime is Θ(η2klog(k)log(q)).
4. The sender’s runtime is Θ(η2log(k)log(q) + ηklog(k)log(q′)).
5. For every malicious receiver R∗ that outputs a ciphertext ct ∈ Rη×(η+1)

q , the
entropy of the sender’s first input for any distribution of a is at least

H̃∞(a|ctres) ≥ H̃∞(a)− (log(q′)k(η + 1)− log(p)kη)

≥ H̃∞(a)−O(nlog(k) + klog(p))
(1)

The last bullet shows that with a large enough η, there is considerable residual
entropy in a given the receiver’s view. Indeed, a has entropy nlogp, and the
residual entropy is (up to multiplicative constants) at least nlogp−nlogk−klogp
which is a constant fraction of the entropy of a if p = poly(k) and η = n/k is
a constant, or even a 1 − 1/logck fraction if p is superpolynomial in k and η
is polylogarithmic in k. The first four bullets show that the protocol has AQO
efficiency.

19

By relying on a simple extension of [WW06], we also obtain an entropically
secure OLE w.r.t malicious sender. In slight more detail, in the “reversed” pro-
tocol, the receiver will play the role of the sender and the sender the role of the
receiver in the underlying batch OLE. For each instance of the batch OLE, the
receiver with input x sets its input as x, r where r is chosen uniformly at random
and the sender with input a, b sets its input as a. The sender learns z = a ·x+ r
and sends w = z+b to the receiver which can compute its output as w−r. If the
underlying batch OLE is entropically secure against a malicious receiver with
entropy loss ε, then the reversed protocol will be entropically secure against a
malicious sender with entropy loss ε.

Leaky Batch-OTs from leaky Batch-OLE. We now show how to obtain a entrop-
ically secure batch OT protocol from a batch OLE protocol.

We begin by observing that a naïve embedding of n OT instances into n
OLE’s does not work. From Theorem 2, we have that the entropy loss with a
batch size n is ω(n). The maximum entropy of the sender’s message in n OT
instances is 2 ·n, therefore, the sender’s entire input could potentially be leaked.
Next, we provide a tighter reduction from batch-OT to batch-OLE.

Let c be any integer. We will design an m-batch OT protocol that is entrop-
ically secure against a malicious receiver where the entropy loss in the sender’s
“a” message is at most (1/logc(n)) ·m. Our compilation proceeds as follows:

1. We compile a batch OLE with batch size n over a prime p of length logc+2λ
bits to n OLEs over the ring modulo p′ = p1 · p2 · · · pτ where p1, . . . , pτ
are the first τ = logcλ prime numbers with the guarantee that except with
probability 2−λ at least n − λ OLEs over p′ are secure against a malicious
receiver. If the original batch OLE is only entropically secure against a ma-
licious receiver w.r.t “a”-message, then the entropy loss in the “a” message
will decrease further by at most λ · log(p′).

2. Next, we reduce OLE over ring modulo p′ = p1 · p2 · · · pτ to τ OLEs over
each of the primes p1, . . . , pτ using a standard application of the Chinese
Remainder Theorem.

3. Finally, we employ the näive reduction of OLE modulo any prime p to a
bit OT, namely, the receiver feeds its input bit b as is in the OLE protocol,
while the sender maps its input s0, s1 to a = (s1 − s0), b = s0.

We provide details only for the first step as the remaining steps follow stan-
dard techniques.

The sender and receiver will essentially use their inputs a, b, x modulo p′ as
their inputs for the OLE modulo p. Recall that p′ is the product of the first logcλ
primes,10 which implies log(p′) < logc+1λ. This in turn means the maximum
value of a ·x+p computed over integers is O(2logc+1λ) < p. So the receiver learns
a · x+ p computed over integers. This however induces a leakage as the receiver
is only supposed to learn the value mod(p′). In order to reduce the leakage, we
will have the sender modify its inputs to a′ = a, b′ = b+ r · p′ where r is chosen
10 The product of the first n primes is eO(nlogn).

20

uniformly at random from [−λ · p′, λ · p′]. By the gentle noise-flooding lemma
Lemma 3, we can conclude that the probability that the OLE leaks is at most
O(1/λ). By a Chernoff bound, we can conclude that except with probability 2−λ
at most λ of the OLE instances are leaky.

