On the security of ECDSA with additive key
derivation and presignatures

Jens Groth and Victor Shoup

DFINITY, Zurich, Switzerland
{jens,victor.shoup}@dfinity.org

Abstract. Two common variations of ECDSA signatures are additive
key derivation and presignatures. Additive key derivation is a simple
mechanism for deriving many subkeys from a single master key, and is
already widely used in cryptocurrency applications with the Hierarchical
Deterministic Wallet mechanism standardized in Bitcoin Improvement
Proposal 32 (BIP32). Because of its linear nature, additive key deriva-
tion is also amenable to efficient implementation in the threshold setting.
With presignatures, the secret and public nonces used in the ECDSA
signing algorithm are precomputed. In the threshold setting, using pres-
ignatures along with other precomputed data allows for an extremely
efficient “online phase” of the protocol. Recent works have advocated for
both of these variations, sometimes combined together. However, some-
what surprisingly, we are aware of no prior security proof for additive
key derivation, let alone for additive key derivation in combination with
presignatures.

In this paper, we provide a thorough analysis of these variations, both
in isolation and in combination. Our analysis is in the generic group
model (GGM). Importantly, we do not modify ECDSA or weaken the
standard notion of security in any way. Of independent interest, we also
present a version of the GGM that is specific to elliptic curves. This EC-
GGM better models some of the idiosyncrasies (such as the conversion
function and malleability) of ECDSA. In addition to this analysis, we
report security weaknesses in these variations that apparently have not
been previously reported. For example, we show that when both vari-
ations are combined, there is a cube-root attack on ECDSA, which is
much faster than the best known, square-root attack on plain ECDSA.
We also present two mitigations against these weaknesses: re-randomized
presignatures and homogeneous key derivation. Each of these mitigations
is very lightweight, and when used in combination, the security is essen-
tially the same as that of plain ECDSA (in the EC-GGM).

1 Introduction

Let us recall the basic ECDSA signature scheme [17]. Let E be an elliptic curve
defined over Z,, and generated by a point G of prime order ¢, and let E* be the set
of points (x,y) on the curve excluding the point at infinity O. The unreduced
conversion function C : E* — Z, maps a point P to its z-coordinate. The

2 Jens Groth and Victor Shoup

reduced conversion function C' : E* — Z, maps a point P to the canonical
representative of C(P) (i.e., an integer in the range [0,p)) reduced mod gq.

The secret key for ECDSA is a random d € Z7, the public key is D = dG € E.
The scheme makes use of a hash function Hash : {0,1}* — Z,. The signing and
verification algorithms are shown in Fig. 1. The signing algorithm will fail with
only negligible probability.

Sign message m: Verify signature (s,t) € Z; x Z; on m:

h + Hash(m) € Zq h < Hash(m) € Zq

r& 7 RerGeE, t« CR)€Zy R+ s 'hG+s D

if t =0 or h+ td = 0 then return fail check that R # O and C(R) =t
s+ r ' (h+td)

return the signature (s, t)

Fig. 1. ECDSA signing and verification algorithms

The security of ECDSA has only been analyzed in idealized models of com-
putation. Specifically, Brown [4] showed that under standard intractability as-
sumptions on Hash (collision resistance and random/zero preimage resistance),
ECDSA is secure in the generic group model [14,16]. In addition, Fersch, Kiltz,
and Pottering [10] have also showed that ECDSA is secure under somewhat dif-
ferent intractability assumptions on Hash if the conversion function is modeled
as an idealized function (but one that captures some idiosyncrasies of the actual
conversion function). In this paper, we will also analyze ECDSA and several vari-
ants in the generic group model. However, we shall work in a specific version of
the generic group model that more accurately models some of the idiosyncrasies
of elliptic curves and the corresponding conversion function. We call this the
elliptic curve generic group model (EC-GGM), which may be of indepen-
dent interest. By working in this model, we overcome objections raised in [10]
and elsewhere [18] that Brown’s analysis was incomplete. For example, it was
pointed out that Brown’s analysis ruled out any malleability in the signature
scheme, whereas ECDSA signatures are in fact malleable.

Several variations of ECDSA have been proposed, notably additive key
derivation and presignatures. We are mainly interested in these variations
because of the optimizations they enable in the threshold setting, where the
signing functionality is implemented as a secure distributed protocol by parties
that each hold a share of the secret key. However, these variations also enable
optimizations in the single-signer setting as well.

Additive key derivation. With additive key derivation, the secret-key/public-
key pair (d,D) is viewed as a master key pair from which subkey pairs
can be derived using a simple additive shift. Specifically, we can derive a secret
subkey of the form d + e by using a “tweak” e € Z,. For such a derived secret
subkey, we can compute the corresponding derived public subkey from the public
key D as D + eG. In the context of cryptocurrency, this type of additive key

On the security of ECDSA with additive key derivation and presignatures 3

derivation is used in so-called Hierarchical Deterministic Wallets using the
Bitcoin Improvement Proposal 32 (BIP32) standard [20], which is a specific way
of deriving a tweak e via a chain of hashes applied to the public key and other
public data. Note that BIP32 also specifies so-called “hardened” subkeys, which
derives subkeys using the secret key — we do not consider such “hardened”
subkeys in this paper.

There is a cost to storing secret keys, and additive key derivation is useful in
reducing that cost, since it allows several distinct public keys to be used while
only having to store a single secret key. This secret-key storage cost manifests
itself in both the threshold and non-threshold settings. In the non-threshold set-
ting, there is the obvious cost of maintaining the secret key in some kind of
secure storage. In the threshold setting, there is the cost of running the key gen-
eration algorithm and storing secret shares in some kind of secure storage. There
may be additional costs in the threshold setting: for example, the cost of reshar-
ing the secret key periodically, both to provide proactive security and to allow
for dynamic changes in the share-holder membership. Because of the linearity of
the key derivation, implementing additive key derivation in the threshold setting
comes at essentially no cost.

Unfortunately, and somewhat surprisingly, we are aware of no prior proofs of
security for ECDSA with additive key derivation. While [21] purports to present
such a proof (via a direct reduction to the security of ECDSA), their proof seems
to be fundamentally flawed: their simulator apparently needs to “reprogram” a
random oracle that has already been “programmed”. The more recent work [8]
analyzes additive key derivation with respect to a variant of ECDSA in which the
derived public key is prepended to the message to be signed, and with a restricted
attack model in which an attacker is only allowed to ask for one signature per
message and derived public key.

Presignatures. In the signing algorithm, the values » and R := rG are indepen-
dent of the message to be signed (or the tweak), and so they can be precomputed
in advance of an actual signing request. In the threshold setting, it is tempting to
not only precompute a sharing of r, but to also to precompute R itself. This can
greatly simplify the online signing phase of the protocol. Indeed, several papers,
including [7] and [11] present protocols that use presignatures. Moreover, [7] ad-
vocates for the combination of presignatures and additive key derivation, even
though the security of additive key derivation, let alone additive key derivation
in combination with presignatures, has never been analyzed.

The paper [5] considers the security of presignatures (in isolation). They give
an explicit definition and they briefly sketch a proof of security in the GGM with
Hash also modeled as a random oracle (an earlier version of [5] had an incorrect
security bound).

1.1 Owur contributions

Security proofs. We carry out a careful and detailed security analysis of
ECDSA and several variants, including ECDSA with additive key derivation,

4 Jens Groth and Victor Shoup

ECDSA with presignatures, and ECDSA with both additive key derivation and
presignatures. This analysis is done in the generic group model (more precisely,
the EC-GGM) under concrete assumptions for the hash function Hash. Impor-
tantly, we do not modify ECDSA or weaken the standard notion of security in
any way. Unlike [5], we do not model Hash as a random oracle (and we give
somewhat tighter security bounds). Our analysis carries over immediately to
any threshold implementation of ECDSA whose security reduces to that of the
non-threshold scheme (which is typically the case).

For additive key derivation, we mainly assume that the set & of all valid
tweaks is not too large and is determined in advance. In practice (such as with
BIP32), tweaks are derived, via a hash, from identifiers (possibly combined with
a “root” public key). This assumption on & can be justified if the set of valid
identifiers, and in particular, the set of identifiers with respect to which we are
concerned about forgeries, is indeed small. It can also be further justified by
modeling the hash function used to derive tweaks as a random oracle. That
said, our analysis also works without this assumption, and we describe how our
security results can be stated in terms of concrete security properties of the hash
used to derive the tweaks — this is discussed in the full version [12]. We also
provide an analysis of the BIP32 key derivation function in the full version [12],
which justifies modeling it as a (public use) random oracle.

Attacks. While we are able to prove security results under reasonable assump-
tions for all of the variations listed above, in the course of our analysis, we
discovered that the concrete security of some of these variants is substantially
worse than plain ECDSA.

An attack on ECDSA with additive key derivation and presignatures. For ex-
ample, consider ECDSA with both additive key derivation and presignatures.
Consider the following attack:

1. Make one presignature query to get the group element R and let t := C(R).

2. Find m, e, m*, e* such that h+te = h*+te*, where e # e* and h := Hash(m)
and h* := Hash(m*)

3. Ask for a signature (s,t) using this presignature on message m with tweak
e.

Observe that (s,t) being a valid signature on m with respect to the tweak e
means that

R=s"'hG+s D+ eG) =5 (h+te)G+s D= s (h* +te*)G + s D,

which means that (s,t) is also a valid signature on m* with respect to e*.

Also observe that Step 2 above is essentially a 4-sum problem of the type
studied by Wagner [19] and others [2,15]. Indeed, Wagner’s algorithm allows
us to implement Step 2 in time significantly less than O(q'/?) if the set € is
sufficiently large. In particular, if |¢| = @(q¢'/?), then we can solve this 4-sum

On the security of ECDSA with additive key derivation and presignatures 5

problem and forge a signature in time roughly O(q'/?). While not a polynomial-
time attack, this is clearly a much more efficient attack than the best-known
attack on plain ECDSA, which runs in time roughly O(¢'/?).

