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Abstract. We study secure multi-party computation (MPC) protocols
for branching circuits that contain multiple sub-circuits (i.e., branches)
and the output of the circuit is that of single “active” branch. Crucially,
the identity of the active branch must remain hidden from the protocol
participants.
While such circuits can be securely computed by evaluating each branch
and then multiplexing the output, such an approach incurs a communi-
cation cost linear in the size of the entire circuit. To alleviate this, a series
of recent works have investigated the problem of reducing the communi-
cation cost of branching executions inside MPC (without relying on fully
homomorphic encryption). Most notably, the stacked garbling paradigm
[Heath and Kolesnikov, CRYPTO’20] yields garbled circuits for branch-
ing circuits whose size only depends on the size of the largest branch.
Presently, however, it is not known how to obtain similar communication
improvements for secure computation involving more than two parties.
In this work, we provide a generic framework for branching multi-party
computation that supports any number of parties. The communication
complexity of our scheme is proportional to the size of the largest branch
and the computation is linear in the size of the entire circuit. We provide
an implementation and benchmarks to demonstrate practicality of our
approach.

1 Introduction

Secure multiparty computation (MPC) [40,20,9,5] is an interactive protocol that
allows a group of mutually distrusting parties to jointly compute a function
over their private inputs without revealing anything beyond the output of the
function. Over the years, significant progress has been made towards improving
the efficiency of MPC protocols [11,39,24,21,3,23,33,25,12,22,16] to make them
practically viable.

While a wide variety of techniques for efficiency improvements have been de-
veloped in different settings based on the corruption threshold, communication
model or security guarantee, a common aspect of most modern efficient protocols
in all of these settings is that they circuit representation of the function. A limi-
tation of such protocols, however, is that their total communication complexity



is at least linear in the size of the circuit. Known techniques for getting sub-linear
communication in the circuit size rely on computationally heavy tools such as
fully-homomorphic encryption (FHE) [19] or homomorphic secret sharing (HSS)
[7]. While there have been recent advancements in improving the efficiency of
these methods, they are still far from being practical in many use cases.

As a result, the efficiency of existing efficient protocols is highly dependent on
how succinctly a function can be represented using circuits. This is clearly not
ideal, since circuits are often not the most efficient way of representing many
functions. A common example of such functions are ones that include some
kind of conditional control flow instructions. When evaluating such functions, a
circuit-based MPC will incur communication dependent on the size of the entire
circuit, while in reality we only need to evaluate the “active” path (i.e., the path
that is actually executed based on the conditional) in the circuit.

It is therefore useful to design efficient MPC protocols for useful classes of
functions, where the total communication between the parties only depends on
the “active” parts, rather than the entire circuit.

MPC for Conditional Branches. In this work, we focus on one such class
of functions, namely, ones that contain conditional branches. As discussed in
[29], a real world example of an application that consists of conditional branches
is where a set of servers collectively provide k services and the clients can pay
and avail any one of their services (depending on their requirements), without
revealing to the servers which service they are availing. Similarly, control flow
instructions are also integral to any kind of programming and as observed in
[27], many kinds of control flow instructions (including repeated and/or nested
loops) can be refactored into conditional branches. Such refactorings often result
in a large number of conditional branches. For such functions, designing MPC
protocols where the total communication only depends on the size of the active
branch is very useful.

Recently, in a sequence of works [26,27], Heath and Kolsnekov made progress
in this direction in the two-party setting. They design garbled circuit based two-
party semi-honest protocols for evaluating functions with conditional branches,
where the total communication only depends on the size of the largest branch.
In the multiparty setting, however, no such protocols are currently known. The
recent works of [28,30] design MPC for conditional branches where they reduce
the number of public-key operations required to evaluate conditional branches;
however, the total communication in their protocols still depends on the size of
all branches. Furthermore, all these protocols only work for Boolean circuits.

Given this state of the art, we consider the following question in this work:

Does there exist an efficient multiparty protocol for securely computing
conditional branches, where the total communication only depends on the size

of the largest branch?

We remark that all of the above mentioned prior works only focus on the
semi-honest setting. The task of designing analogous maliciously-secure protocols



remains unexplored (both in the two-party and multi-party settings). In this
work, we also consider this question.

1.1 Our Contributions

We design the first multiparty computation protocols for conditional branches,
where the communication complexity only depends on the size of the largest
branch. Our protocols can support arbitrary number of parties and corruptions.
We present both constant and non-constant round variants.

I. Non-Constant Round Branching MPC. Our first contribution is a semi-
honest MPC for conditional branches, where the communication complexity only
depends on the size of the largest branch. This protocol is capable of computing
arithmetic circuits over any field or ring. The round complexity of this protocol
depends on the depth of the circuit.

We present this protocol as a generic compiler that can transform a large class
of admissible3 MPC protocols into ones for conditional branches that achieve the
aforementioned communication complexity. Several existing concretely efficient
protocols including MASCOT [33], SPDZ2k [12], Overdrive [34], TinyOT [18]
and [25], [13] can be used with this compiler.

In particular, by instantiating our compiler with a semi-honest admissi-
ble (dishonest-majority) MPC protocol with communication complexity CC(|C|)
(where C is the circuit being evaluated), we obtain the following result:

Informal Theorem 1 Let λ be the security parameter. There exists a semi-
honest secure MPC for evaluating conditional branches, that can tolerate arbi-
trary corruptions and that achieves communication complexity of O(CC(|Cmax|)+
n2kλ+ n2|Cmax|), where k is the number of branches in the conditional.

We also implement this protocol to test its concrete efficiency and compare it
to state-of-the-art MPC protocols. More details are provided later in this section.

Extension to Malicious Security. We also present an extension of this protocol to
the case of malicious adversaries. Asymptotically, its communication complexity
is similar to the semi-honest protocol, except that it incurs a multiplicative
overhead dependent on a statistical security parameter.

We view this construction as initial evidence that efficient branching MPC
with malicious security is possible. However, we believe that there is significant
scope for future improvements towards achieving good concrete efficiency.

II. Constant Round Branching MPC. Our next contribution is a constant
round MPC for conditional branches, where the communication complexity only
depends on the size of the largest branch. This protocol is based on a multiparty
garbling approach [2] and only supports boolean circuits.

3 We require the underlying MPC to be such that it evaluates the circuit in a gate-
by-gate manner and maintains an invariant that for every intermediate wire in the
circuit, the parties collectively hold a sharing of the value induced on that wire
during evaluation.



We also present this protocol in the form of a general compiler. Namely, given
a MPC protocol with communication complexity CC(|C|) for evaluating a circuit
C, we get the following result:

Informal Theorem 2 Let λ be the security parameter. There exists a constant-
round, semi-honest secure MPC for evaluating conditional branches (represented
as Boolean circuits), that can tolerate arbitrary corruptions and that achieves
communication complexity of O(|CC(λ|Cmax|) + n2kλ + n2λ|Cmax|), where k is
the number of branches in the conditional.

To obtain both of the above results, we adopt a fundamentally different
approach as compared to prior works [26,28,27,30] in this area. Specifically, prior
works require the parties to locally evaluate all the branches. In contrast, in our
approach, the parties select the “active” branch and only execute that branch. A
detailed overview our approach can be found in the next section.

III. Comparison and Performance Evaluation. To gauge practicality, we
implement our non-constant round semi-honest compiler and instantiate it using
two kinds of protocols:

– Quadratic Dependence on the Number of Parties: MP-SPDZ is a common
MPC library that contains implementations of the SPDZ protocol [16] and
its descendants. All of the protocols in this library have total communi-
cation with quadratic dependence on the number of parties. We instatiate
our compiler with an implementation of MASCOT [33] from this library
without modification. Our code is agnostic to which protocol the MPC li-
brary is configured; this helps demonstrates that our techniques are generic
and block-box. We run benchmarks over simulated LAN and WAN settings.
We show that our compiled protocol outperforms näıvely evaluating all the
branches in parallel using MASCOT for as few as 8 branches.

– Linear Dependence on the Number of Parties: We implement an optimized
variant of our compiler that incurs a linear additive overhead in the number
of parties, instead of a quadratic overhead. We then test the efficiency of
our compiler when instantiated with the CDN protocol [13], which only has
a linear dependence on the number of parties. For this, we first implement
the CDN protocol. To the best of our knowledge, this is the first known
implementation of CDN. Similar to the previous case, we show that our
compiled protocol (instantiated using CDN) outperforms näıvely evaluating
all the branches in parallel using CDN for 8 branches.

2 Technical Overview

Background. All recent works [26,28,27,30] in this area are based on the same
principle approach – the parties evaluate all branches, albeit, only the “active”
branch is evaluated on real inputs, while the remaining branches are all evaluated
on fake/garbage values.



