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Abstract. GIFT-64 is a 64-bit block cipher with a 128-bit key that is
more lightweight than PRESENT. This paper provides a detailed analysis of
GIFT-64 against differential and linear attacks. Our work complements
automatic search methods for the best differential and linear charac-
teristics with a careful manual analysis. This hybrid approach leads to
new insights. In the differential setting, we theoretically explain the ex-
istence of differential characteristics with two active S-boxes per round
and derive some novel properties of these characteristics. Furthermore,
we prove that all optimal differential characteristics of GIFT-64 covering
more than seven rounds must activate two S-boxes per round. We can
construct all optimal characteristics by hand. In parallel to the work in
the differential setting, we conduct a similar analysis in the linear setting.
However, unlike the clear view in differential setting, the optimal linear
characteristics of GIFT-64 must have at least one round activating only
one S-box. Moreover, with the assistance of automatic searching meth-
ods, we identify 24 GIFT-64 variants achieving better resistance against
differential attack while maintaining a similar security level against a lin-
ear attack. Since the new variants strengthen GIFT-64 against statistical
cryptanalysis, we claim that the number of rounds could be reduced from
28 to 26 for the variants. This observation enables us to create a cipher
with lower energy consumption than GIFT-64. Similarly to the case in
GIFT-64, we do not claim any related-key security for the round-reduced
variant as this is not relevant for most applications.

1 Introduction

The expanded deployment of small computing devices that have limited re-
sources (e.g., Radio-Frequency IDentification (RFID) tags, industrial controllers,
intra-body sensors) strongly push the evolution of lightweight cryptography.
There has been a significant amount of work done by the research community
related to this topic. New lightweight algorithms are being proposed on a reg-
ular basis. Some lightweight algorithms such as PRESENT [12], PHOTON [19], and



SPONGENT [11] have already been included in ISO standards (ISO/IEC 29192-
2:2012 and ISO/IEC 29192-5:2016).

Among the numerous lightweight primitives, PRESENT is probably one of the
first candidates particularly designed for efficient hardware implementations.
Although the security margin of PRESENT has been reduced by exploiting the
clustering effect of linear characteristics [14], it is one of the first generation
lightweight ciphers. Notably, NOEKEON [17], which has good hardware perfor-
mance, was designed in 2000 also before the term lightweight cryptography was
widely used.

Ten years after the publication of PRESENT, Banik et al. [4,5] revisit the
design strategy of PRESENT and propose a new design, named GIFT, that gains
much-increased efficiency in hardware and software implementations. In order
to avoid some of the potential weaknesses of PRESENT, the designers develop a
construction paradigm called “Bad Output must go to Good Input (BOGI)” to
guide the selection of bit permutations in PRESENT-like ciphers. GIFT outperforms
a vast number of lightweight designs and remains a competitive cipher to date.

Design and cryptanalysis are two inseparable aspects in the development of
cryptography and can bring out the best in each other. In the past decade, auto-
matic methods [27,26,32,23,28] gradually develop into powerful tools facilitating
the analyses of symmetric-key primitives. This approach has been very successful
in developing better attacks and security bounds.

However, tempted by the convenient and fast usage of automatic tools, re-
searchers may spend less attention on a careful study of the primitives them-
selves. Our research shows that such an analysis can identify new properties and
lead to a better understanding of the strength and weaknesses of a design.

This paper studies GIFT-64 with both automatic methods and mathemat-
ical analysis; this “hybrid” method uncovers new insights into the security of
GIFT-64 and some of its variants.

1.1 Our Results

Motivated by some new observations on differential and linear attacks of GIFT-64,
we attempt to explain the results and propose in-depth cryptanalyses of the ci-
pher. The results of this paper can be summarised as follows.

Properties of differential characteristics activating two S-boxes per
round. For the crucial role of differential characteristics with two active S-
boxes in each round, we try to infer more properties of these characteristics. An
alternative description for the round function of GIFT-64 is introduced, where
internal states are viewed as 4 × 4 matrices. With the help of the alternative
description, we first show that, for differential characteristics activating two S-
boxes per round, the two active S-boxes in one of the first two rounds must be
located in the same column of the matrix state. Then, we derive some conditions
on the differential propagation for the bit permutation operating on the column
of the state, and 26 candidate differential propagations are discovered. After
evaluating the compatibilities among these candidates, we prove the existence
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of differential characteristics with two active S-boxes per round. Beyond that,
we also confirm that any differential characteristics covering more than seven
rounds and activating two S-boxes in each round must utilise some of the 26
candidate differential propagations.

