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Abstract. Leakage simulators offer the tantalising promise of easy and
quick testing of software with respect to the presence of side channel
leakage. The quality of their build in leakage models is therefore crucial,
this includes the faithful inclusion of micro-architectural leakage. Micro-
architectural leakage is a reality even on low- to mid-range commercial
processors, such as the ARM Cortex M series. Dealing with it seems
initially infeasible in a “grey box” setting: how should we describe it if
micro-architectural elements are not publicly known?
We demonstrate, for the first time, that it is feasible, using a recent
leakage modelling technique, to reverse engineer significant elements of
the micro-architectural leakage of a commercial processor. Our approach
first recovers the micro-architectural leakage of each stage in the pipeline,
and the leakage of elements that are known to produce glitches. Using
the reverse engineered leakage features we build an enhanced version of
the popular leakage simulator ELMO.

1 Introduction

Securing a specific implementation of a cryptographic algorithm on a concrete de-
vice is never a trivial task. In recent years, a proposal to help with this challenge
has emerged: instead of testing implementations in a costly lab setup, leakage
simulators like ELMO [1], MAPS [2], and ROSITA[3] have surfaced, which all
claim to capture significant leakage of the respective devices that they apply to.
A comprehensive survey of existing simulators was recently published [4]. This
survey puts forward a range of challenges that are yet to be solved, among which
is the inclusion of more micro-architectural effects (of the resp. processor).

Micro-architectural leakage can render the provable properties of modern
masking schemes meaningless in practice. Let us consider for instance an imple-
mentation of a masked multiplication using the 2-share masking scheme origi-
nally proposed in [5]. We consider its implementation using Thumb Assembly on
a microprocessor with the ARM Cortex M3 architecture (see the program code
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in this section). The masked multiplication computes the shared out product
c = (c1, c2) of two shared out numbers a, b (with a = (a1, a2) and b = (b1, b2))
using an independent random number r.

1 ISWd2:

2 ...

3 //r1=a(1), r2=a(2), a(1)+a(2)=a

4 //r3=b(1),r4=b(2), r5=r, b(1)+b(2)=b

5 mov r6, r1 //r6=a(1)

6 ands r6, r3 //r6=a(1)b(1)

7 mov r7, r4 //r7=b(2)

8 ands r7, r2 //r7=a(2)b(2)

9 ands r1, r4 //r1=a(1)b(2)

10 eors r1, r5 //r1=a(1)b(2)+r

11 ands r3, r2 //r3=a(2)b(1)

12 eors r1, r3 //r1=a(1)b(2)+r+a(2)b(1)

13 eors r6, r1 //c(1)=a(1)b(2)+r+a(2)b(1)+a(1)b(1)

14 mov r0, r9 //r0=output address

15 eors r7, r5 //c(2)=r+a(2)b(2)

16 ...
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Fig. 1: 1st order TVLA on input a on existing simulators and realistic measure-
ments
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The multiplication rule produces the shared out product in a manner that
guarantees that no information is revealed about a or b assuming individual
intermediate values do not leak jointly. Consequently in practice it typically
shows leakage because this assumption is often not justified. Using a leakage
simulator, we can pinpoint the instructions that violate the assumption, then
try to avoid the leakage via revising the corresponding instructions.

With real measurements, the first order fixed-versus-random t-test on the
input a show leakage during the execution of the instructions in line 9 and 15
(the bottom right corner in Figure 1). But when we execute the same piece of
code in ELMO (we use the recently released M3 version of ELMO [6]), no leakage
can be found (see the upper left graph in Figure 1). The ROSITA tool uses an
“upgraded version” of ELMO, which they call ELMO* [3]. Leakage detection
reports leakage for the instruction on line 5 (upper right in Figure 1). According
to the realistic detection, this is a false-positive leak, while the true leaks in line 9
and 15 are not reported. The white-box M3 simulator MAPS [2] reports leakage
for the instruction on line 15, but fails to report leakage for line 9 (bottom left
in Figure 1).

All three simulators fail to capture some leak(-s) in this example, and one
finds a leak where there is none. Our motivation is thus to develop a technique
that leads to more accurate leakage models and ultimately simulators.

1.1 Our contributions

The challenge to include micro-architectural effects is a non-trivial one when
working with many interesting cores. This is because many processors of interest
feature pipelining and have multiple unknown micro-architectural elements that
leak. Consequently we need to reverse engineer their leakage behaviour (note
that we do not actually need to reverse engineer the entire core itself).

Side-channel leakage has been used in the past for reverse engineering of both
programs and hardware [7], [8], [9], [10]. In these works the authors used standard
DPA style attacks (with and without using device leakage models) to confirm
hypotheses about the internals of the respective devices/implementations, which
were relatively simple. In order to tackle devices that feature pipelining, and/or
a more interesting memory subsystem, a better approach is needed. In recent
work [11], Gao and Oswald pick up the methodology from [1] and extend it so
it can capture considerably more complex leakage models. They also argue that
important leakage has been missed in recent attacks [12] and simulators.

We show that their novel modelling technique can not only be used to reason
about the quality of leakage models, but that it is actually a tool for reverse
engineering the micro-architectural leakage features of devices. We use it to
dissect the leakage from a commercial processor based on the ARM Cortex M3
architecture and reveal its micro-architectural leakage characteristics. Doing so
is all but straightforward: [11] are clear that the test itself provides “clues”
about the internal mechanisms, but one needs to design additional confirmatory
experiments to actually verify the micro-architectural meaning of these clues
(this ties in with another recent paper [13]).
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To put our results into the context of the existing leakage simulation lit-
erature, we then compare leakage predictions that are based on the reverse-
engineered micro-architectural leakage with the predictions of the most sophis-
ticated simulators ELMO and MAPS3.

