
Embedding the UC Model into the IITM Model

Daniel Rausch1[0000−0002−1901−3659], Ralf Küsters1[0000−0002−9071−9312], and
Céline Chevalier2

1 University of Stuttgart
{daniel.rausch, ralf.kuesters}@sec.uni-stuttgart.de

2 CRED, Paris-Panthéon-Assas University
celine.chevalier@ens.fr

Abstract. Universal Composability is a widely used concept for the
design and analysis of protocols. Since Canetti’s original UC model
and the model by Pfitzmann and Waidner several different models for
universal composability have been proposed, including, for example, the
IITM model, GNUC, CC, but also extensions and restrictions of the
UC model, such as JUC, GUC, and SUC. These were motivated by the
lack of expressivity of existing models, ease of use, or flaws in previous
models. Cryptographers choose between these models based on their needs
at hand (e.g., support for joint state and global state) or simply their
familiarity with a specific model. While all models follow the same basic
idea, there are huge conceptually differences, which raises fundamental
and practical questions: (How) do the concepts and results proven in one
model relate to those in another model? Do the different models and the
security notions formulated therein capture the same classes of attacks?
Most importantly, can cryptographers re-use results proven in one model
in another model, and if so, how?
In this paper, we initiate a line of research with the aim to address
this lack of understanding, consolidate the space of models, and enable
cryptographers to re-use results proven in other models. As a start, here
we focus on Canetti’s prominent UC model and the IITM model proposed
by Küsters et al. The latter is an interesting candidate for comparison
with the UC model since it has been used to analyze a wide variety of
protocols, supports a very general protocol class and provides, among
others, seamless treatment of protocols with shared state, including joint
and global state. Our main technical contribution is an embedding of the
UC model into the IITM model showing that all UC protocols, security
and composition results carry over to the IITM model. Hence, protocol
designers can profit from the features of the IITM model while being able
to use all their results proven in the UC model. We also show that, in
general, one cannot embed the full IITM model into the UC model.

1 Introduction

Universal composability is a widely used approach for the modular design and
analysis of cryptographic protocols. Protocols are shown to be secure in arbi-
trary (polynomial-time) contexts, which allows for composing protocols and

2 Daniel Rausch, Ralf Küsters, and Céline Chevalier

re-using security results. Security properties are stated in terms of ideal function-
alities/protocols. To prove a real protocol π secure w.r.t. an ideal functionality
φ one shows that for all network adversaries A attacking π there is an ideal
adversary, called simulator, that interacts with φ such that no (polynomial-time)
environment E can distinguish between the real and the ideal world. We write
π ≤ φ in this case. Composition theorems then immediately imply that one can
replace subroutines φ used by an arbitrary higher-level protocol ρ with their
realization π such that ρφ→π ≤ ρ, where in ρφ→π the protocol ρ uses (possibly
multiple instances of) π instead of φ.

The UC model by Canetti [5, 6] and the reactive simulatability model by
Pfitzmann and Waidner [20] pioneered this line of research. Since then many
different models implementing the same idea of universal composability have been
proposed, generally motivated by issues in other existing models such as a lack of
expressiveness, overly complicated computational models, and also formal flaws
in theorems. To name just a few examples: The JUC [8] and GUC [7] models
were proposed as extended variants of the UC model which allow for modeling
larger classes of protocols, namely those with joint state (where some state, such
as a signature key, is used by multiple protocol sessions) or global state (which is
shared with arbitrary other protocols), respectively. The GNUC model [10] was
designed as a sound alternative to the UC model, fixing several issues that formally
invalidated the UC composition theorem at the time. The IITM model [12,18]
offers a simple computational model that supports a very general class of protocols
and composition theorems, which, out of the box, support joint state, global state,
and arbitrarily shared state, also in combination. The CC model [19] follows a
more abstract approach that does not fix a specific computational model, runtime
notion, instantiation mechanism, or class of environments.

In the literature, cryptographers often choose the security model based on their
needs at hand (for instance support for joint or global state), syntax preferences,
or simply their familiarity with a specific model. While all of the above models
follow the same basic idea of universal composability, the details are (sometimes
drastically) different. It is hence generally unclear how different models and
the security results obtained therein relate to each other: Is one model strictly
more powerful than another? Can all protocols formalized in one model also be
formalized in the other? Are security notions compatible? Do security results
carry over from one model to the other? This lack of a deeper understanding of
the relationship of models is quite disturbing. For example, we might miss some
practical attacks in our security proofs because we, due to a lack of knowledge,
chose a model that might actually offer only a weaker security notion than other
models. Perhaps worst of all, security results proven in one model currently
cannot be used in another model. This drastically limits reusability of security
results, contradicting one of the key features of universally composable security
and more generally modular analyses.

Our Goal. In this paper, we initiate a line of research with the aim to address this
lack of understanding and clarify the relationships between models for universal
composability. One of our main goals is to identify, as far as possible, classes of

Embedding the UC Model into the IITM Model 3

protocols and security results that can be transferred from one model to another.
This would enable protocol designers to use a model of their choice, based on their
personal preference, the specific needs at hand, as well as the features offered
by the model, while still being able to benefit from results shown in another
model. This would also provide insights into the concepts employed in one model
compared to other models and the strength of the security results obtained
within a specific model, potentially justifying that such results are reasonable
and cover all practical attacks. Besides consolidating and re-using results, this
research can also help consolidating and unifying the space of models themselves.
A complete classification of all universally composable models is of course out of
reach of a single paper. As a first step towards our objective, we here focus on
embedding the UC model into the IITM model. We also prove that, in general,
the IITM model cannot be embedded into the UC model. To the best of our
knowledge our work is the first to study such embeddings, and hence, relate
complete models for universal composability. So far, only specific aspects have
been considered. For example, in [13] the relationship between security notions
employed in various models has been studied, although the study was carried out
in one model, and [11,12] discuss runtime notions employed in different models.

On the UC and IITM models. We choose the UC model [5] since it is
currently the most widely used model in the literature on universal composability.
The IITM model [12] has also already been used intensively to analyze a wide
variety of protocols, including cryptographic protocols (e.g., [14, 15]) and also
more generally security protocols such as blockchains and distributed ledgers
(e.g., [9]). The IITM model is an interesting candidate for a comparison since
it supports a very general protocol class and comes with composition theorems
which cover joint state and global state out of the box as well as protocols with
arbitrary shared state (joint and global state are special cases of shared state)
and protocols without pre-established session IDs [15], i.e., parties in one session
are not required to share the same SID or fix it upfront (see [4, 15, 17, 18] for
overviews of these features). Moreover, all these features can be freely combined
since they are all covered within one framework. While recently it has been
shown that the UC model directly supports global state [2], combinations of, for
example, joint state and global state or features like general shared state and
protocols without pre-established SIDs are not yet supported in UC. Hence, an
embedding as carried out in this paper enables protocol designers to profit from
such features of the IITM model while still being able to access the wide range
of existing results shown in the UC model.

For both the UC and IITM model there are recent journal publications; the
UC model has been published in the Journal of the ACM [6] and the IITM model
in the Journal of Cryptology [18]. These provide a solid basis for a comparison.
Such a comparison is far from trivial since the computational frameworks of both
models are defined in very different ways, using sometimes drastically different
concepts where it is far from obvious how they relate and whether there is a
meaningful relationship at all.

4 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Our contributions. Conceptual Differences. After recalling the most important
definitions and theorems of the UC and IITM models in Section 2, we first
highlight in Section 3.1 the major conceptual differences between the two models:
Diff. 1 concerns support for dynamically generated machine code, Diff. 2 to 8
are about message routing and sender/receiver authentication, Diff. 9 concerns
the different polynomial runtime notions employed in the two models, Diff. 10
concerns the classes of environments considered, and Diff. 11 to 14 are about
requirements of the UC security notion and composition theorem that are not
present in the IITM model.
Mapping of Protocols. With that analysis in mind, one main contribution, given
in Sections 3.2 and 3.5, consists in mapping UC protocols to IITM protocols.
This requires bridging the mentioned differences and to show that the mapping
is faithul, i.e., the original and the mapped protocols have the same behavior
(functional, security, complexity) in all contexts they run in (Lemmas 1 and 2).
This then implies that all UC protocols can be expressed as IITM protocols.
Mapping and Preservation of Security Results. We show in Section 3.3 that this
mapping also preserves security results. That is, πUC ≤UC φUC in the UC model
iff πIITM ≤ IITM φ IITM for the mapped protocols in the IITM model (Theorem 4).
For the direction from IITM to UC, we require that πIITM ≤ IITM φ IITM can be
shown for simulators meeting the UC runtime notion (Theorem 5). Assuming
the existence of time-lock puzzles, we also show that this direction does not hold
in general since the class of IITM simulators is strictly larger than the class of
UC simulators (Lemma 3). This latter result is independent of a specific protocol
mapping, and hence, is a fundamental difference between the models, which we
further discuss in Section 3.3.
Mapping and Preservation of Composition Results. Section 3.4 discusses compo-
sition. One easily observes that Theorem 4 already implies that security results
for composed protocols carry over from UC to IITM by first applying the UC
composition theorem and then mapping the resulting UC protocols to the IITM
model (Corollary 1). But this result does not relate the composition theorems
employed in the models themselves. We therefore show that Corollary 1 can be
obtained directly in the IITM model using the IITM composition theorem and
without relying on the UC theorem (Corollary 2).

