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Abstract. Today’s side channel attack targets are often complex devices
in which instructions are processed in parallel and work on 32-bit data
words. Consequently, the state that is involved in producing leakage in
these modern devices is not only large, but also hard to predict due
to various micro-architectural factors that users might not be aware of.
On the other hand, security evaluations— basing on worst case attacks
or simulators — explicitly rely on the underlying state: a potentially
incomplete state can easily lead to wrong conclusions.
We put forward a novel notion for the “completeness” of an assumed
state, together with an efficient statistical test that is based on “collapsed
models”. Our novel test can be used to recover a state that contains
multiple 32-bit variables in a grey box setting. We illustrate how our
novel test can help to guide side channel attacks and we reveal new
attack vectors for existing implementations. We then demonstrate the
application of this test in the context of leakage modelling for leakage
simulators and confirm that even the most recent leakage simulators do
not capture all available leakage of their respective target devices. Our
new test enables finding nominal models that capture all available leakage
but do not give a helping hand to adversaries. Thereby we make a first
step towards leakage simulators that are responsibly engineered.

1 Introduction

Leakage models are crucial not only for attacks and leakage simulators, but
also for implementing masking schemes. Having a complete, accurate leakage
model, experienced cryptographic engineers can diligently examine if the security
assumptions are respected and avoid potential implementation pitfalls.

But what does a leakage model constitute of? Informally, most of the exist-
ing literature understands a leakage model to be a leakage function that maps
a collection of device internal variables (the state) to a real value (if it is a uni-
variate model). Considering this informal definition in the context of attacks, it
is clearly desirable to try and find a function that offers good predictions for the
true device leakage, because it enables successful attacks with few traces. Thus,
a lot of research has gone into deriving good proportional or direct estimates for
leakage functions from real device data [1,2,3,4,5]. However, the leakage function
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itself is only part of what constitutes a leakage model: the state that is being
leaked on is equally relevant.

In a realistic setting (such as typical 32-bit processors based on the ARM
Cortex M architecture, or dedicated hardware implementations of cryptographic
algorithms), finding the state is far from easy — not only because they tend to be
closed source. Even if open source descriptions are available, e.g. ARM released
some semi-obfuscated VHDL descriptions of the M0 and a non-obfuscated VHDL
description of an implementation of their M3 architecture, these are not necessar-
ily micro-architecturally equivalent to the corresponding commercial products on
the market. Micro-architectural effects have been explored and exploited across
many recent works [6,7,8,9,10]. These papers show how a wrong assumption
about the state renders provably secure masking schemes completely insecure in
practice. Leakage models matter thus for implementing provably secure masking
schemes because they help engineers to ensure the security assumptions are re-
spected. Leakage models can also guide an evaluator to demonstrate attacks for
specific implementations. Last but not least, they are fundamental to a prevalent
type of early-stage evaluation tool— leakage simulators.

1.1 State of the art

Leakage modelling, or profiling, has been an active area of research within the
side channel community since its very beginning. Typical models are based on
some assumption about what leaks (the state) and how it leaks (the function form
in regression models, or the number of templates in direct parameter estimation),
and then the corresponding coefficients are determined from the data. Typical
examples of such profiling approaches are [1,2,3,4,5].

A leakage simulator is a tool that takes a software implementation of a cryp-
tographic algorithm (in e.g. C or Assembly) as input, then outputs a leakage
trace that is meant to capture (ideally) all the leakage characteristics of a tar-
get device. Various leakage simulators have been built within the last decade,
e.g. industrial examples include PINPAS [11] (no device specific leakage model,
limited to simple 8 bit devices), esDynamic [12] (multiple platforms and leakage
models, but no device specificity), Virtualyzr [13] (needs the HDL description,
no specific leakage model); academic examples include [14], [15] and [16]. Both
sides develop the concept and recognise the importance of both accurate device
emulation as well as leakage models.

Only relatively recently, a profiling approach was developed in the context of
the ELMO simulator [5], which enabled some progress towards capturing com-
plex leaks1. According to the authors’ estimation, the ELMO model captures
over 80% of the data dependent power consumption of the modelled proces-
sor [5,17]. However the ELMO approach cannot be pushed further, as it only
captures limited micro-architecture states (e.g. operand buses and bitflips [5])

1 Estimating leakage profiles in the context of multiple interacting 32-bit variables
requires a non-trivial approach because the implied data complexity for naively
estimating templates is infeasible.
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and their “lower order” interactions. There is another potential drawback: the
ELMO model demonstrates (in [5]) various non-trivial leaks (i.e. from covert
micro-architecture operations) that can be efficiently exploited by attackers in
practice. The natural question is then: is it ethical to make highly accurate
predictive leakage models publicly available (in other words, release them to
potential adversaries)?

1.2 Our contributions

We stress that finding the exact intermediate state from a typical processor in
a grey box setting is a long-standing problem: like many (statistical learning)
problems, a universally optimal solution is unlikely to exist. Thus, whilst we do
not claim optimality of our work, we claim the following contributions:

1. We clearly state the identification of the actual state as a fundamental prob-
lem and discuss its impact on attacks and leakage simulators.

2. We put forward a novel notion for models—denoted as “completeness”—
which flags whether the tested model has captured all relevant state.

3. We put forward a novel statistical methodology based on what we call “col-
lapsed” models: using the nested F-test, we can test whether a leakage model
is complete in a “collapsed” setup and infer whether it is complete in the
original un-collapsed setup.

4. We show how our approach can find subtle leakage that can be easily over-
looked. Although such leakage does not necessarily contribute to more effec-
tive attacks, it plays an important role in comprehensive security evaluations.

5. We discuss the importance of completeness in the context of leakage sim-
ulators and demonstrate that our approach can lead to better models for
simulations.

6. We discuss the importance of responsibly engineering leakage simulators and
put forward a first promising step in this direction.

Organisation. We start our discussion with clarifying some definitions and in-
troducing a few useful statistical tools in Section 2. Section 3 introduces the
concept of completeness and proposes a necessary (but not sufficient) test to
verify completeness. We further show how our novel test can be applied when
analysing the leakage from both unprotected and masked implementations (Sec-
tion 4), revealing subtle leakage that is otherwise difficult to find. Section 5
confirms completeness is also critical for leakage simulators, demonstrating how
an incomplete leakage model can jeopardise the following detection accuracy.
We summarise our discussion and emphasise a few important lessons learned in
Section 6.
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2 Preliminaries

2.1 Notation and background to leakage modelling

We aim for a simple notation throughout this paper: observed leakage is treated
in a univariate fashion, therefore we drop indices for time points2.

We call the set X the entire device state (at some time point). X is comprised
of all input/key dependent variables that the leakage function L acts on. The
variable Y = {y} ∈ Y is a leakage observation that is available to an adversary.
We also follow the usual convention that traces are noisy, whereby the leakage
contribution L(X) and the (Gaussian) noise N(0, σ2) are independent:

y = L(X) +N(0, σ2)

The leakage model is an approximation of the real device leakage. It consists
of a function and a state: the function maps the state to a (set of) real value(-s).
Following the trajectory of [5,18], we consider univariate models, thus we write
L : Fn

2 → R and x ∈ Fn
2 .

Throughout this work we assume that we are working in a “grey box” set-
ting, i.e. we have some basic knowledge about the device/implementation (e.g.
the Instruction Set Architecture, ISA) and we can execute arbitrary code dur-
ing profiling, but we do not have the concrete gate-level hardware details (i.e.
a typical software implementation with a commercial core). The relevant de-
vice state X (for a certain time index) is unknown in this setting, as X may
contain various micro-architecture elements that are transparent to developers.
We can of course, build an overly conservative model using all possible states
X̂ where X ⊂ X̂ 3. However, such a model is clearly undesirable for both at-
tacks/evaluations (because it requires guessing the entire key) and simulators
(because its estimation requires an impractical amount of real device data).