We now analyze the entire compilation.We instantiate the batch OLE with
batch size n = klogcλ over a prime p of length logc+2λ bits (where k is the Ring
LWE dimension set as λ). Recall from Theorem 2 that the entropy loss of the
senders “α”-message is at most nlogk+klogp = nlogλ+λlogp. The length of p′ is
at most logc+1λ bits. Since at most λ OLEs are leaky, the maximum entropy loss
in the “α”-message can be bounded by nlogλ+ λlogp+ λlog(p′) = O(λlogc+2λ).

Finally, we obtain a batch-OT protocol with a batch size of n · τ = λlog2cλ
and entropy loss of O(λlogc+2λ). Therefore, we have the following theorem.

Theorem 3. For any constant c, there exists a batch-OT protocol over n =
λlog2cλ instances such that for every malicious receiver R∗, and arbitrary dis-
tribution over sender’s inputs, the entropy of sender’s “a” input at the end of
the protocol is at least: H∞(a)−O(λlogc+2λ).

5 AQO Zero-Knowledge Arguments

In this section we construct an AQO zero-knowledge argument system. Our
starting point is a stronger version of Cook’s theorem that follows implicitly from
the PCP literature which we compile into an (honest verifier) ZKPCP. In the next
step we convert our ZKPCP into a ZK argument system. The former is achieved
based on the MPC-in-the-head paradigm whereas the later transformation uses
AQO batch OT protocol to emulate the query phase from the ZKPCP oracle.

We begin by recalling Cook’s theorem which states that there exists a pair
of algorithms (A,B) where given any Boolean circuit C of size s, A maps C to
a 3CNF formula F and B maps an input w for C to an input z for F such that
the following properties hold:

1. Algorithms A and B run in time poly(s).
2. If w satisfies C then z satisfies F .
3. If C is unsatisfiable, then F is unsatisfiable.

Next, we state a stronger version of the Cook’s theorem which is implicit in
constructions of near-optimal PCPs from the literature [BS08,BCGT13].

Theorem 4. There exists a pair of algorithms (A,B) and constants a, b, c ∈ N
where given any Boolean circuit C of size s, A maps C to a 3CNF formula F
and B maps an input w for C to an input z for F such that:

1. Algorithms A and B run in time Õ(s). Let the number of clauses in F be
s · loga(s).

2. If w satisfies C then z satisfies F .
3. If C is unsatisfiable, so is F . Furthermore, for any assignment of the vari-

ables of F , at most (1− 1/logb(s)) fraction of the clauses of F are satisfied.

21

4. Finally, each variable in F appears at most logc(s) times.

The last property can be enforced generically by replacing each variable in F
by a distinct variable and then using expander-based consistency checks [PY91].

Next, we design an honest verifier (HV) ZKPCP for the language LC by rely-
ing on Theorem 4 and the MPC-in-the-head paradigm [IKOS07,IKOS09b]. Note
that prior approaches for converting PCP to (HV) ZKPCP either used an ad-
hoc and inefficient approach [DFK+92] or used MPC-in-the-head for achieving
PCP of proximity with a focus on feasibility and did not attempt to optimize
the asymptotic efficiency [IW14]. Achieving AQO based on MPC-in-the-head
requires taking a different approach.

We begin by describing our MPC model and then provide our compilation.

Our MPC Model. In the original work of [IKOS07] which introduced the MPC-
in-the-head paradigm, the main results implies a zero-knowledge PCP over a
large alphabet for a relation R starting from any honest majority MPC protocol
that computes a functionality related to R. In this work, we consider a specific
MPC topology and apply the MPC-in-the-head paradigm. Next, we describe our
MPC model and the security.

Consider an arbitrary 3CNF formula F withm clauses and t variables x1, . . . , xt.
We specify an MPC model for the formula F . In our model, we consider a set of
input clients C1, . . . , Cd and d distinct parties per clause of F , servers (Si1, . . . , Sid)
(i ∈ [m]), an aggregator party A and an output client o. Only the input clients
will receive inputs and the final output will be output by the output client. Each
input client receives a share corresponding to each variable in F . Namely, Ci
receives as input (x1

i , . . . , x
t
i) for i ∈ [d]. At the onset of the protocol, each client

Ci transmits xji to server Ski if the kth clause of F contains the literal xj . In other
words, for every k ∈ [m], the servers Sk1 , . . . , Skd have the shares corresponding
to the (three) literals occurring in the kth clause. Upon receiving inputs from
the input clients, the servers Sk1 , . . . , Skd securely compute the functionality f
specified by kth clause, where the assignments to the literals are obtained by
first XORing the corresponding shares from the servers. We denote the MPC
protocol that realizes f by Π. Namely, if the jth literal occurs in the kth clause,
the assignment is given by

⊕d
i=1 x

j
i . All servers learn the result, and the result of

the computation is then forwarded to the aggregator party by server Sk1 for each
k. Then, the aggregator party computes the AND of the k values its received
and relays that to the output client. The output client finally outputs whatever
it receives from the aggregator.