An attack on ECDSA with presignatures. Even with presignatures alone, ECDSA
has potential security weaknesses that plain ECDSA does not. Consider the fol-
lowing attack:

1. Make one presignature query to get the group element R and let ¢ := C(R).

2. Compute R* < c¢R for some c € Z; and let ¢* = C(R*).

3. Find m, m* such that h/t = h*/t*, where h := Hash(m) and h* := Hash(m*)
and m # m*.

4. Ask for a signature (s,t) using the presignature R on message m.

5. Compute s* satisfying (s*)~1t* = cs~1¢, and output (s*,t*).

Observe that (s,t) being a valid signature on m means that R = s~1hG +
s~ 1¢D. Moreover,

R* = cR=cs 'hG + cs 1D = cs H(h/t)G + cs™HD
= (s*) "1 (h/H)G + (s*) 1D = (s*) " H* (R /t)G + (s*) D
— (S*)—lh*g + (S*)_lt*p,

which means that (s*,¢*) is a valid signature on m*.

To implement Step 3, for fixed ¢ and ¢*, there is no obvious way to find h, h*
satisfying h/t = h*/t* in time faster than O(g'/?). However, the inability to do so
requires an assumption on Hash that is not needed for plain ECDSA. Moreover,
it is clear that ECDSA with presignatures is completely insecure if we allow
a “raw” signing oracle, i.e., a signing oracle that takes as input the purported
hash h rather than the message m. There are settings where allowing such “raw”
signing queries may be useful (e,g., in a remote signing service to avoid the cost
of message transmission), and plain ECDSA is secure in the EC-GGM even with
raw signing queries.

Note that one could extend the above attack so that the attack iterates
Steps 3 and 4 for many values of ¢. This would give us an attack that is essen-
tially a multiplicative variant of a 3-sum problem, for which there is no known
algorithm that runs in time O(g'~¢) for any € > 0 [15]. However, this is again
an attack vector that is not available for plain ECDSA.

Mitigations. In addition to the analysis and attacks above, we present several
mitigations.

Re-randomized presignatures. A presignature of the form r' € Z, and R’ =
r'G € E is computed as before. However, when a signing request is made, the
actual presignature used is r := ' 4+0 and R := R’ 4G, where 0 € Z, is a public
value that is pseudo-randomly generated at the time of the signing request (the

6 Jens Groth and Victor Shoup

key property is that ¢ is not predictable). This mitigation may be deployed both
with and without additive key derivation.

We prove much stronger security results with this mitigation. Specifically,
we prove a security result for re-randomized presignatures without additive key
derivation that is essentially equivalent to the security result for plain ECDSA.
With additive key derivation, the concrete security degrades by a factor of |€|,
where € is the set of valid tweaks, but the resulting scheme is no longer vulner-
able to the 4-sum attack described above. Both with and without additive key
derivation, we can also prove security even with respect to a raw signing oracle.

We are mainly interested in the use of re-randomized presignatures in the
threshold setting. Since the re-randomization is linear, in terms of working with
linear secret sharing, the impact is negligible (computing (r'+4)~! in the thresh-
old setting is no harder than computing r—!, assuming one is using standard
techniques, such as [1]). However, the parties will still need access to a source
of public randomness to generate §. Accessing this public randomness may or
may not introduce some extra latency, depending on details of the system. For
example, in the Internet Computer (IC) [9], which motivated our work, there is
already a mechanism for accessing public, unpredictable randomness via a “ran-
dom tape” (which is implemented using a threshold BLS signature [3]). More-
over, in the IC architecture, when a subprotocol (such as a threshold ECDSA
signing protocol) is launched, we can access this public randomness with no
additional latency.

Instead of generating § at the time of the signing request, as an alternative
approach, one might also derive ¢ from a hash applied to (among other things)
the public key, the (hash of) the message to be signed, and (if using additive key
derivation) the tweak. This approach for re-randomizing presignatures comes at
essentially no cost, either in terms of computation or latency. However, while
it heuristically appears to offer more security than plain presignatures, and in
particular foils the 4-sum attack described above, we have not formally analyzed
the security of this approach.

Homogeneous key derivation. We also propose an alternative additive key deriva-
tion mechanism with better security properties. The master secret key now con-
sists of a randomly chosen pair (d,d’) € Z, x Z,. The corresponding master
public key is (D,D’) := (dG,d'G). Given a tweak e € Z,, the derived secret key
is d + ed’, and the derived public key is D + eD’.

Clearly, just as for additive key derivation, we can easily derive a public
key from the master public key. Moreover, since key derivation is linear, imple-
menting homogeneous key derivation in the threshold setting comes at very little
cost. Compared to additive key derivation, the only downsides are (1) some small
additional computational and communication complexities, and (2) the lack of
compatibility with existing standards, such as BIP32.

One can combine homogeneous key derivation with either plain ECDSA,
ECDSA with presignatures, and ECDSA with re-randomized presignatures. We
give security proofs for all three of these variations. The upshot is that with
homogeneous key derivation, for each variation, we get a security result for that

On the security of ECDSA with additive key derivation and presignatures 7

variation with homogeneous key derivation that is essentially equivalent to that
variation without key derivation. In particular, unlike with additive key deriva-
tion, our security results do not degrade linearly with |&| , where € is the set
of valid tweaks, and we do not need to insist that the set € is determined in
advance. In particular, we may just assume that the tweaks are derived by a
collision resistant hash.

Hno presigs ‘presigs ‘re-randomized presigs

no derivation ||Ecr +NErpr+Empr +N?/q|Ecr + UNErpr + NErx + |Ecr + NEpr +Eopr + N2 /q

Empr + N?/q X
additive Ecr + NI€|Erpr + Espr + |Ecr + UN|€|Erpy + Eer + N|€|Evpr + Erpr +
N?%/q Npsig €4sum1 + N?/q

NEssumz + Ezpr + N2 /q
X

homogeneous ||Ecr+NErpr+Erpr+ N2/q|Ecr + UNEpr + NEx + [Ecr + NErpr +Epr +N?/q
Eupr + N?/q X

Table 1. Summary of concrete security theorems

Summary of concrete security bounds. Table 1 summarizes our concrete
security theorems. Each table entry gives an upper bound on an adversary’s
success in producing a forgery (ignoring small constants) in the EC-GCM (and
in the PDF file, each table entry also contains a hyperlink to the actual theorem).
These upper bounds are stated in terms of:

q: the order of the group F;

N': the number of oracle queries (group, signing, or presignature);

— Npsig: the number of presignature requests;

U: the maximum number of unused presignature requests outstanding at any

point in time;

— |€]: the size of the set of valid tweaks;

— & the probability of successfully finding a collision in Hash;

— &prt the probability of successfully finding a preimage under Hash of a ran-
dom element in Z;

— &,pr: the probability of successfully finding a preimage under Hash of 0;

— & the probability, given random p € Z7, of finding m, m* such that h/h* =
p, where h := Hash(m) and h* := Hash(m™*) and h* # 0;

— Eisum1: the probability, given random ¢ € Zg, of successfully finding m, e, m*, e*
such that h + te = h* + te*, where e,e* € €, ¢ # ¢* and h := Hash(m) and
h* == Hash(m*);

— E4sumz: the probability of successfully finding m, e, m*,e* such that h/t +

e = h*/t* + e*, where e,e* € €, (m,e) # (m*,e*) and h := Hash(m) and

h* = Hash(m"), where t € Zj is selected by the adversary from one of

several random samples, and ¢* € Z; is a random value given after ¢ is

selected.

8 Jens Groth and Victor Shoup

The success probabilities Ecr, Erprs Expry Erry Easumi; Easum2 are stated in terms of
an adversary whose running time is essentially that of the forging adversary (or
that time plus UN, in either of the presignature settings). Also, the symbol X
in the table indicates that this mode of operation is insecure with “raw” signing.

We make some quick observations about this table. First, observe that the
first and third rows are identical, as are the first and third columns. Second,
we see that the best security bounds are in the upper left cell and the lower
right cell, and these bounds are the same — this suggests that ECDSA with
homogeneous key derivation and re-randomized presignatures is just as secure
as plain ECDSA. Third, we see that the worst security result is in the middle cell,
corresponding to the setting of additive key derivation combined with (non-re-
randomized) presignatures; moreover, this is not just a case of sloppy analysis, as
we have already seen that in this setting, there is an actual attack that produces
a forgery in time significantly faster than O(q'/?). Finally, we see that “raw”
signing is insecure for all modes of operation in the middle column. Each other
mode is secure even with “raw” signing, meaning that the mode is just as secure
if the signing algorithm is given an arbitrary hash value h € Z, (not necessarily
the output of Hash) and, in the case of key derivation, and arbitrary tweak
e € Zq (not necessarily in € or satisfying any other constraint).

2 The EC-GGM

We propose the following elliptic curve generic group model (EC-GGM).

We assume an elliptic curve F is defined by an equation y?> = F(zx) over Z,
and that the curve contains ¢ points including the point at infinity O. Here, p
and ¢ are odd primes. Let E* be the set of non-zero points (excluding the point
at infinity) on the curve, i.e., (z,y) € Z, x Z, that satisfy y?> = F(z). From now
on, we shall not be making any use of the usual group law for F, but simply
treat E as a set; however, for a point P = (z,y) € E*, we write —P to denote
the point (x,—y) € E*. Note that because we are assuming ¢ is prime, there
are no points of the form (z,0) € E (these would be points of order 2 under the
usual group law).

An encoding function for E is a function 7 : Z, — E that is injective, iden-
tity preserving, meaning that 7(0) = O, and inverse preserving, meaning
that for all i € Z,, n(—i) = —n(4).

In the EC-GGM, parties know E and interact with a group oracle O,
that works as follows:

— Ogrp on initialization chooses an encoding function 7 at random from the
set of all encoding functions
— Ogrp responds to two types of queries:
o (map,i), where i € Zg: return (i)
e (add, Py, P;), where Py, P, € E: return (= H(Py) + 71 (P2))

Notes. 1. The intuition is that the random choice of encoding function hides rela-
tions between group elements.

On the security of ECDSA with additive key derivation and presignatures 9

2. However, to make things more realistic in terms of the ECDSA conversion function,
the encodings themselves have the same format as in a concrete elliptic curve, even
though we do not at all use the group law of an elliptic curve.

3. Also to make things more realistic, the trivial relationship between a point and its
inverse (that they share the same z-coordinate) is preserved.