The de facto practice in all attacks/evaluations, when building leakage mod-
els, is to divide the model building process into two steps. The first step is
identifying a concise (i.e. easily enumerable) state Z. For instance, a popular
assumption is that the intermediate state depends completely on the output
of an S-box (denoted by Sout) computation, which leads to a state with small
cardinality (e.g. #{Z} = 28 for AES).

The second step is to estimate the coefficients of the leakage function as-
suming it only acts on Z. We use the standard notation L̃ to indicate the esti-
mation of L. Various techniques have been proposed, including naive templat-
ing [1], regression-based modelling [2,3], step-wise regression [19], etc. Previous
works [19,2,20] have also proposed various metrics to evaluate/certificate the de-
vice’s leakage (as well as the quality of model that built from the measurements).
As many will be utilised later, the next two subsections explain these techniques

2 We use the concept of “time points” for readability, but one could equally use the
concept of clock cycles or instructions instead.

3 X̂ contains all intermediate variables that occur during the entire execution of an
instruction sequence or algorithm
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in details, then we move on to our main topic: what should we do about the first
step?

2.2 Leakage modelling: approaches

Already in the early days of side channel research, the concept of profiling (aka
leakage modelling, aka templating) was introduced by Chari et al. [1]. In their
original paper, the idea was to assume that the distribution of the measurements
from the same state value should follow a (multivariate) normal distribution, and
an adversary with a priori access to a device can simply estimate the parameters
of this distribution.

An alternative to the direct parameter estimation is using regression tech-
niques to derive an equivalent model. A paper by Schindler et al. [2] proposes
the use of regression to derive a linear model of a considered state.

The basis of building regression models is that we can express any real valued
function of Z as a polynomial L̃ =

∑
j βjuj(Z) [21]. In this polynomial the

explanatory variables uj are monomials of the form
∏n−1

i=0 zjii where zi denotes
the i-th bit of Z and ji denote the i-th bit of j (with n the number of bits needed
to represent Z in binary). For clarity, we further define a mapping function U
that maps the n-bit state Z to a 2n-length vector:

U(Z) = (u0(Z), u1(Z), ..., u2n−1(Z))

In the following, we can simply use L̃(Z) = β⃗U(Z) instead of L̃(Z) =
∑

j βjuj(Z).
Regression then estimates the coefficients βj . The explanatory variables uj

simply represent the different values that Z can take. If we do not restrict the
uj then the resulting model is typically called the full model. If no subscript is
given, we implicitly mean the full model. In many previous attacks, the leakage
model is restricted to just contain the linear terms. We denote this particular
linear model as

L̃l(Z) = β⃗Ul(Z) = β⃗(u20(Z), u21(Z), , ..., u2n−1(Z))

2.3 Judging Model Quality

Any model is only an approximation: there is a gap between the model output
and the observed reality. Statistical models are built for at least two purposes
[22]. They are either used to predict events in the future, in which case the
model quality relates to its predictive power; or they are used to help explain
reality, in which case the model quality relates to how many of the relevant
factors it can identify. In the context of leakage attacks/evaluations, models
are used to predict side channel leaks. Therefore we use metrics such as the
coefficient of determination, and cross validation to judge the quality. In the
context of leakage simulators, the goal of building these models is to include as
many relevant leakage sources as possible. Therefore, the quality relates how two
(or more) models compared with each other in terms of explaining the realistic
leakage.
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Coefficient of determination For any model L̃(Z) that is estimated from the side
channel measurements Y, the “modelling error” can be defined as the residual
sum of squares, RSS (aka the sum of squared estimate of errors, SSE ),

RSS =

q∑
i=1

(y(i) − L̃(z(i)))2 ,

where q represents the number of traces and z(i) represents the value of z for the
i-th measurement. Meanwhile, the explained data-variance can be interpreted
as the explained sum of squares, ESS (aka the sum of squares due to regression,
SSR),

ESS =

q∑
i=1

(
L̃(z(i))− ȳ

)2

,

where ȳ represents the mean of measured values Y. If L̃ is derived from linear
regression on Y, RSS and ESS should sum up to the total sum of squares, TSS
(aka SST),

TSS =

q∑
i=1

(
y(i) − ȳ

)2

.

Then, the coefficient of determination (R2) is defined as4:

R2 =
ESS

TSS
= 1− RSS

TSS
.

Given two estimated models L̃1 and L̃2, whereby both models are assumed to
have the same number of terms (i.e. same restrictions on uj(Z) in Section 2.2),
intuitively, the model with the higher R2 value would be considered as better.
The crucial point here is that both models need the same number of terms,
because the R2 increases with the number of terms that are included in the
model. Consequently, the R2 does not lend itself to investigate models that
represent approximations in different numbers of terms.

Cross-validation An important aspect in model validation is to check if a model
overfits the data. If a model overfits the data, it will generalise badly, which
means it is bad in terms of predicting new data. Therefore using cross-validation
of any chosen metric (e.g. the RSS) is essential [20] when aiming for models with
a high predictive power. Given two models, one can compute via cross validation
both RSS values and then judge their relative predictive power.

F-tests Given two “nested” models (i.e. there is a so called full model and a
restricted model which only contains a subset of the terms of the full model),
the F-test is the most natural way to decide whether the restricted model is

4 Alternatively, it can also be written as R2 = 1− SSE
SST

. Note the distinction between
RSS (i.e. “R” for residue) and SSR (i.e. “R” for regression)
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missing significant contribution compared with the full model. More specifically,
assuming a full model L̃f (Zf ) and a restricted model L̃r(Zr), where Zr is con-
structed by removing zf − zr explanatory variables (set regression coefficients to
0) from Zf , one can compute the F-statistic as

F =

RSSr−RSSf

zf−zr
RSSf

q−zf

.

The resulting F follows the F distribution with (zf−zr, q−zf ) degree of freedom.
A p-value below a statistically motivated threshold rejects the null hypothesis
(the two models are equivalent) and hence suggests that at least one of the
removed variables is potentially useful. This approach was used in [5] to derive
relatively fine grained models on selected intermediate states.

2.4 Leakage certification techniques

Leakage certification techniques, e.g. “assumption error” and “estimation er-
ror” [20] are also designed under the assumption that Z is given. One could be
tempted to use such techniques to test if the selected state Z is “good enough” :
however, neither does this fit with the original intention of [20] nor is the sta-
tistical power of the “leakage certification” techniques sufficient. In the interest
of flow we provide the reasoning for this statement in Appendix A.

3 Model quality: is my leakage model complete?

It is critical to remember that all approaches for judging model quality assume
that the state Z has already been found. As we argued in the introduction, in
practice, this state is not only unknown but also non-trivial to determine.

In existing publications, the suitable state Z is often found through an ad hoc
procedure: one tries some set Z, and then evaluates the leakage model (using Z)
via R2 or cross-validation (or alternatively, performs attacks with CPA). If the
evaluation/attack result is not successful, it suggests the current Z is unlikely
to be correct. Otherwise, Z might be a part of X, but it remains unclear if Z
already contains all variables that leak (in relation to the code sequence that the
attack/evaluation relates to). In this section, we introduce the novel concept of
model completeness, and an associated test to measure it efficiently.