Whilst our methodology currently involves intensive manual effort, we argue
such effort is worthwhile, because:

– it enriches our understanding of micro-architecture effects in relevant pro-
cessor architectures,

– it significantly improves the state-of-the-art leakage modelling of micro-
architectural elements,

– it showcases that many existing leakage models and tools miss significant
micro-architectural effects.

1.2 Methodology and Paper Organisation

In the following three sections, we discuss step by step how to reverse engineer the
micro-architectural leakage elements of a close-sourced commercial processor. In
contrast to previous works that captured only simple micro-architectural leakage,
and led to the simulators ELMO, ELMO* and MAPS, we aim to comprehensively
recover all micro-architectural leakage.

In a grey-box setting, we cannot take advantage of a detailed hardware de-
scription, but we can utilise publicly available architectural information to guide
our analysis. Therefore, our methodology is based on the following key steps:

1. Build an abstract diagram from the public available information (e.g. ar-
chitecture reference [14], ISA [15], etc.) and make some safe architectural
inferences (Section 2).

2. Recover the relevant micro-architectural details through analysing the side-
channel leakage. Specify the data flow for each instruction and construct a
micro-architectural leakage model for each pipeline stage (Section 3).

3. Evaluate the overall micro-architectural leakage for the target processor,
further adding more subtle micro-architectural leakages (e.g. glitches) or
discarding non-significant factors (Section 4).

We then challenge the resulting micro-architectural leakage model of our M3
by a comprehensive comparison in Section 5, and we conclude this paper in
Section 6.

3 ELMO* [3] offers an extension to ELMO that captures some more leakage from the
memory subsystem. ELMO offers also such an extension (in the follow-up develop-
ment), yet both are drawn from experimental guesses. Nevertheless, our focus in
this paper still lies in pipelined core, where the entire ELMO family sticks with the
original ELMO model [1].
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Experimental setup Throughout this paper, we preserve the same experimen-
tal setup:

– Target: NXP LPC1313 (ARM Cortex-M3) running at 1 MHz with only
Thumb instructions

– Measurement point: voltage at a 100 Ohm shunt resistor at the VCC end
– Pre-processing: on-board 22db amplifier (NXP BGA2801)
– Oscilloscope: Picoscope 5243D running at 250 MSa/s

Unless stated otherwise, each tested code snippet takes 50k traces. Our setup
ensures leakage does not last for more than 1 cycle, which helps to identify
how leakage changes from cycle to cycle. Thus, most experimental results in the
following two sections have been cropped to the exact cycle, which contains 250
sample points.

Statistical reverse engineering methodology As a reverse engineering tool
we use the methodology from [11]. Their methodology extends the modelling
technique of ELMO. We provide an informative explanation of their technique,
which essentially enables to “compare” two leakage models. A leakage model con-
sists of a function and some variables that correspond to actual leakage elements
(e.g. architectural registers, buffers, etc.). The models that we compare consist of
the same function (which includes possible interactions between variables), but
they contain different variables. Specifically we reduce a model by removing a
variable (or the interaction between variables) that represents an unknown leak-
age element. The statistical test from [11] then checks if this additional variable
explains statistically significantly more of the the observable leakage. If so, then
we conclude that the removed variable represents a significant leakage element
in the processor.

To facilitate explaining our research in the following sections, we need to
introduce some notation and formalism around the leakage modelling and testing
process. We will refer to any model that we test with M and if there are multiple
models we distinguish them by their subscript, e.g. we may want to test two
models M0 and M1. A leakage model consists of a function and some variables.
The function defines if and how the included variables interact with each other.
The methodology in [11] works with nominal models, thus all coefficients are
either 0 or non-0 in the resulting functions. Thus we drop these coefficients for
readability, and instead use a set notation to indicate how variables interact with
each other: if two variables X, and Y fully interact with each other then we write
their respective model as {XY }; if the two variables only leak independently then
we write their respective model as {X,Y }.

In our work we hope to find if a simpler model M1 = {X,Y } already suffices,
or if a fully interactive model M0 = {XY } is necessary. We note at this point
that the simpler model M1 is indeed included in M0: in fact, M0 includes all
interaction terms and also the individual variables X,Y . A statistical test can be
applied to tell whether M0 is a “better” model than M1, which implies whether
X and Y interact with each other in the measurements. The problem of this



6 Si Gao , Elisabeth Oswald , and Dan Page

approach is that the variables that we consider are all “large” in the sense that
statistically every 32-bit variable (the M3 operates on 32 bit data words) leads to
32 independent statistical variables. Testing multiple large variables then leads
to the problem that a test requires a large number of leakage observations to
produce statistically significant results. To circumvent this problem we use the
trick of “collapsing models” from [11].

2 Step 1: Identifying Safe Architectural Assumptions

Although exploring every concrete detail is not possible in a grey-box scenario,
there is always some public information available that can be used to con-
struct an initial, abstract architectural view. For instance, from Figure 2, re-
produced from [14, Figure 1.2], we know the Cortex-M3 processors use a 3-stage
pipeline [14]: the stages are termed Fe(tch), De(code), and Ex(ecute). More
specifically, while executing instruction i− 2, instruction i− 1 is being decoded
by the instruction decoder, and instruction i is being fetched from the memory
to the instruction register. Since there is no dedicate write-back stage, the Arith-
metic Logic Unit (ALU) output is written-back to the register file (or memory)
immediately after the Execute stage.

Although not directly provided in [14], we believe the following details can
be safely inferred

– A set of pipeline registers exists between stages, meaning, for example, an
instruction register between Fetch and Decode and pipeline register(s) be-
tween Decode and Execute.

– Figure 2 explicitly claims that “register read” occurs within the Decode
stage; this implies the pipeline registers between Decode and Execute
stores control signals and operands read from the register file.