This result also enables composition of mapped UC protocols with arbitrary
other IITM protocols within the IITM model, including those that do not have a
UC counter part and which use features of the IITM model that are out of the
scope of the UC model. We discuss these options in Section 3.6.
The Other Direction: Limitations. We discuss in Section 4 the other direction of
translating IITM protocols and security results to the UC model. To summarize,
[18] has already shown that the IITM runtime notion permits natural protocols
that cannot be expressed in the UC model. Combined with our results, this shows
that the class of IITM protocols is strictly larger than the class of UC protocols.
Our result from Lemma 3 further shows that also the class of IITM simulators
is strictly larger than the class of UC simulators due to their runtime notions.
So the best one can hope for is a mapping for the class of IITM protocols and

Embedding the UC Model into the IITM Model 5

simulators that follow the UC runtime notion. We also discuss further obstacles
of an embedding of the UC model into the IITM model. We leave it to future
work to study this in more details and provide an embedding of (a subset of) the
IITM model into the UC model.
Further Insights and Results Obtained Through the Embedding. Firstly, we develop
a modeling technique that allows for obtaining a new type of composition as a
corollary from existing UC and IITM composition theorems as well as similar
models (cf. Section 3.4). Secondly, we found several previously unknown technical
issues in the UC model that, among others, formally invalidate the UC composition
theorem (cf. Sections 2.1, 3.3, 3.4). We propose fixes for all of these issues which
should be compatible with existing UC protocols from the literature.
Altogether, our paper provides deep insights into the UC and IITM models,
clarifies the purpose of different concepts employed by the models for achieving
similar goals, relates them, also in terms of expressiveness, and uncovers how
security results compare to each other. Our main result shows that all protocols,
security, and composability results from the UC model carry over to the IITM
model. As an immediate practical benefit, this opens up entirely new options for
protocol designers so far working in the UC model: they can use all their results
also in the IITM model, combine their work with protocols in the IITM model and
benefit from IITM features including seamless support for joint, global, shared
state, and protocols without pre-established session IDs, as well as arbitrary
combinations thereof.

2 A Brief Overview of the UC and IITM Models

In this section, we provide brief overviews of the UC and IITM models. We
refer the reader to [6, 18] for more in-depth information about both models. The
presentation here should suffice to follow the rest of the paper.

2.1 The UC Model

The general computational model of the UC model is defined in terms of systems
of interactive Turing machines (ITMs or just machines, for short). An interactive
Turing machine M in the UC model is a probabilistic Turing machine with
three special communication tapes, called input, subroutine-output (or simply
output), and backdoor tape. In a run of a system of machines (see also below),
machine instances are created. Every instance has some machine code that it
runs when activated and some identifier. More specifically, each instance has a
unique so-called extended ID eid = (c, id), consisting of its machine code c and
some identity string id that, except for the environment (which has id = 0), is of
the form id = (pid, sid) for a process/party identifier pid and a session identifier
sid. Machine instances have access to two special operations: a read next message
instruction which moves the head of one of the three mentioned communication
tapes to the start of the next received message within a single unit of time and an
external-write instruction which allows a machine instance to append a message m

6 Daniel Rausch, Ralf Küsters, and Céline Chevalier

to one of the (three) communication tapes of another machine instance, and
hence, send m to that other instance. On an input tape machine instances receive
messages from higher-level protocols or the environment, on subroutine-output
tapes they receive messages from subroutines, and on backdoor tapes they receive
messages from the network/the adversary.

A system of machines (M,C) consists of the machine code M of the first ITM
to be activated and a so-called control function C which can prohibit or alter
external-write operations; this is later used to define the security experiment.
The first instance to be activated with external input a in a run of this system is
a machine instance running code M with ID 0. During a run of such a system,
at any time only one machine instance is active and all other machine instances
wait for new input via the external write operation. When a machine sends a
message m via an external write operation to one of the three communication
tapes of another machine, say tape t, there are two main options to specify the
recipient: Firstly, by giving an extended ID eid. If there does not exist a machine
instance with this extended identity yet, then such an instance running the code c
specified in its eid is first created. Then, m is written to the tape t of the machine
instance with extended ID eid and that machine becomes active (the sender
becomes inactive). This first case is also called forced-write. Secondly, by giving a
predicate P on extended IDs. In this case, m is written to the tape t of the first
existing machine instance (sorted by the order of their first creation) with eid
such that P (eid) holds true. We will refer to this second case as non-forced-write.
For both types of external write operations, the sender can either hide or reveal
its own extended identity towards the recipient. If an external write operation
does not succeed, e.g., when there is no existing machine instance matching the
predicate P , then the initial ITM instance (M, 0) is activated again. A run ends
when the initial ITM reaches a final halting state. The overall output of such a
run is the first bit written on a specific tape of the initial ITM instance.

Two systems of machines (M,C) and (M ′, C ′) are called indistinguishable
(and we write (M,C) ≡ (M ′, C ′)) if the difference between the probability that
(M,C) outputs 1 and the probability that (M ′, C ′) outputs 1 is negligible in the
security parameter η and the external input a.3

Runtime. Machine instances can receive and send so-called import as part
of their messages m to/from other machine instances, where import is encoded
as a binary number contained in a special field of m. A machine M is called
probabilistic polynomial-time (ppt) iff (i) there is a polynomial p such that the
overall runtime of (an instance of) M during all points of a run is upper bounded
by p(nI − nO), where nI is the sum of all imports received by (that instance
of) M and nO is the sum of all imports sent by (that instance of) M to other
machines, and (ii) whenever M uses a forced write operation to a machine instance
with code M ′, then M ′ is also ppt for the same polynomial p. Furthermore, all
machines are parameterized with a security parameter η. All machine instances
are required to run only when they hold at least η import, i.e., nI − nO ≥ η.
3 A function f : N × {0, 1}∗ → R≥0 is called negligible if for all c, d ∈ N there exists
η0 ∈ N such that for all η > η0 and all a ∈

⋃
η′≤ηd{0, 1}

η′ : f(η, a) < η−c.

Embedding the UC Model into the IITM Model 7

Simulation-Based Security. Security of a protocol π is defined via a secu-
rity experiment involving an adversary A and an environment E , where each of
these components is modeled via an ITM with code π, A, and E respectively.
More specifically, the experiment is defined via the system (E , C π,A

EXEC) where
C π,A
EXEC is a control function that enforces the following rules of communication:
– The environment E (with ID 0) can write only to input tapes, only via forced

write, and only to IDs of the form (pid, sid) where sid must be the same
as in previous write operations (if any exist). This uniquely defined sid is
also called challenge session ID sidc. If pid is the special symbol �, then the
control function changes the code of the recipient to A; otherwise, the code
is changed to π. So E can talk to A or to π (in session sidc). Unlike all other
machines, the environment is given the additional freedom to freely choose
the extended identity that is claimed as a sender of a message.

– The adversary A (with ID (�, sidc)) may write only to backdoor tapes of
other machines and may not use the forced-write mechanism (i.e., he can
write only to already existing instances using non-forced-writes).4

– All other machine instances (which are part of the protocol stack of π,
including subroutines) must always reveal their own sender extended identities.
They may write to the backdoor tape of (the unique instance of) A using
non-forced-write without specifying the code of the adversary and without
providing import. They may write to input and output tapes of instances other
than (the unique instances of) E and A, subject to the following modification:
If the sending instance (M, (pid, sid)) has code M = π, sid = sidc, the
recipient tape is the output tape, and the recipient instance does not exist
yet, then the message is instead redirected to the output tape of E with the
code M removed from the extended sender identity. The extended identity
of the originally intended receiver is also written to the output tape of E .

The initial import for environments is defined to be the length of the external
input a, which is at most some polynomial in the security parameter η (as per the
definition of negligible functions with external input). Environments are required
to be balanced, i.e., provide at least as much import to the adversary as they
provide in total to all instances of the challenge protocol π, i.e., all instance with
extended IDs of the form (π, (pid, sidc)), where sidc is the fixed challenge SID.
Given a set of extended identities ξ, an environment is called ξ-identity-bounded
if it claims only sender extended identities from ξ. The set ξ may be determined
dynamically via a polytime predicate over the current configuration of the whole
system at the time the input it sent to the protocol, which includes (the states
of) all existing instances of the environment, adversary, and protocol machines.
Given this terminology, the security notion for protocols is defined as follows:

4 The journal version of the UC model [6] formally does not prevent the adversary
from revealing its sender extended identity, including its code, to other machines.
We found that this option actually causes several severe issues, including a failure of
the composition theorem (cf. the full version [21] for details). In what follows, we
therefore assume that adversaries must also hide their own sender extended identity.
This fixes the issue and is compatible with existing results in the literature.

8 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Definition 1. Let π and φ be ppt protocols. Then π realizes φ w.r.t. ξ-identity-
bounded environments (π ≤ ξ

UC φ) if for all ppt adversaries A there exists a ppt
adversary S (a simulator or an ideal adversary) such that for all ppt ξ-identity-
bounded environments E it holds true that (E , C π,A

EXEC) ≡ (E , C φ,S
EXEC).5

Composition Theorem. To state the composition theorem, a bit more
terminology is needed. A session (with SID sid) of a protocol π consists of all
instances running code π with SID sid. We call these instances highest-level
instances, i.e., those are exactly the instances that can receive inputs and provide
outputs to the environment in the security experiment. The session sid of π
further includes all instances, i.e., subroutines, that have received an input or
output from another instance that is part of the session (except for outputs
by highest-level instances, which are intended for the environment/higher-level
protocols using the session of π).

A protocol π is called subroutine respecting if a protocol session of π interacts
with other existing machine instances not belonging to the session only via inputs
to and outputs from the highest level instances of the session, even when π is
used as a subroutine within a higher-level protocol ρ.6 The UC model provides a
standard implementation of the subroutine respecting property via a subroutine
respecting shell code that is added as a wrapper on top of the code of π and its
subroutines. A protocol π is called subroutine exposing if every session s of the
protocol provides an interface to the adversary that the adversary can use to
learn whether some extended identity eid (specified by the adversary) is part
of the session s. The UC model proposes a standard implementation of this
mechanism by adding a so-called directory machine.

A (higher-level) protocol ρ is called (π, φ, ξ)-compliant if (i) all instances
of all sessions of ρ perform write requests to input tapes only via forced-write
and ignore outputs from instances that do not reveal their extended identities,
(ii) there are never two external write requests (made by any instances of any
session of ρ) for the same SID but one for code π while the other is for code φ,
and (iii) the extended identities of all instances in all sessions of ρ that pass
inputs to an instance with code π or φ satisfy the polytime predicate ξ. Given
such a (π, φ, ξ)-compliant protocol ρ, the protocol ρφ→π is defined just as ρ but
replaces (input write requests to) subroutine instances of φ with (input write
requests to) subroutine instances of π. In subroutines of ρ this replacement is
done as well. 7 Now, the composition theorem is as follows:

5 The UC model also defines security w.r.t. the dummy adversary ADum, which es-
sentially simply forwards messages between the environment and the protocol, and
shows this definitio to be equivalent. Also, if ξ always permits all identities, then one
simply writes ≤UC instead of ≤ ξ

UC .
6 The subroutine respecting property ensures that π running within a larger protocol
ρ still behaves as in the security experiment, where an environment can interact only
with one session of π and only via the highest-level instances of that session.