Explicit formula for the differential probability of the optimal charac-
teristic. We propose an explicit formula for the differential probability of the
optimal characteristic. Precisely, the probability Pr(r) of r-round optimal differ-
ential characteristics with r > 8 can be calculated with the following equation

− log2

(
Pr(r)

)
=

{
[(r − 3)/2] · 10 + 12 if rmod 2 ≡ 1,

[(r − 2)/2] · 10 + 8 otherwise.

All optimal differential characteristics of GIFT-64. All optimal differential
characteristics covering more than seven rounds with the maximum probability
can be constructed starting from the 26 candidate differential propagations. In
other words, all optimal differential characteristics of GIFT-64 must activate
two S-boxes per round. In addition, we show that for the round-reduced variant
with an odd number of rounds, the number of optimal characteristics is 288;
otherwise, the number of optimal characteristics is 10400.

Properties of linear characteristics with two active S-boxes per round.
In parallel to the analysis in the differential setting, we also investigate linear
characteristics activating two S-boxes in each round. Moreover, we present some
properties for this kind of characteristic, and verify that they can be constructed.
However, unlike the clear view in the differential setting, the optimal linear
characteristics for GIFT-64 must contain at least one round with only one active
S-box.

Variants with comparable differential and linear properties. Consider-
ing the gap between the upper bounds on the differential probability and the
linear correlation, we wonder whether we can find a variant of GIFT-64 with
analogous security levels under the differential and linear settings. To facilitate
the investigation, we devise a sufficient condition for two GIFT-64-like ciphers
to be equivalent to each other, enabling us to create an equivalence relation over
the set of all GIFT-64-like ciphers. Based on the equivalence relation, we identify
168 equivalence classes; the variants in each class share the same cryptographic
properties. In other words, it is sufficient to carefully analyse 167 representa-
tive variants. After performing an automatic searching method, we recognise
one equivalence class, denoted as GIFT-64[2021], with both lengths of the op-
timal effective differential and linear characteristics equal to 12. In other words,
comparing to GIFT-64, all the 24 variants in GIFT-64[2021] achieve better re-
sistance against differential cryptanalysis while maintaining a similar security
level against linear cryptanalysis.
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Resistance against other attacks. The security of variants in GIFT-64[2021]

w.r.t. the impossible differential attack [9,21], the zero-correlation attack [13],
and the integral attack [22] were checked with automatic methods in [15,16,28,33].
Since the new variants strengthen GIFT-64 against statistical cryptanalysis, we
claim that 26 rounds could be used rather than 28 rounds for the variants. On
this basis, we create a 26-round variant without related-key security, which is
more energy-efficient than GIFT-646. Nevertheless, we find that the performance
of the 24 variants in the related-key differential attack setting is inferior to that
of GIFT-64. This observation suggests that the designers have evaluated the
security of the cipher under the related-key differential attacks, although they
do not claim security in this setting. For most applications, this security is not
required; for the few applications where this is required, the key schedule of the
newly proposed variant could be redesigned.

Outline. In Section 2, we review the target cipher GIFT-64 and recall the auto-
matic searching method exploited in this paper. Motivated by some observations
on the experimental results, Section 3 presents a series of new differential prop-
erties of GIFT-64. In parallel to the search in Section 3, we present in-depth
analytic results in the linear setting in Section 4. Section 5 argues why GIFT-64

can indeed be improved by creating a variant. At last, we conclude the paper
and list future work in Section 6.

2 Preliminary

In this section, we first review the overall structure and the design philosophy of
GIFT-64. Then, an automatic searching method, utilised to assist the following
analyses, is briefly recalled.

2.1 Specification of GIFT-64

GIFT [4] is a family of lightweight block ciphers composed of two versions. In
this paper, we only focus on GIFT-64, a 64-bit block cipher with a 128-bit key
and with 28 rounds.

The cipher initialises the cipher state S with a 64-bit plaintext b0b1 · · · b63,
where b0 stands for the most significant bit. Alternatively, the cipher state can be
expressed as sixteen 4-bit nibbles S = w0‖w1‖ · · · ‖w15. Apart from the plaintext,
the 128-bit key K = k0‖k1‖ · · · ‖k7 acts as the other input of the cipher. After
initialising as above, the cipher iteratively uses the round function to update the
cipher state. Each round of GIFT-64 consists of three steps.

SubCells(SC). GIFT-64 applies an invertible 4-bit S-box GS to every nibble of
the cipher state.