3.1 Completeness

We make the important observation that the task of finding the state is the
same as the task of deciding whether some variables contribute significantly to
a model. This implies that we can find the state by testing nested models via
an F -test to determine if the “bigger” model explains the real data better than
the “smaller” model. This approach has been used before in the side channel
literatures for deciding if low degree terms should be included in L̃(Z) in [5,19].
We thus suggest to use this idea to define the notion of model completeness.
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Definition 1. We consider two nested models L̃(Zf ) and L̃(Zr), and a corre-
sponding F-test with

H0 : L̃f (Zf ) and L̃r(Zr) explain the observations equally well, and (1)

H1 : L̃f (Zf ) explains the observations better than L̃r(Zr). (2)

We call Zr as complete (with respect to Zf) if the null hypothesis of the
F-test cannot be rejected.

The notion of model completeness (of a reduced model with respect to some
full model) means that the reduced model does not miss any (statistically) sig-
nificantly contributing factor when compared with the full model.

Toy example. Suppose that L̃(X̂) contains the variables {x0, x1, x2, x3} and
the model L̃(Z) contains the variables {x0, x1, x2}. Following our discussion in
Section 2.2, we estimate the model coefficients from realistic measurements:

L̃f = β⃗fU(X̂) ,

L̃r = β⃗rU(Z) .

We subject these models (which are nested as Z is included in X̂) to the F -
test. If the F -test reports a p-value lower than the significance level α, we can
conclude at least one of the regression terms that depends on x3 is contributing
significantly, and therefore we reject the null hypothesis. Thus, according to our
definition, Z is not complete with respect to X̂.

Towards finding the state in practice In practice we have limited information
about the state (at any point in time during a computation). Thus our main
challenge is to define a conservative set X̂ that satisfies X ⊆ X̂, then drop
terms from X̂ to see which (combinations of) terms actually matter (i.e. find an
approximation Z for X).

As X̂ is a superset of X, it is not hard to see that if Z is complete w.r.t. X̂, it
should also be complete w.r.t. X. Informally, this means if we can first explicitly
define X̂, then test our selected Z against it, the F -test result will illustrate
whether Z is complete or not (up to some statistical power), even if the true X
remains unknown. The remaining challenges are firstly how to define a complete
X̂ at the first place, and secondly how can we test Z against X̂ in an F -test.

For deterministic block cipher implementations with a constant key (a case
frequently considered in the side channel literature), a conservative state assump-
tion would be based on the entire plaintext. If an implementation is masked, then
also the masks need to be included. The F -test then checks the contribution of
all resulting explanatory variables5. Because of the large block size, this is a

5 Note that this is not the same application scenario as leakage detection tests, which
consider only the unshared secret. We did not propose the F -test as a leakage de-
tection test here, therefore “which statistical moment the corresponding leakage
detection is” is out of the scope.
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starting point that is in fact unworkable from a statistical point of view (i.e.
requires too many observations for model estimation). We explain a statistical
trick in the next section, that makes this seemingly infeasible problem, practical.

3.2 Collapsed F -test for completeness

As we explained before, the full model is often too large in relevant practical
scenarios: it consists of many large variables. In statistical terminology such
models are called factorial designs, and the challenge is how to reduce the number
of factors. Techniques such as aliasing or identifying confounding variables (i.e.
variables that impact on multiple factors, or identifying factors that are known
to be related) are well known in statistical model building. These techniques rely
on a priori knowledge about the model (potentially because of prior work, or
other sources of information), which we do not have in our setting.

However, we identified two ideas/observations that enable us to define a
novel strategy to deal with factorial designs in our setting. The first observation
(we mention this before in the text) is that the F -test, although often used
to deal with proportional models, actually tests for the inclusion/exclusion of
explanatory variables in nested models. This implies that the test is agnostic to
the actual value of the regression coefficient, thus we can set them to 0/1 and
work with nominal models.

The second observation is that although our explanatory variable contains
n independent bits, their leakages often share a similar form (e.g. the standard
HW model can be written as the sum of every single bit), because the underlying
circuit treats them as “a word”. Furthermore, for leakage modelling, we want
to include any variable in our model if a single bit of that variable contributes
to leakage. Based on these observations we show an elegant trick to bound our
explanatory variables to a small space.

Bounding the explanatory variables We demonstrate our trick based on an ex-
ample at first: assume we know the leakage can be conservatively determined
by four n-bit values A, B, A′ and B′ (i.e. L̃(X̂) = β⃗U(X̂), where X̂ = {x̂|x̂ =
a||b||a′||b′}). In order to test if a chosen partial state Z ⊂ X̂ is complete w.r.t
X̂, following our previous discussion, we should test the following two regression
models:

L̃f (X̂) = β⃗U(X̂) ,

L̃r(Z) = β⃗U(Z) .

The nested F -test then applies to verify the following hypotheses:
H0: L̃r(Z) explains the observations as well as L̃f (X̂).

H1: L̃f (X̂) explains the observations significantly better than L̃r(Z).

Unfortunately, testing L̃f (X̂) would require 24n explanatory variables in

U(X̂) as x̂ is a 4n-bit state. For n ≥ 32, it requires an infeasible number of ob-
servations to properly estimate L̃f (X̂). However, via setting ai = a0 (ai stands
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for the i-th bit of a, a0 drawn at random from {0, 1}), we can bound the variable
A to a much smaller space:

a = (a0, a0, ..., a0), a0 ∈ F2 .

Since a0 is a binary variable that satisfies ai0 = a0, i > 0, X̂ = {x̂|x̂ =
a||b||a′||b′} now “collapses” to a (3n+1)-bit state set X̂c = {x̂c|x̂c = a0||b||a′||b′}.
Applying this restriction to the other 3 variables, the collapsed leakage function
L̃c(X̂c) = β⃗U(X̂c) , X̂c = {x̂c|x̂c = a0||b0||a′0||b′0} contains only 24 explanatory
variables, which makes it easy to work with.

Of course, such a restriction is not for free: originally, there could be many
interaction terms between the explanatory variables. In the model L̃c these terms
are “collapsed” and “added” to the remaining terms, e.g. a1a0 becomes a0 as
a1 = a0. In fact, as there is only 1 bit randomness, a0 now becomes an alias for
the operand A: having this term in L̃c suggests A appears in L̃, but certainly
not in the same way as in L̃c. We can expand this idea by allowing two (or more)
bits of randomness: this enables us to differentiate between linear and non-linear
models6.

Slightly formalising this idea, we define a mapping called “collapse” Coll
that converts a term uj(X̂) in the original “un-collapsed” setup to uColl(j)(X̂c).

Recall that uj(X̂) is defined (Section 2.2) as:

uj(X̂) =
∏

x̂ji
i ,

where ji represents the i-th bit of the binary representation of j. For any j ∈
[0, 24n), we define the 24n → 24 map Coll as:

Coll(j) = jcoll = ja||ja′ ||jb||jb′ ∈ [0, 24) ,

where ja =
∨n−1

i=0 ji, ja′ =
∨2n−1

i=n ji, jb =
∨3n−1

i=2n ji, jb′ =
∨4n−1

i=3n ji. It is clear
that when all operands are bounded to 1-bit, we have that

uj(X̂) = ujcoll(X̂c) , X̂c = {x̂c|x̂c = a0||a′0||b0||b′0} .

The latter can be easily tested in an F -test. In the following, we show that the
test model passes the F -test in our “collapsed” case is a necessary (but not
sufficient) condition for passing the F -test in the original setup.

Theorem 1. If a collapsed term ujcoll(X̂c) cannot be ignored from L̃c (i.e.