For instance, in the two-party setting, [26,27], which are based on a garbled
circuit based approach, one of the parties garbles all the k branches. It then
“stacks” these garblings into a compressed form that is proportional to the length
of the largest branch in the circuit. Using some additional information sent by
the garbler, the evaluator is able to reconstruct k different garbled circuits, only
one of which is a valid garbling of the “active” branch, and the remaining are
random strings (or some garbage material). Unaware of the active branch, the
evaluator evaluates the k garbled circuits w.r.t. different branches to obtain k
different output labels. These output labels are then filtered with the help of a
“multiplexer” to obtain the correct output. Overall, this approach reduces the
communication to only depend on the size of the largest branch (the computation
complexity, however, is still large).

In the multiparty setting, both [28,30], follow the same principle approach.
These protocols have separate preprocessing and online phases. They require
parties to evaluate all branches (including the inactive ones) in the online phase
over 0 or some random values and leverage this fact to get savings in the pre-
processing phase. As a result, communication in the preprocessing phase only
depends on the size of one branch, but the communication in the online phase
still depends on the size of all the branches.

Indeed, it is unclear how to extend the stacked garbling approach used in
[26,27] to get similar savings in communication in the multiparty setting. Recall
that the garbler in stacked garbling is required to garble all branches and hence
its computation depends on the size of all branches. This means that naive ap-
proaches that involve distributing the role of the garbler amongst multiple parties
are a non-starter as they will incur communication proportional to the size of
all branches. In order to design a multiparty protocol with similar communica-
tion savings as in stacked garbling, we therefore adopt a fundamentally different
approach.

Our Approach. In our approach, the parties select which branch to execute
in a “privacy-preserving” manner and only execute that branch. To facilitate
this private selection, both of our constructions (in the non-constant round and
constant-round settings) employ a common tool – a variant of oblivious lin-
ear evaluation that we refer to as oblivious inner product (OIP). In particular,
our protocols make use of OIPs with (small) constant rate. We show that such
OIPs can be easily constructed using low-rate linearly homomorphic encryption
schemes, which are known from a variety of assumptions [17,8,15,38].

In the sequel, we first describe the main ideas underlying our non-constant
round constructions. We then proceed to describe our constant-round construc-
tion.

2.1 Non-Constant Round Branching MPC

We start with the observation that the problem of computing conditional
branches bears some similarities to the problem of private function evaluation
(PFE) [31,35,36]. Recall that in PFE, one party has the function and the remain-
ing parties provide inputs. This, in some sense is reminiscent of the problem that



we have at hand, albeit with some differences. In particular, in our case, while
none of the parties actually knows which function/branch is “active”, they all
know the set that this branch belongs to. Moreover, the parties collectively hold
information about which of these functions to evaluate. This can be viewed as
a distributed variant of PFE. In light of this observation, we build upon some
ideas previously used in the PFE literature.

Private Function Evaluation. In PFE, the function is only known to one of
the parties (say party P1). The security requirements in standard PFE are very
similar to that in MPC, with the only additional requirement that the func-
tion must remain hidden from all other parties. To achieve this, Mohassel and
Sadeghian [35] observe that in order to hide a function that is represented in the
form of a circuit, there are two components that need to remain hidden – (1) The
wire-configuration of the circuit, i.e., how the gates connect with each other, and
(2) the function (i.e., addition or multiplication) implemented by each gate in the
circuit. They propose a strategy to conceal the above components of a circuit in
order to achieve function privacy (without relying on universal circuits). In par-
ticular, they start with MPC protocols that work over some kind of secret shares
(additive/threshold/authenticated) and evaluate any given circuit in a gate-by-
gate manner. These protocols maintain the invariant that for every intermediate
wire in the circuit, all parties hold a sharing of the value induced on that wire
during evaluation. Many concretely efficient protocols such as [33,25,12,22,16],
satisfy these requirements. [35] propose the following modifications to such MPC
protocols to obtain a PFE protocol:

1. Hiding Wire Configuration: Each intermediate wire in the circuit has two
end points – (1) one is the source gate, for which it acts as the outgoing wire
and (2) the other is the destination gate, for which it acts as the incoming
wire. As discussed earlier, for hiding the wire configuration, we need to hide
the gate connections, i.e., we want to hide the mapping between the source
and destination of each wire in the circuit. For this, [35] assign two unique
labels to each wire w. One is an outgoing label based on its source gate
and second is an incoming label based on whether it acts as left or right
input wire to its destination gate. Let π denote the mapping between these
incoming and outgoing labels, i.e., let π(i) = j denote that a wire that has
incoming label i has an outgoing label j. In PFE, this mapping π is only
known to the function folding party.
In order to hide this mapping, [35] devise a mechanism to mask the outputs
value of each gate and unmask them based on π when this value is used for
evaluating the destination gate of this wire. This is executed by sampling an
input mask and an output mask for every wire in the circuit. Let in1, . . . , inW
and out1, . . . , outW be the set of these input and output masks, where W
is the total number of wires in the circuit. In the preprocessing phase, with
the help of the function holding party and the underlyin MPC, the parties
compute ∆w = inw − outπ(w) for every w ∈ [W ]. These ∆w values are
revealed to function holding party in the clear. This processing information
helps the parties in using appropriately permuted input and output masks



to mask and unmask wire values during evaluation in the online phase. In
more detail, the online phase proceeds as follows:
– Upon evaluating each gate g, the parties use output masks to mask all

the outgoing wires of the gate. Let the outgoing wires have labels c and
d respectively, and let uc and ud denote these masked outputs. These
masked outputs are revealed to all parties in the clear.

– For evaluating a particular gate g, where the two input wires have
incoming wire labels a and b, the function holding party computes
A = uπ(a) + ∆a and B = uπ(b) + ∆b and sends it to all the parties.
The parties subtract their shares of inpa and inpb from these values to
get a sharing of the actual values on which to evaluate gate g.

2. Hiding Gate Functions: This is relatively easier. Assume that our arithmetic
circuit representation of the function only consists of addition and multipli-
cation gates, let typeg = 0 (and typeg = 1 resp.) denote that gate g is an
addition gate (and multiplication gate resp.). For each gate g with incoming
wires a and b, we can use the underlying MPC to compute both shares of
a + b and a · b. The function holding party P1 can secret share typeg using
the underlying MPC and the parties can then choose between shares of a+b
and a · b by computing the following using the underlying MPC:

(1− [typeg])([a+ b]) + typeg([a · b]),

where we denote [x] as a sharing of a value x using the secret sharing scheme
used by the underlying MPC. This allows the parties to evaluate the correct
function, without revealing it.

Our Semi-Honest Protocol. In our setting, the parties know the description
of all the branches in the conditional and have a secret sharing of the index
of the active branch. In order to hide the identity of the active branch, similar
to the above approach, we need to hide both the wire configuration and the
gate functions of the active branch. We start by listing the barriers in directly
adapting the above approach to our setting and then proceed to discuss how we
resolve them.

– In the preprocessing phase, computing ∆ requires the function holding party
to input π to the underlying MPC. In our setting, no party knows the exact
value of π.

– In the online phase, A and B values are computed locally by the function
holding party in PFE since it already knows the mapping π. This is again a
problem in our setting.

– Finally, in order to hide the gate functions in the online phase, the value of
each typeg secret shared by the function holding party. But as above, neither
party in our setting knows this value.

In order to overcome the above barriers, we crucially rely on the fact that in
our setting, while no single party knows the function (or the mapping π), they
all know the set that the function belongs to. In other words, given a set of k



branches C1, . . . , Ck, all the parties can locally compute the mappings π1, . . . , πk
corresponding to each branch. Moreover, the parties also have a secret sharing
of the index of the active branch. Let α be the index of the active branch. Our
first idea towards resolving the above barriers to is to somehow allow the parties
combine their shares of α with π1, . . . , πk to get a sharing of πα. However, since
the size of π1, . . . , πk depends on the size of all branches, a naive implementa-
tion of this computation will incur communication that depends on the size of
π1, . . . , πk.

We get around this by using a new variant of oblivious linear evaluation,
which we refer to as oblivious inner product. We now outline our main ideas:

– Sharing of α: We work with a unary representation of the index α. In other
words, we assume each party have k secret shares, where the αth share is a
sharing of 1, while all others are sharings of 0s. Let these shares be denoted
by [b1], . . . , [bk]

– Input/Output Masks: In the preprocessing phase, we use the under-
lying MPC to sample random input and output masks in1, . . . , inW and
out1, . . . , outW , where W is the number of wires in the largest branch. Each
party, now locally permutes its shares of input masks based on the k map-
pings π1, . . . , πk. In more detail, given sharings [out1], . . . , [outW ], for each
m ∈ [k], the parties locally compute sharings [outπm(1)], . . . , [outπm(W )]. Lets

denote each [outπm(1)], . . . , [outπm(W )] by [
−−−→
outπm ]. If instead of computing

shares of πα, we directly compute re-randomized shares of [
−−−→
outπα ], then the

parties can simply compute their shares of ∆w values as follows

∀w ∈ [W ], [∆w] = [inw]− [outπα(w)]

– Oblivious Inner Product: For computing re-randomized shares [
−−−→
outπα ],

we use a primitive called oblivious inner product (OIP). This is a protocol
between two-parties, called the sender and receiver and bears resemblance
to oblivious linear evaluation. The sender has inputs m0, . . . ,mk and the
receiver has inputs b1, . . . , bk. At the end of the protocol, the receiver learns
m0 +

∑
i∈[k] bimi and the sender learns nothing.