6 The GIFT designers also did not claim related-key security.
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PermBits(PB). This operation maps the bit from the position i of the cipher
state to the position P64(i) as

bP64(i) ← bi, i ∈ {0, 1, . . . , 63},

where P64(i) can be calculated as

63−
{
4

⌊
63− i

16

⌋
+ 16

[
3

⌊
(63− i)mod 16

4

⌋
+ (63− i)mod 16

]
+ (63− i)mod 4

}
mod 64.

AddRoundKey(ARKRKr
). This step adds the round key and the round con-

stant. Since the round constant does not affect the analysis in this paper,
we only pay attention to the round key. In the r-th round, a 32-bit round
key RKr is extracted from the key state and is further partitioned into two
16-bit words as RKr = U‖V = u0u1 · · ·u15‖v0v1 · · · v15. Then, U and V are
XORed to the cipher state as

b4·i+2 ← b4·i+2 ⊕ ui, b4·i+3 ← b4·i+3 ⊕ vi, i ∈ {0, 1, . . . , 15}.

The design of the key schedule realises the goals of minimising the hardware
area and supporting efficient software implementation simultaneously. It only
involves the key state rotation in blocks of 16-bit and the bit rotation within
some 16-bit blocks.

Key schedule. Before the key state updates, a round key is first extracted from
it. To be precise, two 16-bit words of the key state are set as the round key
RK = U‖V , where

U ← k6, V ← k7.

After generating the round key, GIFT-64 employs the following transforma-
tion to update the key state,

k0‖k1‖ · · · ‖k7 ← (k6≫ 2)‖(k7≫ 12)‖k0‖k1‖ · · · ‖k5,

where ‘≫ i’ represents an i-bit right rotation within a 16-bit word.

For more details about the cipher, see Banik et al. [5].

2.2 Bit Permutation in PermBits Operation of GIFT-64

After fixing the overall structure of the cipher as a PRESENT-like [12] one, the
designers set out a small area goal and manage to use an S-box with a lower
implementation cost than that of RECTANGLE [34]. However, the S-box GS with
low cost cannot reach the differential and linear branching numbers of three.
In other words, for GS, 1-1 bit transitions, which are referred to as differen-
tial/linear propagations with input and output differences/masks being unit
vectors, are possible in both the differential and linear settings. Note that the
1-1 bit transition may result in long differential and linear characteristics with a
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single active S-box per round. Hence, to ensure the nonexistence of consecutive
1-1 bit differential and linear transitions in the cipher, the designers propose a
new construction paradigm called “Bad Output must go to Good Input (BOGI)”
to design the bit permutation.

Denote the sixteen S-boxes in the i-th round as GSi
0, GSi

1, . . ., GSi
15. The

S-boxes can be grouped into two different ways:

. the Quotient group Qi
x = {GSi

4·x, GS
i
4·x+1, GS

i
4·x+2, GS

i
4·x+3}, 0 6 x 6 3;

. the Remainder group Ri
x = {GSi

x, GS
i
x+4, GS

i
x+8, GS

i
x+12}, 0 6 x 6 3.

With this notation, the design of the 64-bit permutation in PermBits operation
boils down to the construction of four independent and identical 16-bit permu-
tations that map the output bits of Qi

x to the input bits of Ri+1
x . In this sense,

the BOGI paradigm can be viewed as a guideline for the creation of the 16-bit
group mapping. It determines the rule to map the output bits of S-boxes in Qi

x

to the input bits of S-boxes in Ri+1
x and is analysed in differential and linear

setting parallelly.
In the differential setting, we consider the 1-1 bit DDT [4], a sub-table of the

differential distribution table (DDT) [10], composed of differential transitions
with input and output differences being unit vectors (cf. Table 4 in Supple-
mentary Material A of the long version for the 1-1 bit DDT of GIFT). Given
the 1-1 bit DDT, an input (resp., output) difference ∆x = x0x1x2x3 (resp.,
∆y = y0y1y2y3) is named as a good input (resp., good output) if the correspond-
ing row (resp., column) has all zero entries; otherwise, it is called a bad input
(resp., bad output). Denote GI, GO, BI, and BO the sets of positions for the
nonzero bits in the good inputs, good outputs, bad inputs, and bad outputs,
respectively. Then, based on the 1-1 bit DDT of GIFT, we have GI = {0, 1, 2},
GO = {1, 2, 3}, BI = {3}, and BO = {0}.