– Many Thumb instructions [15] use 2 operands, which suggests the register
file should have at least 2 read ports; this implies there are (at least) 2
operand pipeline registers between Decode and Execute.

3 Step 2: Recovering major micro-architectural leakage
elements

Previous works such as [13,16] have shown that side-channel leakage can reveal
some micro-architectural details. In this spirit, but utilising the F-test method-
ology for nested models, we set out to recover the major micro-architectural
leakage elements of our Cortex-M3 core. We do so by analysing each of three
pipeline stages separately.

3.1 Fetch

The Fetch stage fetches one or several instructions from the memory to the
instruction register (i.e. block Fe in Figure 2). Based on the publicly information
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Fig. 2: The Cortex-M3 pipeline [14, Figure 1.2].

provided in the ARM reference manual, we envision the micro-architecture of
the Fetch stage to look as depicted in Figure 3a.

Functionally, the fetched instruction’s address is stored in Program Counter
(PC, aka R15 in ARM): therefore we plot F.1 which sends PC value to the
instruction memory. PC can be incremented automatically (F.2), or accepts
new address for branching (from ALU or decoder). F.3 loads the instruction(-s)
to the instruction register, which marks the beginning of Decode. We plot all
wires in this stage as blue lines in Figure 3a.

In terms of micro-architectural ambiguity, there is none in Figure 3a. In fact,
the wires F.1-3 are fully determined by the value of PC. Unless the program per-
forms data dependent branches, all leakage from this stage is constant between
executions. We further exclude the leakage from data dependent branches in our
analysis: compared with leakage modelling, information flow analysis is a much
easier solution for that issue.
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Fig. 3: Hypothetical micro-architecture: Fetch and Decode.

3.2 Decode

TheDecode stage starts from translating the fetched instruction into the control
logic, and ends with sending the pre-loaded operand(-s) to the pipeline register(-
s)(i.e. block De in Figure 2).

Figure 3b plots our view of the micro-architecture for the Decode stage.
The decoder translates the instruction (D.1) into control signals, including the
register indices for the pre-loaded operands (D.2-D.4) and potential immediate
numbers (D.8). The corresponding operands are loaded from the register file
(D.5-D.7), then sent to the pipeline registers (D.9-D.10). The pipeline registers
rs1 and rs2 mark the beginning of Execute. All the wires in this stage are
plotted as purple lines: if the signal is directly read from a register, we use solid
line; otherwise, we use dash line to represent the fact that this signal might be
affected by glitches (analysed in Section 4.2). Note that there should also be a
few pipeline registers storing the control signals and the immediate number: as
they are not data-dependent, we simply omit those in Figure 3b.

Unlike Fetch, there are a few ambiguities in the Decode stage: first, it is
unclear how many read ports/operands should exist in Figure 3b. Considering
most Thumb instructions take at most 2 operands, previous tools often assume
the register file has 2 read ports [1,2] (i.e. connected to D.5 and D.6). We also
started with a similar architecture, but some instructions (e.g. adds Rd, Rn, Rm)
produced leakage that access more than 2 registers. From side-channel leakage
alone, we cannot conclude whether there is another read port (i.e. D.7), or such
leakage is from a multiplexing route of the existing ports or even an unexpected
access from glitches. Either way, we proceed our analysis assuming there are 3
read ports (which is leakage equivalent to the other options).
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With multiple read ports existing in the micro-architecture, the next ques-
tion to ask is which operand is loaded from which port. Thus, we design the
following experiments and try to find the answer from analysing the realistic
measurements.

Testing the read ports. We denote $a as the the low register ra where a ran-
domised operand A is stored in. The 3 reading ports in Figure 3b (marked as
Data1−3, connected to D.5-7), we denote them as port1, port2 and port3 respec-
tively. As we can see from the following code snippet, when executing the first
eors, the second instruction enters the Decode stage. According to Figure 3b,
operands C and D should occupy two read ports on the register files (therefore
also two connected buses D.5 and D.6), while the previous values on these ports
should be A and B. Thus, within the cycle that is decoding the second instruc-
tion, as long as we observe a leakage that corresponds to the interaction of A
and C, it is expected that A and C should share the same reading port/operand
bus.

1 Testing_port:

2 ...

3 eors $a,$b
4 INSTR $c, $d
5 nop

6 eors $0,$0 //$0=register that stores 0

7 ...

Specifically, let us assume in eors $a,$b, A takes port 1 (i.e. D.5)4. From
here, whenever an interaction is detected between A and C, we set C to port 1.
Otherwise, if an interaction is detected between A and D, we set D to port 1.

This leads to testing the following two models using real device data:

– M0 = {AC}, AC = {x|x = a||c, a ∈ A, c ∈ C}
– M1 = {A,C} (similarly BD, AD, BC)

If the test concludes that there is no enough evidence that M1 is significantly
worse than M0, we conclude that there is no strong evidence of A and C interact
with each other, therefore it is less likely A and C shares the same reading
port/operand bus in the micro-architecture. Otherwise, A is clearly interacting
with C: if the interaction is indeed coming from the micro-architecture5, it is
likely A and C share the same reading port/operand bus.

Altogether we tested 55 Thumb instructions, which covers almost the entire
instruction set (versus 23 cryptography-relevant instructions in ELMO [1]).

4 If it is the other way around, what we learned is a “mirrored specification”, which
will be remedied by a mirrored leakage model later.

5 In theory, it is also possible that the interaction is caused by glitches, or physical
defaults such as coupling [17]. In our experiments, we find the magnitude of wire
transition leakage is usually larger than the other options, which makes it possible
to make a distinction.
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Fig. 4: Leakage analysis on register access in the decoding stage.

Table 1 gives a concise summary of the instructions and our findings through
leakage analysis, which we explain subsequently.