We use this primitive and a GMW [20] style approach to obtain shares
of
−−−→
outπα as follows: for each pair of parties in the protocol, we run an in-

stance of OIP, where one party acts as the sender and the other acts as
the receiver. The inputs of the sender party to this OIP are its shares of
[
−−−→
outπ1 ], . . . , [

−−−−→
outπW ] and a random value X, while the inputs of the receiver

are its shares of the unary representation of α. At the end, each party Pi
computes its share of

−−−→
outπα by adding the outputs of each OIP instance

where it acted as the receiver and subtracting each X sampled in the OIP
instance where it acted as the sender. It is easy to see that these resulting
shares are indeed shares of

−−−→
outπα .

However, note that while the length of the output of each OIP in our case
only depends on the size of the largest branch, the length of sender inputs
depends on the size of all branches. Therefore, in order to design an MPC



protocol where the overall communication is only proportional to the size
of the largest branch, we must use an OIP where the communication only
depends on the length of receiver inputs and the output, but is independent
of the length of sender inputs. We show that such OIPs can be constructed
using linearly homomorphic encryption with constant rate.

– Online Phase: Now that we have sharing of ∆w values that was computed
using the mapping π corresponding to the active branch, we can compute
shares of the A and B values as follows:

[A] =
∑
m∈[k]

[b1]uπ1(a) + [∆a] and [B] =
∑
m∈[k]

[b1]uπ1(b) + [∆b]

We note that most linearly homomorphic secret sharing schemes allow such
computations to be done non-interactively and hence it does not incur any
overhead in the communication complexity. Shares of typeg for every gate g
can also be computed in a similar manner.

We present a formal description of this protocol in Section 5.

Extension to Malicious Security. While the basic outline of our protocol
remains the same, even in the malicious setting, we need to do a little more work
to make the above protocol secure against a malicious adversary. In particular,
we need to ensure that the inputs used by the parties in the OIP instances are
consistent with values/shares computed by them using the underlying MPC. For
this we propose to add the following consistency checks:

Receiver’s Input Consistency. We start by using an OIP that is secure against
a malicious reciever. In order to ensure that receiver uses valid sharings of the
active branch, we implement a kind of MAC check using the underlying MPC.
In particular, in the OIP execution, the sender samples k+ 1 random values and
appends them to its inputs. Now when the receiver computes the output of the
OIP, it also learns an inner product of these random values with its shares of
the active branch (we refer to this as the MAC value for this OIP). We now
use the underlying MPC to compute the exact same value. In particular, the
sender sends the k+ 1 random values that it sampled in the OIP as input to the
underlying MPC, while the receiver sends the MAC value learnt from the output
of the OIP. We allow the underlying MPC to now check if the MAC value indeed
corresponds to an inner product of the receivers shares of the active branch and
the random values input by the sender. We note that since the length of the
receiver’s input is independent of the size of all branches, computing this MAC
value inside the MPC does not incur too much overhead.

Sender’s Input Consistency. Recall that the inputs of the sender to the OIP
depend on the size of all branches, and hence we cannot hope to use the kind of
check that we used for ensuring receiver consistency. Moreover, since the length
of the sender message is much shorter than the length of its inputs, we also
cannot hope to use an OIP with malicious sender security that can somehow
extract the sender’s inputs. Therefore, instead we continue to work with an



OIP that is secure against a semi-honest sender but augment it with a cut-and-
choose style approach. In particular, we sample multiple copies of the masks and
compute delta values using OIPs for each of those copies. We also ask the sender
to commit (using compressive commitments) to the inputs and randomness used
for computing each of its sender messages. At the end of all OIP instantiations,
we use the underlying MPC to sample a random subset and reveal the shares of
masks of all parties for that subset. The senders also send the randomness used
by them in the sender messages of this opened subset. Given this information, the
parties can verify if the senders behaved honestly and used consistent shares in
the opened instances. We use the remaining unopened instances to run multiple
copies of the online phase and take a majority to decide the final output. Due
to the use of cut-and-choose, the communication complexity of our maliciously
secure protocol is proportional to δ × the cost of computing the largest branch.
We defer a formal description of this protocol to the full-version of this paper.

2.2 Constant Round (Semi-Honest) Protocol

Beaver, Micali, and Rogaway (BMR) [2] proposed a general template for con-
structing constant round MPC from existing generic non-constant round MPC.
The main observations underlying their technique were – (1) round complexity
of more generic non-constant round protocols depends on the depth of the func-
tion being computed and (2) garbling [40] a functionality/circuit is a constant
depth procedure.

The parties can leverage these observations to first execute a garbling phase,
where they compute a garbled circuit of the function (that they wished to eval-
uate) using the non-constant round protocol. This phase will require a constant
number of rounds. Given this garbled circuit, they then proceed to the evalua-
tion phase, where each party locally evaluates the garbled circuit to learn the
output. This phase requires no interaction and hence the overall protocol runs
in a constant number of rounds.

More concretely, in the garbling phase, the parties collectively sample two
keys kw,0, kw,1 for every wire w in the circuit. The garbled table for each gate
g in the circuit with incoming wires a, b and outgoing wire c, consists of the
following four rows, corresponding to α, β ∈ {0, 1}:

ctα,β = PRFka,α(g) + PRFkb,β (g) + kc,g(α,β)

Branching MPC using BMR Template. The generality of the BMR ap-
proach immediately makes it compatible with our non-constant round semi-
honest protocol (from Section 2.1). Indeed, in the garbling phase, parties can
use that protocol to compute a garbled circuit for the active branch. During
the evaluation phase, however, since the parties do not know which branch the
garbled circuit corresponds to, they can evaluate it for every branch and ob-
tain the corresponding output wire labels. Note that only the labels obtained by
evaluating w.r.t. to the active branch actually correspond to a valid set of abels.
Finally, via interaction, parties can determine the output corresponding to the



“valid” set of output labels. The complexity of this last step is independent of
the circuit size and only depends on the number of branches times the output
length.

While this yields a simple baseline constant round MPC for conditional
branches, it is highly inefficient. Since no party knows the keys ka,α, kb,β in their
entirety, they must evaluate the PRF (on these keys) inside an MPC protocol.
Since, the circuit representations of PRF’s are typically massive, this protocol is
unlikely to be concretely efficient. As such, for concrete efficiency, we require a
protocol that only makes a black-box use of cryptography.

Towards Black-Box use of Cryptography. Damg̊ard and Ishai [14] proposed
a variant of the above BMR template that enables parties to evaluate the PRF
outside the MPC, thereby only making a black-box use of cryptography.

Specifically, in their approach, each party Pi samples two keys kiw,0, k
i
w,1 for

every wire w in the circuit. In other words, the cumulative keys associated with
every wire is a concatenation of all the parties’ keys. The garbled table for each
gate g in the circuit with incoming wires a, b and outgoing wire c, consists of the
following 4 · n rows, corresponding to α, β ∈ {0, 1} and i ∈ [n]:

ctiα,β =

n⊕
m=1

PRFkma,α(g‖i) +

n⊕
m=1

PRFkmb,β
(g‖i) + kic,g(α,β)

It is easy to see that unlike the BMR approach, here the parties are only
required to evaluate the PRF on their own keys, which can be done locally
and the resulting PRF evaluation can be fed as input to the underlying MPC
implementing the garbling functionality.

In our setting, however, this approach posits a fundamental barrier. Recall
that for evaluating conditional branches, we want to garble the active branch
without revealing the index of the active branch. For this, while garbling any
gate (say the jth gate), it is imperative that the parties remain oblivious to both
the functionality associated with it and its incoming and outgoing wires. As
a result, the parties are unaware of which keys kia,α, k

i
b,β to use for computing

the corresponding ciphertexts, and hence cannot evaluate the PRF on those
keys locally. A natural approach to overcome this problem is to perform this
evaluation within an MPC; however, we are then back to the realm of non-
black-box use of cryptography. As such it is unclear how to directly adapt this
approach to our setting, while making a black-box use of cryptography.