Notice that a bad output could come from a 1-1 bit transition through a
certain S-box in the current round. The primary purpose of BOGI is to ensure
that the existing 1-1 bit transition will not head to another 1-1 bit transition
in the succeeding round, which is realised by artificially mapping the active
bit of the (potentially) bad output to an active bit of some good inputs in
the next round. Concretely, regarding a 1-1 bit DDT with |BO| 6 |GI|, the
differential BOGI permutation is defined as a permutation π : BO ∪ GO →
BI ∪GI with π(BO) = {π(i) | i ∈ BO} ⊆ GI. Likewise, in the linear case, the
linear BOGI permutation can be derived regarding the 1-1 bit LAT (cf. Table 5
in Supplementary Material A of the long version), which is the dual notion of
1-1 bit DDT in the linear approximation table (LAT) [24].

For the purpose of increasing the security of the cipher regarding differen-
tial and linear cryptanalyses at the same time, the BOGI permutation exploited
in the cipher should belong to the intersection of the set of differential BOGI
permutations and the set of linear BOGI permutations. For GIFT, the BOGI per-
mutation is fixed as the identity mapping π(i) = i. After determining the BOGI
permutation, during the construction of the group mapping, the i-th output bits
of the S-boxes in Qi

x must be connected to the π(i)-th input bits of the S-boxes
in Ri+1

x . This mandatory requirement breaks the existence of consecutive 1-1 bit
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transitions. Hence, the cipher assembled with this kind of group mappings does
not exhibit long differential and linear characteristics activating a single S-box
per round.

Except for the above countermeasure to enhance the security, the group map-
ping should also validate the following four rules to guarantee the bijectivity of
the linear layer and attain an optimal full diffusion7.

1. The input bits of an S-box in Ri+1
x come from 4 distinct S-boxes in Qi

x.
2. The output bits of an S-box in Qi

x go to 4 distinct S-boxes in Ri+1
x .

3. The input bits of 4 S-boxes from the same Qi+1
x come from 16 different

S-boxes.
4. The output bits of 4 S-boxes from the same Ri

x go to 16 different S-boxes.

2.3 Accelerated Automatic Search with the SAT Method

This section briefly reviews the accelerated automatic searching method in [30],
which will be used to examine the soundnesses of some theoretical results in the
coming sections.

The automatic search is realised via the Boolean satisfiability problem (SAT),
which intends to determine if there exists an instantiation that satisfies a given
Boolean formula. In practice, we transform cryptanalytic problems into SAT
problems and employ the same SAT solver CiDiCaL [8] as in [30] to solve all
concerned SAT problems.

To facilitate a SAT solver to detect desired differential and linear charac-
teristics, we should first create Boolean formulas to translate the cryptanalytic
properties of the cipher. Due to the concise structure of GIFT, descriptions of
cryptanalytic properties (e.g., the number of differential/linear active S-boxes,
the differential probability, and the linear correlation) are reduced to character-
isations of properties for the S-box GS. We refer readers to [30] for a detailed
approach to generate differential and linear models of a given S-box.

Because we always target characteristics with good cryptanalytic properties
(e.g., a small number of active S-boxes, a relatively high differential probabil-

ity/linear correlation), a cardinality constraint in the form of
ω−1∑
j=0

xj 6 k should

be integrated into the SAT problem, where xj ’s stand for Boolean variables rep-
resenting cryptanalytic properties of S-boxes, w is the number of xj ’s in the
cipher, and k is a predicted value for the cryptanalytic property of the cipher.
This cardinality constraint can be viewed as an objective function: it tells the
SAT solver what kind of characteristics we want to find. With the sequential
encoding method [29], the cardinality constraint can be converted into O(ω · k)
Boolean formulas by introducing O(ω · k) auxiliary variables.

The Boolean expressions specifying the cryptanalytic properties of S-boxes
and the objective function constitute a basic SAT problem for searching distin-
guishers. Next, Sun et al. [30] managed to incorporate Matsui’s bounding con-
ditions abstracted from the branch-and-bound depth-first searching algorithm

7 GIFT-64 achieves full diffusion after three rounds.
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[25] into the SAT problem to accelerate the automatic search. The efficiency
arises from the manipulation of the knowledge of cryptanalytic properties of
short characteristics. For instance, suppose that we are checking the existence
of R-round differential characteristics (∆0, ∆1, . . . ,∆R) with probability no less
than PrIni(R), where ∆i implies the input difference of the i-th round. Given
the maximum probability PrMax(i) achieved by i-round differential characteris-
tics for all 1 6 i 6 R − 1, the bounding condition C(r1,r2), originating from
the r1-th round and terminating with the r2-th round, forces the SAT solver to
concentrate on characteristics validating the following inequality

PrMax(r1) ·
[
r2−1∏

i=r1

Pr (∆i → ∆i+1)

]
· PrMax(R− r2 − 1) 6 PrIni(R) ,

where Pr (∆i → ∆i+1) stands for the probability of the differential propagation
∆i → ∆i+1 in the i-th round. The adjunction of the bounding condition [30]
shrinks the solution space of the basic SAT problem and results in a notable
speedup.