From the description of the MPC model, it follows that if the input clients
are given as inputs (XOR) additive shares of the assignment of the variables in
F , and all parties behave honestly, then the result output by the output client
is the evaluation of F under the corresponding assignment.

Security model: We will require the protocol to be secure against a passive
corruption of at most bd−1

2 c servers among Sk1 , . . . , Skd for any k. In particular,
this means the input clients and aggregator cannot be corrupted. It now follows
that if we instantiate Π with any honest majority MPC protocol secure against

22

passive adversaries we have that no adversary can learn anything beyond the
result output by the output client.

Compiling to ZKPCP. We defer the proof of Theorem 5 to the full version.

Theorem 5. Given a Boolean circuit of size s, there exists a non-adaptive
s · loga(s)-query AQO honest verifier ZKPCP over the binary alphabet. More
precisely, the PCP achieves perfect simulation w.r.t an honest verifier, sound-
ness 2−

s

logb(c) and a proof of size s · logc(s), where a, b, c are constants.

5.1 AQO-Honest Verifier ZK from AQO-Honest Verifier ZKPCP

In this section, we transform the AQO-honest verifier ZKPCP into an (interac-
tive) AQO honest-verifier ZK proof using the entropic-secure batch OT protocol
discussed in Section 4.

We consider an interactive ZK proof where the verifier queries each bit of the
PCP via the OT protocol, where the verifier sets its input as 1 if it wants to query
the proof bit and 0 otherwise. The prover on the other hand sets the sender’s
input as the proof bit corresponding to the receiver’s 1 input and a random bit
corresponding to the receiver’s 0 input. It now follows that the honest-verifier
zero-knowledge property follows directly from the security of the OT protocol
against semi-honest receivers. Furthermore, if the underlying batch OT and the
honest verifier ZKPCP are AQO then the resulting ZK will also be AQO.

Ideally, we would like to conclude the soundness of the ZK protocol from
the soundness of the underlying ZKPCP. However, we instantiate the underly-
ing batch OT protocol with one that is only entropically secure. Nevertheless,
since the entropic loss in sender’s privacy (played by the ZK verifier) against a
malicious receiver (played by the ZK prover) in the underlying OT is information-
theoretic, we can argue that the soundness loss can be bounded by the loss in
entropy of the OT sender’s input.

In more detail, the verifier first runs the underlying PCP verifier to obtain the
set of queries. It next sets its input to the OT as x⊕ r, r where x is a bit vector
such that xi = 0 if the PCP Verifier queries that location and 1 otherwise. The
vector r is set uniformly at random. The sender, on the other hand, sets each
element of its input vector a uniformly at random. The prover receives a · x⊕ r
at the end of the OT executions. It then transmits y = a · x ⊕ r ⊕ b where b is
the vector incorporating the symbols of the PCP proof. Finally, the verifier will
be able to retrieve the ith proof bit by computing yi ⊕ ri.

Zero-knowledge against an honest verifier follows directly from the compu-
tational privacy of the underlying OT protocol.

We argue soundness next. Specifically, given a (possibly unbounded) prover
P∗ for the HVZK, we construct a PCP prover B that internally incorporates P∗,
runs an honest interaction with P∗, emulating the honest verifier with input x,
extracts the PCP as y ⊕ a · x ⊕ r by extracting a and r (in exponential time)
from the OT transcript and feeds that as the PCP oracle.

23

Let h be the min-entropy of the distribution of the honest PCP verifier
queries. We make a simplification assumption that holds for most ZKPCPs in
the literature including the one built in the previous section. Namely, we as-
sume that there is a family of subsets Q of indices (of PCP locations) such that
the verifier’s query distribution is uniform over Q. In particular, this implies
h ≥ log(|Q|).11