βjcoll ̸= 0), at least one of the corresponding uj(X̂) cannot be ignored from

L̃ (i.e. βj ̸= 0).

Proof. In the original case, any leakage model can always be written as

L̃(X̂) =

24n−1∑
j=0

βjuj(X̂)

6 We could take this further and include more “intra-variable” interactions, but we
left this for future considerations. The “inter-variable” interactions remain in L̃c

anyway.
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However, considering the inputs have been bounded, such model collapses to:

L̃(X̂) =

24−1∑
jcoll=0

 ∑
∀j,Coll(j)=jcoll

βj

ujcoll(X̂c)

Thus, if a certain collapsed term ujcoll(X̂c) has a significant contribution to L̃c

(i.e. βjcoll ̸= 0), one can conclude that:∑
∀j,Coll(j)=jcoll

βj ̸= 0 ⇒ ∃j, βj ̸= 0

Clearly nothing can be concluded if the above sum equals 0, which suggests this
is only a necessary condition.

Theorem 1 implies that whilst we still cannot directly test L̃f = β⃗U(X̂),
given a partial state Z, we can test:

L̃cf (X̂c) = β⃗U(X̂c) ,

L̃cr(Zc) = β⃗U(Zc) ,

as the cardinalities of both U(X̂c) and U(Zc) are at most 24. Then the nested
F -test applies to:

H0: L̃cr(Zc) explains the observations as well as L̃cf (X̂c),

H1: L̃cf (X̂c) explains the observations significantly better than L̃cr(Zc).
If this F -test rejectsH0, we can also conclude that in the original un-collapsed

setup, L̃f (X̂) fits the observations significantly better than L̃r(Z). Thus, we learn

that Z is not complete with respect to X̂ without testing it explicitly.

Toy example. Suppose we want to test L̃r = β⃗U(Z), β⃗ ∈ R22n where Z =

{z|z = a||b} against L̃f = β⃗U(X̂), β⃗ ∈ R24n where X̂ = {x̂|x̂ = a||b||a′||b′}. As
mentioned before, for n = 32, direct testing is not an option. However, we can
bound the inputs and test the collapsed models instead:

L̃cr = β0 + β1a0 + β2b0 + β3a0b0

L̃cf = β0 + β1a0 + β2a
′
0 + β3b0 + β4b

′
0

+ β5a0b0 + β6a
′
0b

′
0 + β7a

′
0b0 + β8a0b

′
0 + β9b0b

′
0 + β10a0a

′
0

+ β11a0a
′
0b

′
0 + β12a0a

′
0b0 + β13a0b

′
0b0 + β14a

′
0b

′
0b0

+ β15a0a
′
0b0b

′
0

If the F -test rejects the null hypothesis, then we know that the missing terms
make a difference not only in L̃c but also in L̃. Therefore, we can conclude Z is
also not complete (w.r.t. to X̂) in the original setup, without explicitly testing
it. The price to pay is that unlike the original F -test, our collapsed test becomes
a necessary condition instead of a sufficient condition. Nevertheless, any Z that
fails our test presents a genuine concern, as it directly suggests the selected Z is
unlikely to be complete.

In the remainder of this paper we will always work with collapsed models,
thus the subscript c will be dropped from all models.
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3.3 Statistical power of the nested F -test

It is imperative to understand the power of any statistical test. The power of a
test is the probability that it detects an effect if the effect is present. To compute
the power of a collapsed F -test, we first need to consider the effect size that we
are dealing with. The effect size in our case relates to the difference between
the restricted model and the full model, which can be computed (according to
Cohen [23]) as:

f2 =
R2

F −R2
R

1−R2
F

=
RSSR −RSSF

RSSF
.

Under the alternative hypothesis, the computed F -statistic follows a non-
central F distribution with non-centrality parameter λ and two degrees of free-
dom from the numerator df1 and the denominator df2. When f2 = 0, this be-
comes the null distribution of the central F -distribution. Thus, when the false
positive rate is set to α, the threshold of the F -statistic is

Fstatth = QF (df1, df2, 1− α) ,

whereQF is the quantile function of the central F distribution. The false-negative
rate β can be computed as

β = Fnc(Fstatth, df1, df2, λ),

λ = f2(df1 + df2 + 1),

where Fnc is the CDF function of the non-central F distribution. The statistical
power for effect size f2 is then 1 − β. Our 3 tests in Section 5.1 have df1 =
{256 − 7, 256 − 19, 256 − 16}, df2 = q − 256, q = 20000, per-test α = 10−3.7,
which all come to 1−β ≈ 1 for the small effect size f2 = 0.02 in [23]. According
to [24] this corresponds indeed to what they observed in similar experiments.

Summarising, assuming sufficient traces (20k in our calculation), the F -test
on collapsed models has high power for relevant side channel scenarios according
to [24].

4 Dissecting Attacks: Towards Worst-Case Adversaries

A recent paper by Bronchain and Standaert [25] demonstrated impressively how
knowledge of an implementation (affine masking implementation from ANSSI [26]
on an off-the-shelf, thus “grey box” processor) can help to derive extremely pow-
erful profiled attack strategies. We wondered if our novel technique of the col-
lapsed F -test could reveal further leakage that they might have missed (they did
not explicitly consider if or not they had included all leaking variables).

https://orcid.org/0000-0001-5293-5906
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To this end, we investigate the leakage of this implementation7. Our measure-
ment setup consists of an ARM Cortex M3 core (NXP LPC1313). As the code
is written in C, the compiling toolchain and commercial core create a grey-box
scenario: we can locate the S-box computation in the power traces, but we have
no full state information. The working frequency is set to 12 MHz, while our
oscilloscope (Picoscope 5243D) captures 10k traces at 250 MSa/s (for both the
collapsed case and the un-collapsed case). We are analysing the masked table
look-ups of the first 4 S-boxes in the first round. Altogether the 4 S-box compu-
tations take 17 µs, which amounts to around 204 clock cycles and 4250 samples
on the power trace.

Note that the original implementation also includes hiding techniques, such
as random shuffling. Unless stated otherwise, our following analysis always as-
sume shuffling is not presented (i.e. “#define NO SHUFFLE” in the code, which
corresponds to the non-shuffling analysis in [26]). Alternatively one can take our
analysis as a “follow-up” after the shuffling permutation has been already recov-
ered using the technique in [25].

Affine Masking. As this implementation is specific to AES, each data byte is
protected as an element on the Galois Field GF(28). More specifically, each data
byte x is presented as:

C(x; rm, ra) = (rm⊗ x)⊕ ra

where C is the encoding function, rm is called the multiplicative mask and ra
the additive mask. Note that by definition, rm is uniform on [1, 255] (i.e. cannot
be 0). For the i-th state byte xi, the implementation stores the additive mask
rai accordingly in a mask array ra. The multiplicative mask rm, on the other
hand, is shared among all 16 bytes within this encryption. Each linear operation
(e.g. ShiftRow, MixColumn) can be done separately on each share. Meanwhile,
the masked S-box is pre-computed according to the multiplicative mask rm and
the S-box input/output mask rin and rout:

S′(rm⊗ x⊕ rin) = rm⊗ S(x)⊕ rout

Code snippet for the S-box. In order to compute the S-box’s output using the
pre-computed table, one must transfer the additive mask rai to rin, then after
the table look-up, transfer rout back to rai. The SubBytesWithMask function
performs this task as follow:

SubBytesWithMask:

... //r3=C(x) r10=ra

... //r0=i r8=S’

7 The original Compute GTab function contains a few instructions (e.g. uadd8 ) that
are not available on our platform. We had rewritten an equivalent version in pure
Thumb-16 assembly. This makes no difference in our leakage analysis as we are not
targeting this part.