7 Formally, ρφ→π contains an additional so-called UC composition shell code which
acts as a wrapper that replaces these write requests.

Embedding the UC Model into the IITM Model 9

Theorem 1 (UC Composition [6]). Let ρ, π, φ be ppt protocols, let ξ be a
ppt predicate, such that ρ is (π, φ, ξ)-compliant, π and φ are both subroutine
respecting and subroutine exposing, and π ≤ ξ

UC φ. Then ρφ→π ≤UC ρ.

2.2 The IITM Model

The general computational model of the IITM model is defined in terms of systems
of (inexhaustible) interactive Turing machines (IITMs or just machines, for short).
An interactive Turing machine in the IITM model is a probabilistic Turing
machine with an arbitrary number of named bidirectional communication tapes.8
The names are used for determining pairwise connections between machines in
a system of machines.9 Each machine specifies a CheckAddress and a Compute
mode that it can run in, where the former is a ppt algorithm used for addressing
individual copies/instances of the same machine and the latter is an algorithm
describing the actual computations of instances of the machine (see below).

A system Q of IITMs is a set of IITMs of the formQ = {M1, · · · ,Mk, !M ′1, · · · ,
!M ′k′}10 where the Mi and M ′j are machines and each tape name is shared by at
most two machines in the system. Two machines are called connected if they have
tapes with the same name. The operator ‘ ! ’ indicates that in a run of a system an
unbounded number of (fresh) instances of a machine may be generated (e.g., to
model multiple protocol sessions); for machines without this operator there is at
most one instance of this machine in every run of the system. The first instance
to be activated with external input a in a run of Q is an instance of the so-called
master IITM; this machine is the only one with a so-called master (input) tape
on which it receives external input a given to the system (jumping slightly ahead,
the master IITM will be part of the environment). In a run of a system Q, at
any time only one machine instance is active and all other instances wait for
new input. If, in Q, machines M and M ′ are connected via a tape, say a tape
named n, then an (instance of) M can send a message m to and thus trigger an
(instance of) M ′ by writing m on its tape named n. To determine which instance
of M ′ (if any) gets to process m, the following is done: The message is copied
to the tape named n of the first existing instance of M ′, where instances are
sorted by the order of their first creation. (The case that no instance of M ′ exists
yet, is handled below.) That instance then processes m using its CheckAddress
algorithm, which either accepts or rejects the input. If the input is accepted,
this instance continues processing m using the Compute algorithm. Otherwise, if
the input is rejected, then its state is reset to the point before m was written
to its tape and the next instance of M ′ is activated with message m in mode
CheckAddress. If none of the existing copies accept and M ′ is in the scope of
a ‘ ! ’, or no copies of M ′ exist yet, then a new instance of M ′ is created and runs
8 Formally, the IITM model uses unidirectional tapes. These can be paired to create

bidirectional tapes as a special case, as shown in, e.g., [3, 4].
9 Tape names are hidden from and non-accessible to the logic of the machines. Hence,

they can be renamed and even reconnected without changing the logic of the machine.
10 Also written M1 | · · · |Mk | !M ′1 | · · · | !M ′k′ .

10 Daniel Rausch, Ralf Küsters, and Céline Chevalier

in mode CheckAddress with input m on tape n. If it accepts, it gets to process m
using Compute; otherwise, the fresh instance is deleted again and, as a fallback,
an instance of the master IITM of Q is activated with empty input. The same
fallback is also used if an instance (except for instances of the master IITM) stops
without sending a message. A run stops if an instance of the master IITM does
not produce output or a machine outputs a message on a special tape named
decision (just as for the master IITM, only environments have such a special
tape). Such a message is considered to be the overall output of the system.

Two systems Q and R are called indistinguishable (Q ≡ R) if the difference
between the probability that Q outputs 1 (on the decision tape) and the proba-
bility that R outputs 1 is negligible in the security parameter η and the external
input a (see Footnote 3).

Types of Systems and Their Runtime. We need the following terminol-
ogy. For a system Q, the tapes of machines in Q that do not have a matching tape,
i.e., there does not exist another machine in Q with a tape of the same name, are
called external. External tapes are grouped into I/O and network tapes/interfaces
modeling direct connections to subroutines/higher-level protocols and network
communication, respectively. We consider three different types of systems, mod-
eling i) real and ideal protocols/functionalities, ii) adversaries and simulators,
and iii) environments: Protocol systems (protocols) and environmental systems
(environments) are systems which have an external I/O and network interface,
i.e., they may have I/O and network tapes. Adversarial systems (adversaries)
only have an external network interface. Environmental systems may contain a
master machine and may produce output on the decision tape.

An environment must be universally bounded, i.e., the overall runtime of all
instances in a run of an environmental system must be bounded by a single unique
polynomial (in the security parameter and length of the external input) even
when connected to and running with arbitrary systems. Protocols are required to
be environmentally bounded, i.e., when combined with an environment, the overall
system (which includes all instances of all machines) must run in polynomial
time (in the security parameter and length of the external input), except for
potentially a negligible set of runs. Note that the polynomial can depend on
the environment. Given a protocol, an adversary for that protocol has to satisfy
the following condition: the system obtained by combining the adversary and
the protocol needs to be environmentally bounded. (Note that, e.g., dummy
adversaries belong to this class for all protocols.)

Simulation-Based Security. We can now define the security notion of
strong simulatability: 11

Definition 2. Let P and F be protocols with the same I/O interface, the real
and the ideal protocol, respectively. Then, P realizes F (P ≤ IITM F) if there
exists an adversary S (a simulator or an ideal adversary) such that the systems P
11 The IITM model also supports further security notions, including simulation w.r.t.

the dummy adversary ADum or w.r.t. arbitrary adversaries A in the real world. All
of these notions have been shown to be equivalent in the IITM model [18].

Embedding the UC Model into the IITM Model 11

and S |F have the same external interface and for all environments E, connecting
only to the external network and I/O interface of P (and hence, the external
interface of S |F), it holds true that E | P ≡ E | S |F .

Composition Theorems. The main IITM composition theorem handles
concurrent composition of a fixed number of (potentially different) protocols:
Theorem 2 (IITM Composition [18]). Let Q,P,F be protocols such that Q
and P as well as Q and F connect only via their external I/O interfaces with
each other and P ≤ IITM F . Then, Q |P ≤ IITM Q |F .

The IITM model also provides another security notion and a composition
theorem for unbounded self-composition, which intuitively states the following:
Theorem 3 ((Informal) IITM Unbounded Self Composition). Let P,F
be protocols with disjoint sessions. If there exists a simulator S such that no
environment interacting with just a single session of P,F can distinguish P and
S |F , then P ≤ IITM F .

In other words, it is sufficient to analyze the security of a single session of such
a protocol to then conclude security of an unbounded number of sessions. This
second theorem can be combined with the main composition theorem to obtain
a statement similar to Theorem 1 of the UC model since from the assumption
of Theorem 3 and if Q connects only to the external I/O interface of P (and
hence, F), we not only get P ≤ IITM F but immediately also Q |P ≤ IITM Q |F .
Roughly, Q corresponds to (higher-level machines of) ρ in Theorem 1, and P and
F to the subroutines π and φ, respectively.

3 Embedding the UC Model in the IITM Model

We now show the embedding of the UC model into the IITM model. Formally,
we consider arbitrary protocols πUC , φUC , ρUC defined in the UC model such
that πUC ≤ ξ

UC φUC and the UC composition theorem can be applied to ρUC
to obtain ρ φ→πUC ≤UC ρUC . The overall goal of this section is to show that
these protocols, security, and composability results naturally carry over to the
IITM model (and then can further be used in the IITM model). We discuss the
embedding in the other direction in Section 4.

3.1 Main Conceptual Differences
Let us first list the key conceptual and technical differences of the UC and IITM
models in terms of computational models, security definitions, and theorems. We
further give pointers to where these difference are bridged.
Support for dynamically generated machine code (cf. Section 3.5).
1. The UC model directly supports dynamically determining the machine code

of new machine instances. The IITM model fixes a finite static set of machine
codes that can be instantiated during the run of a system.

Message routing and sender/receiver authentication (cf. Section 3.2).

12 Daniel Rausch, Ralf Küsters, and Céline Chevalier

2. Both the UC and IITM models provide an operation for machine instances to
send messages to other instances. The UC model allows an instance to send
messages to any other instance (subject to a few restrictions imposed by the
security experiment). In the IITM model two instances can send messages to
each other iff they are instances of two different machines M1 and M2 that
share a tape with the same name.

3. The UC model distinguishes between two types of messages between protocol
machines, namely those that provide input to a subroutine and those that
provide output to a higher-level protocol. The IITM model does not have
such a distinction but rather uses I/O tapes for both types of messages.

4. The UC model uses IDs of the form (pid, sid) to address messages to different
protocol instances with the same machine code. The IITM model instead
uses the generic CheckAddress mechanism which can be freely instantiated
by protocol designers to capture the desired way of addressing of instances.

5. The UC model authenticates the sender of a message (within a protocol) by
revealing its extended ID, consisting of the machine code and the ID of the
instance. The IITM model authenticates the sender via the tape a message is
received on, but does not guarantee that the receiver learns an ID identifying
a specific instance or the code of the sender.

6. The adversary in the UC model cannot spawn any new protocol machine
instances; he may only communicate with existing instances. The adversary
in the IITM model can spawn new instances.

7. The UC model allows for specifying the receiver of a message via a predicate
over the extended IDs of all existing machine instances (non-forced-writes).
The CheckAddress algorithm of the IITM model bears some similarity, but
runs only over the IDs of instances that share the same machine code.

8. In the UC model, outputs sent from the highest level protocol machines are
redirected to the environment under certain conditions, in which case they
are also modified by removing the machine code of the sender. Protocols in
the IITM model send messages to the environment iff they are written to an
external I/O tape, without redirections or modifications.