4. Our model only captures the situation of elliptic curves over Z, of prime order
and cofactor 1. This is sufficient for many settings, and it covers all of the “secp”
curves in [6].

5. It would be possible to extend the model to elliptic curves of non-prime order
as well, in which case the domain of the encoding function m would have to be
adjusted to match the structure of the group.

3 Properties of the ECDSA conversion function

For a random variable T taking values in some finite set X, we define its guessing
probability to be max {Pr[T = z] : z € X}.

Recall again the ECDSA signature scheme as described in §1 and Fig. 1. The
unreduced conversion function C : E* — Z,, is a 2-to-1 map (recall that there
are no points of the form (x,0) € E). Therefore, the distribution of C(R), for
random R € E*, is uniform over a subset of Z, of size (¢ — 1)/2. In particular,
the guessing probability of C(R) is 2/(q — 1).

Hasse’s theorem says that ¢ — 1 = p + 20p'/? for some 6 € [—1,1]. This
implies that for p > 13 we have p/2 < ¢ < 2p. We shall implicitly assume
this from now on. The bound p < 2¢ and the fact that C' is 2-to-1 imply that
every element of Z; has at most four preimages under the reduced conversion
function C' : E* — Z,; therefore, the guessing probability of ¢t := C(R) is at
most 4/(q — 1). The ECDSA signing algorithm fails if £ = 0 or A + td = 0. Thus,
the probability that the signing algorithm fails is at most 8/(¢ — 1).

Hasse’s theorem also implies that the probability that € C'(E*), for ran-
dom z € Z,, is equal to 1/2 + Op~—1/2. We can use this to design an efficient
probabilistic sampling algorithm Samp, which takes as input ¢t € Z; and
returns either fail or a point R € C~!(t), with the following properties:

— For randomly chosen t € Z,, we have
Pr[Samp(t) = fall} S % + %pfl/Q.

— For randomly chosen ¢ € Z,, the conditional distribution of Samp(t), given
that Samp(t) # fail, is uniform over E*.

The algorithm works as follows:

1. Let ¢’ € Z be the canonical representative of ¢ in the interval [0, q). (Assume
t is uniform over Zq. t' is uniform over {0,...,q—1}.)

2. If ¢ < p, then with probability 1/2 add ¢ to ¢'. (¥ is uniform over an interval
{0,...,u—1}, where p < u < 2p.)

3. If ¢/ > p then return fail. (Failure occurs with probability at most 1/2;
otherwise, t' is uniform over {0,...,p—1}.)

10 Jens Groth and Victor Shoup

4. Set z < [t' mod p| € Z,,. (z is uniform over Z,.)

5. If F(z) is not a square, return fail. (Failure occurs with probability 1/2 —
Op=1/2.)

6. Choose a random square root y of F'(z) and return R := (x,y). (R is uniform
over E*.)

4 Notions of security

Definition 1 (CMA security). For a signature scheme S and an adversary
A, we denote by CMAadv|A, S] the advantage that A has in forging a signature
in a chosen message attack against S. This is the probability that A wins the
following game.

— The challenger runs the key generation algorithm for S to obtain a public
key pk and a secret key sk and gives pk to A.

— A makes a sequence of signing requests to the challenger. Fach such re-
quest is a message m, which the challenger signs using sk, giving the resulting
signature o to A.

— At the end of the game, A outputs (m™*,c*).

— We say A wins the game if o* is a valid signature on m* under pk, and
m* was not submitted as a signing request.

Definition 2 (CMA security in GGM). If S is based on computations in
a certain group, we can also model such a CMA attack in the generic group
model, in which all computations in the group done by A and the challenger are

performed using the group oracle as described in §2. In this case, A’s advantage
in the corresponding CMA attack game is denoted CMA88™adv|A, S].

Definition 3 (Random-preimage resistance). Let Hash be a hash function
whose output space is Zq. Let A be an adversary. We define RPRadv[A, Hash] to
be the advantage of A in breaking the random-preimage resistance of Hash.
This is defined as the probability that A wins the following game.

— The challenger chooses h € Zq uniformly at random and gives h to A.
— A outputs m.
— We say A wins the game if Hash(m) = h.

Definition 4 (Zero-preimage resistance). Let Hash be a hash function whose
output space is Zq. Let A be an adversary. We define ZPRadv[A, Hash] to be the
advantage of A in breaking the zero-preimage resistance of Hash. This is
defined as the probability that A wins the following game.

— A outputs m.

— We say A wins the game if Hash(m) = 0.
Definition 5 (Collision resistance). Let Hash be a hash function. Let A be
an adversary. We define CRadv[A, Hash] to be the advantage of A in breaking
the collision resistance of Hash. This is defined as the probability that A wins
the following game.

— A outputs m, m’.
— We say A wins the game if Hash(m) = Hash(m') but m # m’.

On the security of ECDSA with additive key derivation and presignatures 11

5 Proof of security of ECDSA in the EC-GGM

In the EC-GGM model, the generator G is encoded as 7(1) and the public key
D is encoded as 7(d) for randomly chosen d € Z;. We assume that d # 0. These
encodings of G and D are given to the adversary at the start of the signing attack
game.

The adversary then interacts makes a sequence of queries to both the group
and signing oracles. The signing oracle on a message m itself works as usual,
computing h = Hash(m), but it uses the group oracle to compute the encoding
of R = rG. Note that we have R = s~'hG + s~ 1D, where (s,t) is the signature.
For simplicity, let us assume that R is output by the signing oracle as well.

At the end of the signing attack game, the adversary outputs a forgery (s*,t*)
on a message m*. The signature is then verified using the verification algorithm,
computing h* = Hash(m*), and then again making use of the group oracle to
compute the encoding of R* = (s*)71h*G + (s*)~1¢*D.

We define three types of forgers.

Type I. R* = £R for some R computed by the signing oracle.
Type II. R* # £R for any R computed by the signing oracle, and h* # 0.
Type III. Neither Type I or Type II.

A lazy simulator. Instead of choosing the encoding function 7 at random at
the beginning of the attack game, we can lazily construct 7 a bit at a time. That
is, we represent 7 as a set of pairs (i, P) which grows over time — such a pair
(7,P) represents the relation m(i) = P. Here, we give the entire logic for both
the group and signing oracles in the forgery attack game. Fig. 2 gives the details
of Lazy-Sim.

1. Initialization: 3. To process a group oracle query
(a) m<« {(0,0)}. (add, P1, P2):
(b) d 8 z: (a) for j :$1, 2: if P; ¢ Range(m):
(c¢) invoke (map, 1) to obtain G i Zg; s
(d) invoke (map, d) to obtain D while ¢ € Domain(w) do: i < ZZ
(e) return (G, D) ii. add (—4,—P;) and (i, P;) to
2. To process a group oracle query (map, ©): (b) invoke (map, 7~ 1(P1) + 7~ 1(P2)) and
(a) if i ¢ Domain(m): return the result
i P i E*; 4. To process a request to sign m:
while P € Range(n) do: P & E* (a) h < Hash(m) € Zq
ii. add (—%,—P) and (i, P) to 7 M) r& z
(b) return m(7) (c) invoke (map,r) to get R

(d) t« C(R) € Z,4

(e) if t = 0 then return fail

(f) if h + td = 0 then return fasl
(g) s+ r Y (h+td)

(h) return (R,s,t)

Fig. 2. Lazy-Sim

At the end of the attack game, the adversary will output a forgery (s*,t*) on
a message m*. The verification routine will be used to verify this signature, and

12 Jens Groth and Victor Shoup

this will use the add queries to perform the computation, which will take O(log q)
group oracle queries. We denote by Ng,p, the total number of group oracle queries
explicitly made by the adversary, with the understanding that this includes the
group oracle queries used to verify the the forgery, as well as the group oracle
queries used to generate G and D, but not including group oracle queries used
in the signing queries. We let Ny, denote the number of signing queries made
by the adversary, and set IV := Ngg + Ngrp-

This lazy simulation is perfectly faithful. Specifically, the advantage of any
adversary in the signature attack game using this lazy simulation of the group
oracle is identical to that using the group oracle as originally defined.

A symbolic simulator. We now define a symbolic simulation of the attack
game. The essential difference in this game is that Domain(7) will now consist
of polynomials of the form a + bD, where a,b € Z; and D is an indeterminant.
Here, D symbolically represents the value of d. Note that m will otherwise still
satisfy all of the requirements of an encoding function. Fig. 3 gives the details
of Symbolic-Sym.

1. Initialization: 4. To process a request to sign m:
(a) =<+ {(0,0)}. (a) h < Hash(m) € Zq
(b) }nvoll:e (map, ;) to ogta.m % (b) R 8 g
(c) invoke (map, D) to obtain (c) if R € Range(m) then abort

(d) return (G, D) (d) t « C(R)€Z
2. To process a group oracle query (map,1): (e) if ¢t = 0 then a:ll)ort
(a) if ¢ ¢ Domain(m):

3
i P& B () s <24
if P € Range(w) then abort (8) r+ s '(h+1D)
ii. add (—i,—7P) and (i,P) to 7 (h) if » € Domain(w) then abort
(b) return m(7) (i) add (—r,—R) and (r,R) to 7
3. To process a group oracle query (j) return (R, s,t)
(add, P1, P2):

(a) for j =1,2:if P; ¢ Range(mw):
i &z
if ¢ € Domain(m) then abort
ii. add (—%, —P;) and (4, P;) to =
(b) invoke (map, 7~ *(P1) + 7~ 1(P2)) and
return the result

Fig. 3. Symbolic-Sim

Lemma 1. The difference between the adversary’s forging advantage in the Lazy-
Sim and Symbolic-Sim games (as described in Figs. 2 and 3) is O(N?/q).

Proof. See the full version [12]. O

Theorem 1. Let A be an adversary attacking Secasa as in Def. 2 that makes at
most N signing or group queries. Then there exist adversaries By, By, and By,
whose running times are essentially the same as A, such that

CMA®*#™adv[A, Secasa] < CRadv([Br, Hash] + (4 + o(1))N - RPRadv([Bu, Hash]
+ ZPRadv|[Bui, Hash] + O(N?/q).