3 Differential Property of GIFT-64

Through analysing the automatic searching results related to differential and lin-
ear cryptanalyses of GIFT-64, we attempt to develop an in-depth understanding
on the security of the cipher. Therefore, we reimplement the search for GIFT-64
with the publicly available source code provided in [30], even if the authors of
[30] have already completed the full picture on the number of active S-boxes,
the differential probability, as well as the linear correlation.

Based on the results shown in Fig. 1, this section presents some novel differen-
tial properties of GIFT-64. In the following, the minimum numbers of differential
and linear active S-boxes for r-round characteristics are denoted as #SD(r) and
#SL(r), respectively. The maximum differential probability and linear correlation
for r-round characteristics are represented as Pr(r) and Cor(r).

3.1 Observations on Experimental Results

In Fig. 1, the minimum number of differential active S-boxes #SD(r) is linearly
dependent on r for all r > 8. Starting from the eighth round, #SD(r) strictly
increases by two per round. Further, after decoding the optimal differential char-
acteristic with the maximum probability from the output of the SAT solver, we
observe that the optimal characteristics covering more than seven rounds al-
ways maintain two active S-boxes in each round. Thus, we wonder whether a
characteristic with a single active S-box in some rounds achieving the maximum
differential probability exists. The research in this section provides an answer
for this issue.
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Fig. 1. Bounds reflecting differential and linear properties of GIFT-64.

3.2 Lifted Bounds on the Number of Differential Active S-boxes

Let D0x1 be the set of differential characteristics with at least one round activat-
ing a single S-box, and the value 0x1 equals the input difference of the active
S-box. We manage to calculate a lower bound on the number of active S-boxes
for characteristics in D0x1.

The accelerated automatic method reviewed in Section 2.3 is applied to ac-
complish this task, and we split the search into three steps. To begin with, we
explore the lower bound for characteristics with input differences having a single
nonzero nibble 0x1. Then, the characteristics with output differences having a
single nonzero nibble 0x1 are considered. Note that the characteristics in D0x1

can be created with the characteristics in the first two steps. Therefore, the lower
bound for characteristics in D0x1 is derived from the experimental results in the
first two steps.
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Step 1: Lower bound for characteristics with input differences having a single
nonzero nibble 0x1. We focus on characteristics with input differences having
a single nonzero nibble 0x1. The set of characteristics satisfying this restriction
is denoted as D↓0x1. To obtain a lower bound on the number of active S-boxes

for characteristics in D↓0x1, we first convert the restriction on characteristics into
Boolean formulas. These formulas are appended to the SAT problem so that the
solver ignores unsatisfied characteristics. Besides, the set of bounding conditions
terminating with the last round C(∗,R) = {C(r,R) | 1 6 r 6 R− 1} is included in
the SAT problem to accelerate the search. Denote the minimum number of active
S-boxes for r-round characteristics in D↓0x1 with #SD

↓
0x1(r), where 1 6 r 6 28.

Figure 2 shows the results for #SD↓0x1(r) returned by the solver.

Step 2: Lower bound for characteristics with output differences holding a sin-
gle nonzero nibble 0x1. The search space is restricted to characteristics with
output differences having a single nonzero nibble 0x1; the corresponding set of
characteristics is denoted with D↑0x1. Also, this constraint is formulated with
Boolean expressions, which are added to the basic SAT problem. To simulta-
neously speed up the search and guarantee the correctness of the test, in this
step, we employ the set of bounding conditions starting from the first round
C(0,∗) = {C(0,r) | 1 6 r 6 R − 1}. Let #SD

↑
0x1(r) denote the minimum number of

active S-boxes for r-round characteristics in D↑0x1. Figure 2 shows the values for

#SD
↑
0x1(r).

Step 3: Lower bound for characteristics in D0x1. Let #SD0x1(r) be the minimum
number of active S-boxes for r-round characteristics in D0x1. Since the charac-
teristic in D0x1 can be created with characteristics in D↑0x1 and D↓0x1, a lower

bound for the value of #SD0x1(r) can be calculated with #SD
↓
0x1(∗) and #SD

↑
0x1(∗).