Garbling using Key-Homomorphic PRFs. To overcome the above barrier,
we explore the work of Ben-Efraim et al. [4] who presented an alternative tem-
plate for multiparty garbling, using key-homomorphic PRFs. These are PRFs
with the following property: PRFk1(m)+̃PRFk2(m) = PRFk1 ·̃k2(m), where +̃ and
·̃ are some operations. As before, each party samples two keys for every wire in
the circuit and given such a PRF, the parties the compute each ciphertext as
follows:



ctα,β =
∑̃

m∈[n]

(
PRFkma,α(g)+̃PRFkmb,β

(g)
)

+̃

(∏̃
m∈[n]

kmc,g(α,β)

)
It is easy to see that similar to the previous approach, each party here is only

required to evaluate the PRF on its own key, which can be done locally. At first,
it might seem that in our setting, the same problem (as before) still persists.
Indeed, for local PRF evaluation, the parties are required to know which key
to use, which as discussed earlier is not possible when the parties are required
to obliviously garble one of the conditional branches. However, we observe that
homomorphism of the PRF can be leveraged here to resolve this problem.

Lets assume that the parties start by ordering the gates and wires in every
branch in some canonical order. Now, when garbling the jth gate of the active
branch, they must choose the appropriate keys from all the keys associated with
the jth gate in every branch. We also assume that the parties have a sharing
of the unary representation of the index associated with the active branch. The
parties can now use multiple instances of OIP (as in our non-constant round
protocols) to obtain shares of the keys associated with the two incoming wires
of the jth gate in the active branch.

Consider a key homomorphic PRF where both +̃ and ·̃ are the same operation
associated with the reconstruction algorithm of the secret sharing scheme used
in the undelying MPC, i.e., [PRFk(m)] = PRF[k](m). This PRF can now be used
along with the above observation to compute a garbling of the active branch as
follows: for simplicity let’s assume that each branch is of the same size and has
W wires. The parties start by collectively sampling 2W keys. For garbling the
jth gate, for each α, β ∈ {0, 1}, they use OIPs to compute shares [ka,α], [kb,β ]

and [kc,g(α,β)], where a, b are the incoming and c is the outgoing wire of the jth

gate in the active branch and g is the function computed by this gate. Parties
can now locally evaluate the PRF on these shares and use the underlying MPC
to compute shares of the ciphertexts as follows:

[ctα,β ] = PRF[ka,α](j) + PRF[kb,β ](j) + [kc,g(α,β)]

Upon computing this garbled circuit for the active branch, similar to the
baseline solution, parties evaluate it w.r.t. all the branches and then run a “mini-
MPC” to filter out the valid labels and determine the final output.

Instantiating Key Homomorphic PRF. Most existing dishonest majority
MPC protocols [33,25,12,22,16] use additive secret sharing. To use the above
ideas with such protocols, we need an additively key-homomorphic PRF, i.e.,
where PRFk1(m) + PRFk2(m) = PRFk1+k2(m). Unfortunately, key homomorphic
PRFs are currently only known from the DDH assumption [37,6] and those PRFs
do not achieve a similar additive homomorphism.

Ben-Efraim et al. [4] observed that instead of a PRF, it suffices to use a
(decisional) ring LWE based random function here. This function is of the form:
F = fk : Rp → Rp|fk(a) = a · k + e, where p = 2N + 1 is a prime, N is a power



of two, Rp = Zp[X]/(XN + 1) and a, k, and e are polynomials in the ring and
the coefficients of e come from a gaussian distribuition. Since a is public, it is
easy to see that given additive shares of the key k and error e, it is possible for
the parties to locally compute shares of the above function. As is standard when
using LWE/RLWE, encrypting using such a random function typically requires
multiplying the message (before adding it to the output of this function) with the
size of the range from which the message comes from. In the case of garbling,
since both the message and keys come from the same distribution, as shown
in [4], this requires choosing the parameters carefully and additionally requires
sampling the keys from a gaussian distribution. However, since the parties only
need to compute additive shares of these keys and errors, this can be done easily
by requiring the parties to sample their shares from appropriate distributions.
We defer more details to Section 6.

3 Oblivious Inner Product

In this section, we define a variant of oblivious linear evaluation (OLE), which we
refer to as oblivious inner product (OIP). OIP is a protocol between two parties,
called the sender and receiver respectively. The sender has inputs (−→m0, . . . ,

−→mk) in
some domain (say Dm), and receiver has inputs (b1, . . . , bk) in the same domain
D. At the end of the protocol, the receiver should learn −→m0 +

∑
i∈[k] bi

−→mi and
nothing more, while the sender should learn nothing about the reciever inputs
b1, . . . , bk.

For our constructions, we consider two variants of OIP, a semi-honest version
and one that is secure against a malicious receiver. We now define the syntax
and the security guarantees of a two-message OIP protocol in the plain model.
The definitions can be naturally extended to the CRS model.

Definition 1 (Two-Message Oblivious Inner Product). A two-message
oblivious inner product between a receiver R and a sender S is defined by a
tuple of 3 PPT algorithms (OIPR,OIPS,OIPout). Let λ be the security parame-
ter. The receiver computes msgR, ρ as the evaluation of OIPR(1λ, (b1, . . . , bk)),
where (b1, . . . , bk) ∈ Dk is the receiver’s input. The receiver sends msgR
to the sender. The sender then computes msgS as the evaluation of
OIPS(1λ,msgR, (

−→m0, . . . ,
−→mk)), where (−→m0, . . . ,

−→mk) ∈ Dm×(k+1) are sender’s in-
puts. The sender sends msgS to the receiver. Finally, the receiver computes the
output by evaluating OIPout(ρ,msgR,msgS).

A semi-honest OIP satisfies correctness, security against semi-honest receiver
and semi-honest sender, while the malicious variant satisfies correctness, security
against semi-honest sender and malicious receiver, which are defined as follows:

– Correctness: For each (−→m0, . . . ,
−→mk) ∈ Dm×(k+1) and (b1, . . . , bk) ∈ Dk, the

following holds

Pr

[
(ρ,msgR)← OIPR

(
1λ, (b1, . . . , bk)

)
msgS ← OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

) ∣∣∣∣∣ OIPout (ρ,msgR,msgS) = −→m0 +
∑
i∈[k] bi

−→mi

]
= 1.



– Security against Semi-Honest Sender: The following holds for any
(b1, . . . , bk) ∈ Dk and (b′1, . . . , b

′
k) ∈ Dk, where ∃i ∈ [k] s.t. bi 6= b′i{

(msgR, ρ)← OIPR

(
1λ, (b1, . . . , bk)

) ∣∣∣ msgR

}
≈c
{

(msg′R, ρ
′)← OIPR

(
1λ, (b′1, . . . , b

′
k)
) ∣∣∣ msgR

}
.

– Security against Semi-Honest Receiver: For every PPT adversary A
corrupting the receiver, there exists a PPT simulator SR such that for any
choice of (b1, . . . , bk) ∈ Dk and (−→m0, . . . ,

−→mk) ∈ Dm×(k+1), the following holds:

OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

)
≈c SR(1λ, ρ,msgR,

−→m0 +
∑
i∈[k]

bi
−→mi),

where (msgR, ρ)← OIPR(1λ, (b1, . . . , bk)).
– Security against a Malicious Receiver: For every PPT adversary A cor-

rupting the receiver, there exists a PPT simulator SR = (S1
R,S2

R), such that
for any choice of (−→m0, . . . ,

−→mk) ∈ Dm×(k+1), the following holds:∣∣∣∣Pr
[
IDEALSR,FOIP

(1λ,−→m0, . . . ,
−→mk) = 1

]
− Pr

[
REALA,OIP(1λ,−→m0, . . . ,

−→mk) = 1
] ∣∣∣∣ ≤ 1

2 + negl(λ).

Where experiments IDEALSR,FOIP
and REALA,OIP are defined as follows:

Exp IDEALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

– msgR ← A(1λ)

– (b1, . . . , bk)← S1
R (1λ,msgR)

– out← FOIP(−→m0, . . . ,
−→mk, b1, . . . , bk)

– msgS ← S
2
R (1λ, out,msgR)

– Output A(msgS)

Exp REALSR,FOIP

(
1λ,−→m0, . . . ,

−→mk

)
:

– msgR ← A(1λ)

– msgS ← OIPS

(
1λ,msgR, (

−→m0, . . . ,
−→mk)

)
– Output A(msgS)

We present a construction of such OIPs from linearly homomorphic encryption
in the full-version of this paper. We show that if the underlying linearly homo-
morphic encryption has rate-1, then so does the OIP protocol.

4 MPC Interface

As discussed in the introduction, all of our compilers make use of an underlying
secure computation protocol with certain properties. In this section, we describe
the properties that we want from these underlying protocols.