On the security of ECDSA with additive key derivation and presignatures 13

Proof. Consider a Type I forger playing against our symbolic simulator (see
Fig. 3), where R* = £R for some R produced by the signing oracle (which must
be unique). This means (s*)~1(h* 4+ t*D) = s 1(h + tD) and t* = t. In other
words, for n € {£1}, we have (s*)~!(h* + D) = ns~1(h + tD), which gives us
the two equations (s*)"'h* = ns~'h and (s*)~'t = ns~1t. These two equations
imply h* = h, which implies a collision on the hash function Hash. This gives
us the adversary By in the theorem.

Now consider a Type II forger playing against our symbolic simulator, where
R* # 4R for any R produced by the signing oracle. Suppose 7~ 1(R*) = a -+ bD.
By the verification equation, we also have 7~} (R*) = (s*)~1(h* +¢*D). Thus, we
have a = (s*)"'h* and b = (s*)~¢*. These identities, along with the assumption
that h* # 0, imply that b # 0, a # 0, and t* = h*a~'b. The group element R*
must have been generated at random by some group oracle query made directly
by the adversary (this follows from the fact that b # 0). Since the coefficients
a, b were already determined before this query, it follows that the value of R* is
independent of these coefficients. We want to use this Type II forger to break
the random-preimage resistance of Hash. That is, we are given random h' € Zg
and want to find a preimage of hf under Hash. To do this, we will guess the
group oracle query that will produce the value R* in the forgery, and then we
will run our sampling algorithm to compute t' < hfa=1b, R & Samp(tT).
If the sampler fails, then we abort. Otherwise, we set R* = R! and ¢* = ¢!
and proceed as usual: if the adversary forges a signature, we succeed in finding
a preimage of K. This is adversary By in the theorem.

A Type III forger produces a forgery with h* = 0. This gives us adversary
Bt in the theorem.

The above analysis was with respect to the symbolic simulator. To get the
result with respect to the lazy simulator, we use Lemma 1, which gives us the
term O(N?/q) in the theorem. [J

Notes. 1. All three assumptions we make — collision resistance, random-preimage
resistance, and zero-preimage resistance — are necessary conditions, in the sense
that it is trivial to break the scheme if any of them are false.

2. The above analysis shows that ECDSA is secure under the same assumptions, even
if we give the adversary access to a “raw” signing oracle, where the input is h, not
m. Of course, in this model, the notion of a forgery must be modified appropriately,
to disallow forgery on any message m* for which H(m™) was submitted as a “raw”
signing query.

6 ECDSA with additive key derivation

We assume that the secret key d € Z,, is used as a master key to derive secret
subkeys of the form d+ e for a “tweak” e € Z,. For such a derived secret subkey,
we can compute the corresponding derived public subkey from the public key D
as D + eG.

As we will see, it is impossible to achieve security without some restriction on
the choice of tweaks. We assume that any tweak must come from a set € C Z,

14 Jens Groth and Victor Shoup

of allowed tweaks that is chosen before the attack game starts. This can be
enforced in several ways, one of which is to obtain tweaks as the output of a
hash function which is modeled as a random oracle. In the full version [12] we
provide an analysis of the BIP32 key derivation function, which justifies modeling
it as a (public use) random oracle. As we will see, security will degrade linearly
in |€|. In the full version [12], we provide an alternative analysis in terms of
concrete security properties of the hash function used to derive tweaks.

The CMA security game in Def. 1 (as well as Def. 2) is modified so that
the signing oracle takes a message m and a tweak e. Similarly, the adversary
must output a forgery on a specific message m™ under specific tweak e*, and the
forgery only counts if the pair (m*, e*) was not given to the signing oracle.

We define CMASEadv[A, S, €] to be adversary A’s advantage in winning
this modified CMA game in the EC-GGM.

Lemma 1 is seen to hold as well in this setting, where to process a signing
query (h,e), the symbolic simulator runs the same algorithm as before, but with
e + D in place of D.

Theorem 2. Let A be an adversary attacking Secasa as in Def. 2 with additive
key derivation that makes at most N signing or group queries, of which Ngig
are signing queries. Then there exist adversaries Br,, B, Bir, and By, whose
running times are essentially the same as A, such that

CMAZEY adv[A, Secdsa, €] < CRadv([Bra, Hash] + (4 4 o(1))Nsig| €| - RPRadv[Br,, Hash]
+ (44 o(1))N|€| - RPRadv[Bi1, Hash] + ZPRadv(Bi, Hash] + O(N?/q).

Proof. Consider a Type I forger playing against our symbolic simulator, where
R* = £R for some R produced by the signing oracle (which must be unique).
This means (s*)~*(h* +t*(e* + D)) = s 1(h +t(e + D)) and t* = t. In other
words, for n € {£1}, we have (s*)~Y(h* + te* + tD) = ns~1(h + te + tD), which
gives us the two equations (s*)"1(h* +te*) = ns~t(h+te) and (s*) "1t = ns~1t.
These two equations imply

h* 4+ te* = h 4+ te. (1)

If e* = e, then we have h* = h. Let us call this a Type Ia forgery. In this case,
we can use the forging adversary to break the collision resistance of Hash as in
Theorem 1. This is adversary By, in Theorem 2.

Otherwise, we have t = (h*—h)/(e—e™*). Let us call this a Type Ib forgery.
We want to use this Type Ib forger to break the random-preimage resistance of
Hash. That is, we are given random h' € Z, and want to find a preimage
of ht under Hash. To do this, we will guess the relevant signing query
and the tweak e*. We then we will run our sampling algorithm to compute
th« (W =h)/(e—e*), RT & Samp(t!). If the sampler fails, then our forger fails.
Otherwise, we set R := R and ¢ := t and proceed as usual: if the adversary
forges a signature, we succeed in finding a preimage of hf. This is adversary By,
in Theorem 2.

Now consider a Type II forger playing against our symbolic simulator, where
R* # £R for any R produced by the signing oracle. Suppose 7~!(R*) = a + bD.

On the security of ECDSA with additive key derivation and presignatures 15

By the verification equation, we also have 7=}(R*) = (s*)"(h* + t*(e* + D)).
Thus, we have a = (s*)"}(h* + t*e*) and b = (s*)~1t*. These identities, along
with the assumption that h* # 0, imply b # 0, a — be* # 0, and

o bh @)

a — bex’

The group element R* must have been generated at random by some group
oracle query made directly by the adversary (this follows from the fact that
b # 0). Since the coefficients a,b were already determined before this query, it
follows that the value of R* is independent of these coefficients. We want to use
this Type II forger to break the random-preimage resistance of Hash. That is,
we are given random h' € Z, and want to find a preimage of h' under Hash. To
do this, we will guess the relevant group oracle query that will produce
the value R* in the forgery, as well as the tweak e*. Then we will run
our sampling algorithm to compute t' < (bh1)/(a — be*), RT & Samp(th). If
the sampler fails, then our forger fails. Otherwise, we set R* :== R and t* := ¢
and proceed as usual: if the adversary forges a signature, we succeed in finding
a preimage of h'. This is adversary By, in Theorem 2.
Type III forgers are handled just as in Theorem 1. [J

Notes. 1. This analysis also shows that ECDSA with additive key derivation is se-
cure under the same assumptions, even if we give the adversary access to a “raw”
signing oracle, where the input is h, not m. It even remains secure if the signing
tweak e is not constrained to lie in the set €. It is really only the forging tweak e*
that must be constrained.

2. Security really does degrade as |€| gets large. In particular, if |€| = ©(q'/?), then
for fixed h,t, and e, a Type Ib forger can expect to find (h*,e*) # (h, e) satisfying
(1) in time O(q1/2), which is enough to forge a signature. Similarly, for fixed a, b,
and t*, a Type II forger can expect to find (h*,e*) satisfying (2) in time O(¢*/?),
which is enough to forge a signature.

7 ECDSA with presignatures

In some settings, it is convenient to precompute various pairs (r,R), where

r & Zy and R < rG. When processing a request to sign a message, we can
allocate one such precomputed pair and use it to finish the computation of the
signature. So long as neither R is not revealed to the adversary before he makes a
signing query, our proof of security goes through unchanged. However, there are
optimizations in some settings (especially in threshold signing protocols) that
can be exploited if we do in fact reveal R to the adversary before he chooses
which message to sign using the value of R.

In the forgery game, we allow the adversary to make presig queries, which
generate a pair (r, R) as above. In a signing request, the adversary also specifies
an index k to specify that the kth presignature should be used to sign the given
message. The adversary is not allowed to specify the same presignature index
for two distinct signing requests.

16 Jens Groth and Victor Shoup

A lazy simulator. We start with the analog of Lazy-Sim in Fig. 2, but now
with presignatures. Fig. 4 gives the details of Lazy-Sim.

1. Initialization: 4. To process a presignature request:
(a) m+« {(0,0)}. (a) k+—k+1
(b) d &z () r. &2z
(c) invoke (map, 1) to obtain G (c) invoke (map, k) to get Ry
(d) invoke (map, d) to obtain D (d) tr < C(Ri) € Zqg
(e) k+ 0; K<+ 0 (e) if t; = O then return fasl
(f) return (G, D) (f) K + K U{k}; return Ry
2. To process a group oracle query (map,%): 5. To process a request to sign my using pres-
(a) if i ¢ Domain(n): ignature number k € K:
P (@ KK)
while P € Range(w) do: P & (b) e Has (;mk) € Zq)
. . i (c) if hg + txd = O then return fail
ii. add (—¢,—P) and (i, P) to 1
(b) return (i) (d) s =7~ (b + tid)
3. To process a group oracle query (e) return (sk, tx)
(add, P1, P2):
(a) for j =1,2:if P; ¢ Range(m):
iz
while ¢ € Domain(w) do: ¢ & Zy
ii. add (—¢, —Pj;) and (4, P;) to =
(b) invoke (map, 7 *(P1) + 7~ *(P2)) and
return the result

Fig. 4. Lazy-Sim (with presignatures)

A symbolic simulator. We now define a symbolic simulation of the attack
game, which is the analog of Symbolic-Sim in Fig. 3. In this setting, however,
Domain(m) will now consist of polynomials of the form a + bD + ¢1Ry + coRa +

-, where a,b,cq,c2,... € Z4, and D,Ry,Rg,... are indeterminants. Here, D
symbolically represents the value of d, and Ry symbolically represents the value
of r. Fig. 5 gives the details of Symbolic-Sim.