Let the soundness in the real world where the prover and verifier interact
using the protocol be ε. We now identify the success probability of B as a function
of ε and bound it by the soundness of the ZKPCP to conclude the soundness of
the HVZK. We consider an intermediate experiment which proceeds like the real
world, where the honest verifier after the OT protocol resamples its random tape
consistent with the transcript and the leakage (in possibly exponential time) and
uses the new random tape to verify the proof. The soundness of this verifier must
be identical to the soundness of the real verifier. By construction, in an execution
of the intermediate experiment, the distribution of the verifier’s queries is the
conditional distribution of the honest PCP verifier query distribution conditioned
on the partial transcript of the OT interaction. Let X ′ denote this distribution.
By Theorem 3 and observing h is Ω̃(n), we can conclude that

H∞(X ′) ≥
(

1− 1
logc(n)

)
· h

We know that the soundness of the ZKPCP system is 2−s. This implies that
for any proof oracle generated by a prover, the number of queries in Q on which
the verifier accepts a false proof, i.e. bad queries is at most |Q|/2s. Furthemore,
given an OT transcript, each of the |Q|/2s bad queries can have a probability
mass of at most 1/2H∞(X′) in X ′ by the definition of min-entropy. Therefore, we
have

ε ≤ |Q|2s ·
1

2H∞(X′) = 2h

2s ·
1

2(1−1/logc(n))·h = 1
2s−h/logc(n)

We have that |Q| is 2Õ(s) as the length of the ZKPCP is Õ(s). Therefore by
setting c appropriately we have that soundness is 2−Ω̃(s).

Security against Malicious Verifiers. The ZK protocol described above is inse-
cure if the verifier acts dishonestly. In particular, it may query beyond the privacy
threshold of the underlying ZKPCP and violate the zero-knowledge property. In
order to enforce correct behaviour and restrict a dishonest verifier to a certain
query pattern, we add another phase in which the verifier commits to its ran-
domness used both for sampling the PCP queries and for generating the OT
messages. As the verifier does not have any secret input, it can reveal (decom-
mit) this randomness upon concluding the OT phase and the prover can check
if the verifier sampled the queries and participated in the OT correctly. (In fact,

11 For example, in the classic MPC-in-the-head based ZKPCP [IKOS07], the verifier
queries a random t subset out of n. Here Q contains all t subsets of [n].

24

to enforce correct sampling of the verifier’s randomness, the parties run a coin-
tossing in the well, where only the verifier learns the outcome of the coin-tossing.
This protocol can be implemented using commitments schemes). Recall that the
prover sends the masked proof at the end of the OT phase. The prover needs
to check the verifier’s randomness prior to sending this message as the verifier
could cheat in the OT phase, learn the proof and abort before revealing its ran-
domness. At the same time, if the prover sees the verifier’s PCP queries before
sending the masked proof it can cheat. We prevent this by requiring the prover
to first commit to its masked proof at the end of the OT phase before the ver-
ifier reveals its randomness and the decommit to the proof after it checks the
verifier’s actions in the OT phase. Our complete protocol can be found in Figure
2. We conclude with the following theorem whose proof is deferred to the full
version.

Theorem 6. Let (PPCP,VPCP) be an AQO honest verifier ZKPCP system (cf.
Theorem 5), Com be an AQO commitment scheme, Comh be an AQO statistically
hiding commitment scheme and ΠOT be a entropic-secure AQO batch-OT scheme
(cf. Section 4). Then the interactive proof from Figure 2 is a ZK argument system
with soundness error 2−Ω(s).

Acknowledgements. We thank Henry Corrigan-Gibbs for helpful comments and
Hemanta Maji for answering our questions on [BGMN18]. C. Hazay was sup-
ported by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime
MinisterâĂŹs Office, and by ISF grant No. 1316/18. Y. Ishai was supported
in part by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant
2774/20. L. de Castro and V. Vaikuntanathan were supported by grants from
MIT-IBM Watson AI Labs and Analog Devices, by a Microsoft Trustworthy AI
grant, and by DARPA under Agreement No. HR00112020023.

References

AHI+17. Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz, and
Vinod Vaikuntanathan. Low-complexity cryptographic hash functions. In
ITCS 2017, volume 67, pages 7:1–7:31, 2017.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In CCS 2017, pages 2087–2104. ACM, 2017.

AIK08. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom
generators with linear stretch in nc0. Comput. Complex., 2008.

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In EUROCRYPT 2001, pages 119–135, 2001.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In EU-
ROCRYPT, 2012.

25

Input: Public Boolean circuit C and statement x ∈ LC for both, and a witness w ∈ RC
for the prover P.