Specifically, we have

#SD0x1(r) > min
{
#SD
↑
0x1(r1) + #SD

↓
0x1(r2)

∣∣∣ r1 + r2 = r, r1 > 0, r2 > 0
}
, (1)

and the value of the right-hand side expression is known from the outputs in
Step 1 and Step 2. Additionally, as we find the characteristic with the number
of active S-boxes exactly matching the lower bound, we ensure that the bound
for #SD0x1(r) in Eqn. (1) is strict. The values of #SD0x1(r) for all 1 6 r 6 28 can
be found in Fig. 2.

Figure 2 reveals that #SD0x1(r) > #SD(r) for all r > 8. Moreover, after ex-
ploiting the three-step test to evaluate all sets Di for i ∈ {0x2, . . . , 0xf} rep-
resenting the sets of characteristics with at least one round activating a single
S-box with the input difference i, we find that #SDi(r) > #SD(r) for all r > 8
and i ∈ F4

2\{0x0} (cf. Supplementary Material B.1 of the long version). That is,
from the eighth round, the optimal differential characteristic with the minimum
number of active S-boxes definitely activates more than one S-box in each round.
In other words, the optimal characteristic contains at least two active S-boxes
per round. Because the characteristics decoded from the solver evidence the ex-
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istence of differential characteristics with two active S-boxes in each round, we
draw the following proposition.

Proposition 1. If r > 8, the optimal r-round differential characteristic of
GIFT-64 with the minimum number of active S-boxes must have two active
S-boxes in each round.

3.3 Decreased Upper Bound on the Differential Probability

After obtaining lower bounds on the number of active S-boxes for characteris-
tics in Di, we attempt to check the differential probability for characteristics
in Di, where i traverses all nonzero 4-bit values. The test is also accomplished
with three steps as in Section 3.2, and we only accommodate the objective func-
tion from the number of active S-boxes to the differential probability. Denote
the maximum differential probability for r-round characteristics in D↓i (resp.,

D↑i , Di) with Pr↓i(r) (resp., Pr↑i(r), Pri(r)). The results for Pr↓i(r), Pr↑i(r), and
Pri(r) are given in Supplementary Material B.2 of the long version. The follow-
ing proposition is based on the observation Pri(r) < Pr(r) for all i ∈ F4

2 \ {0x0}
and r > 8.

Proposition 2. If r > 8, the optimal r-round differential characteristic with
the maximum probability must activate at least two S-boxes per round.

From Section 3.2 – 3.3, we notice that differential characteristics activat-
ing two S-boxes in each round play a crucial role in the security evaluation for
GIFT-64. Consequently, a natural question is whether one can infer more proper-
ties of these characteristics, apart from the quantitative information about active
S-boxes. Before looking into these characteristics, we first devise an alternative
description for the round function of GIFT-64, which facilitates the analyses in
the upcoming sections. Note that the designers of GIFT proposed a cubic rep-
resentation of GIFT-64 [4], which reorganises the 64-bit state as a 4 × 4 × 4
cube. Based on the observation on the cubic representation, Adomnicai et al.
[1] developed a new GIFT representation called fixslicing that allows extremely
efficient software bitsliced implementations of GIFT. The new description in the
following is based on a 2-dimensional matrix.

3.4 Alternative Description for the Round Function of GIFT-64

In the alternative description, we keep SubCells and AddRoundKey operations
and further decompose PermBits operation into two sub-operations. Please find
Fig. 3(a) for an illustration.

GroupMaps(GM). Denote the 16-bit group mapping utilised in GIFT-64 as gO,

gO = (12, 1, 6, 11, 8, 13, 2, 7, 4, 9, 14, 3, 0, 5, 10, 15) .

It moves the i-th bit of the input to the gO(i)-th bit for all 0 6 i 6 15.
GroupMaps operation invokes gO and independently applies it on each of
the 16-bit words wSC,r

4·j ‖wSC,r
4·j+1‖wSC,r

4·j+2‖wSC,r
4·j+3 of the cipher state, where wSC,r

∗
stands for nibbles at the output of the SubCells operation and 0 6 j 6 3.

11



TransNibbles(TN). This operation works in nibbles. It shifts the nibble from
position i of the cipher state to position T (i) for all 0 6 i 6 15, and

T = (0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15) .

Equivalently, if we reorganise the cipher state as a 4 × 4 matrix of nibbles, the
bit-oriented description in Fig. 3(a) can be replaced with a nibble-oriented one
as in Fig. 3(b), which is a more concise representation. In this description, the
32-bit round key RKr also should be fitted into a 4× 4 matrix of nibbles. In the
following, we employ the nibble-oriented description.
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(a) Bit-oriented description for GIFT-64.
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Fig. 3. Alternative descriptions for GIFT-64.