Polynomial runtime notions (cf. Section 3.2).
9. The UC and IITM models use different runtime notions, with the former

being defined for individual machines that use runtime tokens while the latter
is defined for entire systems and does not mandate a specific mechanism for
enforcing runtime.

Support for specific classes of environments (cf. Section 3.3).
10. The UC security notion supports identity bounded environments that use

only sender identities as specified by a polytime predicate ξ. Environments
in the IITM model are not required to adhere to any type of predicate.

Additional requirements of the UC security notion and composition
theorem (cf. Theorem 4 and Corollary 2).
11. The UC model requires environments to be balanced, providing a minimal

amount of import to the adversary. Environments in the IITM model are

Embedding the UC Model into the IITM Model 13

not restricted in a similar way since adversaries in the IITM model do not
require import to be able to run.

12. The UC security notion analyzes the security of a single session of a protocol.
The IITM model offers two security notions: A single session security notion
and a more general multi session security notion.

13. Protocols in the UC model have to be subroutine respecting and subroutine
exposing to support composition. The main composition theorem of the
IITM model does not have analogous requirements since the underlying
security notion considers a more general multi-session setting, where sessions
can share state with each other and subroutines can communicate with the
environment.

14. Higher-level protocols in the UC model have to be compliant to support
composition. Composition in the IITM model instead requires only that
higher-level protocols may not connect to the network interface (the UC
model enforces the latter at the level of its security notion).

These sometimes drastic technical differences create several challenges that we
have to resolve while embedding the UC into the IITM model. For simplicity of
presentation, in what follows we at first focus on the case where protocols use
only machine codes from an arbitrary static but fixed set of different machine
codes, rather than using (ad hoc) dynamically generated code (see Diff. 1); we
denote this fixed set by Codes. Note that this is a very natural class of protocols
which includes virtually all protocols proposed in the UC literature: generally,
the machine codes of honest parties in a protocol are defined and fixed upfront,
potentially as a parameter, before the protocol is analyzed. While corrupted
parties are typically allowed to choose (almost) arbitrary receiver machine codes
for their messages, spawning a new machine with machine code that is not
used/recognized by an honest party does not give any additional power to the
adversary; the adversary can just internally simulate that machine to obtain
the same results. Hence, w.l.o.g. one can assume that corrupted parties in those
protocols also communicate only with machines running some code from the set
Codes, thereby meeting the above property. Nevertheless, to make our mapping
formally complete, we show in Section 3.5 how our embedding and all security
and composability results can easily be extended to handle also protocols with
dynamically generated machine code, i.e., how to bridge Diff. 1.

3.2 Mapping Protocols

Let πUC be a protocol that uses a finite set of machine codes Codes with n :=
|Codes|. Note that πUC itself is also one of those codes, in what follows denoted
by cπ ∈ Codes to make the distinction between the protocol code cπ and the
overall protocol πUC clear.

Normalization. W.l.o.g., let us first bring the protocol πUC and the codes
Codes into a normalized form. These purely syntactical changes remove some
technical edge cases that would otherwise needlessly complicate the mapping.
Recall that, since πUC is subroutine respecting, instances of that protocol can

14 Daniel Rausch, Ralf Küsters, and Céline Chevalier

be grouped into disjoint protocol sessions. In each of those sessions, the only
instances that can communicate with a higher-level protocol/the environment
are instances of the highest-level machine with code cπ and with a certain SID
sidc that is specific to that protocol session. We refer to such a protocol session
by sidc. We assume that πUC is such that within each protocol session sidc
there are no instances running code cπ with an SID different from sidc. Most
protocols from the literature naturally meet this property. Other protocols can
trivially be modified by, e.g., adding a dummy forwarder on top of πUC that
forwards messages between the environment and those instances running code
cπ with SID sidc. This dummy then meets our assumption since the dummy
code is now the highest level code and one can easily ensure that it is never
called (as a subroutine) with an SID different from sidc. Note that introducing
a dummy does not affect any of the properties of and security results for πUC
so is indeed without loss of generality. We also assume that the protocol πUC
uses the standard mechanism proposed by the UC model for implementing the
“subroutine-respecting” requirement, i.e., all codes in Codes already include the
standard subroutine respecting shell code that acts as a wrapper. Among others,
this wrapper guarantees that subroutine instances are aware of the SID sidc
of their protocol session since all subroutine instances have SIDs of the form
(sidc, sid ′). Again, this is already the case for virtually all protocols from the
literature. If a protocol does not use this mechanism, it can be added on top
of the protocol since this also does not affect any of the security properties of
and results proven for πUC given that πUC is already assumed to be subroutine
respecting.

IITMs and tapes. We model the protocol πIITM in the IITM model via a system
containing machines Mcπ ,Mc1 , . . . ,Mcn−1 , where Codes = {cπ, c1, . . . , cn−1} and
instances of Mc essentially run code c ∈ Codes; see the left hand-side of Figure 1
for an illustration of the static structure, i.e., the set of machines and I/O tape
connections, of the mapped protocol system πIITM . Just as πUC , πIITM is able to
create an unbounded number of instances of these machines running any of the
codes in Codes (see below). Each pair of machines Mc,Mc′ is connected by a pair
(t, t′) of uniquely named internal I/O tapes. One of the tapes, say t, is used by
(instances of) Mc to provide subroutine inputs to and receive subroutine outputs
from Mc′ , while the other tape is used for the reverse direction where Mc′ provides
subroutine inputs to and receives subroutine outputs from Mc.12 Altogether these
connections allow instances of an arbitrary machine to send inputs and outputs
to and receive outputs and inputs from any (instance of) another machine in the
system simply by choosing the appropriate tape. While generally not required by
protocols from the literature, if required by πUC we can also extend the protocol
πIITM to allow for sending messages between different instances of the same
machine. This is done by adding a special bouncer machine Mbc to the system
πIITM . Mbc connects to all machines in the system via a pair of I/O tapes each.
12 Typically, the subroutine relation goes only in one direction and in this case just one

tape is needed. But in general the relationship is allowed to go both ways, in which
case using two tapes allows for distinguishing which relationship is meant.

Embedding the UC Model into the IITM Model 15

πIITM

Mcπ

Mc1

Mc2 Mmsg

Mbc

π
ξ-id
IITM

Mcπ

Mc1

Mc2 Mmsg

Mbc

M
ξ
identity

Fig. 1. Left: Static structure of a protocol πIITM using three Codes = {cπ, c1, c2}
constructed by our mapping. Right: Static structure of the modified protocol πξ-id

IITM
that enforces ξ-identity bounded environments (cf. Section 3.3). Lines denote internal
connections via I/O tapes and the external I/O tape to the environment. Each Machine
also has an external network tape to the adversary (not shown). In a run each machine
can be instantiated arbitrarily often, with instances having IDs of the form (pid, sid).

Each time (a session-specific instance of) this machine receives a message, it
returns the same message on the same tape. Hence, a machine Mc can send a
message to Mbc to effectively send that message to an instance of itself (see below
for how we ensure that this message is delivered to the correct receiving instance
of Mc). Altogether, these internal I/O tapes bridge Diff. 2 and Diff. 3. In addition
to these internal I/O tapes, each machine Mc has one external (unconnected)
network tape that can be used to communicate with the network adversary. The
machine Mcπ also has an unconnected I/O tape which can be used to receive
inputs from and send outputs to higher-level protocols/the environment. These
external tapes capture permitted communication flows between the protocol, the
adversary, and the environment as defined in the security game of the UC model.

In addition to the above machines, we also add another machine Mmsg.
Jumping slightly ahead, session specific instances of this machine are responsible
for (i) implementing some of the more advanced message transmission and
message redirection features of the UC model and (ii) forcing the environment
to be balanced, i.e., to provide a minimal amount of import to the adversary.
This machine connects via a pair of I/O tapes to all machines Mc, c ∈ Codes,
and offers one external network tape for communication with the adversary. We
describe the behavior of Mmsg along with the description of machines Mc below.

Addressing of instances. In πUC , an instance of a machine running code c is
uniquely addressed by an ID of the form (pid, sid) and learns the ID (pids, sids)
and code cs of senders who provide input or subroutine output. Furthermore,
by our initial normalization of πUC , we have that sid = (sidc, sid ′) for internal
instances, i.e., instances running code c 6= cπ, and sid = sidc for instances running
cπ. To capture these unique IDs for instances in πIITM , we use a suitable instan-
tiation of the CheckAddress mode, cf. Figure 2. That is, instances of Mc expect
incoming inputs/outputs m to be of the form ((pid, sid, c), (pids, sids, cs),m′),

16 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Mode CheckAddress:
Let m be the message received on some tape.
If this is the highest level machine (i.e., c = cπ) andm was received on the single external
I/O tape from the environment, then try to parse m as ((pid, sid), (pids, sids, cs),m′).
Otherwise, if m was received on another I/O tape then try to parse it as
((pid, sid, c), (pids, sids, cs),m′). Try to parse m as ((pid, sid, c),m′) if it was received
on the network tape. Furthermore, if c 6= cπ , also try to parse sid as (sid′, sid′′)
If parsing fails, return reject.
if id = ⊥∨ id = (pid, sid) then

{id is a global variable that is ⊥ iff this instance is
fresh. It is set to be the ID of the current instance
in mode Compute upon accepting the first message.return accept.

else
return reject.

end if

Fig. 2. Checkaddress mode of the machine Mc for c ∈ Codes

where m′ is the actual message body.13 Network messages from the adversary
are expected to be of the form ((pid, sid, c),m′).14 Furthermore, if c 6= cπ (i.e.,
the current machine instance is an internal subroutine), then it is also required
that sid = (sid ′, sid ′′) for some sid ′, sid ′′, where sid ′ is interpreted to be the SID
sidc of the protocol session. Messages not conforming to this format are rejected
immediately. If the current instance is fresh, i.e., has not previously accepted
any messages, then the message is accepted and (in mode Compute) this instance
stores (pid, sid) as its own ID. If the instance is not fresh, i.e., has previously
accepted a message with receiver ID (pid0, sid0), then incoming messages are ac-
cepted if and only if they are prefixed by the same ID, i.e., pid = pid0, sid = sid0.
Hence, each instance is effectively assigned a unique ID, namely, the first ID
(pid0, sid0) that it has ever accepted. There will also never be a second instance
accepting the same ID since all message for this ID will already be accepted
by the first instance with that ID. Given this definition of CheckAddress, an in-
stance (pids, sids) of machine Mcs can send a message m′ to the unique instance
(pid, sid) of machine Mc by writing the message ((pid, sid, c), (pids, sids, cs),m′)
on one of the two tapes connecting to Mc (this bridges Diff. 4).