Building blocks: (1) AQO honest verifier ZKPCP system (PPCP,VPCP) (cf. Theo-
rem 5). (2) AQO commitment scheme Com (3) AQO statistically hiding commitment
scheme Comh (4) AQO semi-honest batch OT ΠOT.

The protocol:
Coin-Tossing in the Well. The parties engage in a coin-tossing protocol where only
the verifier learns the outcome of the coin-tossing R which it sets as its random tape
for the OT Phase.

The OT Phase: Let |π| = τ . Then the parties engage in τ instances of OT protocol
ΠOLE where the prover plays the role of the receiver and the sender plays the role of the
sender. The verifier runs VPCP to obtain a set of query positions. The verifier chooses
its input to the ith OT as (xi ⊕ ri, ri) where xi is set to 0 if the PCP verifier queries
the ith location and 1 otherwise and ri is chosen uniformly at random from {0, 1}.
The prover on the other hand chooses its input to the ith OT instance ai uniformly at
random. Let the vector w denote the output of the prover in the τ OT instances.

Committing to the PCP: Prover P invokes the ZKPCP prover PPCP on (x,w) and
generates a PCP proof vector b. The prover commits to y = w⊕ b using Com.

The Reveal Phase: The verifier decommits to R. If the verifier successfully decommits
and R is consistent with an honest behavior of the verifier in the OT phase, then the
prover decommits to y.

Concluding the Output: For every index i the PCP verifier queries, the verifier
identifies the proof bit as yi⊕ri. The verifier then runs the PCP verifier on the responses
and accepts iff the PCP verifier accepts.

Fig. 2: ZK Argument System

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In CRYPTO, 2018.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable
zero knowledge with no trusted setup. In CRYPTO, 2019.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In ASIACRYPT, 2017.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-LPN.
In CRYPTO, 2020.

BCGT13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On
the concrete efficiency of probabilistically-checkable proofs. In STOC, 2013.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In TCC, 2013.

26

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In EUROCRYPT, 2019.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive or-
acle proofs. In TCC, 2016.

BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-
private OT from LWE. In TCC 2018, Part II, pages 370–390, 2018.

BDGM19. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Lever-
aging linear decryption: Rate-1 fully-homomorphic encryption and time-
lock puzzles. In TCC, 2019.

BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT,
2011.

BEP+20. Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and
Juan Ramón Troncoso-Pastoriza. Efficient protocols for oblivious linear
function evaluation from ring-LWE. In SCN 2020, 2020.

BGI+17. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In ASIACRYPT 2017,
Part III, pages 275–303, 2017.

BGMN18. Alexander R. Block, Divya Gupta, Hemanta K. Maji, and Hai H. Nguyen.
Secure computation using leaky correlations (asymptotically optimal con-
structions). In TCC, 2018.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In ITCS, 2012.

BIO14. Joshua Baron, Yuval Ishai, and Rafail Ostrovsky. On linear-size pseudoran-
dom generators and hardcore functions. Theor. Comput. Sci., 554:50–63,
2014.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: - new simple PRF candidates and their
applications. In TCC, 2018.

BISW18. Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal
snargs via linear multi-prover interactive proofs. In EUROCRYPT, 2018.

BKLP15. Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In ESORICS, 2015.

BLNS20. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. A non-pcp approach to succinct quantum-safe zero-knowledge. In
CRYPTO, 2020.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic
techniques for short(er) exact lattice-based zero-knowledge proofs. In
CRYPTO, 2019.

BMN18a. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure com-
putation with constant communication overhead using multiplication em-
beddings. In INDOCRYPT, 2018.

BMN18b. Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure com-
putation with constant communication overhead using multiplication em-
beddings. In INDOCRYPT, 2018.

BPMW16. Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In CRYPTO, 2016.

27

BS08. Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query com-
plexity. SIAM J. Comput., 38(2):551–607, 2008.

BV11a. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In FOCS, 2011.

BV11b. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages. In CRYPTO,
2011.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In
CRYPTO, 2018.

CDI+. Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tian-
ren Liu, Rafail Ostrovsky, and Vinod Vaikuntanathan. Reusable non-
interactive secure computation. In CRYPTO 2019.

CY21. Alessandro Chiesa and Eylon Yogev. Subquadratic snargs in the random
oracle model. In CRYPTO 2021, Part I, pages 711–741, 2021.

dCJV21. Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector
oblivious linear evaluation from ring learning with errors. In WAHC, 2021.

DFK+92. Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra.
Low communication 2-prover zero-knowledge proofs for NP. In CRYPTO,
1992.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications. In
CRYPTO, 2019.