14 Si Gao and Elisabeth Oswald

ldrb r4, [r3, r0] //(1) r4=C(x)_i^rin

ldrb r6, [r10, r0] //(2) r6=ra_i

eor r4, r6 //(3) r4=C(x)_i^rin^ra_i

ldrb r4, [r8, r4] //(4) r4=rmS(x)^rout

eor r4, r6 //(5) r4=rmS(x)^rout^ra_i

strb r4, [r3, r0] //(6) store r4 to state

... //removing rout later

Note that the rin is added before this function, therefore line (1)-(3) purely focus
on removing rai. Similarly, removing rout is postponed to the end of the S-box
calculation, therefore not presented in this code.

Initial analysis. We first analyse the leakage of the first S-box look-up and use
1 bit to represent each xi. All random masks (used within the captured 4 Sbox
computation) must also be considered in our leakage analysis: we use 6 bits
to represent ra0:3, rin and rout respectively. When collapsed to 1 bit, rm is
restricted to 1 (i.e. nullifies the protection of rm)8. Thus, we exclude this bit
from our F -test and analyse the leakage where rm is set to 1. This means we will
not cover any potential unexpected leakage introduced by rm in our experiment:
of course, one can always switch to the 2-bit version and use more traces to cover
rm.

The complete model is therefore defined as

L̃f (X̂) = β⃗{∀j uj(X̂)|x̂ = x0:3||ra0:3||rin||rout, x̂ ∈ X̂}

Targeting the leakage from the first S-box computation, we assume that all
the computed values are leaking plus their transitions (i.e. following the spirit
of [27]) . Thus we first define a coarse-grained model capturing all possible com-
putations for the first S-box:

L̃r(Z) = β⃗{∀j uj(Z)|z = x0||ra0||rin||rout, z ∈ Z}
One can check that all the intermediate values that appear in the code snippet

can be expressed by this restricted model L̃r(Z). Applying the F -test between
L̃f (X̂) and L̃r(Z) to the leakage measurements from computing the first S-
box, our analysis finds that this x0-only model fails in the collapsed F -test. As
Figure 1 shows, the blue line clearly passes the threshold (i.e. −log10(pv) > th ⇒
pv < 10−pv), which implies that the realistic leakage contains much more than
what L̃r(Z) can express.

One step further. We notice that the ldrb instruction probably loads not only the
target byte, but also the other bytes within the same word (see also in Section
5.2 of [10]). Thus, our line (1) loads:

{rm⊗x0⊕ra0⊕rin, rm⊗x1⊕ra1⊕rin, rm⊗x2⊕ra2⊕rin, rm⊗x3⊕ra3⊕rin} ,
8 Note that this only applies to the collapsed case and the F-test: the following re-
gression analyses and attacks are performed on the un-collapsed traces, where the
protection of rm still applies.
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Fig. 1: Leakage analysis for the first S-box

Line (2) loads
{ra0, ra1, ra2, ra3} .

As a consequence, the transition from Line (1) to Line (2) presents

{rm⊗ x0 ⊕ rin, rm⊗ x1 ⊕ rin, rm⊗ x2 ⊕ rin, rm⊗ x3 ⊕ rin} .

If we add both these values (plus their transitions) into L̃(Z), the red lines
show that the first peak around 100-150 is gone, suggesting the leakage has been
safely captured in the collapsed model. However, the second half of the trace
still presents some extra leakage.

Let us further consider line (4): if it also loads a word, then the observed
leakage depends not only on the target byte, but also on 3 adjacent bytes,

{S′(rm⊗ x0 ⊕ rin), S′(rm⊗ x0 ⊕ rin⊕ 1),

S′(rm⊗ x0 ⊕ rin⊕ 2), S′(rm⊗ x0 ⊕ rin⊕ 3)} .

Unfortunately, the expression above does not follows high-to-low byte-order:
as the memory address is masked by rin, the byte-order in this word varies from
trace to trace. Therefore, if we calculate the memory bus transition leakage from
line (2) to (4), the correct form can be complicated. Nonetheless, we can always

create a conservative term Za1 where za1 = x0||rin||rout||ra1: adding β⃗U(Za1)
covers all possible transitions between ra1 and the S-box output bytes from
line(4), despite which byte it is transmitting to. Similarly, we add Za2 and Za3

to L̃(Z) and construct a model that passes the F -test (i.e. the cyan line in the
left half of Figure 1).

We further verify our inference from the F -test—ldrb loads word and causes
word-wise transitions. In order to confirm such leakage does exist, we go back
to the original un-collapsed implementation and perform a linear regression at-
tack [3] on rm⊗ xi ⊕ rin. In theory, ldrb should load x0 only, which means only
rm⊗ x0 ⊕ rin should be loaded for the masked table look-up. However, we did
observe that the other 3 bytes also contribute to peaks on the regression results
in the right half of Figure 1. To our knowledge, the most reasonable explanation
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Fig. 2: Collision Oracle

is that such leakage is from the transition from line (1) and (2), where the entire
32-bit word is loaded in both cases.

A novel non-profiled attack option. The existence of leakage for multiple rm ⊗
xi ⊕ rin provides a clue for a novel non-profiled attack strategy for this imple-
mentation: as all 4 bytes leak simultaneously around point 100, we can raise our
measurements to their 2nd power (i.e. a univariate 2nd order attack), which can-
cels the influence of rin. However, unlike the trivial Boolean masking schemes,
now xi (or xi⊕xi+1) is still protected by rm. That being said, considering if we
have a “collision” (aka xi = xj) within a word, we know for sure rm⊗xi⊕rin =
rm⊗ xj ⊕ rin as both rm and rin are shared among all bytes. Such restriction
further affects the variance of the measured leakage, which could be exploited
through 2nd order attacks.

Implementing this idea, we have tested 50 plaintexts that have collisions and
50 plaintexts without collision in the first word. Within each test, we perform a
fixed-versus-random t-test and plot the minimal p-value in Figure 2. After 2500
fixed traces and 2500 random traces, nearly 90% of the collision cases can be
identified, which confirms the validity of our analysis above.

It is not hard to see that such an oracle provides a link between each key
bytes: in a chosen plaintext setup, attackers can manipulate the plaintext and
learn information about the secret key. Ideally, if we find 3 collisions9 within the
same word and determine their collision indices through adaptive testing, the
key space for each word can be reduced to 28. Similar procedure can be applied
to the other 3 32-bit words. Consequently, to recover the master key, we only
need to enumerate the remaining 232 key guess space. We leave the question of
what is the most efficient attack strategy open, as it is out of the scope of this
paper.

9 4 bytes in one word, therefore there are at most
(
4
2

)
= 6 collisions.
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Summary. Our analysis demonstrates that there are considerably better non-
profiled attacks available than anticipated in [26], and it raises the question of
developing further even more advanced profiled attacks based on the knowledge
of the state.

We list a few more intriguing facts about this implementation/attack which
might be a worthwhile topic for future works:

– Bivariate attacks. A trivial alternative is to construct our oracle above with
bivariate leakage (i.e. one sample for x0 and one sample for x1) and combine
multiple points on the trace with the “mean-free” product. As we can see
in the right half of Figure 2, this approach turns out to be less efficient.
One possible explanation is combining 2 samples introduces two independent
sources of noise.