All machines Mc are defined in such a way that they never lie about the
sender identity of a message, and hence, the receiver always learns the correct
identity of the sender (see the Compute mode described below). Specifically, if

13 The only exception are inputs received on the single external I/O tape from the
environment, which use the header ((pid, sid), (pids, sids, cs),m′). This directly cor-
responds to the UC experiment, where environments specify only the receiver ID
(pid, sid) but not the receiver code, which is rather determined by the experiment.
We also note that, except for outputs returned from the protocol to the environment,
it is actually not necessary to include c in the header of any messages on I/O tapes.
After all, the receiving machines Mc are already aware of their own code. We chose to
nevertheless include c in the header since this matches the format of write commands
in the UC model more closely.

14 Network messages do not contain a sender identity since the sender is always know
to be the network adversary.

Embedding the UC Model into the IITM Model 17

an instance (pids, sids) of a machine Mcs sends a message m on some tape, then
it will either be of the form ((pid, sid, c), (pids, sids, cs),m′) (if it is sent on an
I/O tape) or of the form ((pids, sids, cs),m′) (if it is sent on a network tape
connected to the adversary). This bridges Diff. 5 by providing the same level of
authentication of the sender instance in πIITM as in πUC .

Runtime behavior. The Compute mode of a machine Mc is mostly a direct
implementation of the protocol logic given by code c (cf. Figure 3). Upon its first
activation in this mode an instance (pid, sid) of Mc stores its own ID (pid, sid) in
a global variable id. The machine then checks, also during subsequent activations,
if it has already received any inputs/outputs on an I/O tape and stops the
activation otherwise. This captures that the network adversary in the UC model
is not allowed to spawn new machine instances. That is, even though spawning
a new protocol machine instance is technically possible in πIITM , the resulting
instance will not do anything until it receives the first input or output from
another protocol machine or the environment, which results in a behavior that is
equivalent to the one in the UC model (this bridges Diff. 6). Once it receives its first
input/output on an I/O tape (and therefore the corresponding instance in πUC is
created), the instance registers itself with the instance (ε, sidc) of Mmsg by sending
((ε, sidc, cMmsg), (pid, sid, c), register) on an I/O tape connected to Mmsg. This
instance, which is specific to the protocol session sidc, stores the ID (pid, sid, c)
and immediately returns an acknowledgement. Finally, if this is an instance of the
highest-level machine Mcπ and it receives some import i > 0 in a message from
the environment, then it sends ((ε, sidc, cMmsg), (pid, sid, c), (notifyImport, i))
to notify the session specific instance Mmsg about this amount. Mmsg stores i
and returns an acknowledgement; we describe the purpose of registrations and
import notifications later on.

Once all of the above steps are finished (and the instance has not aborted),
the instance processes the incoming message m by running the code c. Note that
this is indeed possible: Mc can determine whether m is an input, subroutine
output, or a backdoor message depending on the tape m is received on. Inputs
and outputs received from other protocol machines also contain the full extended
identity of the sending instance, including the machine code, so Mc has access to
the same information that instances in πUC have in the UC model upon receiving
a new message.

Sending messages. During the simulation of code c, whenever the code c
wants to provide input/output m′ to an instance (pid ′, sid ′) of a machine Mc′ ,
Mc chooses the I/O tape t that connects Mc and Mc′ and which models an
input/output from Mc to Mc′ . Then Mc writes ((pid ′, sid ′, c′), (pid, sid, c),m′)
on tape t, where (pid, sid) is the ID of the current instance of Mc. If the code c
wants to send a backdoor message m′ to the network adversary, Mc writes the
message ((pid, sid, c),m′) on its network tape.

We still have to explain how we deal with Diff. 7. That is, code c might choose
to use a non-forced-write command and specify the recipient of a message not
by their extended ID but by a predicate P on extended identities. First, observe
that if a message is sent to a backdoor tape, then it must be for the network

18 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Mode Compute:
Let m = ((pid, sid, c), (pids, sids, cs),m′) be the message received on some I/O tape t
respectively m = ((pid, sid, c),m′) received on the network tape.
if id = ⊥ then

id ← (pid, sid)
{

Store the ID of this instance such that the
CheckAddress mode can use this information.end if

if this instance has not received any message on an I/O tape yet then
Stop the current activation of this instance. {This activates the environment.

end if
if this is the first message received on an I/O tape then

Send ((ε, sidc), (pid, sid, c), register) on the tape connected to Mmsg, where sidc
can be parsed from sid. Wait for the response and then continue.

end if
if c = cπ and m′ is a message on the external I/O tape containing import i > 0 then

Send ((ε, sidc), (pid, sid, c), (notifyImport, i)) on the tape connected toMmsg, where
sidc can be parsed from sid. Wait for the response and then continue.

end if
// Main logic //
Run code c using the sender information (pids, sids, cs) (or ε if the message
is from the network adversary), incoming message m′, and the tape type tt ∈
{input, output, backdoor} that m′ is written on determined from the tape t.
When c wants to send a message, proceed as described in the paragraph “Sending
messages” on Page 17. In particular, ensure that the resulting message contains the
correct sender identity (pid, sid, c) in the header.

Fig. 3. Compute mode of the machine Mc for c ∈ Codes

adversary by definition of the UC security experiment. Hence, this case is easy
to handle in Mc: if the non-forced-write request is to a backdoor tape, then the
message is sent as described above to the network adversary. Second, for inputs
and outputs observe that those may not be sent directly to the identities of the
environment or the adversary. So the predicate may match only identities of
(existing) machines within the protocol, i.e., the message will be sent internally.
We can easily mimic this in the IITM model via the machine Mmsg. Recall that,
by the above construction, whenever a new machine instance receives the first
input or output on an I/O tape in mode Compute, it registers its extended identity
(pid, sid, c) at (a session dependent instance of) Mmsg. The machine Mmsg offers
a “nonForcedWrite” command to the machines Mc that, given message body
m′, message type mt ∈ {input, output}, and predicate P , runs the predicate P
on the list of existing protocol machine instances to find the first matching one.
The message m is then delivered to that instance as described above, but with
the I/O tape chosen based on mt and the sender of the message (which is written
in the header of the message) set to be the machine instance (pid, sid, c) that
called the nonForcedWrite command. If no matching instance is found, then
Mmsg aborts and the environment is activated instead, just as in the UC model.

There is another special case that we have to deal with, namely the highest-
level protocol machine Mcπ sending a subroutine output (cf. Diff. 8). In the UC
model, this output is redirected to the environment (without the code of the
sender but instead including the code of the intended receiver) iff the current

Embedding the UC Model into the IITM Model 19

instance has challenge SID sidc and the receiver extended identity does not yet
exist as an instance of a protocol machine. Observe that by our normalization
of πUC all instances of Mcπ that are part of protocol session sidc also have
SID sidc, i.e., the first condition is always met. The second condition can be
checked using the information stored in the machine Mmsg, yielding the following
implementation. Whenever an instance (pids, sids) of Mcπ wants to send a
subroutine output m′ to an extended receiver identity eidr = (pidr, sidr, cr),
Mcπ first asks Mmsg whether eidr already exists in the system (via a special
existsInstance? request). If so, the message is sent by Mcπ to the instance
(pidr, sidr) of machine Mcr as described above. If this instance does not exist
yet, then the message m = ((pidr, sidr, cr), (pids, sids),m′) is sent on the single
external I/O tape of Mcπ that is connected to the environment. Note that, unlike
for other messages, the sender machine code cπ is not contained in the header
of m in this case. Altogether, this precisely captures the behavior of the UC
security experiment and hence bridges Diff. 8.

Import handling. We still have to explain the purpose of the notifyImport
message. Instances of Mmsg use these notifications to keep track of the list of
imports received from the environment in this protocol session. The adversary
can send a special totalImport? request to learn the current list of imports.
Jumping slightly ahead, this information will be used by the simulator constructed
in Section 3.3 to bridge Diff. 11: Instead of requiring the environment in the
IITM model to be balanced (i.e., it has to provide at least the same amount
of import to the simulator as it provides to the protocol), the simulator rather
indirectly enforces this property itself. That is, the simulator checks how much
import the protocol has received already and, if the protocol has received more
than the simulator, adds the missing difference to its own received import. We
note that the security notion of the UC model requires runtime bounds to be
simulated correctly and hence adversaries/simulators generally must already be
aware of the current protocol imports not just for the whole session but even
for individual (highest-level) instances in a session. The added totalImport?
request only makes this property explicit via a fixed mechanism. Nevertheless,
we show in the full version [21] that our results can actually also be obtained
without adding a totalImport? request. This, however, requires a more involved
mapping than the one we present here.

Finally, we encode runtime import for the machine codes c in unary instead
of binary. This seemingly cosmetic change does not affect the behavior or se-
curity results obtained for the protocol πUC . But it allows us to argue that an
environment in the IITM model, which may send arbitrary inputs of at most
polynomial length to the protocol, can send at most a polynomial amount of
import just as an environment in the UC model.

Altogether, we define πIITM := !Mcπ | !Mc1 | . . . | !Mcn−1 | !Mmsg | !Mbc.
Based on the construction and the discussion above, we can easily check that
πUC and πIITM behave the same:

20 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Lemma 1. For all unbounded (including runtime) environments interacting with
πUC /πIITM by sending inputs/receiving outputs but also by directly interacting
with arbitrary protocol instances over the network, there is a bijective mapping
between runs of πUC in the UC model and πIITM in the IITM model such that both
protocols behave identically. Both protocols have similar computational complexity.