Lemma 2. The difference between the adversary’s forging advantage in the Lazy-
Sim and Symbolic-Sim games (as described in Figs. 4 and 5) is O(N?/q).

Proof. See the full version [12]. O

Since our symbolic simulation is used in our reductions to various hardness
assumptions about Hash, we have to take into account the extra cost associated
with computing with polynomials in the variables D,Ri,Ro,.... Let U denote
the maximum number of unused presignatures at any point in time, i.e., the
maximum size of the set K attained throughout the game. Assuming we use
hash tables as appropriate, the symbolic simulation can be implemented so as
to have an expected running time that is O(UN) (with good tail bounds on the
running time as well). This degradation in the running time by a factor of U for
the extra bookkeeping seems unavoidable. If one views Hash as a random oracle,
then this degradation plays no role, as then we have a perfectly information-
theoretic result.

On the security of ECDSA with additive key derivation and presignatures 17

1. Initialization: 4. To process a presignature request:
(a) w+« {(0,0)}. (a) k+k+1
(b) invoke (map, 1) to obtain G (b) invoke (map,Ry) to get Ry
(¢) invoke (map,D) to obtain D (c) ti + C(Ryi) € Zg
(d) k< 0; K+ 0 (d) if tx = 0 then abort
(e) return (G, D) (e) K <+ K U {k}; return Ry
2. To process a group oracle query (map,%): 5. To process a request to sign my using pres-
(a) if i ¢ Domain(n): ignature number k € K:
i ’P&E*; (a) K« K\ {k}
if P € Range(w) then abort (b) hi « Hash(my) € Zq
ii. add (—i,—P) and (i, P) to () s &z

(b) return (i)

(d) substitute sk_,l(hk + tgD) for Ry
3. To process a group oracle query

throughout Domain(w), and abort if

(add, P1, P2): any two polynomials collapse
(a) for j =1,2:if P; ¢ Range(m): (e) return (sg,tx)

.08 *

iod Ly

if ¢ € Domain(w) then abort
ii. add (—¢, —Pj) and (¢, P;) to =
(b) invoke (map, 7w~ *(P1) + 7~ *(P2)) and
return the result

Fig. 5. Symbolic-Sim (with presignatures)

The results proved on basic ECDSA (without key derivation) do not carry
through without modification. To analyze security in the setting, we need a new
assumption on Hash:

Definition 6 (Ratio resistance). Let Hash be a hash function whose output
space is Zq. Let A be an adversary. We define RRadv[A, Hash| to be the ad-
vantage of A in breaking the ratio resistance of Hash. This is defined as the
probability that A wins the following game.

— The challenger chooses p € Z; uniformly at random and gives p to A.
— A outputs messages m and m*.

— We say A wins the game if Hash(m*) # 0 and Hash(m)/Hash(m™*) = p.

If we view Hash as a random oracle, then the best type of ratio resistance attack
is a birthday attack.

We define CMA$&™adv[A, S] to be adversary A’s advantage in winning the
CMA game with presignatures in the EC-GGM. Theorem 1 then becomes:

Theorem 3. Let A be an adversary attacking Secasa a$ in Def. 2 with pres-
ignatures that makes at most N presignature, signing, or group queries. Let
U denote the mazimum number of unused presignatures at any point in time.
Then there exist adversaries By, Biia, Bib, Biie, and B, whose running times
are essentially the same as A plus O(UN), such that CMASE™adv[A, Secasa] 48
bounded by

CRadv([Br, Hash] 4+ (4 + o(1))N - RPRadv|Bi1a, Hash]
+ (44 o(1))N - RRadv[Bim,, Hash] + UN - RPRadv|Biic, Hash]
+ ZPRadv|[Bui, Hash) + O(N?/q).

18 Jens Groth and Victor Shoup

Proof. Everything goes through as in the proof of Theorem 1, except for the
analysis of Type II forgeries.

Consider the point in time when the adversary queries the group oracle to
obtain R* for the first time. Let us call this a Type Ila forgery if at this time,
7= Y(R*) is of the form a + bD. Type Ila forgeries can be dealt with in exactly
the same way as Type II forgeries in the proof of Theorem 1.

Now, consider a Type II forgery that is not a Type Ila forgery. For such a
forgery, the initial preimage of R* is a polynomial that involves the indetermi-
nants Ry, Ro, However, before the attack ends, all of these variables must be
substituted via signing queries — indeed, if the attack ends with a forgery, we
must have 7-1(R*) = (s*)~}(h* + t*D).

Renaming variables as necessary, suppose that at the time R* is initially
generated, we have 771 (R*) = a+bD+c Ry +- - -+coRy, where the ¢;’s are nonzero,
and that during the attack, we substitute R; — si_l(hi +¢D)fori=1,...,¢ in
that order. Let us define a Type IIb forgery to be one with

1 ¢
and we define a Type Ilc forgery to be a Type II forgery that is neither
Type Ila or IIb.

We can use a Type IIb forger to break the ratio resistance of Hash. Note that
the initial preimage of R* cannot be of the form +Ry, as otherwise this would be a
Type I forgery; in particular, the group element R* must be generated at random
via a group oracle query made directly by the adversary. Therefore, given the
ratio-resistance challenge p, we guess the group oracle query that produces
R*, pick one of the variables R; arbitrarily from among the variables Ry, Ro, ..., Ry
appearing in 7~ 1(R*) at that time R* is generated, and run the sampler on input
t* = t;/p to generate R*. This is the adversary By, in Theorem 3. Note that
adversary Bypp will succeed if its guess at R* was correct, regardless of which of
the variables R; it chooses.

We can use a Type llc forger to break the random-preimage resistance of
Hash. This is the adversary By, in Theorem 3. To understand the design of
adversary Biye, consider a Type Ilc forgery. For ¢ = 0, ..., ¢, define

A= a—|—chhj/sj and B;=b+ chtj/sj.
i< <

At the end of the attack, we must have 7=1(R*) = A, + B¢D, and so the forgery
must satisfy:
Ag=(s)"'h* and B, = (s*)"'t". (4)
These two equations imply Ay, = By -h*/t*, and using the fact that A, = Ag_1 +
cohe/se and By = By_1 + cete/se, we can rewrite this as
(Ag_l — Bg_lhg/te) = (By—1 + Se_lcgtg)(h*/t* — hg/tg). (5)
—_—
=B,

From (5), it is clear that either

On the security of ECDSA with additive key derivation and presignatures 19

(a) Ag—1 # Be—1- e/t
(b) Ag_l = Bg_l . h*/t* and h@/tg = h*/t*, or
(C) Bz =0.

By repeating the above argument, and because we are assuming that (3) does
not hold, we see that either

(1) Ai—l 7é Bi—l hz/tz and Az = B,‘ h*/t* for some i = 1,...,(7 or
(ii) B; =0 for some i =1,... 4.

If we wish, we can categorize these as Type Ilc(i) and Ilc(ii) forgeries. Note
that for a Type Ilc(i) forgery, we may also assume that h;/t; = h*/t* for j =
i+ 1,...,¢, but we do not use this fact here.

The probability if a Type Ilc(i) forgery can be bounded by

UN - RPRadv|Byye, Hash| + O(UN/q).

The random-preimage adversary B, works by guessing R* and then guess-
ing the index ¢ at which condition (i) above occurs. Analogous to (5), we
have

(Ai,1 — Biflhi/ti) = (Bi71 + S;lciti)(h*/t* — hl/tl) (6)

At the time the substitution R; — 5;1 (h;+t;D) is made, all of the terms appearing
in (6), besides s; and h*, are already fixed. Moreover, we are assuming the left
hand side of (6) is nonzero. This implies there is a one-to-one correspondence:
for every h* such that h*/t* — h;/t; # 0 there exists a unique s; ' such that
Bi_1+s; Lot # 0 and vice versa. Adversary By uses its challenge as the value
of h* and solves (6) for s;'. Note that there are (at most) two values of h* for
which this will fail, one that satisfies h*/t* — h;/t; = 0 and the other that makes
8;1 =0.

The probability of a Type Ic(ii) forgery is easily seen to be at most (UN)/(q—
1). O

Notes. 1. This scheme cannot be secure if we allow raw signing queries. Here is one
simple attack. Suppose we get a presignature R with ¢ := C'(R) and we compute
R* = 2R. Let h* = Hash(m") be the hash of a message m* for which we want
to forge a signature. We solve h/t = h* /t* for h and ask for a raw signature on h
using presignature R, obtaining the signature (s, ¢). We then compute s* satisfying
(s*)M* = cts™!, so (s, %) is a forgery on m*.

2. More generally, we really do need to assume that given ¢ and t*, it is hard to find
preimages of h and h* such that h/t = h*/t* holds, as otherwise, essentially the
same attack can be applied. Thus, ratio resistance is essential.

3. An attacker could try the above attack with R* = 2R,3R, ..., obtaining many
candidates for t* to combine with many candidates for h and h*. This would give us
a multiplicative version of the 3-sum problem, for which there is no known attack
that is significantly better than birthday (see [15]).

20 Jens Groth and Victor Shoup

7.1 ECDSA with presignatures and additive key derivation

Now suppose we combine presignatures with additive key derivation. Here, we
assume that presig queries take no input as before, but the signing queries take
as input an index k that specifies the presignature to use, along with a message
my, and the tweak ey.

We define CMAiig‘ (adv[A, S, €] to be adversary A’s advantage in winning
this modified CMA game in the EC-GGM. We can still prove security of ECDSA
in this setting using stronger intractability assumptions for Hash.

Let us first consider the symbolic simulation of the signing oracle. Using
the notation established above, hy := Hash(my) and t == C(Ry). We want to
choose si € ZZ at random and then substitute slzl(hk + treg + D), rather than
8];1 (hg +txD) for Ry in all polynomials in Domain () that involve Rg. The proof
of Lemma 2 goes through unchanged.