Results. Our analysis shows that the decoding leakage (i.e. which operand is
loaded through which port) strongly depends on the instruction encoding. More
specifically, the column Encoding in Table 1 demonstrates the encoding bit-field
of each instruction: ARM often uses Rd to represent the destination register
and Rm/Rn represent the source registers. The assembler instruction uses those
explicitly, yet did not explicitly explain the distinction (especially for Rm and
Rn), or whether it links to any micro-architecture element. From our following
analysis, it seems there is at least some connection.

Let us first look at some concrete F-test results as given in Figure 4. In this
figure, the black dashed line gives the F-test threshold, and any of the coloured
lines that exceed the threshold indicates that the corresponding term cannot
be dropped (or in other words, it needs to be included as a micro-architectural
leakage element).

There are six sub-figures, which correspond to different cases:

– adds $c,#1 (Type I): only interaction AC appears, which suggests C is loaded
to port 1.
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– eors $c, $d (Type II): as expected, this group shows interaction AC and BD,
even if Rd is not required by the functionality (e.g. rsbsRd, Rm). Required
or not, C/D is loaded to port 1/2 respectively.

– adds $c, $d (Type III): as showed in Table 1, the only difference here is both
C and D can come from a high register (R8−13). Although the interaction is
significantly weaker, we saw the same interaction as Type II in Figure 4 (i.e.
A → C and B → D).

– muls $c, $d (Type IV): unlike the previous cases, Type IV explicitly uses
another register Rn (see Table 1). For mul and ldr, the leakage form is
consistent: Rd (C) is connected to port 1 and Rn (D) is connected to port
2, therefore all transitions of AC and BD remain the same. We assume Rm

(if used) is loaded from the extra port 3.
– adds $e, $c, $d (Type IV, exceptional): 3-register instructions (i.e. adds,subs)

are exceptional: they connect Rm instead of Rn to port 2. Rd is still loaded,
yet not interacting with operand A or B. Although no concrete evidence, we
set Rd to port 1 and leave Rn to port 3.

– eors $a, $b → ldm $d, [loreglist] (Type V): this group shows no interaction;
we assume Rn connects to port 3.

push and pop do not load any operand (other than the non-data-dependent
stack register SP) in the decoding stage, therefore have been excluded from the
decoding part of Table 1. Corresponding to the 3 purple dash lines (D.5-D.7)
in Figure 3b, Table 1 documents the operand on each port for each instruction.
Note that in a grey-box scenario, Table 1 represents the “reasonable conjectures”
from leakage analysis: without reviewing the source code, this is the best possible
guess we can come up with. D.9 and D.10 connect to the pipeline registers rs1
and rs2, which will be inspected in the Execute stage.

3.3 Execute

On the contrary, the Execute stage is relatively simple: preloaded operands
start from the pipeline register (E.1 and E.2 in Figure 5a), then go through the
computation logic within the ALU. The ALU’s output (E.4) is then sent back to
the register file or memory, depending on the specific instruction. There might
be some more complicated computation logic (e.g. the multiplier in Figure 2),
but from a leakage point of view, since they all connect to the pipeline registers,
we simply combine everything into the equivalent ALU. Most previous tools
assume there are two pipeline registers that store the operands: in our analysis,
we found that 2 registers could already explain our observed leakage, therefore
we stick with 2 registers in Figure 5a.

In previous tools, Execute is often regarded as the critical part: for instance,
ELMO [1] captures the leakage/transition leakage from the 2 operands on the
data buses E.1 and E.2 in Figure 5a. MAPS [2] on the other hand, captures the
transition leakage on the pipeline registers rs1 and rs2, as well as the destination
register transition in the register file (the assignment for rs1 and rs2 may or
may not be identical to NXP’s implementation). Both tools ignore the Fetch
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Fig. 5: Hypothetical micro-architecture: Execute and Memory.

and Decode stage and focus on part of the Execute stage’s leakage. Recall
that our analysis in the previous section did not reveal D.9 or D.10. Even if we
knew what appears on D.9 and D.10, the pipeline registers rs1 and rs2 could still
preserve their own values (driven by their control signal). Thus, the fundamental
question to answer in this stage, is which value enters rs1/rs2?

We can perform a similar analysis as for the Decode stage. Specifically, let
us consider the same code snippet, but targeting at the latter eors.

1 Testing_rs1rs2:

2 ...

3 eors $a,$b
4 INSTR $c,$d
5 nop

6 eors $0,$0 //$0=register that stores 0

7 ...

Assuming eors sets rs1 to A and rs2 to B, as the latter eors should have the
same micro-architectural effect as the previous one, thus it would set both rs1
and rs2 to 0. We have tested beforehand that nop does not touch the pipeline
registers in our target core, which is also confirmed in [13]. The purpose of
having this nop is separating the pipelined leakage: in a 3-stage processor, when
executing the latter eors, it is expected that the target instruction INSTR has
already committed its result, therefore does not further affect the leakage. Thus,
we can test if the operands A or B still affects the leakage for the latter eors: if
so, the pipeline register transits as

rs1 : A → A → 0, HD = A
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otherwise, we further test whether C or D affects the leakage. If C is presented
in the leakage, it suggests:

rs1 : A → C → 0, HD = C

Considering that the observed leakage for executing the latter eors is not affected
by the decoding stage of INSTR, we can have a higher confidence that C enters
rs1.
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Fig. 6: Pipeline register analysis in the executing stage.

Following this approach, we have tested all instructions in Table 1. A few
representative results are presented in Figure 6, namely:

– movs $c,#imm does not store the immediate in pipeline registers, therefore
both rs1 and rs2 keep their previous values (i.e. A and B).

– There are two types of 1-operand ALU instructions (Table 1): mov, shift-s,
and add/sub use only rs1, while neg/mvn, reverse, and extend instructions
utilise only rs2.