We model these requirements as a reactive functionality (denoted as Fmpc).
At a high level, we require secret sharing based MPC that evaluate a given
circuit in a gate-by-gate manner and maintain an invariant that the parties hold



a secret sharing of the values induced on each intermediate wire in the circuit.
A formal description of this reactive functionality appears in Figure 1.

For ease of notation, in our protocol descriptions, we shall let [varid] denote
the value stores by the functionality under (varid, a); and we will write [z] =
[x] + [y] as a shorthand for calling Add and [z] = [x] · [y] as a shorthand for
calling Multiply. And by abuse of notation, we will let varid denote the value,
x, of the data item held in location (varid, x). We use [x]i to denote the share
of x given to party Pi in the underlying MPC.

To the best of our knowledge, most secret sharing based proto-
cols [33,25,12,16,13] securely implement this reactive functionality in the pres-
ence of a malicious adversary who can corrupt arbitrary number of parties.
Moreover, most of these protocols are capable of evaluating circuits over any
field/ring.

It is easy to see that any such secret sharing based MPC that evaluates
the circuit in a gate-by-gate manner and maintains the invariant that parties
hold shares of all intermediate wires in the circuit will trivially have support for
the Initialize Input, Initialize constant, Add, Add by const, Multiply,
Multiply by const, Function and Output Private Shares calls. Moreover,
since the multiplication in these protocols typically requires parties to actually
generate and compute shares of random values, the Random call is also im-
plemented by these protocols. We now discuss how the remaining calls can be
implemented in both the semi-honest and malicious settings.

Semi-Honest Setting. The only other calls used in our semi-honest protocols
are Random Bit and Output. As observed in some of these protocols, Ran-
dom Bit is also very easy to implement (especially in the semi-honest setting).
This is done by requiring each party Pi to randomly sample bi ∈ {1,−1} and
secret share it amongst all the parties. The parties then add all the shares ob-

tained from all parties (let the resulting shares be [s]) and then compute [s]+1
2 .

The resulting shares will be of a random bit. Share Zero can be realized with
semi-honest security by having every party secret share 0 and then requiring
each party to locally sum up its shares. Finally, it is easy to see that the Out-
put call can also be easily implemented, since the parties actually hold shares
of all intermediate values. To reconstruct the output, they can simply broadcast
their respective shares to all parties and then run the reconstruction algorithm.

Malicious Setting. While protocols such as SPDZ [16] and its descen-
dants [33,25,12] (that use MACs w.r.t. a global key) delegate the check that
ensures that these shares are indeed consistent with the “correct” values to the
end of the protocol, we show that these protocols still securely implement all
remaining calls in the Fmpc functionality.

Intuitively, since these protocols delegate the malicious security/consistency
checks to the end the protocol, the only place where we need to ensure that
the shares held by the parties for any particular wire are indeed consistent and
correct is when those values are reconstructed or are used outside of this MPC
protocol, i.e., in the OIP and when the outcome of OIP is returned to the MPC.
The subcalls inside Fmpc that are really affected by this are Initialize Input,



Random, Share Zero, Check Zero and Output Shares and Output. As
discussed above, Initialize Input and Random are already implemented by
these protocols.

– Check Zero: For this sub-call, we observe that given authenticated additive
shares ([x1], [m1]), ([x2], [m2]), with m1 = k ∗ x1, m2 = k ∗ x2 where k is
the global MAC key, parties can compute [m] = [m1]− [m2] locally, followed
by having each player Pi first commit and then broadcast its share [m]i to
reconstruct [m] and check if m =

∑
imi = 0.

– Share Zero: For this we can augment the semi-honest Share Zero protocol
described above with an asymptotically efficient batch-wise check to ensure
malicious security. Specifically, to verify the outputs of the ` semi-honest
Share Zero calls [x1], . . . , [x`], parties can publicly sample ` random values

{ri}`i=1 and compute a random linear combination [r] =
∑`
i=1 ri[xi] followed

by running the Check Zero call on [r] and a trivial sharing of 0 (each party
Pi’s share is 0).

– Output and Output Share: As discussed above authenticated shares in
the above protocols are of the form ([x], [m]), where m = k ∗ x and k is the
global MAC key. For both of these sub-calls, the parties first broadcast their
shares [x] and reconstruct. Then the parties can compute x · [k] and run
Check Zero to check if the resulting shares reconstruct to the same value
as the shares [m]. This is very similar to “MAC check” subprotocol already
implemented in [33].

We note that the above proposed protocols only reveal shares [x] and not [m].
Indeed, revealing all shares of both x an m will trivially give away the global
MAC key and make the protocol insecure. To make this compatible with our
maliciously secure protocol, we assume that when the parties use the shares
generated via Fmpc outside of Fmpc ( i.e., to compute the OIP messages),
they can do so on the “unauthenticated shares”, i.e., on only the [x] part
and not on the [m] part. Now, before, using the shares obtained as output
of this OIP in Fmpc, we can make them “authenticated” by computing the
corresponding [m] shares for this output. This can be done trivially, since
the parties hold a secret sharing of the global MAC key. This is a standard
approach used in many of the above protocols including MASCOT [33].

Moreover, we remark that the above proposed modification does not cause
our compiler or the compiled protocols to be insecure in any way. This is
because, the authentication mechanism used on the shares is only specific
to Fmpc and not to the primitives used outside of it. As a result, outside of
Fmpc, an adversary can easily modify the authenticated shares in whatever
way they want. Hence, in principle the following strategies are equivalent
– (1) where the computations done outside of Fmpc are performed on au-
thenticated shares. (2) where the computations done outside of Fmpc are
performed on unauthenticated shares, but we authenticate the output of
those computations before they are used in Fmpc again.



Functionality Fmpc

Initialize Input: On input (initinp, varid, Pi) from Pi (for each i ∈ [n]) with a fresh identifier
varid the functionality stores (varid, [x]).
Initialize constant: On input (initconst, constid, c) from each Pi (i ∈ [n]) with a fresh identifier
varid the functionality stores (const, c).
Random: On command (rand, varid) from all parties, with a fresh identifier varid, the functionality
selects a random value r, stores (varid, [r]) and sends the respective share [r]i to party Pi (for each
i ∈ [n])
Random Bit: On command (bitrand, varid) from all parties, with a fresh identifier varid, the
functionality selects a random bit b ∈ {0, 1}, stores (varid, [b]) and sends the respective share [b]i
to party Pi (for each i ∈ [n])
ShareZero: On command (sharezero, varid) from all parties, with a fresh identifier varid, the
functionality computes, stores (varid, [0]) and sends the respective share [0]i to party Pi (for each
i ∈ [n]).
Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present
in memory and varid3 is not), the functionality retrieves (varid1, [x]), (varid2, [y]) and stores
(varid3, [x+ y]).
Add by const: On command (add, constid1, varid2, varid3) from all parties (if constid1, varid2
are present in memory and varid3 is not), the functionality retrieves (constid1, c), (varid2, [x]) and
stores (varid3, [c+ x]).
Multiply: On input (mult, varid1, varid2, varid3) from all parties (if varid1, varid2 are present
in memory and varid3 is not), the functionality retrieves (varid1, [x]), (varid2, [y]) and stores
(varid3, [x · y]).
Multiply by const: On command (mult, constid1, varid2, varid3) from all parties (if
constid1, varid2 are present in memory and varid3 is not), the functionality retrieves
(constid1, c), (varid2, [x]) and stores (varid3, [c · x]).
Function: On input (func, f, varid1, . . . , varidn, varidout) from all parties, the functionality re-
trieves (varid1, [x1]), . . . , (varidn, [xn]) and stores (varidout, [f(x1, . . . , xn)]).
Output Shares: On input (outshare, varid) from all parties, the functionality retrieves (varid, [x])
and outputs all shares [x] to all parties.
Output Private Shares: On input (outprivshare, varid) from all parties, the functionality re-
trieves (varid, [x]) and outputs the respective share [x]i to party Pi (for each i ∈ [n]).
Check Zero: On input (fcheckzero, varid1, varid2) from all parties, the functionality retrieves
(varid1, [x1]), (varid2, [x2]) and outputs 1 w.h.p if x1 = x2 and otherwise it outputs 0 and aborts.
Output: On input (out, varid) from all honest parties (if varid is present in memory), the func-
tionality retrieves (varid, [x]) and outputs x to all players.

Fig. 1: A Required Ideal Functionality for MPC

5 Non-Constant Round Semi-Honest Branching MPC

In this section, we present our semi-honest compiler for distributed computation
of a circuit with conditional branches.

Let the circuit/function be such that it consists of an initial sub-function
f1, followed by the k branches and then a sub-function f2. We assume that
the parties have access to Fmpc (see Figure 1). When evaluated using Fmpc, the
output of f1 is a secret sharing of the inputs to the branching part and a secret
sharing of the unary representation of the index associated with the branch that
needs to be executed (henceforth referred to as the active branch). The output
of the branching part is a secret sharing of the inputs to the function f2.