Definition 7 (4suml intractability). Let Hash be a hash function whose out-
put space is Zy. Let € C Zy. Let A be an adversary. We define 4sumladv]A, Hash, €]
to be the advantage of A in breaking the 4suml property of Hash with respect
to the set €. This is defined as the probability that A wins the following game.

— The challenger chooses t € Z, uniformly at random and gives t to A.

— A outputs m,e,m*,e*, where e¢,e* € €.

— We say A wins the game if h +te = h* + te*, where e # e* and h =
Hash(m) and h* == Hash(m*).

Definition 8 (4sum?2 intractability). Let Hash be a hash function whose out-
put space is Zy. Let € C Zy. Let A be an adversary. We define 4sum2adv|A, Hash, €]
to be the advantage of A in breaking the 4sum2 property of Hash with respect
to the set €. This is defined as the probability that A wins the following game.

— The adversary asks the challenger for many random samples in Z;, and the
adversary chooses one such sample t € Zs.

The challenger chooses t* € Zy at random and gives t* to A.

A outputs m,e,m*, e*, where e, e* € €.

We say A wins the game if h/t +e = h*/t* + €*, where (m,e) # (m*,e*)
and h = Hash(m) and h* = Hash(m™).

Theorem 4. Let A be an adversary attacking Secqsa as in Def. 2 with addi-
tive key derivation and presignatures that makes at most N presignature,
signing, or group queries, of which Ny, are presignature requests. Let U denote
the mazimum number of unused presignatures at any point in time. Then there

exist adversaries Bia, B, Biia, B, and By, and B, whose running times
are essentially the same as A plus O(UN), such that CMAEE?pSadV[A, Secdsa, €]

s bounded by
CRadv[Bra, Hash] 4+ (4 4 0(1)) Npsig - 4sumladv[B,, Hash, €]
+ (4 + o(1))N|€| - RPRadv[Bira, Hash] + (4 4+ o(1))N - 4sum2adv|Bi,, Hash, €]
+ UN|€| - RPRadv|Bii., Hash] + ZPRadv|[Bui, Hash) + O(N?/q).

Also, adversary Bup obtains O(Npsig) random samples from its challenger.

On the security of ECDSA with additive key derivation and presignatures 21

Proof. We categorize forgeries as Types la, Ib, Ila, IIb, Ilc, and III: Types Ia
and Ib are as in Theorem 2, Types Ila-Ilc are as in Theorem 3, and Type III is
as in Theorem 1.

The analysis we did for Type Ia and III forgeries in §6 goes through here
without any change. Also, the analysis we did for Type II forgeries in §6 carries
over here for Type Ila forgeries.

Type Ib forgeries. We get a Type Ib forgery if and only if the equation (1)
holds with e # e*. Without presignatures, the adversary had to commit to h
and e before learning ¢, but with presignatures, the adversary is free to choose
h and e, along with h* and e*, after learning ¢. Indeed, we see that creating
a Type Ib forgery is essentially equivalent to breaking the 4suml property in
Def. 7. We can easily use such a forger to break the 4suml property as follows:
given the challenge ¢ in the 4sum1 game, we guess the relevant presignature,
set tx = t and run the sampler on ¢ to get Ry. This gives us By, in Theorem 4.

Type IIb and Ilc forgeries. Everything goes through exactly as in Theorem 3,
but with h; replaced by A; := h; + t;e; and h* replaced by A* := h* + t*e*. In
particular, we categorize Type IIb forgeries as those where

A _

Ay A
ti oty ot

We can easily use a Type IIb forger to break the 4sum2 property as follows.
In the first stage of the attack game in Def. 8, we use the random samples given
by the 4sum2-challenger to generate all the presignatures we need using the
sampling algorithm. With overwhelming probability, O(Npsig) random samples
will suffice. We then guess the group operation that produces R*. At the
time this group group operation is performed, we choose one of the variables R;
appearing in 7~ !(R*) arbitrarily and select ¢ in the attack game in Def. 8 to
the corresponding sample ¢;. We then obtain t* from our 4sum2-challenger and
run the sampling algorithm on t* to get R*. A Type IIb forgery will give us the
values m, e, m*, e* we need to win the attack game in Def. 8. This is adversary
B, in Theorem 4.

The adversary Bri. in Theorem 4 is exactly the same as By in Theorem 3,
but with hy replaced by Ay and h* replaced by A*, and where we also have to
guess the tweak e*. [J

Notes. 1. Just as in the case of presignatures without additive key derivation, this
scheme cannot be secure if we allow raw signing queries.
2. In the full version [12], we provide an alternative analyisis in terms of concrete
security properties of the hash function used to derive tweaks.

How strong are the 4suml and 4sum?2 properties? Consider first the
4suml property. If we just choose e and e* arbitrarily, then viewing Hash as a
random oracle, then analogous to the birthday attack, we can find m and m*

22 Jens Groth and Victor Shoup

satisfying the required relation in time O(,/q). However, by exploiting the fact
that we also have control over e and e*, we can beat the birthday attack.

Indeed, suppose we view Hash as a random oracle, and the elements of &
are randomly chosen. Then this problem is no harder than the 4-sum problem
studied in Wagner [19] and elsewhere [2,15]. Wagner gave an algorithm to solve
this problem that beats the birthday attack. In the full version [12], we sketch
Wagner’s algorithm, adapted to our setting. One consequence of this is that if
|€| = O(¢'/?), then we can solve this 4-sum problem and forge a signature in
time O(q'/3). The attack works as follows.

— Make one presignature query to get the group element R and let ¢ := C(R).
— Use Wagner’s algorithm to find m,e,m*,e* such that h 4+ te = h* + te*,
where e # e* and h := Hash(m) and h* := Hash(m™).

Now ask for a signature using this presignature on message m with tweak e.
This signature is also a signature on m* with tweak e*.

The O(¢'/?) work is time spent computing hashes of messages and tweaks
(which themselves may well just be hashes), and performing hash table lookups.
Mitigating against this attack is (i) the fact that the O(g'/?) time must be
done between the time that the presignature is generated and the time that the
adversary asks for a signature using that presignature, and (ii) the fact that the
attack takes space O(q'/?) (but see [2,15] for time-space trade-offs).

We stress that this O(q'/?) attack requires just one presignature and one
corresponding signature. It is also easily seen that the 4sum2 property is also no
harder than a 4-sum problem.

8 ECDSA with re-randomized presignatures

We saw the ECDSA with presignatures leads to potential vulnerabilities, espe-
cially when combined with additive key derivation. At the very least, we require
additional intractability assumptions. In this section, we explore a variant in
which the presignatures are re-randomized when used for signing. For thresh-
old ECDSA implementations, this re-randomization maintains most of the ben-
efits of presignatures; however, it also maintains most of the security properties
that we had without presignatures, both in the settings with and without addi-
tive key derivation.

So now a presignature is of the form (', R’), where r/ & Zqy and R’ < 1'G.
As before, when processing a request to sign a message, we can allocate one such
precomputed pair and use it to finish the computation of the signature. However,
instead of using the presignature directly, we re-randomsize it, computing o & ZLq,
and using (r,R) == (' + 0, R’ + §G) as the presignature. Crucially, the value of
0 is given to the adversary as an output of the signing request.

Notes. 1. The reason why we insist on giving d to the adversary is that a protocol
implementing a distributed signing service may ultimately reveal §. This allows us
to reduce the security of such a distributed protocol to this primitive. Depending
on how the distributed signing service is implemented, generating 6 may or may
not introduce extra latency.

On the security of ECDSA with additive key derivation and presignatures 23

2. Instead of generating ¢ at random, it could also be obtained by deriving it as a
hash of R’ and the signing request. The results we present here could be adapted to
this setting, especially if we model the hash as a random oracle. While the security
results would be somewhat weaker than if ¢ is generated at random, they would
still be significantly stronger than not using any re-randomization at all.

A lazy simulator. We start with the analog of Lazy-Sim in Fig. 4, but now
with re-randomized presignatures. Fig. 6 gives the details of Lazy-Sim.

1.

Initialization:
(a) 7+« {(0,0)}.

8 s
(b) d < Z
(c) invoke (map, 1) to obtain G
(d) invoke (map, d) to obtain D
() Kk« 0; K+ 0
(f) return (G, D)
To process a group oracle query (map,):
(a) if ¢ ¢ Domain(m):

i. P& EY

while P € Range(w) do: P & pr

ii. add (=%, —P) and (i, P) to 7
(b) return m(7)
To process a group oracle query
(add, P, 7)2):
(a) for j =1,2:if P; ¢ Range(m):

. To process a presignature request:

. To process a request to sign my, using pres-

(a) k+k+1

(b) 7 &2,

(c) invoke (map,r}) to get R},
(d) K «+ KU {k}; return R},

ignature number k € K:

(a) K« K\ {k}

) &, & 1z,

(C) T — T;c + Ok

(d) if 7 = 0 then return fail

(e) invoke (map, 7y) to get Ry

(f) te C(Rk) S Zq

(g) hik < Hash(my) € Zq

(h) if tx = 0 or hy + txd = 0 then return
fail

Y s (i) sk« rp "(he + trd)
Lot <= Lgs s (j) return (sg,tr, R, k)
while ¢ € Domain(r) do: i < Zj
ii. add (—¢,—"P;) and (¢, P;) to =
(b) invoke (map, 7~ *(P1) + 7~ (P2)) and
return the result

Fig. 6. Lazy-Sim (with re-randomized presignatures)

A symbolic simulator. We define a symbolic simulation of the attack game,
which is the analog of Symbolic-Sim in Fig. 5. As in Fig. 5, Domain(m) will now
consist of polynomials of the form a+bD+c1Ry+coRo+- - - , where a, b, ¢q, co, ... €
Zg4, and D, Ry, Ry, ... are indeterminants. Here, D symbolically represents the value
of d, and Ry symbolically represents the value of 7} (and not ry). Fig. 7 gives
the details of Symbolic-Sym.

Lemma 3. The difference between the adversary’s forging advantage in the Lazy-
Sim and Symbolic-Sim games (as described in Figs. 6 and 7) is O(N?/q).

The proof of Lemma 3 follows the same lines as that of Lemma 2, and we
leave the details to the reader.

We define CMAg&Tadv[A, S, €] to be adversary A’s advantage in winning
this modified CMA game in the EC-GGM.