– 2-operand ALU instructions always use both rs1 and rs2. Further analysing
the transition shows that the left operand always goes to rs1: that is to say,
Rd goes to rs1 if Rd contains a necessary operand; otherwise Rn enters rs1
(i.e. INSTR Rd, Rn, Rm).
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– For ldr -s, the base address (Rn) enters rs1, while the offset (if not constant),
goes to rs2. If the offset is constant, rs2 preserves its previous value.

– For str -s, the first cycle works the same way as ldr, while the second cycle
sends Rd to rs1.

– pop and push clear rs1 with the address in SP, which according to our
assumption, should be a constant.

It is worthwhile to mention that most our results in Table 1 regarding the
pipeline registers are consistent with [2]6. The fact that their conclusion is drawn
from analysing the source code of Cortex-M3 from ARM is reassuring: our tech-
nique did successfully recover the underlying micro-architecture elements. The
only exception we found is shift-s: in MAPS [2], the target operand is always
set to rs2; while our test suggests the operand goes to rs1. Either this difference
is because NXP indeed changed the design, or ARM has multiple versions of
Cortex-M3 design.

3.4 Register write-back

Technically speaking, a 3-stage pipeline often does not have a dedicate register
write-back stage. However, as we can see in Figure 2, the ALU output has to be
written back at the end of the Execute cycle, which leads to a transition leakage
that affects the next cycle. As both the ALU output and the value destination
register are explicitly defined by the Instruction Set Architecture (ISA) and the
executing code, there is no need for further investigation for such leakage.

3.5 Memory sub-system

It is well known that the memory subsystem produces various “unexpected”
issues [16,3,13,18,19]. The main challenge is that while the ISA specifies what
should happen in the processor, it certainly does not specify the detailed design of
any asynchronous component (i.e. the memory). More specifically, in our case,
ARM specifies the memory interface through the AMBA APB Protocol [20]:
the protocol defines how the processor should communicate with the periph-
eral, performing read/write operations. However, the peripheral is asynchronous
(aka self-timed) to the processor, therefore the response time as well as internal
interactions are completely up to the peripheral. Take ldr/str instructions for in-
stance, although it is often assumed they take 2 cycles, in practice, the situation
is much more complicated. The peripheral can prolong the transfer by adding
wait states [20], or for certain instructions, the ALU can proceed without the
peripheral finishing its task.

As a consequence, without a timing-accurate memory simulator, the chance of
constructing a timing-accurate leakage model for the memory sub-system seems
gloomy. In Figure 5b, we construct a hypothetical view that captures various
known issues (e.g. from [13,3]). Specifically, we assume our memory system works
as follows:
6 Available in their code repository, not in the paper.
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– Each load/store produces leakage on the entire word (32-bit), even if the
target is only one byte (see Section 5.2 [13]).

– The memory system has only one (shared) address bus (specified by [20]).
– The memory buses preserve their values until the next access (recommended

in [20]).
– Read and write share the same data bus (consistent with Section 5.1 [13]).
– There is also a dedicate bus/buffer that holds the write value (our own

experiments).

Although Figure 5b does not specify the timing behaviour, fortunately, the
accurate timing is not required for many application scenarios (e.g. leakage sim-
ulators [1,2,3]/verifiers [21]): for developers, it is essential to learn why such
leakage appears, but less crucial when.

Take two adjacent store instructions for instance, as long as we know there
exists a transition leakage on the write bus, we do not necessarily care about
whether this leakage appears at clock cycle x or x + y. Whilst a more detailed
investigation on timing characteristics might be possible, they becomes increas-
ingly unrewarding in a grey-box setting.

4 Step 3: Refining the micro-architectural leakage model

In the previous section, we reverse engineered where operands are stored in the
micro-architecture, and we developed a first understanding of the interactions
between operands across the three pipeline stages. Now we set out to refine this
understanding and characterise the interactions.

4.1 Considering components with stable signals

Fetch. Stable signals are from micro-architectural components that do not have
glitches. Because we assume our target program does not contain any “data-
dependent branches”, we do not need to consider elements from this stage.

Decode. Because we do not consider data dependent instructions, we can also ex-
clude all purple wires before the register file (D.1-4, D.8) as they do not produce
data-dependent leakage (i.e. remain the same between each execution). After
accessing the register file, each purple wire must be considered, as it carries an
operand that varies from trace to trace.

Based on the information in Table 1, we can build a simplified micro-architectural
leakage model that only contains the “stable” signals in the circuit for D.5-D.7
(aka read ports 1-3). The outputs of two operand MUX-s are trickier: when rs1 is
updated, D.9 carries the updated value. However, when rs1 preserves its previous
value (e.g. rsbs Rd, Rm), we cannot determine the value on D.9 easily. Consid-
ering the same leakage could come from various equivalent micro-architectures,
we consider them separately in Section 4.2.

Thus, the assumed micro-architectural leakage for the decoding stage is:

https://orcid.org/0000-0001-5293-5906
https://orcid.org/0000-0001-7502-3184
https://orcid.org/0000-0002-6366-7641


Towards Reverse Engineered Micro-Architectural Leakage Simulators 17

Ld = {port1 ⊗ port′1, port2 ⊗ port′2, port3 ⊗ port′3}
where port′1 represents the value on port 1 from the previous instruction decod-
ing. If both values on port 1 are not constant,

port1 ⊗ port′1 = {(x||y)|x ∈ port1, y ∈ port′1}

Otherwise, if one of the values is a constant, this term can be simplified to
only port1 or port′1. This leakage is a super set of both the standard HW and
HD model, covering not only the leakage of the values but also any transition
occurring on the wire.