DIK10. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography. In
EUROCRYPT, 2010.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. SIAM J. Comput., 38(1):97–139, 2008.

DR02. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In EU-
ROCRYPT, 2016.

Gam85. Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, STOC 2009, pages 169–178. ACM, 2009.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In EURO-
CRYPT, 2013.

GH19. Craig Gentry and Shai Halevi. Compressible FHE with applications to
PIR. In TCC, 2019.

GHKW17. Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A
generic approach to constructing and proving verifiable random functions.
In TCC, 2017.

GHS12. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic en-
cryption with polylog overhead. In EUROCRYPT, 2012.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic
encryption and rerandomizable yao circuits. In CRYPTO, 2010.

28

GIP+14. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran
Tromer. Circuits resilient to additive attacks with applications to secure
computation. In STOC, 2014.

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikun-
tanathan. Robustness of the learning with errors assumption. In ICS,
2010.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC, 1987.

Gol00. Oded Goldreich. Candidate one-way functions based on expander graphs.
Electron. Colloquium Comput. Complex., (90), 2000.

Gol04. Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge Uni-
versity Press, 2004.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In ASIACRYPT 2010, pages 321–340, 2010.

HIMV19. Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan
Venkitasubramaniam. Leviosa: Lightweight secure arithmetic computation.
In CCS 2019, pages 327–344. ACM, 2019.

HKE13. Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party
computation using symmetric cut-and-choose. In CRYPTO, 2013.

HKL+12. Stefan Heyse, Eike Kiltz, Vadim Lyubashevsky, Christof Paar, and
Krzysztof Pietrzak. Lapin: An efficient authentication protocol based on
ring-LPN. In FSE 2012, 2012.

IKO07. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments
without short pcps. In CCC 2007, pages 278–291, 2007.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, Amit
Sahai, and Jürg Wullschleger. Constant-rate oblivious transfer from noisy
channels. In Phillip Rogaway, editor, CRYPTO, 2011.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, 2007.

IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In STOC, 2008.

IKOS09a. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Extract-
ing correlations. In FOCS, 2009.

IKOS09b. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO, 2008.

IW14. Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity
with zero-knowledge. In Yehuda Lindell, editor, TCC, 2014.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In STOC 1992, pages 723–732, 1992.

Lin16. Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and
covert adversaries. J. Cryptol., 29(2):456–490, 2016.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knap-
sacks are collision resistant. In ICALP, 2006.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In EUROCRYPT, 2010.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
lwe cryptography. In EUROCRYPT, 2013.

29

LPS08. Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-
party computation efficiently with security against malicious adversaries.
In SCN, 2008.

LS. Alex Lombardi and Luke Schaeffer. A note on key agreement and non-
interactive commitments. Cryptology ePrint Archive, Report 2019/279.

LS18. Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in
partially splitting cyclotomic rings and applications to lattice-based zero-
knowledge proofs. In EUROCRYPT, 2018.

Mic02. Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions. In
FOCS, 2002.

Moo16. Dustin Moody. Post-quantum crypto: NIST plans for the future, 2016.
MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reduc-

tions based on gaussian measures. In (FOCS 2004, pages 372–381. IEEE
Computer Society, 2004.

MS20. Daniele Micciancio and Jessica Sorrell. Simpler statistically sender private
oblivious transfer from ideals of cyclotomic integers. In ASIACRYPT 2020,
Part II, pages 381–407, 2020.

MV15. Eric Miles and Emanuele Viola. Substitution-permutation networks, pseu-
dorandom functions, and natural proofs. J. ACM, 62(6):46:1–46:29, 2015.

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, SODA, pages 448–457, 2001.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, 2006.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for
efficient and composable oblivious transfer. In CRYPTO, 2008.

PY91. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approx-
imation, and complexity classes. JCSS, 43(3):425–440, 1991.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, 2005.

RR21. Noga Ron-Zewi and Ron Rothblum. Proving as fast as computing: Succinct
arguments with constant prover overhead. ECCC, page 180, 2021.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In ACM CCS, 2017.

WW06. Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In
EUROCRYPT, 2006.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct zero-knowledge proofs with optimal
prover computation. In CRYPTO 2019, Part III, pages 733–764, 2019.

ZXZS20. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transpar-
ent polynomial delegation and its applications to zero knowledge proof. In
2020 IEEE Symposium on Security and Privacy, 2020.

30

	Asymptotically Quasi-Optimal Cryptography