– Leakage for line (4). At the first glance, the word-wise leakage for line (4)
seems to be a better target. The entire word is masked with 1 byte rm, 1
byte rout and contains 8-bit of secret key. In our experiment, we found the
influence of rm to be onerous, at least in a non-profiled setup. However, as
this leakage reveals a certain key-byte’s value (versus reveals the key byte’s
relation to other key bytes), we leave the exploitability of such leakage as an
open problem.

– Avoiding leakage. The exploited leakage above can be easily prevented, if
the implementation loads something else between line (1) and (2). In other
words, this is a specific implementation pitfall, not linked to the masking
scheme itself. As a comparison, the bivariate version in the right half of
Figure 2 is not affected by these subtle implementation details.

– Link to t-test. The exploited leakage can be found through 2nd order fixed-
versus-random (or fixed-versus-fixed) t-test, suppose the selected fixed con-
stant contains a “collision”. For a randomly selected constant, the probability
that it has a “collision” in the first word is around 0.04, which poses again
a question on the “coverage” of using 1 or 2 fixed constant(-s) in leakage
detections [28].

5 Application to Leakage Simulators

In recent years, various leakage simulators have been proposed in order to enable
early-stage leakage awareness in the context of software implementations on off-
the-shelf processors [29]. Using a leakage simulator, developers can identify and
patch potential leaks at an early stage, even if they have no physical access to
the target device. In this section, we utilise our new test to challenge existing
leakage simulators that have either asserted models or estimated models.

Throughout this section, we use the same ARM Cortex M3 core as our target
software platform. Each profiling trace set includes 20k traces to estimate and
evaluate models, in line with the statistical analysis that we provided for our
novel test. The measurement setup is the same as in Section 4, except for the
working frequency which we reduced to 1 MHz: a lower frequency helps to provide
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a clearer cycle-to-cycle view, which is essential for model building. Any model is
ultimately data dependent: a proportional leakage model such as [5] represents
the device leakage as captured by a specific setup. In particular, the explanatory
variables in a leakage model relate to the (micro)architecture of the modelled
processor, and the coefficients relate to the measurement setup. With our novel
technique the emphasis is to build nominal models, i.e. models that only have
0/non-0 coefficients, at least initially10.

5.1 Modelling leakage of individual instructions

As pointed out in [29], one of the remaining challenge for grey-box simulators is
“(they) target relatively simple architectures”. In fact, many tools only target al-
gorithmic variables that may correspond to multiple intermediate states. Even if
the simulator takes binary code as its input (e.g. ELMO [5]), the undocumented
micro-architectural effects can still cause all sorts of issues [10]. Our novel sta-
tistical tool can help to identify missed leakage: if the leakage model utilised by
a leakage simulator fails our novel test, it suggests that some contributing factor
is missing.

The most sophisticated grey-box simulators that exist at the moment have all
been built for the ARM Cortex M family, including ELMO [5] and its extension
ELMO* [18], as well as MAPS [30]. ELMO derives its models from profiling
traces from an actual Cortex M0 processor. The ELMO*/ROSITA [18] tools
extend the ELMO model to cover various memory related leaks. The MAPS
simulator does not have a profiled power model, since it uses value/transition-
based models that are derived directly from the hardware description of an
Cortex M3 core (provided by ARM under an educational licence). Technically
speaking, there is no guarantee that this example core is identical to the IP cores
that ARM sold to the manufacturers.

The code snippet that we will use in the following does not utilise any memory
instruction. Thus, any observed difference is purely down to how the simulators
model the leakage within the data processing unit. Considering that ELMO*
extends ELMO mainly in the memory sub-system, in most cases below, they
should produce the same result as ELMO (therefore omitted in the comparison).
The ELMO repository offeres a range of leakage models all sitting on top of a
Thumb instruction set emulator: there is a power model for an M0 by STM, an
EM model derived from an M4, and an additional power model derived from an
M3 [17]. This last model/version corresponds to the processor in our setup (an
NXP LPC1313). In the following, our comparison is always on this M3 version
of ELMO. Our comparision also include the simulator MAPS, which is also
designed for a Cortex M3 [30] .

Simplified instruction-wise model. A common simplification in the three grey-
box simulators ELMO, ELMO* and MAPS is that they all focus on the leakage

10 To build a proportional model on top of the recovered nominal model is possible. One
would need to estimate coefficients based on further measurement data (adjusted to
the frequency that the target would run on in the wild).
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within the ALU. This is a sensible choice: even if the processor has a multi-stage
pipeline, we do not necessarily care about the leakage from fetching or decoding
the instructions (as it is often not data-dependent11).

Sticking with the same notation as before, we describe the full model for
instructions with two inputs (current A and B, previous A′ and B′) as L̃f =

β⃗U(X̂), where X̂ = {AA′BB′} = {∀x̂|x̂ = a||a′||b||b′}. The output value of
an instruction, denoted as C (previous C ′), is completely determined by A
and B, therefore there is no need to add C (or C ′) into L̃f . However, if re-
strictions on the inputs are added (e.g. the leakage of A is linear, denoted as
Ul(A) = {uj(A)|HW (j) < 2} = {1, a0, ..., an−1}), we might need to add the
instruction output C to our model. In our experiments, we also consider the
following leakage models that correspond to the most commonly used models in
the existing literature:

L̃l = β⃗(Ul(A)),Ul(B),Ul(C)): this model is a linear function of the current
inputs and output. Because of the linearity of this model, it is imperative to
include the output here. For instance, if the circuit implements the bitwise-
and function, the leakage on ab cannot be described by any linear function
of a and b. In the existing literature this is often further simplified to the
Hamming weight of just the output (aka the HW model).

L̃le:

L̃le = β⃗(Ul(A),Ul(B),Ul(C),Ul(A
′),Ul(B

′),Ul(C
′),

Ul(A⊕A′),Ul(B ⊕B),Ul(C ⊕ C ′))

this model further includes Hamming distance information, which can be
regarded as an extension for both the Hamming weight and the Hamming
distance model (used in the MAPS simulator [30]); it therefore also gener-
alises the ELMO model [5] which only fits a single dummy for the Hamming
distance leakage.

L̃TA = β⃗U({AB}): this model represents template attacks [1], where all rele-
vant current inputs are taken into consideration. In this model the output
does not have to be included because we allow interactions between the in-
put variables. This model can also be taken as a faithful interpretation of
“only computation leaks” [31].

Challenge code snippet. Before any further analysis, we craft a code snippet that
can trigger core leakage in the execute cycle, while not causing any other type
of data-dependent leakage from other pipeline stages (i.e. fetch and decode):

eors r2,r2 //r2=0

eors r1,r3 //r1=a’, r3=b’

nop

11 Otherwise, the program has data-dependent branches, which should be checked
through information flow analysis first.
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nop

eors r5,r7 //r5=a, r7=b **Target**

nop

nop

eors r5,r7 represents the cycle we are targeting: the 2 pipeline registers are set
to value a and b, where the previous values are a′ and b′. a′ and b′ are set by eors
r1,r3 : since both lines use eors, a (b) and a′ (b′) should share the same pipeline
register.

The 2 nop-s before/after ensure all data-dependent leakage should be caused
by eors r5,r7 : in a 3-stage pipeline micro-processor, the previous XOR-s should
already been committed and retired, while the fetcher/decoder should be exe-
cuting nop-s (which in theory, does not cause any data-dependent leakage12).