Using again the collapsed F-test [11], we can interrogate if this model explains
all observable leakage (in the decoding stage). Figure 7 plots the evaluation for
the same instructions in Figure 4: for all but one instruction Ld is correct. Only
for the 3-operand adds, the test result suggests Ld cannot explain all the observed
leakage within this decoding stage (which will be further studied in Section 4.2).
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Fig. 7: Model completeness analysis in the decoding stage.
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Execute. Similarly, for the Execute stage, we ignore the immediate number and
the control signals, and focus on the wires E.1, E.2 and E.4. Obviously, the entire
leakage of this stage depends on the two operands in rs1 and rs2.

Unlike the Decode stage, these two operands deliberately interact with each
other in the ALU. Thus, it is expected that there is some cross-operand leak-
age. Considering that the ALU is a relatively complicated piece of combinational
logic where multiple computations run in parallel (i.e. not “gated” [18,19]), find-
ing the exact form of LE presents its own challenge. Therefore, we leave LE

conservatively as:
LE = {rs1 ⊗ rs2 ⊗ rs′1 ⊗ rs′2}

Clearly LE includes all possible glitchy states on the red wires in Figure 5a. The
data-dependent bits in the Current Program Status Register (CPSR) rely on the
ALU’s output, and are therefore also covered by LE . For conciseness we refer
to [11] where one of the examples analyses just this situation; besides, Figure 9
also evaluates the entire leakage model, including the execute leakage here.

Register write-back. Although a write-back stage does not exist in this 3-stage
pipeline, updating the destination register still happens after the Execute stage:
thus, we need a separate micro-architectural leakage element LWB to capture
such leakage. Denote the ALU output from the last cycle as Res and the previous
value of the destination register as Rd. The register write-back leakage element
LWB can be written as:

LWB = {Res⊗Rd}

Note that Res is defined by the ISA and Rd is architecturally visible, therefore
does not take any further investigation.

Memory. Following Section 3.5,
we denote Bus as the shared bus and Busw as the dedicate write bus, where

Addr represents the address bus. The micro-architectural leakage of the memory
subsystem is :

LM = {Bus⊗Bus′, Busw ⊗Bus′w, Addr ⊗Addr′}

Although some of above leakage only appears for memory access instructions,
considering the APB protocol explicitly recommends to keep the remaining val-
ues on the bus [20], we always keep LM as part of the leakage model, even if the
instruction does not access memory.

4.2 Glitch & Multiplexer

Glitchy register access. The lower left figure in Figure 7 suggests that considering
only the stable signals is not always enough. In a more realistic scenario, the
situation can be even worse: in order to achieve a concrete understanding of
which operand is read from which port, we deliberately designed our setup (see

https://orcid.org/0000-0001-5293-5906
https://orcid.org/0000-0001-7502-3184
https://orcid.org/0000-0002-6366-7641


Towards Reverse Engineered Micro-Architectural Leakage Simulators 19

Section 3.2) to avoid various “known issues”. For instance, it is reported back in
2017 by Papagiannopoulos and Veshchikov that some processors might implicitly
access an adjacent register while accessing a target register [16]. It was latter
explained in [18] such leakage is likely to be caused by the address decoding
in the register file. When setting up our experiments, we deliberately use only
the odd registers (i.e. r1, r3, r5, r7): although there is no guarantee that such
LSB-neighbouring effect is the only type of neighbouring effect in our target
processor, within 50k traces, we did not find this effect in our analysis.

Nonetheless, the so-called “neighbouring effect” [16] can be extended to more
general glitchy accesses within the register file: in a 3-stage core, considering the
decoding and operand pre-loading are happening in the same cycle, it is expected
that the signal glitch starts even earlier, say from the decoded register addresses
(i.e. D.2-D.4 in Figure 3b). Back to our exceptional adds: as one can see in
Table 1, the previous eors loaded Rm from bit 5-3 of the instruction, while the
current adds requires Rm from bit 8-6 instead. Considering this change of field
needs to be initiated by the decoder, we can expect that for a short time after the
clock edge, the decoder still outputs Rm as the bit 5-3 of the new adds instruction
(i.e. Rn = C), and then switches back to bit 8-6, which gives Rm = D. In other
words, although the stable signal on port2 changes as:

B → D

the glitchy signal switches through:

B → C → D

which might give the transition of B ⊗ C and C ⊗D.
As we can see in Figure 8, the interaction C ⊗ D is clearly visible in the

upper-left. Without including this micro-architectural leakage our constructed
leakage model does not fully explain the observed leakage.

The lower half of Figure 8 demonstrates another case of this effect. Specifi-
cally, if we try the following code:

1 glitchy_reg:

2 ...

3 eors r5,r7 //r5=C, r7=D

4 adds r3,#1 //r1=A, r3=B

5 ...

Following our discussion above, when decoding adds, there might be a short time
period when the decoder still decodes in the style of eors. According to Table
1, this means the immediate number 1 will be taken as register r1 (bit 2-0 from
the instruction eors). In the lower left of Figure 8, clearly value A is loaded in
this cycle. In fact, as the signal transition goes C → A → B, there could be
interaction of C ⊗A and A⊗B, which is exactly what we see in Figure 8. Our
completeness test confirms that we can capture all of this micro-architectural
leakage as long as these terms are added in.
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Fig. 8: Glitchy register access in the decoding stage.

Taking glitches into consideration, we add one glitchy term for each port: for
port 1, denoted as port1g, representing the glitchy accessed value on port 1. The
glitchy decoding stage leakage can be regarded as

LDg = LD + {port1g ⊗ port1, port1g ⊗ port′1}

where port1g could be:

– Implicitly access caused by decoding: decoding the current instruction in the
previous style

– Implicitly access caused by register address: the neighbouring effect, needs
to be tested on the specific device

port2g can be added following the similar rules. Considering such an effect has
a relatively small magnitude and enormous test space (i.e. the entire decod-
ing space must be considered), we did not further identify which factor must
be added and which can perhaps be ignored. A conservative micro-architectural
leakage model will include everything, if more implementation details were avail-
able then certain elements could be excluded (with the resulting model checked
via the F-test).
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Multiplexer. Grey-box simulators usually discard them, because their contribu-
tion to the overall leakage is relatively limited. We follow this approach in our
work here7.