Proof. By construction, the only difference between both protocols is the added
explicit totalImport? request on the network in πIITM . In the UC setting with
πUC this request can instead be internally simulated by the environment. ut

We show in the next lemma (proven in the full version [21]) that πIITM is a
well-defined IITM protocol by showing that it meets the IITM runtime notion for
protocols. This bridges Diff. 9 by relating the UC to the IITM runtime notion.

Lemma 2. The protocol πIITM is environmentally bounded in the IITM model
if πUC is ppt in the UC model.

3.3 UC Security Implies IITM Security

Having defined a mapping of protocols from the UC to the IITM model, we now
prove that this mapping preserves security results. That is, if πUC ≤ ξ

UC φUC ,
then πξ-id

IITM ≤ IITM φ ξ-id
IITM for protocols mapped as described in Section 3.2 plus

an additional mechanism to capture ξ-identity bounded environments in the
IITM model, which unlike the UC model does not restrict environments. This
mechanism does not change the IITM model. We rather show that ξ-identity
bounded behavior can be enforced within protocols themselves, thereby bridging
Diff. 10.

While designing this mechanism, we found that the definition of ξ-identity
bounded environments as used in the UC model actually does not support com-
position and the proof of the UC composition theorem is flawed. We describe the
issue in detail in the full version [21]. In a nutshell, the issue is that the UC model
allows for defining the identity set ξ via a predicate over the current configuration
of the whole system. The configuration of the system and hence potentially the
behavior of the predicate is very different in the security experiment, where there
are only instances of the environment, adversary, and one session of πUC respec-
tively φUC , compared to the composition theorem, where there are additional
instances of a higher-level protocol ρ as well as potentially multiple sessions of
πUC /φUC . Hence, even if ρ is ξ-compliant in the setting where instances of ρ and
multiple sessions of πUC /φUC exist, this does not imply that an environment
internally simulating ρ while running only with πUC /φUC (but with no actual
instances of ρ and only a single session of πUC /φUC being present in the system)
also is ξ-identity-bounded. Based on this observation, in the full version we show
a concrete counterexample for the UC composition theorem.

Therefore, instead of trying to translate the existing identity-bounded mecha-
nism, which does not support composition in the UC model, and hence, would
also not support composition when faithfully translated to the IITM model, we

Embedding the UC Model into the IITM Model 21

propose a fix for the UC model and then transfer that fixed version to the IITM
model. Specifically, instead of defining ξ as a predicate over the configuration
of the whole system, we define it as a predicate over the (whole history of)
inputs sent and outputs received by the environment/ρ to/from one session of
the subroutine π/φ. This fix, which follows a similar idea as [1], indeed solves
the problem: The sequence of messages between ρ and one of its subroutine
sessions remains the same (for each respective subroutine session) even if we only
simulate ρ within an environment. Hence, such an environment running directly
with a single session of the subroutine π/φ is indeed ξ-identity-bounded. This
fixes this issue of the UC composition theorem and the proof thereof. This fix
should also be sufficient for practical purposes; we are not aware of any protocols
that have been proven secure for a ξ that falls outside this class. We provide an
extended discussion in the full version [21].

We now embed this (fixed) definition of ξ-identity-bounded environments into
the IITM model as follows. The obvious option would be to restrict environments
in the IITM model in the same way. However, this would require us to change the
IITM model and its theorems and proofs. We rather extend the protocols πIITM
and φ IITM in a generic way to manually enforce the ξ-identity-bounded property
for all environments. This is a technique that is commonly used in the IITM
model, see for example [14,16]. Formally, we add to each protocol an additional
dummy forwarder machine Mξ

identity between the environment and the highest-
level machine Mcπ respectively Mcφ , creating new protocols πξ-id

IITM and φ ξ-id
IITM

(cf. right hand-side of Figure 1). In a run, (a session specific instance of) Mξ
identity

checks for every input whether ξ is met and, if not, drops the input, thereby
activating the environment as a fallback. This achieves the desired goal: On the
one hand, environments that are already ξ-identity-bounded are not restricted
since for such environments the original protocols πIITM /φ IITM and the modified
protocols πξ-id

IITM/φ ξ-id
IITM behave identically. For any other environment E , the

combination of E and Mξ
identity constitutes a ξ-identity-bounded environment for

the original protocol. Note that the extended protocols are still environmentally
bounded as Mξ

identity adds only a polynomial number of steps; in particular, ξ
can be evaluated in polynomial time by definition. Altogether, this mechanism
indeed bridges Diff. 10.

We can now show that ≤UC security implies ≤ IITM security for the mapped
protocols; we discuss the reverse implication afterwards. In the full version [21],
we show that ≤UC implies ≤ IITM in general by using a somewhat more involved
protocol embedding. Here, using the (simpler) protocol embedding from Sec-
tion 3.2, we formally show this result for a certain though very general class of
simulators, in fact, a class of simulators containing virtually all simulators that
have ever been considered in the literature so far, as further explained below.

More specifically, first recall that, as stated in the UC model, to prove
π ≤UC φ instead of constructing a simulator for every adversary, it suffices to
construct a simulator just for the dummy adversary. (From such a simulator,
simulators for arbitrary adversaries can be constructed.) The dummy adversary
as considered in the UC model allows the environment to provide import i via a

22 Daniel Rausch, Ralf Küsters, and Céline Chevalier

special message, say op(i), which is different from network messages intended for
the protocol. The dummy accepts this import and returns an acknowledgement
to the environment without sending a message to the protocol. We therefore
consider the class of simulators which also do not require an interaction with
the ideal protocol upon receiving import via op from the environment. This is a
natural requirement that should be trivially met by simulators for all reasonable
protocol definitions, also considering that a protocol in reality cannot rely on
the network adversary sending a notification each time the adversary decides to
increase its runtime bound. Indeed, we are not aware of any UC protocols from
the literature where the simulator has to interact with the ideal protocol upon
receiving additional import via op. Simulators are rather defined in a black-box
fashion where they implicitly simulate the dummy adversary and only specify
their behavior for network messages that are forwarded by the dummy to the
real protocol. Since the dummy adversary already handles the input op without
sending any network messages to the protocol, all such black-box simulators
trivially have the stipulated property. We note again that, as mentioned above,
this (though natural) requirement on simulators is not formally necessary.

Theorem 4. Let πUC , φUC be such that πUC ≤ ξ
UC φUC . Then it holds true

that πξ-id
IITM ≤ IITM φ ξ-id

IITM .

Proof (sketch). We here show this theorem assuming that the simulator for
proving πUC ≤ ξ

UC φUC has the properties stipulated above. The proof proceeds
in 4 steps (see the full version [21] for details and the general case):

Reduction to UC. We first define an IITM dummy adversary AUC-bounded
Dum,IITM

and an IITM simulator SUC-bounded
IITM that adhere to the UC runtime notion and

enforce the balanced requirement for environments. Specifically, both machines
are defined to internally run the UC (real and ideal) adversaries ADum,UC and
SUC , respectively, but add a wrapper around them. This wrapper handles the
added totalImport? request on the network itself by forwarding it to Mmsg and
returning the response without involving the internally simulated UC adversary.
Also, upon each activation the wrapper first checks whether its protocol has
received one or more new imports (via a call to totalImport?) such that its
total import now exceeds the total import directly provided by the environment
to the adversary. If so, the wrapper adds these missing imports to the internally
simulated UC adversary via (potentially several calls to) the operation op. Then,
and in all other cases, the adversary continues as the internal UC adversary.

Consider an IITM environment Esingle,ξ
IITM that sends inputs and network

messages (via the dummy adversary) only to a single session of the proto-
col πIITM/φ IITM , adheres to the ξ-identity bound, and tries to distinguish the
worlds AUC-bounded

Dum,IITM |πIITM and SUC-bounded
IITM |φ IITM . We can reduce this case to

the indistinguishability of ADum,UC |πUC and SUC |φ in UC by constructing an
UC environment EUC that internally simulates Esingle,ξ

IITM . EUC further internally
simulates responses to totalImport? requests. Each time EIITM wants to provide
import as part of an input to the protocol such that the total protocol import

Embedding the UC Model into the IITM Model 23

exceeds the total import provided to the adversary so far, EUC first adds the
missing difference via a call to op to the adversary and only then sends the input
to the protocol. By construction, EUC is balanced. To see that EUC has the same
distinguishing advantage as Esingle,ξ

IITM , there are only two aspects that we have to
argue. Firstly, in the IITM setting a protocol might obtain one or more imports
that bring the total above the amount of import of the adversary. Then, as soon
as the adversary wrapper becomes active the next time, it calls op for each of
these imports, and then the internally simulated adversary processes the message.
In the UC world, EUC first calls op, then provides import to the protocol. This
might be repeated several times until, at some point, the adversary processes
whatever message 6= op it receives next. So while the same number of calls to op
with the same import are used in both UC and IITM setting, formally the state
of the protocol might be different when op is executed. Due to the definition
of the dummy and assumption on the simulator, op is independent of the state
of the protocol, i.e., this formal difference does not actually affect the behavior
of the run. (This is the only case where a slight mismatch occurs. All other
messages are processed at the same points in the run by construction.) Secondly,
the UC environment is bounded in its current import, so might not be able to
complete the simulation. We can find an external input of suitable length, which
determines the initial import, such that this case does not occur.

Environments without the ξ-identity bound. The indistinguishability of
AUC-bounded

Dum,IITM |πIITM and SUC-bounded
IITM |φ IITM for environments Esingle,ξ

IITM is eas-
ily seen to be equivalent to indistinguishability of AUC-bounded

Dum,IITM |πξ-id
IITM and

SUC-bounded
IITM |φ ξ-id

IITM for arbitrary single session environments Esingle
IITM .

Indistinguishability for the IITM dummy. So far, we have only considered
the dummy AUC-bounded

Dum,IITM which adheres to the UC runtime notion and hence
might stop whenever he has to forward more bits than he has import. However, we
actually have to show ≤ IITM for the IITM dummy ADum,IITM which never stops
and always forwards messages. The idea for constructing a simulator SIITM for
ADum,IITM is as follows: Observe that the only difference between AUC-bounded

Dum,IITM
and ADum,IITM is that AUC-bounded

Dum,IITM might stop if it has too little import, which
SUC-bounded

IITM then also simulates. So we define the simulator SIITM to internally
run SUC-bounded

IITM but, upon each activation, potentially generate additional import
via a call to op such that an imaginary AUC-bounded

Dum,IITM , if given the same overall
import, would not stop. We show that it is indeed possible to build such a
simulator, also while remaining in the polynomial runtime notion of the IITM
model (this is because the additional import is polynomial in the runtime of the
environment and hence the same argument as in Lemma 2 still applies).