Collapsed F-test. Although we are working at an instruction level, because each
operand has 32 bits, building the full model L̃f is still infeasible. Thus, we need

to “collapse” L̃f to a smaller space. More specifically, we allow each operand to
contain 2-bit randomness (a = {a1a2....a1a2}): comparing with the 1-bit strat-
egy in Section 3.2, this option needs more traces to achieve reasonable statistical
power. However, with 2-bit random operands we can distinguish whether the
contribution of a specific term is linear or not, which is of interest when com-
paring existing simulators.

Figure 3 shows the F -test results: clearly, models that exclude transitions in
the inputs massively exceed the rejection threshold. This means that in these
cases we can conclude that the dropped transition terms have a statistically
significant impact on the model. The linear model with transitions L̃le only
marginally fails the test: thus it again demonstrates how significant the transi-
tions are, but it also indicates that dropping higher-order terms does impact the
quality of the leakage model.

Clearly, none of the three conventional models can be regarded as complete.
As a consequence, existing simulators that built on L̃le (e.g. ELMO/ELMO* and
MAPS) are expected to miss leakage, due to the limited explanatory power of the
respective leakage models. Various effects could be contributing here (including
the bit-interaction [9]).

5.2 Modelling leakage of complex instruction sequences

Our novel methodology clearly shows that conventional models are not sufficient
even when just considering a single instruction, dispatched in a way that respects
the simulator assumptions (no fetch or decode leakage, no memory leakage). Two
questions follow immediately: can we develop better models and what do existing
simulators miss when it comes to complex code sequences?

12 In practice, this may depend on the content of r8 in ARM cores; our experiments
had already set r8 to 0 beforehand.
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Fig. 3: Comparing various models against L̃f

We answer these questions based on an Assembly sequence that implements
a 2-share ISW (bitwise) multiplication gadget. Such a multiplication gadget is
an integral part of a typical masking scheme.

More specifically, we consider the Thumb-encoded 2-share ISW multiplica-
tion gadget that is given in the second column (under the header “Instruction”)
of Table 1. To avoid overloading notation, we denote the first share of input a
as a(1). To define the full model we assume that the inputs to the gadget, a and
b, and the randomness r, are collapsed to 2-bit variables. The full model is then
given as

L̃f = β⃗U({A(1)A(2)B(1)B(2)R})

Working with this larger code sequence implies that we must expect leakage
from the pipeline registers and the fetch and decode stages (i.e. leakage that we
prohibited in our much simpler analysis before).

Collapsed F -test. We recall that both L̃l and L̃TA were already clearly rejected
by the F -test for just a single instruction (as shown in Figure 3), thus we only
challenge the completeness of L̃le (with respect to L̃f ) in the context of the more

complex code snippet. L̃le is of particular interest because ELMO/ELMO* [5,18]
and MAPS [30] use a subset of L̃le. The result is shown in the left picture in
Figure 4. We can see, unlike in Figure 3, the linear extended model is clearly
rejected by our test for multiple instructions.
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Table 1: Leakage detection results on a 2-share ISW multiplication gadget
Instruction Device ELMO MAPS L̃b

0
//r1 = a(1), r2 = a(2)

//r3 = b(1), r4 = b(2), r5 = r

1 mov r6, r1(mov.w r6, r1 for MAPS)

2 ands r6, r3//r6 = a(1)b(1)
3 mov r7, r4(mov.w r7, r4 for MAPS) ✓
4 ands r7, r2//r7 = a(2)b(2)
5 ands r1, r4//r1 = a(1)b(2) ✓ ✓
6 eors r1, r5//r1 = a(1)b(2) ⊕ r ✓ ✓
7 ands r2, r3//r2 = a(2)b(1) ✓ ✓ ✓ ✓
8 eors r1, r2//r1 = a(1)b(2) ⊕ r ⊕ a(2)b(1)
9 eors r6, r1//c(1) = a(1)b(2) ⊕ r ⊕ a(2)b(1) ⊕ a(1)b(1) ✓ ✓
10 eors r7, r5//c2 = r ⊕ a(2)b(2) ✓ ✓ ✓ ✓
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Fig. 4: Model comparison based on a 2-share ISW multiplication in software
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Building a better model L̃b. Similar to Section 4, we can try to build a better
leakage model by adding terms and re-evaluating the model quality through
the collapsed F -test. We call the final model out of this ad-hoc procedure L̃b.
We derived this model by observing that most operands influence the leakage
for at least 2 cycles, which suggests that the decoding stage does significantly
contribute to the data-dependent leakage. Consequently we include data from
the decoding stage in L̃b. Developing an architectural reasoning for this model is
beyond the scope of this paper. However, Figure 4 shows that L̃b only marginally
fails our test, and thus is considerably better than the linear extended model that
simulators like ELMO/ELMO* and MAPS use.

Challenging L̃b. Whilst we now have a model that explains the device leakage
of our Cortex M3 for a relatively complex gadget, it is still open if this better
model helps to actually improve the simulator-based leakage detections. Thus
we perform a leakage detection test (first order t-test) for the 2-share ISW im-
plementation above, on realistic traces measured from our M3 core, traces from
ELMO, traces from MAPS, and traces where we use L̃b to predict leakage. The
last four columns in Table 1 show the resulting leakage detection test results.

MAPS captures all register transitions, including the pipeline registers in the
micro-architecture (command line option “-p”) [30]. MAPS reports 3 leaking
instructions in our experiments: 2 are verified by the realistic 1st order t-test,
while cycle 3 is not. Technically, this may not be a false-positive because MAPS
is using the 32-bit instruction mov.w instead of the tested 16-bit instruction
mov13.

ELMO captures the operands and transitions on the ALU data-bus [5]:
ELMO reports exactly the same leaking cycles as MAPS. Detailed analysis shows
that both cycles leak information from their operands’ transitions: ELMO cap-
tures these as data-bus transitions, while MAPS claims these as pipeline register
transitions. Considering the pipeline registers are connected to the corresponding
ALU data-bus, this is hardly unexpected.

Our manually constructed model leads to significantly better leakage predic-
tions than both MAPS and ELMO as Table 1 shows. It reports the same leaking
cycles as we found in the the real measurements. Specifically, cycle 5 reports
a leakage from the ALU output bus transition, which is a part of L̃le but not
covered by ELMO or MAPS. We suspect cycle 6 (1250-1500) and 9 (2000-2250)
come from the decoding stage: they are merely a preview of the leakage of cycle
7 and 10.

Extrapolating from this example, it is clear that building simulators based
on insufficient models (in particular models that wrongly exclude parts of the
state) lead to incorrect detection results.

13 For some reason, MAPS seems to have a problem with the 16-bit mov instruction
in our experiments.
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6 Ethical considerations and Conclusions

This paper puts the state that is captured by a leakage model at the centre stage.
Knowledge of this state matters: in the case where we want to argue that we have
the “best possible attack” (perhaps in the context of an evaluation where we try
to argue that the evaluation result corresponds to the worst-case adversary), and
in the case where we want to build an accurate leakage simulator (perhaps to
evaluate software countermeasures such as masking).

In our paper we put forward the novel notion of “completeness” for a model.
A model is complete if it captures all relevant state information, thus suitable to
be the basis for leakage simulators or security evaluations. Deciding if a model
is complete initially seems like a computationally infeasible task in the case of
modern processors: even for a 2-operand instruction, if we take previous values
into account, there are 24n possible values. For n = 8 (i.e. in a small micro-
controller), it is computationally expensive; but for n = 32 (i.e. in a modern
microprocessor), it becomes clearly infeasible. We overcome this problem by in-
troducing a novel statistical technique using collapsed models as part of a nested
F -test methodology. Our novel technique is robust and effective, and works in a
grey box setting, as we illustrate based on a range of concrete experiments.