Given a circuit C, we assume that the parties decide on some canonical or-
dering of the gates in the circuit, such that gate i only takes as inputs the values
output by the gates j < i . We assume w.l.o.g. that the ith gate in C has fan-in 2



and the outgoing wire of any gate can act as the incoming wire for any number
of gates.4

For simplicity, we assume that all branches are of the same size and have G
gates. Our protocol can be easily extended to the scenario where the branches are
of varying sizes by suitably padding the smaller branches with fake gates. Let `
be the length of inputs to the branching part of the function. For evaluating this
part, we assume that there are ` input gates that are common to all branches. We
set both the incoming and outgoing labels for the wires coming out of these gates
as 1, . . . , ` respectively. For each branch m ∈ [k], and each gate i in this branch,
we assign outgoing label i+ ` to the wire coming out of this gate and incoming
labels ` + 2i − 1 and ` + 2i respectively to its two incoming wires. Therefore,
we assume that the number of unique outgoing labels assigned in a branch are
G+ `, while the total number of unique incoming labels assigned in a branch are
W = 2G+`. We present a slightly optimized version of the protocol described in
the introduction, namely that only requires parties to sample 1 mask per wire,
instead of 2 masks.

Let π be the mapping corresponding to a circuit C that maps incoming la-
bels to the outgoing labels of each wire in C. For instance, π(i) corresponds to
the outgoing label of the wire with incoming label i. Let C1, . . . ,Ck be the cir-
cuit representations of the k branches and let {π1, . . . , πk} be the corresponding
mappings associated with these branches. Finally, we assume that the circuits
and inputs are defined over some field F.

Protocol. The parties start by invoking (func, f1, x1, . . . , xn, inp1, . . . , inp`,
b1, . . . , bk) in Fmpc on their original inputs x1, . . . , xn, to obtain shares of in-
puts to the branching part [inp1], . . . , [inp`], where |`| is the total input length
and shares [b1], . . . , [bk], where b1 . . . bk is the unary representation of the index
associated with the active branch. Given these shares, parties run the protocol
presented in Figure 2. The output of this protocol is a secret sharing of the inputs
to f2 (i.e., the last part of the circuit). Let m be the length of these inputs. The
parties finally invoke (func, f2, y1, . . . , ym, out) and (out, out) in Fmpc to learn
the final output out.

Optimization. A naive implementation of the online phase in the above proto-
col will result in a round complexity that depends on the maximum number of
gates in any particular branch. This can be improved to be proportional to the
maximum multiplicative depth of any branch by using a simple optimization.
For simplicity, lets assume that all branches have the same depth and each layer
of each branch contains the same number of gates. We know that the gates on
level ` only depend on the outgoing wires of gates on layers < `. We can therefore
evaluate all the gates in a particular level in parallel. This simple idea can also
be extended to the case where the branches have different depths and widths. In

4 Our compiler can work with circuits that have gates with arbitrary fan-out. In our
construction, it suffices to view such gates as having a single outgoing wire that acts
as the incoming wire for multiple gates. Hence, we only assign a single label to the
outgoing wire of each gate.



Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. Parties have shares of inputs to
the branches, i.e., [inp1], . . . , [inp`] and shares of a unary representation of the active
branch, i.e., [b1], . . . , [bk].

– Pre-processing Phase:
1. Sample masks: For each input and gate g ∈ [`+G], parties invoke (rand,maskg)

in Fmpc to obtain shares [maskg]. For each branch m ∈ [k], let [
−−−−−→
maskπm ] =

[maskπm(1)]‖ . . . ‖[maskπm(W )].
2. Shares of zeros: For each w ∈ [W ] and i ∈ [n], parties invoke (sharezero,Xw,i)

in Fmpc to get shares [Xw,i], where Xw,i = 0. For each i ∈ [n], let [
−→
Xi] =

[X1,i]‖ . . . ‖[XW,i].
3. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in a two-

message semi-honest OIP as follows, where PR acts as the receiver and PS acts as
the sender:
• Receiver: PR computes (ρ,msgR) ← OIPR(1λ, [b1]R, . . . , [bk]R) and sends

msgR to PS.

• Sender: PS computes msgS ← OIPS(1λ,msgR, [
−→
XR]S, [

−−−−→
maskπ1 ]S, . . . , [

−−−−→
maskπk ]S)

and sends msgS to PR.

• Output: PR computes
−−−−−→
shareR,S ← OIPout(ρ,msgR,msgS).

4. ∆ values: Each party Pi (for i ∈ [n]) computes [
−→
∆]i =

∑
j∈[n]

−−−−→
sharej,i, where

[
−→
∆] = [∆1]‖ . . . ‖[∆W ].

– Online Phase :
1. Inputs: For each input wire i ∈ [`], parties compute [ui] = [inpi] + [maski]. and

invoke (out, ui) in Fmpc to obtain ui in the clear.
2. Circuit Evaluation: For each gate g ∈ [G], let left = `+2g−1 and right = `+2g

be the incoming wire labels of its input wires. Let typem,g be the gate type for gate
g in Cm (∀m ∈ [k]), where typem,g = 0 denotes an addition gate and typem,g = 1
denotes a multiplication gate. Parties compute the following using Fmpc:
(a) For w ∈ {left, right}, compute [yw] =

∑k
m=1

(
uπm(w) · [bm]

)
+ [∆w].

(b) Compute [typeg] =
∑k
m=1

(
typem,g · [bm]

)
(c) Compute [zg] = (1− [typeg])([yleft] + [yright]) + [typeg]([yleft] · [yright]).
(d) Compute [u`+g] = [zg] + [mask`+g] and invoke (out, us) in Fmpc to obtain us

in the clear.
3. Output: For each output gate g, compute [zg] =

∑k
m=1

(
uπm(w) · [bm]

)
+ [∆w].

Fig. 2: Semi-Honest Compiler

that case, let x` (and y` resp.) be the minimum (and maximum resp.) number
of gates on level ` in any branch. We can evaluate the first x` gates in parallel.
Then in the next round we can evaluate the y`−x`+x`+1 gates in parallel. This
ensures that the overall round complexity of the online phase will only depend
on the depth of the branches.



Complexity Analysis. We now analyze the communication complexity of the
above semi-honest protocol. If we use a rate-1 OIP, the communication complex-
ity in the pre-processing phase is O(n2|Cmax|+n2kλ), where |Cmax| is the size of
the largest branch. In the online phase for each gate we perform both addition
and multiplication and then choose between the two. As a result we perform 2
multiplications per gate. The communication complexity of the online phase is
O(2× CC(|Cmax|)), where CC(|Cmax|) is the communication complexity incurred
upon evaluating Cmax using the underlying MPC.

Overall, given the above protocol and optimizations, we obtain the following
result. Due to space constraints, we defer the security proof of this construction
to the full-version of this paper.

Theorem 1. Let λ be the security parameter and F be a function class consist-
ing of functions of the form f(−→x ) = f2(fbr(f1(−→x ))), where fbr := {g1, . . . , gk}
is a function consisting of k conditional branches, defined as fbr(i,

−→x ) = gi(
−→x ).

Assuming the existence of a rate-1 two-message semi-honest secure OIP (see
Definition 1), there exists an MPC protocol in the Fmpc-hybrid model (see Sec-
tion 4) for computing any f ∈ F that achieves semi-honest security against
an arbitrary number of corruptions and incurs a communication overhead of
O(n2(kλ+ |Cmax|)).

In the full-version of this paper, we show that a rate-1 two-message semi-
honest secure OIP can be constructed from rate-1 linearly homomorphic en-
cryption. Such encryptions are known [17,8,15,38] from a variety of assumptions
including LWE, Ring LWE and DDH assumption.

6 Constant Round Semi-Honest Branching MPC

In this section we present our constant round semi-honest protocol for distributed
computation of a branching circuit.

As discussed in the technical overview, we instantiate a random function
based on the RLWE assumption for our protocol that works as an approximate
key homomorphic PRF. We briefly recall the variant of the decisional RLWE
hardness assumption stated by Ben-Efraim et al. [4]. Let p = 2N + 1 be a
prime, where N , called the dimension or security parameter, is a power of 2. Let
Rp = Zp[X]/(XN +1) be the polynomial ring over Zp modulo XN +1. We start
by recalling the decisional RLWE assumption.

Definition 2 (Decisional Ring LWE Problem). Any non-uniform PPT
adversary cannot distinguish between {(ai, bi)}i∈I and {(ai, ai · k + δi)}i∈I with
non-negligible probability where {ai}i∈I , {bi}i∈I and k are chosen uniformly at
random from Rp and the coeffecients of {ei}i∈I are sampled from χ, a spherical
Gaussian distribution.