Theorem 5. Let A be an adversary attacking Secdsa as in Def. 2 with re-
randomized presignatures that makes at most N presignature, signing, or

24 Jens Groth and Victor Shoup

1. Initialization: 4. To process a presignature request:
(a) w+« {(0,0)}. (a) k+k+1
(b) invoke (map, 1) to obtain G (b) invoke (map,Rx) to get R,
(c) invoke (map,D) to obtain D (¢) K «+ KU /{k}; return R},
(d) Kk« 0; K<+ 0 5. To process a request to sign mj, using pres-
(e) return (G, D) ignature number k € K:
2. To process a group oracle query (map7 z) (a) K+ K \ {k}
(a) if ¢ ¢ Domain(m): (b) &% & Z,
iop& E*; (¢) if R + 0k € Domain(w) then abort
if P € Range(w) then abort (d) invoke (map, Ry + d)) to obtain Ry
ii. add (—¢,—P) and (i, P) to (e) tx + C(Ry)
(b) return m(4) (f) if t;, = O then abort
3. To process a group oracle query (8) hi <+ Hash(my) € Zq
(add, P1, P2): S
(a) for j =1,2:if P; ¢ Range(m): (h) sk < Zg
T S (i) substitute szl(hk + txD) — &) for Ry
LoieZg; throughout Domain(w), and abort if
if i € Domain(m) then abort any two polynomials collapse
ii. add (—¢, —Pj) and (¢, P;) to = (§) return (sg,tr, R, Ox)
(b) invoke (map, 7w~ *(P1) + 7~ *(P2)) and
return the result

Fig. 7. Symbolic-Sim (with re-randomized presignatures)

group queries. Let U denote the mazimum number of unused presignatures at any
point in time. Then there exist adversaries By, Biia, Bibe, and By, whose run-

ning times are essentially the same as A plus O(UN), such that CM A28 adv| A, Secdsal

ITps

is bounded by

CRadv[Bi, Hash] + (4 4+ o(1))N - RPRadv[Bi1a, Hash]
+ N - RPRadv[Bim., Hash] + ZPRadv[Bir, Hash] + O(N°/q).

Proof. We categorize forgeries just as in Theorem 3, but we lump Types IIb and
IIc into a single Type IIbc. Forgeries of types I, ITa, and III are handled just as
in Theorem 3.

For forgeries of type IIbc, just as in Theorem 3, we suppose that at the time
R* is initially generated, we have 7= 1(R*) = a+bD+c1Ry +- - - +c/Ry, where the
¢;’s are nonzero; however, during the attack, we substitute R; — s l(hi—&—tiD) —0;
fori=1,...,¢, again, in that order. For i =0, ..., ¢, define

A; = a—i—ch(hj/sj —6;) and B; = b—I—chtj/sj.

J<i Ji<i
Equation (5) then becomes
(Agr = Be_the/ty — cede) = (Beoy + sy "cate) (B /t* — he/ty). (7)

At the time the substitution Ry — Se_l(hg + t¢D) — 0, is made, all of the terms
appearing in (7), besides d¢, s¢, and h*, are already fixed. Therefore, the left-
hand side of (7) will vanish with probability 1/¢, and as long as this does not
happen, we can use this Type IIbc forger to break random-preimage resistance.
Indeed, just as we argued in the proof of Theorem 3, there is a one-to-one
correspondence: for every h* such that h*/t* — hy/ty # 0 there exists a unique

On the security of ECDSA with additive key derivation and presignatures 25

s[l such that By_1 + S;lcgt@ # 0 and vice versa. We use this the given random-
preimage challenge as the value of 2* and solve (7) for s, '. O

Notes. 1. With re-randomized presignatures, we again obtain security with respect
to raw signing queries (allowing arbitrary, unconstrained hy € Zg).
2. One sees from the proof of Theorem 5 that we only need that the randomizer Jy
is sufficiently unpredictable — it need not be uniformly distributed over Zj,.

8.1 ECDSA with re-randomized presignatures and additive key
derivation

Now suppose we combine re-randomized presignatures with additive key deriva-
tion. We define CMAZLY, adv[A, S, €] to be adversary A’s advantage in win-

ning this modified CMA game in the EC-GGM.

Theorem 6. Let A be an adversary attacking Secasa as in Def. 2 with ad-
ditive key derivation and re-randomized presignatures that makes at
most N presignature, signing, or group queries, of which Ny e are presigna-
ture queries. Let U denote the mazimum number of unused presignatures at
any point in time. Then there exist adversaries Br., B, Bia, B, and B,
whose running times are essentially the same as A plus O(UN), such that
CMASSY adv[A, Secdsa, €] is bounded by

akd,rrps

CRadv|[Bra, Hash] + (4 + 0(1)) Nsig|€| - RPRadv[Bm,, Hash]
+ (44 o(1))N|€| - RPRadv|[Bi1a, Hash] + N|€| - RPRadv[Bi., Hash]
+ ZPRadv[Bu, Hash] + O(N?/q).

Proof. Forgeries are categorized just as in Theorem 4, but we lump Types IIb
and Ilc into a single Type IIbc. Type Ia and Ib forgeries are handled just as in
Theorem 2. Type Ila forgeries are handled just like Type II forgeries in Theo-
rem 2. Type III forgeries are handled just as in Theorem 1.

For Type Ilbc forgeries, everything goes through exactly as in Theorem 5,
but with h; replaced by A; := h; + t;e; and h* replaced by A* := h* 4+ t*e*, and
the adversary B, has to guess e*. [J

Notes. 1. With re-randomized presignatures, we again obtain security with respect
to raw signing queries (allowing arbitrary, unconstrained hi,er € Zg).
2. Just in in Theorem 5, it is not essential that dx is uniformly distributed over Z,
— it only needs to be sufficiently unpredictable.
3. In the full version [12], we provide an alternative analyisis in terms of concrete
security properties of the hash function used to derive tweaks.

9 Homogeneous key derivation

We propose a new key derivation technique (a similar construction was given
in [13] for completely different purposes). This derivation technique is still es-
sentially linear, and so enjoys many of the same advantages of additive key

26 Jens Groth and Victor Shoup

derivation, including (i) the ability to derive public keys from a master pub-
lic key, and (ii) the ability to efficiently implement the scheme as a threshold
signature scheme.

The basic idea is this. The master secret key is now a random pair (d,d’) €
Lg% Lq, and the corresponding master public key is the pair (D, D’) == (dG,d'G) €
E x E. For a given “tweak” e € Z,, the corresponding derived secret key is
d+ ed € Z, and the corresponding derived public key is D + eD’.

We consider homogeneous key derivation without presignatures, with pres-
ignatures, and with re-randomized presignatures.

As we will see, we can prove stronger results with homogeneous key derivation
than we could with additive key derivation. In particular, we will not need to
assume that the tweaks come from some predetermined set & C Z,. As such,
we will assume that a tweak e € Z; is derived from the hash function Hash as
e < Hash(id), where id is an arbitrary identifier. Here, Hash is the same hash
function used by ECDSA; however, it could also be a different hash function
(the only requirement is that this hash function maps into Z, and is collision
resistant). The signing algorithm will take as input both a message m and an
identifier id. In the forgery attack game, a forgery consists of a valid signature
(s*,t*) on a message m* and an identifier id*, subject to the constraint that the
signing oracle was not invoked with the same message/identifier pair (m*,id").

9.1 Homogeneous key derivation without presignatures

The lazy simulation in Fig. 2 is modified as follows: (i) In the initialization step,
the challenger chooses (d,d’) € Z, x Z, at random, invokes (map, d) and (map, d’)
to obtain D and D’. The challenger gives (G,D,D’) to the adversary. (ii) In a
signing request, the adversary supplies an identifier id in addition to a message
m, and the tweak e € Z, is computed as e <— Hash(id). To process such a signing
request, the challenger carries out the same logic, but with d + ed’ replacing d
in steps 4(f) and 4(g).

To verify a signature with respect to a tweak e*, where e* := Hash(id"), the
signature is verified with respect to the public key D + e*D’.

The symbolic simulation in Fig. 3 is modified as follows: (i) In the initial-
ization step, the challenger invokes (map,D) and (map,D’) to obtain D and D'
The challenger gives (G, D, D’) to the adversary. Here, D and D’ are distinct in-
determinants. (i) In a signing request, the adversary supplies an identifier id in
addition to a message m, and the tweak e € Z, is computed as e < Hash(id).
To process such a signing request, the challenger carries out the same logic, but
with D + eD’ replacing D in step 4(g).

It is easy to prove that Lemma 1 carries over to this setting without change.
We leave this to the reader.

We define CMAfEadv[A, S] to be adversary A’s advantage in winning this
modified CMA game in the EC-GGM. We can prove the following analog of
Theorem 2. As the reader will notice, the statement of this theorem is almost
the same as Theorem 1.

On the security of ECDSA with additive key derivation and presignatures 27

Theorem 7. Let A be an adversary attacking Secdasa a8 in Def. 2 with homo-
geneous key derivation that makes at most N signing or group queries. Then
there exist adversaries By, Br, and By, whose running times are essentially the
same as A, such that

CMA$ST adv[A, Secasa] < CRadv[Br, Hash] + (4 + o(1))N - RPRadv[B, Hash)
+ ZPRadv[Bu, Hash] + O(N?/q).

Proof. We categorize forgeries as Type I, II, or III just as in Theorem 1.
For a Type I forgery, for n € {£1}, we have

s) +tD+te’ D) =ns" +1tD+teD).
* 1 h* t t *1v/ n 1 h t t /
This gives us three equations:
() 'h* =ns7th, (s*)'t=ns"', and (s%)'te* =nste.

These three equations imply h* = h and e* = e. This immediately gives us the
adversary By in Theorem 7 that breaks the collision resistance of Hash, either of
the form Hash(m*) = Hash(m) or Hash(id") = Hash(id).

For a Type II forgery, if 7= 1(R*) = a + bD + b'D’, we have

a+ b+ 0D = (s*)"N(h* + D+ t*e D).
This gives us three equations:
a=(s")"'h*, b= (s*)"'t*, and ¥ = (s%)"lt*e’.