The leakage models that result from our test are qualitatively different to
leakage models that are currently in use: they are nominal models, which means
that the coefficients in these models only describe if a variable (or an interaction
term of multiple variables) contributes to the device leakage, or not. The models
thus are no longer proportional to the real device leakage, consequently they
are of less use for proportional attack techniques (e.g. correlation or template
attacks). Our approach trades off less complete proportional models for nominal
models that are statistically closer to a complete model—one could consider
combining both modelling techniques to reintroduce some proportionality.

However, we argue that nominal models represent an important option also
from a research ethics perspective. Research into modelling techniques leads to
a dual-use question: techniques that are explicitly developed to work on off-the-
shelf processors, and potentially released as part of open source projects such as
ELMO and ROSITA may play in the hands of adversaries. Indeed the ELMO
paper already shows an example of using ELMO’s leakage model in a correlation
based attack on a physical M0: it considerably improves the attack performance
and does clearly have potential for dual use. Nominal models, on the other
hand, can help to develop more sophisticated attacks (in the sense that more
leakage can be included in an attack), or confirm that the best attack has already
been found (again in the sense that all leakage was included). However, they do
not lead to an immediate improvement for simple model based attacks (such
as correlation attacks). Finally research ethics also ties in with practice: when
discussing the possibility of developing models for processors with commercial
vendors, an immediate concern is that of “helping adversaries” by supplying high
quality leakage models that can be readily used in attacks. Therefore, the option
to supply nominal models that can be used for leakage detection (or potentially

https://orcid.org/0000-0001-5293-5906
https://orcid.org/0000-0001-7502-3184


Complete Leakage Modelling for Responsibly Engineered Simulators 25

for automated leakage proofs) is seen as a potential way forward for the practical
deployment of simulators.
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A PI, HI & Assumption error

Leakage certification approaches such as described in [20,32,33] (based on the
general framework introduced by Standaert, Malkin and Yung [34]) aim at pro-
viding guarantees about the quality of an evaluation, based on estimating the
amount of information leaked by a target device.

In order to estimate the amount of leaked information (i.e. the mutual infor-
mation), the intermediate state must be selected as a first step. In our notation,
this means the user must correctly provide an enumerable state Z that ensures
the corresponding model L̃(Z) is close to the full model L̃(X) w.r.t. its explana-
tory power. Then, one can estimate the mutual information of MI(Z;L) using
concepts like perceived information (PI) or hypothetical information (HI) [33].

The common choice for Z is often a variable that relates to a single S-box
[20,32,33]: because the MI calculation runs through all possible values of Z, it
corresponds to a template attack. This extremely popular choice is potentially
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(a) HD leakage without any noise (b) HD leakage with noise variance 0.1

Fig. 5: Moment based detection of “assumption error”

inadequate because the device state is likely to be considerably more complex
(as we have argued before), and it will likely include at least transition leaks,
which cannot be captured in this way. Consequently, prior to any of these leakage
certification approaches, it is imperative to test what state must be considered.

A.1 Estimating “assumption errors”

In [20] Durvaux et al. proposed a technique to test for (the so-called) assumption
errors in the leakage model [20]. One could be tempted to regard this as an
alternative solution for testing completeness. Unlike our F-test, their approach is
based on checking if the distance between pairs of simulated samples (generated
with a profiled model) and the distance between simulated and actual samples
behave differently.

However, their technique of checking assumption errors is about ensuring
that the estimation of MI is accurate. In order words, their technique is not
an effective way to test whether Z is complete or not. To demonstrate this, we
present a simple experiment that is based on the common example of leakage
from an AES S-box output (S(p1 ⊕ k1), where p1 is the plaintext byte and k1 is
the corresponding key byte). Let us further assume that the leakage function L
depends on not only on S(p1⊕k1), but also the previous S-box output S(p0⊕k0):

L = HW (S(p1 ⊕ k1)) +HD(S(p1 ⊕ k1), S(p0 ⊕ k0)).

Taking advantage of the code from [32], we can validate the power of detecting
the above “assumption error”: Figure 5a portrays the moment-based estimation
on the leakage function above in a noise free setting.

Each line corresponds to a model value, and if any value leads to a line
that keeps getting “darker”, it would suggest the p-value is small enough to
confidently report an “assumption error”. Even if there is no noise (left figure),
only the kurtosis marginally reports errors. With some small noise added in
(Figure 5b), the situation remains the same. Only the kurtosis gives some small
p-values, but there is no statistical decision criterion that enables us to draw
a firm conclusion here. This outcome should not be surprising. Because p0 is
an independent random variable, the Hamming distance part follows Binomial
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Fig. 6: F-test with noise variance 0.1
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where n is the bit-length of p0 (for AES, n = 8). With

Z = P1, the estimated model would be:

M = HW (S(p1 ⊕ k1)) +N
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where N (µ, σ2) represents the Gaussian distribution. For any fixed value of p1⊕
k1, the “distance between pairs of simulated samples” becomes
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Meanwhile, “the distance between simulated and actual samples” becomes:

DLM =
{
l1 − l2|l1 ∈ N
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)
, l2 ∈ B (0.5, n)

}
It is well-known that with reasonably large n, the binomial distribution will

asymptotically approximate the Gaussian distribution. The idea behind this test
in [20] is based on an expected inconsistency between the unexplained leakage
distribution and estimated Gaussian distribution: the test becomes powerless if
the former equals/stays close to Gaussian, which is not really a rare case in side
channel applications.

In contrast, our F-test can detect such an “error” with ease, see Fig. 6. The
advantage here requires though to explicitly assign X = {P1P0}. Without some
guess work (or a priori knowledge) one may need to use a collapsed full model
instead, say using 1 bit for each plaintext byte and testing on a trace set larger
than 216.

We want to emphasize at this point that these previous works did not aim for
testing the completeness of the state as such, so our findings do not invalidate
their statements. We merely wish to point out that there is a difference between
their ideas of “assumption errors” and our notion of “completeness”.

A.2 HI&PI

Bronchain, Hendrickx and Massart et al. proposed that using the concepts of
Perceived Information (PI) and Hypothetical Information (HI), one can “bound
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the information loss due to model errors quantitatively” by comparing these two
metrics, estimate the true unknown MI and obtain the “close to worst-case”
evaluations [33].

It is critical to remember the “worse-case” are restricted the computed MI:
back to previous our example, estimating HI and PI still bound the correct mu-
tual information MI(K1;P1, L). The additional Hamming distance term affects
how we should interpret this metric: when combing multiple key-bytes to ob-
tains the overall security-level, MI(K1;P1, L) might not be as helpful as one
may hope.

More concretely, we tested our example simulation leakage with the code
provided in [33]: as we can see in Figure 7, PI and HI still bounds the correct
MI. The only difference here is MI itself decreases as P0 and K0 are not taken
into consideration.

Fig. 7: PI and HI estimation for the leakage function

A.3 Bias-Variance Decomposition

Lerman, Veshchikov and Markowitch et al. also proposed a diagnosis tool based
on the bias-variance decomposition [35]. The goal of their tool is purely predictive—
“guiding the design of the best profiled attack”. In other words, the “syndrome
to diagnose” is still restricted to the specific selected intermediate state. In our
example, the additional Hamming distance will be taken as part of the random
noise. Admittedly, unless the missing Hamming distance is taken into the model
building procedure, any corresponding leakage will always end up in the noise.
Therefore, any model can be perfectly estimated, yet that does not guarantee it
is complete, as the estimated noise is not necessarily pure measurement noise.
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