By transforming to the Hermite normal form, the RLWE assumption also
holds if k is chosen from a spherical Gaussian distribution. In general, it is also
necessary to bound the number of samples |I|; say |I| = O(1) or |I| = O(logN).



Our protocol follows the BMR approach which involves sampling a pair of
keys k0

w, k
1
w for each wire w in the circuit. A garbled table is then constructed

for each gate such that the key corresponding to the value on the output wire is
encrypted using the keys corresponding to the input values. Since the position
of each ciphertext in the garbled table leaks information about its plaintext, a
private random mask bit γw ∈ {0, 1} is sampled for each wire w and the masks
for the input wires are used to permute the rows of the garbled table for each
gate. Let the external value βw on a wire be the plaintext value ρw on the wire
masked with the mask γw i.e., βw = ρw⊕γw. Then, the masks on the input wires
are used to permute the rows of the garbled table such that the external values
on the input wires can be used to index into the required row of the garbled
table. Thus, to ensure that parties decrypt the correct row when evaluating the
circuit, the mask for the output wire has to also be included in the ciphertext for
each row. We use the approach of Ben-Efraim et al. [4], where the last coordinate
of the keys k0

w, k
1
w for each wire are set to 0, which slightly reduces security, and

the external value is embedded into this coordinate during encryption. We use
k‖e to denote that the bit e was embedded in the last coordinate of the key k.

As observed in [4], since the plaintext and key come from the same set when
computing the ciphertexts for the garbled table, we sample coefficients for both
the keys and errors from Gaussian distribution χ, similar to the RLWE errors
to ensure that decryption is possible. Moreover, Ben-Efraim et al. [4] also show
that overall, it suffices to use just 8 · fout distinct public random elements of the
form Au,vg from the ring, where fout is the maximal fan-out of the circuit.

The garbling phase is presented in Figure 3 and the evaluation phase is
presented in Figure 4. We adopt similar notation to the semi-honest protocol
presented in Figure 2 and use incoming and outgoing labels for each wire. Let `
be the number of input wires to the branching part of the function, we set the
incoming and outgoing labels for these wires to be 1, . . . , `. For gate g in each
branch, we set the outgoing wire label to be ` + g, the left incoming wire label
to be `+ 2g − 1 and the right incoming wire label to be `+ 2g. We also let πm
for each m ∈ [k] to be the mapping that maps incoming labels to the outgoing
labels of each wire for the m-th branch.

Finally, we remark that we require the underlying MPC protocol that securely
realizes Fmpc to run in constant number of rounds for constant depth circuits.
This is to ensure that our protocol has constant number of rounds. This is true
for most secret sharing based protocols that evaluate the circuit in a gate-by-gate
manner.

Complexity Analysis. We assume that the size of the ring Rp is in O(λ). If
we use a rate-1 semi-honest secure OIP, the communication complexity in the
garbling phase is O(n2|Cmax|+n2kλCC(λ|Cmax|)), where |Cmax| is the size of the
largest branch and CC(λ|Cmax|) is the communication complexity incurred upon
evaluating Cmax using the underlying MPC. In the evaluation phase, the com-
munication cost incurred is for reconstructing O(λ|Cmax|) shares corresponding
to the garbling material.



Garbling Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model which computes over Rp. The
parties have shares of a unary representation of the active branch, i.e., [b1], . . . , [bk].
For each gate g ∈ [G], let leftg = ` + 2g − 1 and rightg = ` + 2g be the incoming wire
labels of its input wires and let outg = `+ g be the outgoing wire.

1. Sample masks: For each input and gate g ∈ [` + G], the parties invoke
(randbit, γg) in Fmpc to obtain shares [γg]. For each branch m ∈ [k], let [−−→γπm ] =
[γπm(1)]‖ . . . ‖[γπm(W )].

2. Sample keys: For each g ∈ [`+G], and j ∈ {0, 1} each party Pi (for i ∈ [n]) locally
samples its share [kjg]i ← χN and sets the last coordinate of its share to 0.

3. Compute LWE expansions: For each u, v ∈ {0, 1}, g ∈ [G] each
party Pi (for i ∈ [n]) locally samples δu,v,im,g ← χN and com-

putes [ψu,vm,g]i = Au,vg · ([kπm(leftg)]i + [kπm(rightg)
]
i
) + δu,v,im,g . Let [

−→
ψm] =

[ψ0,0
m,1]‖[ψ0,1

m,1]‖[ψ1,0
m,1]‖[ψ1,1

m,1]‖ . . . ‖[ψ0,0
m,G]‖[ψ0,1

m,G]‖[ψ1,0
m,G]‖[ψ1,1

m,G].
4. Shares of zero: For each i ∈ [n] and j ∈ [W + 4G], the parties invoke

(sharezero,Xj,i) in Fmpc to get shares [Xj,i], where Xj,i = 0. For each i ∈ [n],

let [
−→
Xi] = [X1,i]‖ . . . ‖[XW+4G,i].

5. Pairwise OIP: Each pair of parties PR and PS (∀R, S ∈ [n]) engage in a two-
message semi-honest OIP as follows, where PR acts as the receiver and PS acts as
the sender:
– Receiver: PR computes (ρ,msgR) ← OIPR(1λ, [b1]R, . . . , [bk]R) and sends msgR

to PS.
– Sender: For each m ∈ [1, k] let [−→xm] = [−−→γπm ]‖[

−→
ψm]. PS computes msgS ←

OIPS(1λ,msgR, [
−→
XR]S, [

−→x1]S, . . . , [
−→xk]S) and sends msgS to PR.

– Output: PR computes
−−−−−→
shareR,S ← OIPout(ρ,msgR,msgS).

For each i ∈ [n], Pi computes [
−→
Γ ]‖[
−→
Ψ ] =

∑
j∈[n]

−−−−→
sharej,i where

−→
Γ = Γ1‖ . . . ‖ΓW

and
−→
Ψ = Ψ0,0

1 ‖ . . . ‖Ψ
1,1
G .

6. Garble active branch: Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]),
where typem,g = 0 denotes an XOR gate and typem,g = 1 denotes an AND gate.
Parties do the following for each g ∈ [G]
(a) Compute [typeg] =

∑k
i=m

(
typem,g · [bm]

)
.

(b) For each u, v ∈ {0, 1} let exoru,v,g = u ⊕ Γleftg ⊕ v ⊕ Γrightg ⊕ γoutg , eandu,v,g = ((u ⊕
Γleftg ) ∧ (v ⊕ Γrightg )) ⊕ γoutg , eu,vg = typeg(e

and
u,v,g − exoru,v,g) + exoru,v,g and Ku,v

g =

eu,vg (k1outg−k
0
outg )+k0outg . For each u, v ∈ {0, 1}, compute [Ku,v

g ‖eu,vg ] using Fmpc.
(c) For each u, v ∈ {0, 1} compute [Cu,vg ] = [Ψu,vg ] + d√pe[Ku,v

g ‖eu,vg ].

Fig. 3: Garbling phase of the constant round (semi-honest) protocol

Overall, given the above protocol and optimizations, we obtain the following
result. Due to space constraints, we defer the security proof of this construction
to the full-version of this paper.



Evaluation Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. The parties have shares of the
inputs to the branches, i.e., [inp1], . . . , [inp`] and shares of a unary representation of the
active branch, i.e., [b1], . . . , [bk].

1. For each input wire w ∈ [`] parties compute [βw] = [inpw] ⊕ [γw] and invoke
(out, [βw]) in Fmpc to obtain βw. For each w ∈ [`], let β1,w = . . . = βk,w = βw.

2. For each input wire w ∈ [`] parties invoke (out, [kβww ]) in Fmpc to obtain kβww . For
each w ∈ [`], let Kβw

1,w = . . . = Kβw
k,w = kβww .

3. For each u, v ∈ {0, 1} and g ∈ [G] parties invoke (out, [Cu,vg ]) in Fmpc to obtain
Cu,vg .

4. For each m ∈ [k] and g ∈ [G], parties compute Cu,vg − Au,vg ·(
Ku
m,πm(leftg)

+Kv
m,πm(rightg)

)
, where u = βm,πm(leftg) and v = βm,πm(rightg)

, and

divide it by d√pe to remove the error and recover K
βm,outg
m,outg ‖βm,outg .

5. For each output gate g, parties compute [zg] =
∑k
m=1 βm,outg [bm]⊕ [γg] using Fmpc.

Fig. 4: Evaluation phase of the constant round (semi-honest) protocol

Theorem 2. Let λ be the security parameter and F be a function class consist-
ing of functions of the form f(−→x ) = f2(fbr(f1(−→x ))), where fbr := {g1, . . . , gk} is
a function consisting of k conditional branches, defined as fbr(i,

−→x ) = gi(
−→x ). As-

suming that a rate-1 two-message semi-honest secure OIP exists (see Definition
1) and that the decisional RLWE problem holds (see Definition 2), there exists a
constant-round MPC protocol in the Fmpc-hybrid model (see Section 4) for com-
puting any f ∈ F that achieves semi-honest security against an arbitrary number
of corruptions and incurs a communication overhead of O(n2λ(k + |Cmax|)).