Just as in Theorem 1, we obtain b # 0, a # 0, and t* = h*a~'b. In addition, we
have b’ = be*. So just as in Theorem 1, we obtain an adversary By that breaks
the random-preimage resistance of Hash.

For a Type III forgery, just as in Theorem 1, we obtain an adversary B
that breaks the zero-preimage resistance of Hash. [

Note. The above analysis shows that the scheme is secure even with a “raw” signing
oracle.

9.2 Homogeneous key derivation with presignatures

The lazy simulation in Fig. 4 is modified as follows: (i) In the initialization step,
the challenger chooses (d,d’) € Z, x Z, at random, invokes (map, d) and (map, d’)
to obtain D and D’. The challenger gives (G, D,D’) to the adversary. (i) In a
signing request, the adversary supplies an identifier idj, in addition to a message
my, and the tweak e, € Z, is computed as ey < Hash(idy). To process such
a signing request, the challenger carries out the same logic, but with d + eyd’
replacing d in steps 5(c) and 5(d).

To verify a signature with respect to a tweak e*, where e* := Hash(id"), the
signature is verified with respect to the public key D + e*D’.

28 Jens Groth and Victor Shoup

The symbolic simulation in Fig. 5 is modified as follows: (i) In the initializa-
tion step, the challenger invokes (map,D) and (map,D’) to obtain D and D’. The
challenger gives (G, D, D’) to the adversary. Here, D and D’ are distinct indetermi-
nants. (ii) In a signing request, the adversary supplies an identifier idy, in addition
to a message my, and the tweak e, € Z, is computed as ey < Hash(idy). To
process such a signing request, the challenger carries out the same logic, but
with D 4 exD’ replacing D in step 5(d).

It is easy to prove that Lemma 2 carries over to this setting without change.
We leave this to the reader.

We define CMARRY | (adv[A, S| to be adversary A’s advantage in winning
this modified CMA game in the EC-GGM. We can prove the following analog
of Theorem 4. As the reader will notice, the statement of this theorem is almost
the same as Theorem 3.

Theorem 8. Let A be an adversary attacking Secasa as in Def. 2 with homoge-
nous key derivation and presignatures that makes at most N presignature,
signing, or group queries. Let U denote the mazimum number of unused presig-
natures at any point in time. Then there exist adversaries By, Biia, Bub, B,
and Biir, whose running times are essentially the same as A plus O(UN), such
that CMAElg:;’psadv[A, Secdsa) s bounded by

CRadv|[Br1, Hash] + N - RPRadv[Bir., Hash]
+ (44 o(1))N - RRadv[Buw, Hash] + UN - RPRadv|Biic, Hash)
+ ZPRadv[Bi, Hash] + O(N?/q).

Proof. We categorize forgeries as Type I, ITa, IIb, Ilc, or III essentially as in
Theorem 3.

Everything goes through the same as in the proof of Theorem 7, except for
the analysis of Type II forgeries.

Consider the point in time when the adversary queries the group oracle to
obtain R* for the first time. Let us call this a Type Ila forgery if at this time,
77 Y(R*) is of the form a + bD + b'D’. Type Ila forgeries can be dealt with in
exactly the same way as Type II forgeries in the proof of Theorem 7.

Now, consider a Type II forgery that is not a Type Ila forgery. For such a
forgery, the initial preimage of R* is a polynomial that involves the indetermi-
nants Ry, R, However, before the attack ends, all of these variables must be
substituted via signing queries, so that if the attack ends with a forgery, we must
have 771 (R*) = (s*)"1(h* +¢*D + t*e*D’).

Just as in Theorem 3, we suppose that at the time R* is initially generated,
we have 71 (R*) = a+bD+ciRy +- - - +c¢Ry, where the ¢;’s are nonzero; however,
during the attack, we substitute R; — s{l(hi +t;D+t;e;D') fori =1,...,¢, again,
in that order. For ¢ =0, ..., ¢, define

Ai=a+ chhj/sj, B;i=b+ chtj/sj, and Bj =10+ chtjej/sj.
J<i J<i J<y

A forgery must satisfy:
Ap=(s)"'h*, By=(s)"'t*, and B, = (s*)"'t*e". (8)

On the security of ECDSA with additive key derivation and presignatures 29

Note that the first of these two equations are identical to the two equations in
(4) in the proof of Theorem 3. Indeed, we can complete the proof just as in
Theorem 3, where Type IIb and Ilc forgeries are defined in the same way. O

Note. Unlike as in Theorem 7, we see that this scheme is insecure if we allow a “raw”
signing oracle.

9.3 Homogeneous key derivation with re-randomized presignatures

The lazy simulation in Fig. 6 is modified as follows: (i) In the initialization step,
the challenger chooses (d,d’) € Zq x Zq at random, invokes (map, d) and (map, d’)
to obtain D and D’. The challenger gives (G, D,D’) to the adversary. (i) In a
signing request, the adversary supplies an identifier idj, in addition to a message
my, and the tweak e, € Z, is computed as ey < Hash(idg). To process such
a signing request, the challenger carries out the same logic, but with d + exd’
replacing d in steps 5(h) and 5(i).

To verify a signature with respect to a tweak e*, where e* := Hash(id™), the
signature is verified with respect to the public key D + e*D’.

The symbolic simulation in Fig. 7 is modified as follows: (i) In the initializa-
tion step, the challenger invokes (map,D) and (map,D’) to obtain D and D’. The
challenger gives (G, D, D’) to the adversary. Here, D and D’ are distinct indetermi-
nants. (ii) In a signing request, the adversary supplies an identifier idy, in addition
to a message my, and the tweak e, € Z, is computed as ey < Hash(idy). To
process such a signing request, the challenger carries out the same logic, but
with D 4 e,D’ replacing D in step 5(i).

It is easy to prove that Lemma 3 carries over to this setting without change.
We leave this to the reader.

We define CMAFEY | adv[A, S] to be adversary A’s advantage in winning
this modified CMA game in the EC-GGM. We can prove the following analog
of Theorem 6. As the reader will notice, the statement of this theorem is almost
the same as Theorem 5.

Theorem 9. Let A be an adversary attacking Secasa as in Def. 2 with homo-
geneous key derivation and re-randomized presignatures that makes at
most N presignature, signing, or group queries. Let U denote the mazximum num-
ber of unused presignatures at any point in time. Then there exist adversaries
Br, Biia, Brie, and By, whose running times are essentially the same as A plus
O(UN), such that CMAEiI;rrpsadv[A, Secdsa) 15 bounded by

CRadv(Br, Hash] + (4 4+ o(1))N - RPRadv|Bi1a, Hash]
+ N - RPRadv[Bim, Hash] + ZPRadv[Bi, Hash] + O(N?/q).

Proof. We categorize forgeries as Type I, I1a, IIbc, or III essentially as in The-
orem 9.

The proof follows the same outline as that of Theorem 8, except for the
analysis of Type IIbc forgeries, which follows the same outline as in Theorem 5.

Note. The above analysis shows that the scheme is secure even with a “raw” signing
oracle.

30

Jens Groth and Victor Shoup

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC 1989. pp. 201-209 (1989)

Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: Implementing
Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB.
Cryptology ePrint Archive, Report 2009/292 (2009), https://ia.cr/2009/292
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In:
ASTACRYPT 2001. pp. 514-532 (2001)

Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Designs, Codes
and Cryptography 35, 119-152 (2002)

Canetti, R., Makriyannis, N., Peled, U.: UC non-interactive, proactive, threshold
ECDSA. Cryptology ePrint Archive, Report 2020/492 (2020), https://ia.cr/
2020/492

. Certicom Research: Sec 2: Recommended elliptic curve domain parameters (2010),

version 2.0, http://www.secg.org/sec2-v2.pdf

Damgard, I., Jakobsen, T.P., Nielsen, J.B., Pagter, J.I., Ostergard, M.B.: Fast
threshold ECDSA with honest majority. Cryptology ePrint Archive, Report
2020/501 (2020), https://ia.cr/2020/501

Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: The exact security of BIP32 wallets.
Cryptology ePrint Archive, Report 2021/1287 (2021), https://ia.cr/2021/1287
The DFINITY Team: The internet computer for geeks. Cryptology ePrint Archive,
Report 2022/087 (2022), https://ia.cr/2022/087

Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signa-
tures. In: 2016 ACM SIGSAC. pp. 1651-1662. ACM (2016)

Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive, Report 2020/540 (2020), https://ia.cr/2020/540
Groth, J., Shoup, V.: On the security of ECDSA with additive key derivation
and presignatures. Cryptology ePrint Archive, Report 2021/1330 (2021), https:
//ia.cr/2021/1330

Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate
key leakage. Cryptology ePrint Archive, Report 2014/998 (2014), https://ia.cr/
2014/998

Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165172 (1994), translated from Matematicheskie Za-
metki, 55(2):91-101, 1994

Nikolic, I., Sasaki, Y.: Refinements of the k-tree algorithm for the generalized
birthday problem. In: ASTACRYPT 2015. pp. 683-703 (2015)

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: EURO-
CRYPT '97. pp. 256-266 (1997)

National Institute of Standards and Technology: Digital signature standard (DSS).
Federal Information Processing Publication 186-4 (2013), https://doi.org/10.
6028/NIST.FIPS.186-4

Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: CRYPTO 2002. pp. 93-110 (2002)
Wagner, D.A.: A generalized birthday problem. In: CRYPTO 2002. pp. 288-303
2002)

%Vuille, P.: Hierarchical deterministic wallets (2020), https://github.com/
bitcoin/bips/blob/master/bip-0032.mediawiki

Yuen, T.H., Yiu, S.: Strong known related-key attacks and the security of ECDSA.
In: Network and System Security (NSS 2019). pp. 130-145. Springer (2019)

https://ia.cr/2009/292
https://ia.cr/2020/492
https://ia.cr/2020/492
http://www.secg.org/sec2-v2.pdf
https://ia.cr/2020/501
https://ia.cr/2021/1287
https://ia.cr/2022/087
https://ia.cr/2020/540
https://ia.cr/2021/1330
https://ia.cr/2021/1330
https://ia.cr/2014/998
https://ia.cr/2014/998
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

	On the security of ECDSA with additive key derivation and presignatures