We can then reduce a single session environment Esingle
IITM trying to distin-

guish ADum,IITM |πξ-id
IITM and SIITM |φ ξ-id

IITM to indistinguishability of the worlds
AUC-bounded

Dum,IITM |πξ-id
IITM and SUC-bounded

IITM |φ ξ-id
IITM by constructing an environment

E ′ single
IITM that internally simulates Esingle

IITM plus the additional import generated by
the wrapper portion of SIITM .

24 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Indistinguishability of multiple sessions. Since the protocols have disjoint
sessions and ADum,IITM |πξ-id

IITM and SIITM |φ ξ-id
IITM are indistinguishable for any

environment Esingle
IITM interacting with just a single session, the second compo-

sition theorem of the IITM model (cf. Theorem 3) immediately implies that
πξ-id

IITM ≤ IITM φ ξ-id
IITM , i.e., there also exists a simulator for arbitrary environments

EIITM interacting with multiple sessions. ut

The construction of the simulator SUC-bounded
IITM in the above proof bridges Diff. 11:

Since the IITM model does not require that environments provide a certain
minimal amount of import to the adversary (the IITM model does not even
require the concept of import), the simulator instead enforces this property
itself by manually adding the difference between its own import and the import
received by the protocol. The above proof also bridges Diff. 12 by showing that
the UC security notion implies the single session IITM security notion. The
second composition theorem of the IITM model (cf. Theorem 3) then directly
implies security for multiple sessions.

The other implication of Theorem 4 is more involved since the IITM model
considers a larger class of adversaries, including simulators, than the UC model.
Specifically, the runtime of UC simulators is required to be bounded by a fixed
polynomial (in their current import) independently of the environment. An IITM
simulator does not need to adhere to any import mechanism. Its polynomial
runtime bound is rather taken over η and the length of the external input a and
may even depend on the environment. In fact, the following lemma shows that
the reverse implication of Theorem 4 does not hold true in general:

Lemma 3. If time-lock puzzles exist, then there exist protocols πUC and φUC
such that for the mapped protocols we have πξ-id

IITM ≤ IITM φ ξ-id
IITM but πUC ≤UC

φUC does not hold true. (These protocols are pretty simple, and hence, the result
works for all mappings that preserve the protocols behaviors.)

We recall the definition of time-lock puzzles and formally prove this result in
the full version, along with a discussion on the implications for security results.
If we consider only the subclass of IITM simulators that corresponds to the class
of UC simulators that adhere to the UC runtime notion, such as SUC-bounded

IITM
constructed in the proof of Theorem 4, we have the following reverse implication:

Theorem 5. Let AUC-bounded
Dum,IITM be the IITM dummy adversary that enforces bal-

anced environments and adheres to the UC runtime notion as defined in the proof
of Theorem 4. Let SUC-bounded

IITM be an IITM simulator that is of the form as the
one described in the proof of Theorem 4.

If AUC-bounded
Dum,IITM |πξ-id

IITM and SUC-bounded
IITM |φ ξ-id

IITM are indistinguishable for all
IITM environments interacting with a single session of the protocol, then we have
πξ-id

IITM ≤ IITM φ ξ-id
IITM (multi session IITM security) as well as πUC ≤ ξ

UC φUC .

We provide the proof in the full version [21]. Theorem 5 shows that the
implication of Theorem 4 is non-trivial and non-degenerate since our mapping
not only preserves security results but also distinguishing attacks. That is, if for all

Embedding the UC Model into the IITM Model 25

UC simulators there is a ξ-identity bounded UC environment that distinguishes
πUC and φUC , then Theorem 5 implies that for all IITM simulators in the UC
runtime class there is an IITM environment distinguishing πξ-id

IITM and φ ξ-id
IITM .

3.4 UC Composition Implies IITM Composition

In this section, we investigate in how far composition results carry over from UC
to IITM. We first observe the following direct corollary of Theorem 4:

Corollary 1 (Composition from the UC theorem). Let πUC , φUC , ρUC
be UC protocols such that πUC ≤ ξ

UC φUC and the UC composition theorem can
be applied to ρUC to obtain ρ φ→πUC ≤UC ρUC . Let ρ IITM and ρ φ→πIITM be the IITM
protocols obtained by applying the mapping from Section 3.2 to ρUC and ρ φ→πUC .15

Then ρ φ→πIITM ≤ IITM ρ IITM .

While this corollary shows that security results obtained via the UC composition
theorem carry over, it does not actually provide insights into how the UC and
IITM composition theorems relate. To answer this question, we next show that the
same composition statement can be obtained directly from the IITM composition
theorem without relying on the UC theorem.

Obtaining Corollary 1 from the IITM composition theorem. We start
by observing that the IITM theorem requires that higher-level protocols access
the subroutine πIITM /φ IITM only via its external I/O interface, i.e., the external
I/O tapes that the environment had access to in absense of the higher-level
protocol. In the special case of our mapped protocols πIITM/φ IITM , which
offer only a single external I/O tape to/from the machine with code cπ/cφ,
this syntactical requirement of the IITM theorem actually corresponds to the
“subroutine respecting” requirement for πUC /φUC in the UC theorem.16 That
is, subroutine respecting protocols are required to reject and drop all messages
from and never send messages to instances outside of their session of πUC /φUC ,
except for inputs to and outputs from highest-level instances running code
cπ/cφ. The only difference is that in UC “subroutine respecting” is a semantic
requirement imposed on the behavior of machines whereas the IITM requirement
enforces the same property on the syntactical level of interfaces by removing
any unintended communication channels/tapes. Hence, to be able to apply the
IITM composition theorem and conclude ρ φ→πIITM ≤ IITM ρ IITM we have to make
some slight syntactical adjustments to ρ IITM such that the semantic “subroutine
respecting” property is also reflected by the tape connections.
15 Note that ρ φ→πUC also contains some UC composition shell code introduced by the

UC composition theorem to replace the code cφ with cπ. ρ φ→πIITM is thus obtained by
mapping the overall machine codes, including the UC composition shell code.

16 The IITM composition theorem also supports IITM protocols that offer several
external I/O tapes, even to subroutines, which gives the environment and higher-level
protocols direct access to those subroutines. Such IITM protocols are more general.
They do not and do not have to meet the “subroutine respecting” property.

26 Daniel Rausch, Ralf Küsters, and Céline Chevalier

ρ IITM

M
ρ
cρ

M
ρ
cφ

⇒

ρ IITM

M
ρ
cρ

Mmultiplex

M
φ
cφ

φ IITM

>

ρ
φ→π
IITM

M
ρ
cρ

Mmultiplex

Mπcπ

πIITM

Fig. 4. Overview of the static structures of the protocols in this section. Left: ρ IITM
mapped as per Section 3.2. Middle: ρ IITM after redirecting all inputs/outputs from
Mρ
cφ to φ IITM . The machine Mρ

cφ is formally still present but not used in a run. Right:
The composed protocol ρ φ→πIITM after applying the IITM composition theorem, which
replaces the protocol (and hence all sessions of) φ IITM with the protocol πIITM .

So let ρ IITM be the protocol mapped according to Section 3.3. Then, since
ρ IITM uses code cφ ∈ Codes and possibly other codes, ρ IITM looks like depicted
in Figure 4 (left-hand side); we refer to machines of the system ρ IITM by Mρ

i .
The middle picture of Figure 4 illustrates the idea of our syntactical changes
to ρ IITM : We extend the protocol ρ IITM by including the full set of machines
of φ IITM , as obtained by mapping from φUC according to Section 3.3. We now
change all machines in ρ IITM , i.e., all Mρ

i , to send inputs/receive outputs to/from
φ IITM instead of Mρ

cφ
. Since multiple machines need to connect to φ IITM but

φ IITM provides only a single external I/O tape, we introduce a straightforward
multiplexer Mmultiplex that forwards messages between φ IITM and machines
Mρ
i . Since inputs to and outputs from Mρ

cφ
are the only way for higher-level

instances in ρ to interact with instances in any session of the subroutine φ (by
the subroutine respecting property), this syntactic modification of ρ IITM does
not actually change its behavior. It, however, consistently moves all sessions of
φ to now be instances of the set of machines φ IITM . Note that when φ IITM
calls subroutines (with code in Codes), then φ IITM now uses its own subrountine
machines, instead of those of ρ IITM . The composed protocol ρ φ→πIITM is then
defined by simply replacing the set of machines φ IITM with the set of machines
πIITM (right hand-side of Figure 4). This is as simple as reconnecting the single
I/O tape between the multiplexer Mmultiplex and φ IITM to instead connect to
the external I/O tape of πIITM . As a result, in ρ φ→πIITM all inputs to and outputs
from sessions of φ IITM are now instead handled by sessions of πIITM , which is
just as in ρ φ→πUC . In other words, reconnecting this tape has the same effect as
adding the UC composition shell code, which internally changes the code cφ to
instead be cπ for such inputs/outputs. So, unlike in Corollary 1, when we use

Embedding the UC Model into the IITM Model 27

the IITM composition theorem we actually do not need to include this shell code
in ρ φ→πIITM . The IITM composition theorem then implies the following:

Corollary 2 (Composition from the IITM theorem). Let πUC , φUC , ρUC
be UC protocols such that πUC ≤ ξ

UC φUC and ρUC meets the requirements of the
UC composition theorem. Let ρ IITM and ρ φ→πIITM be the IITM protocols from above.
Then immediately by the IITM composition theorem, ρ φ→πIITM ≤ IITM ρ IITM .

We provide full details, including the formal definitions of ρ IITM , ρ φ→πIITM
and the proof of Corollary 2 in the full version [21]. In the process of showing
this result, we also found and fixed an issue that formally invalidates the UC
theorem, namely, additional assumptions on non-forced writes used within ρ are
actually necessary. Altogether, the construction shown in Figure 4 and Corollary 2
illustrate how the additional requirements of the UC theorem from Diff. 13 and
Diff. 14 are reflected in the mapped IITM protocols when the IITM theorem is
used to obtain the same composition result.