4.3 Putting it all together

We constructed a micro-architectural leakage model for each of the three pipeline
stages, and the memory subsystem. The overall device leakage is then the sum of
the micro-architectural leaks: L = LD+LE+LM+LWB , and we can, using the F-
test methodology, enquire if it is possible to drop or simplify some terms. Because
we know that the micro-architectural leakage from the memory subsystem is
always significant, there is no point in trying to simplify or drop this. However,
we can check if the decode and execute leakage is significant enough (when
considering it as all the pipeline stages are active). With the same code in Section
3.2 (“Testing port”), we first test if removing LD or LE can provide a valid
model: as we can see in the left half of Figure 9, both fail our test easily, which
suggests both stages’ leakage must be kept.

Thus, we further test in the right half of Figure 9 if using a linear model
(i.e. a weighted HW/HD model) is good enough. The upper right figure suggests
if the executed instruction is eors, having a linear LD or a linear LE passes
F-test, although LD and LE cannot be linear at the same time. This is in fact
consistent with the observations in [11]: if the instruction is relatively simple,
using a linear model of the ALU inputs/output can be a valid option. The lower
right of Figure 9 shows that for an adds instruction, the execute stage must
utilise a non-linear model. But, the decoding leakage LD can always be set to
linear in our experiments: considering the decoding stage only contains buses
that load values and flip from one value to another, this is quite natural. Hence
we always restrict the decoding leakage LD to be a linear micro-architectural
leakage element, denoted as LDl. Similarly, as the write-back logic is relatively
simple, we also simplify LWB to be a linear micro-architectural leakage element
(LWBl). Because of the known byte-wise interactions on the memory bus [13],
LM is left without any restriction.

L = LDl + LE + LWBl + LM

5 Putting our Micro-Architectural Model to the Test

In this section, we further show how existing simulators fail to find leakage,
but our new micro-architectural model reveals it, and helps to develop concrete
attacks to exploit it. Then we report on our integration of the new model in the
existing emulator ELMO.

7 One recent white-box tool, Coco [18]), takes a conservative approach: if we have
MUX(s,a,b) (where s is the selecting signal), they simply allow any possible leakage
by considering a⊗ b⊗ s.
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Fig. 9: Feature selection for our leakage model.

5.1 Exploiting decoding port leakage

Existing simulators typically do not define any explicit decoding leakage. In
particular, ELMO (and ELMO*) always set rs1 = Rd and rs2 = Rm, even if
Rd is never used in certain instructions (e.g. movs Rd, Rm in Table 1). This
is not correct (at least on the core that we utilised), but if we consider the
“operand buses” in ELMO to be the decoding read ports, then decoding leakage
is captured by ELMO (and ELMO*), albeit in a different clock cycle.

The following code snippet is from another 2-share bitwise ISW multiplica-
tion [5], where a1(b1) and a2(b2) represent the two input shares of a(b). Leakage
reports from ELMO 8 and MAPS are:

– ELMO. Line 7 is leaking from the first operand’s bit-flip (r2 = a2 ∗ b1 →
r6 = a1 ∗ b1).

– MAPS. No leakage.

1 ISWd2:

2 ... // r1=a1*b2+r, r2=a2, r3=b1,

3 ... // r6=a1*b1, r9=output address

4 ands r2, r3 // r2=a2*b1

5 eors r1, r2 // r1=a1*b2+r+a2*b1

6 mov r2, r9 // Get back output address

7 eors r6, r1 // r6=a1*b1+a1*b2+r+a2*b1

8 ...

8 The ELMO* [3] extension does not find any additional leakage.
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Fig. 10: Experiments with 50k traces on 2-share bitwise ISW multiplication.

According to Table 1, line 7 should not show any leakage from rs1, since line 6
never loaded r2 to rs1. However, the decoding stages of line 6 and 7 load these
operands into port1, which suggests a leakage can be found in the decoding
cycle of line 7. The right half of Figure 10 illustrates the correlation trace using
HW (a1 ⊕ a2): the correlation peaks appear in the execute cycle of line 6 (i.e.
the decoding cycle of line 7). Besides, the TVLA trend in the left half of Figure
10 shows such leakage is relatively weak: it takes more than 20k traces before
the leakage can be stably detected.

To show that missing out on the explicit inclusion of decoding leakage mat-
ters, we further investigate a 3-share bitwise ISW multiplication (where no first
order leakage can be found in this implementation).

1 ISWd3:

2 ...

3 mov r7, r9 //r7=a3

4 mov r5, r11 //r5=b3

5 ands r5, r7 //r5=a3*b3

6 ands r4, r6 //r6=a2*b2

7 ands r3, r1 //r3=a1*b1

8 ldr r7, [r0, #0] //r7=r12

9 ...

In theory, there should not be any attack that combines less than three interme-
diates (leakage points), which increases the required number of traces. We show
that a third order attack indeed does not succeed with a too limited number of
traces in the upper-left of Figure 11)9.

9 Our implementation only uses LSB to compute the bit-sliced S-box; therefore the
measured trace has been averaged 50 times before analysis, in order the increase the
SNR.
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Fig. 11: Experiments with 50k traces on 3-share bitwise ISW multiplication.

However, given our micro-architectural leakage model we may safely assume
that the processor will inadvertently combine masking shares for us. Indeed, even
the simpler ELMO model can predict such leakage: specifically, the first operand
bit-flip from line 6 and 7 gives the leakage of a1 ⊕ a2, which should reveal the
secret a if combined with the leakage of line 3 (i.e. a3). We have also confirmed
this leakage in Figure 11: the upper-right figure shows using this combination,
the correct key can be found within 10k traces.