Note that if we instatiate the rate-1 two-message semi-honest secure OIP
using a rate-1 RLWE-based linearly homomorphic encryption, then the above
theorem yields a protocol that only relies on the hardness of decisional RLWE.

7 Implementation

We implement and benchmark our semi-honest non-constant round protocol
from Section 5. The code is publicly available at https://github.com/rot256/
research-branching-mpc. In addition to the code and instructions used for
benchmarking, the repository also contains the raw data used in this paper and
scripts used to create the plots.

7.1 How We Benchmark

Underlaying MPC. We implement tour semi-honest compiler on top of two
different multi-party computation protocols.

https://github.com/rot256/research-branching-mpc
https://github.com/rot256/research-branching-mpc


1. Quadratic Dependence on the Number of Parties. A semi-honest variant of
MASCOT [33] (MASCOT without sacrificing and message authentication
codes) over the prime field F216+1 = Z/(0x10001 Z) provided by MP-SPDZ
[32] (called “semi-party.x”). We simply invoke the MP-SPDZ implemen-
tation as a black-box: wrapping each instance of “semi-party.x” in a pro-
gram which provides provides inputs/outputs to the party. Since MP-SPDZ
povides a universal interface our implementation is agnostic with regards to
the underlying MPC implementation: any reactive MPC in MP-SPDZ which
allows computation over F216+1 could be swapped in with ease.

2. Linear Dependence on the Number of Parties. A batched semi-honest version
of CDN [13] where we instantiate the linearly homomorphic encryption using
the same ring LWE parameters described above. We implement this ourselves
again using the Lattigo (more information below) library for the RLWE
components.

CDN Implementation. We implement a semi-honest batched version of CDN,
instantiating the linearly homomorphic encryption using the same parameters
described above (the same as the OIP). To reduce the overhead (computa-
tional/communication) induced by the homomorphic encryption we execute mul-
tiplications in batches of 212 (the dimension of the ring used for RLWE), by pack-
ing 212 independent shares (over 0x10001) into a single ciphertext and execute
the CDN multiplication protocol on these in parallel. The decryption threshold
is the full set of parties. The CDN implement is included in the same repository.
To the best of our knowledge, this is the first known implementation of CDN.

Instantiating OIP and Ring LWE Parameters. In our implementation, we
use an optimized version of OIP. We observe that the O(n2) overhead incurred
from the use of pairwise-OIPs can be driven down to O(n), if instead of a regu-
lar linearly homomorphic encryption, we use a threshold linearly homomorphic
encryption (TLHE). TLHE are linearly homomorphic encryptions that comprise
of a single public-key and where each party holds a “share” of the secret key.
This share of the secret key can be used by the parties to decrypt to a share
of the plaintext. As shown in [10], the keys for RLWE based threshold linearly
homomorphic encryption can be setup very efficiently by the parties in a couple
of rounds. At a high level, this observation allows us to reuse the sender and
receiver messages of each party across multiple OIP instantiations and as a re-
sult, overall, each party only needs to send one receiver message and one sender
message.

Recall that in our semi-honest protocol, the receiver and sender messages in
all OIP instances are computed using the same shares of the index associated
with the active branch and the masks. Each party can compute its receiver
message by encrypting its shares of b1, . . . , bk. Similarly, for the sender message,
each party can compute an inner-product of these encryptions received from all
parties and its shares of the permuted masks. Finally, all parties can add all
the sender messages (which are also ciphertexts) received from all parties. This
gives them an encryption of the permuted masks for the active branch. Now each



party can run threshold decryption using its share of the secret-key to obtain a
sharing of the resulting inner-product.

We use BFV [17] over a cyclotomic ring of index 213 and dimension 212,

i.e. R[X]/(X212

+ 1) where: Q1 := 0x7ffffec001, Q2 := 0x8000016001, P :=
0x40002001, N := Q1Q2P,R := Z/(NZ). This gives us a linearly homomorphic

encryption scheme for vectors −→v ∈ (F216+1)212

, which additionally allows (full)
threshold decryption. We use the Lattigo [1] library to implement all the RLWE
components.

Benchmarking Platform. All benchmarks were run on a laptop with an Intel
i7-11800H CPU (@ 2.3 GHz) and 64 GB of RAM. All networking is over the
loopback interface and network latency was simulated using traffic control (tc)
on Linux. We also do not restrict the bandwidth when comparing running times
– note that this constitutes a relative “worst-case scenario” for our results: as
our technique reduces communication, the relative performance gain for many
branches would only increase by restricting bandwidth.

How The Branches Were Generated. During our benchmark each branch
contained 216 uniformly random gates: each gate is a multiplication/addition
gate with probability 1/2. We benchmark using “layered circuits”, meaning each
level contains 212 gates which can be evaluated in parallel (to reduce the number
of rounds). Subject to the layering constraint, the wiring is otherwise random:
the inputs to each gate are sampled uniformly at random from all previous
outputs (not just those in the last layer). We believe this distribution over circuits
form a realistic benchmark for the expected performance across many real-world
applications.

Averaging. We run all benchmarks 10 times and take the average.

7.2 Comparison of Communication Complexity

In Fig. 5, we compare the communication complexity of our technique to the
näıve baseline solution of evaluating each branch in parallel using the underlying
MPC. For the baseline solution we do not consider the additional overhead of
multiplexing the output, i.e., selecting the output of the active branch.

Looking at Fig. 5 (a)/(b), we observe that our technique improves commu-
nication over the baseline for both CDN and MASCOT with 3 parties when the
number of branches is ≥ 8. For less than 8 branches the communication overhead
of the RLWE-based OIP and the need to evaluate universal gates (requiring the
base-MPC to compute 3 multiplications) outweighs the communication saving of
only executing the active branch. Upon reflection 8 branches is about the lowest
number of branches we could hope to see savings for: recall that each branch
contains ≈ 215 multiplications5, therefore the parallel execution of 6 branches
requires the same number of multiplications as that of the 216 universal gates

5 Since the type of each gate in each branch is sampled uniformly at random.



used in our technique. As expected we also observe that the communication of
our technique remains (nearly6) constant for any number of branches.

Lastly we fix the number of branches to 16 and plot (in Fig. 5 (c)) the
communication complexity of our technique for a varying number of parties,
as expected the communication of our compiler applied to MASCOT increases
quadratically, while our technique preserves the linearly increasing communica-
tion of CDN; constant per-party communication (and computation).

(a) Branching MPC vs Parallel
Evaluation of Branches with

CDN. 3 Parties

(b) Branching MPC vs Parallel
Evaluation of Branches with

MASCOT. 3 Parties.

(c) Branching MPC,
Communication for Different
Number of Parties. Using 16

Branches.

Fig. 5: Communication Complexity of Branching MPC compared to the base-line
of evaluating each branch in parallel.

7.3 Comparison of Running Time

From Fig. 6 and Fig. 7, we observe that for sufficiently many branches our
technique also reduces running time over the baseline for both CDN and semi-
honest MASCOT. This is also expected: after the relatively high constant over-
head of our technique, the marginal cost of adding another branch (of length
`) is that of: (1) O(`) linear operations in the underlying MPC. (2) O(`)
〈ciphertext〉× 〈plaintext〉 operations in the RLWE based homomorphic encryp-
tion scheme. (3) O(`) 〈ciphertext〉+〈ciphertext〉 operations in the RLWE based
homomorphic encryption scheme.

The first one introduces a very small cost (essentially that of reading the
branch), the second is dominated by the cost of doing a number theoretic trans-
form (NTT) on the plaintext (the players local share), which again is essentially
that of computing a small constant number of fixed-size FFTs. We note that
the NTTs are computed on random shares and could be relegated to a pre-
computation phase. The final ciphertext/ciphertext addition is just a constant
number of entry-wise additions of vectors in a small prime field – the cost of
which is miniscule. Looking at Fig. 6 and Fig. 7 we observe that this marginal
computational cost (of doing NTTs) has a higher influence when the network
latency is low and quickly becomes insignificant as the latency increases.

6 It grows slightly, since the unary representation of the selection wire must be
shared/computed. However the computation of the branch completely dominates
the communication.



(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Fig. 6: Running time of Branching MPC with CDN.

(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Fig. 7: Running time of Branching MPC with Semi-Honest MASCOT.

(a) Local (0ms) (b) LAN (10ms) (c) WAN (100ms)

Fig. 8: Running time of Branching MPC for Different Number of Parties.
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