Novel Composition Operation. Recall that the UC theorem applied to a
protocol ρ replaces all sessions of subroutines running code φ with sessions
running code π. Similarly, the IITM theorem applied to a protocol ρ replaces all
sessions of a set of machines φ with sessions of a set of machines π. Observe that
we can use the above modeling technique not just to move all sessions of φ to
a new set of machines. Under certain conditions, we can rather more generally
move a proper subset of the sessions of φ to a new set of machines, say φ′, while
moving the other sessions to a different set, say φ′′, where φ′ and φ′′ still run the
same code cφ. We then obtain a simple corollary of the UC and IITM composition
theorems (also for similar models), where we can replace φ′ with a realization
π′ but replace φ′′ with a different realization π′′. In other words, our technique
allows for replacing subsets of sessions. This can be useful, e.g., if φ is an ideal
signature functionality, where each session models one key pair. Then we might
want to implement certain keys with a signature scheme π′ but others with a
different signature scheme π′′, say, depending on where they are used within a
higher-level protocol ρ. We give full details, including requirements on ρ, in [21].

3.5 Capturing Dynamically Generated Machine Code

We now explain how our constructions from the previous sections can be extended
to also support an unbounded number of dynamically generated machine codes.
This bridges Diff. 1 and thus completes our mapping.

We start by observing that the UC model can be interpreted to be defined on
a single universal Turing machine which is instantiated arbitrarily often during a
run. Whenever a new instance receives its first input message, which contains the
extended identity (pid, sid, c) of that instance, it stores this identity and from
then on runs the code c given in its identity. This mechanism, whichs allows the
UC model to seamlessly support arbitrary dynamically generated machine codes,
can be transferred to an IITM protocol as follows.

28 Daniel Rausch, Ralf Küsters, and Céline Chevalier

Whenever a protocol πIITM requires an unbounded number of different dy-
namically generated codes, potentially in addition to a finite number of static
machine codes Codes as above, then we first map the fixed number of static codes
of πIITM as described in Section 3.2. We then add a universal Turing machine
MUT that all other machines Mci connect to via pairs of I/O tapes. Each instance
of MUT is identified by an ID (pid, sid, c) (instead of (pid, sid) as for machines
Mci with fixed code ci), where c 6∈ Codes, and internally runs code c specified by
its ID. Whenever an instance of any machine in πIITM wants to send a message to
an instance with ID (pid, sid) and code c 6∈ Codes, i.e., where Mc does not exist
in πIITM , then it sends the message to the instance (pid, sid, c) of MUT instead
(this is easily done by choosing the appropriate tape; the actual message format,
including the headers, does not change). The resulting protocol πIITM behaves
just as πUC with dynamically generated codes. Hence, by the same reasoning as
for Theorem 4, all realization results carry over for this construction, including
results obtained via the UC composition theorem (i.e., Corollary 1). In the full
version [21] we argue that also Corollary 2 carries over since the same modeling
technique from Section 3.4 still applies independently of whether or not there is
a universal Turing machine.

This bridges Diff. 1 by showing that the IITM model with its composition
theorem also fully supports protocols with an unbounded number of dynamically
generated machine codes, including all results available in the UC model.

3.6 Discussion: Beyond UC Protocols

Above, we have considered only IITM protocols that are obtained by mapping
some UC protocols. Of course, once we have mapped a UC protocol φUC ,
including any security and composability results, into the IITM model, we are
no longer limited to only considering combinations of φ IITM with such mapped
protocols. We can rather consider any combination of φ IITM with arbitrary
other IITM protocols. This includes cases where a higher-level IITM protocol P
is designed based on top of φ IITM , which can then, by the IITM composition
theorem, be composed with any existing UC realization πIITM of φ IITM . One
can also consider novel realizations of φ IITM via an IITM protocol P.

Such IITM protocols, which are combined with the mapped UC protocols,
can then make full use of the features of the IITM model, including seamless
support for joint state, global state, arbitrarily shared state, protocols without
pre-established SIDs, and arbitrary combinations thereof. For example, a higher-
level IITM protocol P can be defined in such a way that different sessions of P
share the same instance of φ IITM and P could also work without pre-established
SIDs etc. We refer the reader to [4,15,17,18] for in-depth overviews, including
examples, of IITM protocols with these features which can now be combined with
existing UC results. Our mapping thus opens entirely new options for protocol
designers so far working in the UC model by allowing them to combine their UC
results with these IITM features, including IITM protocols that would require
extensions of or are not yet supported by the UC model.

Embedding the UC Model into the IITM Model 29

4 Impossibility of Embedding the IITM Model into the
UC Model

Having mostly focused on the direction from UC to IITM, we now briefly discuss
the other direction. In [18], it has been shown that the IITM runtime notion
permits IITM protocols which cannot be expressed in the UC model as they do
not meet the UC runtime notion. This includes protocols often encountered in
practice, such as protocols that have to deal with ill-formed network messages.
Combined with our results, this shows that the class of IITM protocols is strictly
larger than the class of UC protocols. Another difference in protocol classes is
due to so-called directory machines as required by the UC model for composition.
These directory machines provide an oracle to the adversary to test whether a
certain extended ID exists and is part of a specific UC protocol session. IITM
protocols need not provide such a side channel, i.e., they are able to keep the IDs
of internal subroutines secret from the adversary. This is not merely a cosmetic
difference. Such an oracle rather changes security properties and might not be
simulatable when (the existence of) extended IDs depend on some information
that is supposed to remain secret. Finally, in this paper we provide an impossibility
result which shows that also the class of IITM adversaries and hence simulators
is strictly larger than the class of UC adversaries/simulators (cf. Lemma 3).

So at best one can hope for an embedding of the IITM model into the UC
model for a restricted class of IITM protocols that follow the UC runtime notion
and provide the same side channel as the directory machine. Realization relations
carry over only for simulators that meet the UC runtime notion. Another obstacle
to an embedding are IITM protocols that share state between protocol sessions,
which includes joint state realizations as a special case. This is because the UC
model mandates that UC protocols are subroutine respecting, i.e., have disjoint
sessions that do not interact with each other. It might be possible to overcome
this mismatch by using an idea briefly mentioned in [4], namely, modeling all
sessions of an IITM protocol within a single session of a UC protocol. We leave
exploring the details of this direction for future work.

Acknowledgements. We thank Ran Canetti and Björn Tackmann for helpful
discussions on an early draft of this paper.

References

1. Backes, M., Dürmuth, M., Hofheinz, D., Küsters, R.: Conditional Reactive Sim-
ulatability. International Journal of Information Security (IJIS) 7(2), 155–169 (4
2008)

2. Badertscher, C., Canetti, R., Hesse, J., Tackmann, B., Zikas, V.: Universal composi-
tion with global subroutines: Capturing global setup within plain UC. In TCC 2020,
Part III. LNCS, vol. 12552, pp. 1–30. Springer, Heidelberg (Nov 2020).

3. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal
composition with responsive environments. In ASIACRYPT 2016, Part II. LNCS,
vol. 10032, pp. 807–840. Springer, Heidelberg (Dec 2016).

30 Daniel Rausch, Ralf Küsters, and Céline Chevalier

4. Camenisch, J., Krenn, S., Küsters, R., Rausch, D.: iUC: Flexible universal compos-
ability made simple. In ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 191–221.
Springer, Heidelberg (Dec 2019).

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001. pp. 136–145. IEEE Computer Society Press (Oct 2001).

6. Canetti, R.: Universally Composable Security. J. ACM 67(5), 28:1–28:94 (2020)
7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with

global setup. In TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (Feb
2007).

8. Canetti, R., Rabin, T.: Universal composition with joint state. In CRYPTO 2003.
LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (Aug 2003).

9. Graf, M., Rausch, D., Ronge, V., Egger, C., Küsters, R., Schröder, D.: A Security
Framework for Distributed Ledgers. In: ACM CCS 2021, Nov 14–19, 2021, Seoul.
ACM (2021)

10. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. Journal
of Cryptology 28(3), 423–508 (Jul 2015).

11. Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability.
Journal of Cryptology 26(3), 375–441 (Jul 2013).

12. Küsters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In: Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW-19 2006). pp. 309–320. IEEE Computer Society (2006), see [18] for a full
and revised version.

13. Küsters, R., Datta, A., Mitchell, J.C., Ramanathan, A.: On the relationships
between notions of simulation-based security. Journal of Cryptology 21(4), 492–546
(Oct 2008).

14. Küsters, R., Rausch, D.: A framework for universally composable Diffie-Hellman
key exchange. In: 2017 IEEE Symposium on Security and Privacy. pp. 881–900.
IEEE Computer Society Press (May 2017).

15. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established session
identifiers. In ACM CCS 2011. pp. 41–50. ACM Press (Oct 2011).

16. Küsters, R., Tuengerthal, M.: Ideal key derivation and encryption in simulation-
based security. In CT-RSA 2011. LNCS, vol. 6558, pp. 161–179. Springer, Heidelberg
(Feb 2011).

17. Küsters, R., Tuengerthal, M., Rausch, D.: Joint State Theorems for Public-Key En-
cryption and Digital Signature Functionalities with Local Computation. J. Cryptol.
33(4), 1585–1658 (2020)

18. Küsters, R., Tuengerthal, M., Rausch, D.: The IITM Model: a Simple and Expressive
Model for Universal Composability. J. Cryptol. 33(4), 1461–1584 (2020)

19. Maurer, U.: Constructive cryptography - a primer (invited paper). In FC 2010.
LNCS, vol. 6052, p. 1. Springer, Heidelberg (Jan 2010)

20. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure
reactive systems. In ACM CCS 2000. pp. 245–254. ACM Press (Nov 2000).

21. Rausch, D., Küsters, R., Chevalier, C.: Embedding the UC Model into
the IITM Model. Cryptology ePrint Archive, Report 2022/224 (2022),
https://eprint.iacr.org/2022/224

	Embedding the UC Model into the IITM Model