With the decoding leakage added in, our micro-architectural leakage model
extensively expands the region of potential leakage: considering the execute cycle
of line 7, we know from Table 1 that ldr does load r7 in the decoding cycle,
which provides the leakage of a3. As a consequence, we can use the second order
moment of the measurements from line 7 alone, which avoids the combination
of noise from different time samples. In our experiments, this is indeed the best
option: the correct key guess can be found with only 1k traces. In other words,
the supposedly provably secure scheme can be attacked in a univariate manner,
but none of the existing simulators would reveal this weakness.
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5.2 Consequences of incorrectly assigning pipeline registers

When it comes to the pipeline registers, many instructions do not follow the
default rs1 = Rd and rs2 = Rm setup as Table 1 shows. Considering the pipeline
registers may even be preserved through a few instructions, this is clearly an issue
if some previous operand is believed to be cleared out of the context while in
reality it is sitting somewhere within the processor.

1 Scverif_Ref:

2 ... // r1=output address

3 ... // r5=a2+r,r3=a1+r

4 str r5, [r1, #4] //

5 pop {r4 -r5} // Reload r4 and r5

6 eors r3, r3 // Clear r3

7 ...

The above code is from a 2-share refreshing gadget verified by scVerif [21].
Clearly, any transition between r3 and r5 leaks the secret a. Let us focus on
line 5: scVerif treats pop as several load -s, where each load clears both rs1 and
rs2 (see [21, Alg.3]). According to Table 1, pop on our target device only clears
rs1, but not rs2. Thus, when executing line 6, rs2 remains the previous value set
by line 4. According to Table 1, there is a transition between a2 + r and a1 + r
on rs2. Leakage reports from ELMO and MAPS are:

– ELMO/ELMO*. No leakage.
– MAPS. Leakage from line 6, pipeline registers10.

Here we begin to witness the benefit of having the accurate pipeline register
assignment: MAPS clearly points out this leakage, while neither ELMO nor
ELMO* finds any leakage. This is because both ELMO and ELMO* stick with
ELMO’s leakage model, which also believes pop clears both rs1 and rs2. At least
on our M3 core, this is not the case: as we can see in the right half of Figure
12, a clear correlation peak in line 6 suggests rs2 still keeps the value from line
4. Since this transition is from rs2 (versus the port transition in Figure 10), the
left half of Figure 12 shows its leakage is much easier to detect compared with
Figure 10.

5.3 Towards a micro-architectural simulator: µElmo

Our goal is to extract micro-architectural leakage to improve simulation tools:
thus we included the reverse engineered micro-architectural leakage elements into
the instruction set simulator that underpins ELMO and created an upgraded
version of ELMO, denoted as µELMO. The original ELMO already emulate
rs1 and rs2 (in two variables op1 and op2), therefore the required revisions
are a) updating rs1 and rs2 according to Table 1 and b) adding the decoding
ports/memory buses as new variables in µELMO.

10 MAPS needs the command line argument “-p” to calculate the pipeline registers’
leakage.
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Fig. 12: Experiments with 50k traces on 2-share mask refresh from scVerif.

With µELMO, we now revisit the 2-share ISW multiplication in Section 1.
We study the simple case where only a single bit is actually encoded in each
processor word (recent work has shown that any more clever form of bit or
share-sclicing would be insecure [12]). Thus except for a single bit (representing
a share) the other bits are always constant 0. This implies that any term rs1⊗rs2
can easily be simplified as {rs1, rs2, rs1⊕rs2}: in the 1-bit version, the later can
express any joint leakage from rs1 ⊗ rs2. Using similar converting rules for the
entire L, we can easily derive a model that only contains xor-sum terms, not any
joint term. We then perform 1st order t-test on each individual term within this
cycle separately (e.g. rs1, rs2 and rs1 ⊕ rs2) and summarise the leakage of the
entire cycle from multiple t-statistics.

Of course, this masking implementation is inefficient: instead one would at-
tempt to simultaneously compute other 1-bit multiplications. If it was possible to
ensure their mutual independence we can still simplify the multi-bit {rs1 ⊗ rs2}
as {HW (rs1), HW (rs2), HW (rs1⊕rs2)} as before (if not then their interaction
terms would need to be considered as well).

We started this paper by showing how this ISW example leaks in practice
but all simulators fail to correctly identify the leaks in Section 1. Using µElmo
traces leads to the detection result in the left of Figure 13. The detection correctly
idenfies the two leaks.

6 Conclusion

We utilised a recent statistical tool for statistical model building to reverse en-
gineer the micro-architectural leakage of a mid-range commodity processor (the
NXP LPC1313). This reverse engineering effort enables us to build more accu-
rate leakage models, which are essential for accurate leakage simulators. As a
side effect our model provides, to some extent, an in-depth picture of how the
ARM Cortex M3 architecture is implemented in the LPC1313.

Our research was motivated by the observation that the most recent leakage
simulators are inaccurate and consequently traces produced by them will not
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Fig. 13: Comparison of our tool and realistic measurements.

show all leaks that can be found in real devices (or they show leaks where in
actual fact are none). We integrate our reverse engineered micro-architectural
elements into the simulator that underpins ELMO and then demonstrate that
the resulting simulator produces leakage traces that are more faithful to real
device traces in the context of enabling the detection of leaks and when they
occur.

Our methodology is generic in the sense that it relies on a statistical test
that can deal with large numbers of variables (with limited data). For now we
need to manually instrument the statistical tests to recover micro-architectural
leakage information. However, merging our results with the recently introduced
idea of software kernels in [13] could enable automation of our method in the
future. This would be a significant step towards being able to produce highly
accurate leakage simulators for a range of off-the-shelf processors.
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