3.5 Differential Characteristics with Two Active S-boxes Per Round

Next, we study the properties of differential characteristics activating two S-
boxes per round. Besides, we temporarily omit AddRoundKey operation as it
does not influence the differential property in the single-key attack setting.

Lemma 1. For GIFT-64, if a differential characteristic activates two S-boxes
per round, then the two active S-boxes in one of the first two rounds must be
located in the same column of the matrix state.

For the proof of Lemma 1, see Supplementary Material B.3 of the long ver-
sion.

Now, given a differential characteristic with two active S-boxes per round;
we assume that the two active S-boxes in the r-th round are located in the same
column. Without loss of generality, the column is set as the first one. Denote the
differential propagation of the group mapping gO in the r-th round operating

on the first column as α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3, where two nibbles in
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Fig. 4. Illustration for conditions on the group mapping gO.

α0‖α1‖α2‖α3 are nonzero. In the following, we will see that this propagation
should meet some conditions so that the differential characteristic based on it
can sustain two active S-boxes in rounds (r − 1) and (r + 1).

Condition 1 The output difference β0‖β1‖β2‖β3 of gO has two nonzero nibbles.

Proof. As in Fig. 4, the cipher structure guarantees that β0‖β1‖β2‖β3 equals the
first row of input difference for the (r+ 1)-th round, which is the composition of
input differences for four S-boxes. Because we are analysing characteristics with
two active S-boxes in each round, two nibbles among β0, β1, β2, and β3 have to
be nonzero. �

Condition 2 Two nonzero nibbles in β0‖β1‖β2‖β3 cannot take values from the
set {0x2, 0x4, 0x8}.
Proof. Without loss of generality, suppose that the two nonzero nibbles are β1
and β3. As in Fig. 4, β0, β1, β2, and β3 are input differences of four S-boxes
in the (r + 1)-th round, and we denote the corresponding output differences as
γ0, γ1, γ2, and γ3. Based on the diffusion property of GroupMaps operation, to
maintain two active S-boxes in the (r + 2)-nd round, γ1 and γ3 should be unit
vectors. Accordingly, the input differences β1 and β3 regarding γ1 and γ3 must
be different from 0x2, 0x4, or 0x8, for these input differences cannot perform
the 1-1 bit transition. The proof is complete. �
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Condition 3 Two nonzero nibbles in α0‖α1‖α2‖α3 cannot take values from the
set {0x1, 0x2, 0x4}.

Proof. Likewise, without loss of generality, suppose that the two nonzero nib-
bles are α0 and α2. We propagate the difference α0‖α1‖α2‖α3 in the backward
direction and utilise δ0‖δ1‖δ2‖δ3 to stand for the input difference of SubCells
operation regarding α0‖α1‖α2‖α3. As in Fig. 4, at the output of GroupMaps
operation in the (r − 1)-th round, δ0 and δ2 are located in different columns.
Thus, they must originate from the two active S-boxes in the (r − 1)-th round.
By the diffusion property of GroupMaps operation, δ0 and δ2 should be unit
vectors. As δ0 and δ2 also act as input differences of two active S-boxes in the
r-th round, the corresponding output differences α0 and α2 have to take values
from the complementary set of {0x1, 0x2, 0x4} ⊂ F4

2. �

Condition 4 Denote βi and βj the two nonzero nibbles in β0‖β1‖β2‖β3, where
i, j ∈ {0, 1, 2, 3} and i 6= j. Let SDi and SDj be the sets of 1-bit output differences
that can be propagated from βi and βj , respectively, i.e.,

SDi = {γi | βi GS−−→ γi is a possible propagation, and γi is a unit vector} ,
SDj = {γj | βj GS−−→ γj is a possible propagation, and γj is a unit vector} .

Then, SDi ∩ SDj 6= ∅ must hold.

Proof. Without loss of generality, suppose that i = 1 and j = 3. We have already
proved in Condition 2 that the output differences γ1 and γ3 corresponding to β1
and β3 must be unit vectors. As in Fig. 4, γ1 and γ3 at the input of GroupMaps
operation in the (r + 1)-th round are located in different columns but the same
row. If γ1 6= γ3, then at least one of them differs from 0x1. Since the following
GroupMaps operation shifts the two nonzero bits in γ1 and γ3 to different rows,
the inequality incurs at least three active S-boxes in the (r + 3)-rd round for
sure. So, the preset condition on the characteristic determines that the output
differences corresponding to β1 and β3 must be an identical unit vector. �

Summarising all analyses in the proofs for Condition 1 – 4, we derive the
following proposition.

Proposition 3. For an R-round differential characteristic activating two S-
boxes per round, if the two active S-boxes in the r-th round are located in
the same column, then, for all i with 0 6 r+ 2 · i < R, the two active S-boxes in
the (r + 2 · i)-th round are also located in the same column.

Based on Lemma 1 and Proposition 3, we conclude that all differential char-
acteristics with two active S-boxes per round can be decomposed into several
pieces of 2-round characteristics, for which the two active S-boxes in the first
round are located in the same column. Furthermore, the differential propaga-

tions of the form α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3 GS−−→ γ0‖γ1‖γ2‖γ3 abstracted

from these 2-round characteristics fulfil Condition 1 – 4.
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On the contrary, consider two differential propagations validating Condi-
tion 1 – 4,

α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3 GS−−→ γ0‖γ1‖γ2‖γ3 ,

α′0‖α′1‖α′2‖α′3
gO−→ β′0‖β′1‖β′2‖β′3

GS−−→ γ′0‖γ′1‖γ′2‖γ′3 ,

if the positions of nonzero nibbles in γ0‖γ1‖γ2‖γ3 and α′0‖α′1‖α′2‖α′3 are the

same, and γi
GS−−→ α′i are possible transitions for all 0 6 i 6 3, then the two

propagations are said to be compatible with each other. As shown in Fig. 4, we
can craft long differential characteristics that activate two S-boxes per round
with compatible propagations.

As a result, to figure out the structure of the differential characteristic acti-
vating two S-boxes in each round, we should find out all possible propagations

of the form α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3 GS−−→ γ0‖γ1‖γ2‖γ3. We implement a

test and find that 26 propagations validate Condition 1 – 4 simultaneously (cf.
Table 1). Then, we evaluate the compatibilities among them and illustrate the
result in Fig. 5(a).

The graph in Fig. 5(a) contains some isolated nodes and short paths, and
the corresponding propagations cannot be manipulated to create long differential
characteristics. Thus, we remove these nodes and picture a more succinct graph
as in Fig. 5(b), which manifests several cycles. On the one hand, these cycles
theoretically explain the existence of long differential characteristics with two
active S-boxes per round. On the other hand, accompanied by the preceding
analyses, we conclude that any differential characteristics covering more than
seven rounds with two active S-boxes per round must utilise certain paths in
Fig. 5(b).

In particular, from Fig. 5(b), we identify three categories of 4-round itera-
tive differential characteristics with probability 2−20, which are demonstrated in
Fig. 6. Note that the three categories cover the eight 4-round iterative differential
characteristics with probability 2−20 proposed in [35].

Table 1. Candidate propagations α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3

GS−−→ γ0‖γ1‖γ2‖γ3.

Index α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3

GS−−→ γ0‖γ1‖γ2‖γ3 Probability Index α0‖α1‖α2‖α3
gO−→ β0‖β1‖β2‖β3

GS−−→ γ0‖γ1‖γ2‖γ3 Probability

D00 0x0039
gO−→ 0x9003

GS−−→ 0x8008 2−6 D13 0x3900
gO−→ 0x0390

GS−−→ 0x0880 2−6

D01 0x0085
gO−→ 0x0c01

GS−−→ 0x0808 2−6 D14 0x5008
gO−→ 0xc010

GS−−→ 0x8080 2−6

D02 0x009c
gO−→ 0x9c00

GS−−→ 0x8800 2−6 D15 0x500a
gO−→ 0xc030

GS−−→ 0x8080 2−6

D03 0x00a5
gO−→ 0x0c03

GS−−→ 0x0808 2−6 D16 0x5050
gO−→ 0x5050

GS−−→ 0x2020 2−6

D04 0x00c6
gO−→ 0x0c60

GS−−→ 0x0220 2−4 D17 0x5050
gO−→ 0x5050

GS−−→ 0x8080 2−6

D05 0x0390
gO−→ 0x3900

GS−−→ 0x8800 2−6 D18 0x600c
gO−→ 0xc600

GS−−→ 0x2200 2−4

D06 0x0505
gO−→ 0x0505

GS−−→ 0x0202 2−6 D19 0x8500
gO−→ 0x010c

GS−−→ 0x0808 2−6

D07 0x0505
gO−→ 0x0505

GS−−→ 0x0808 2−6 D20 0x9003
gO−→ 0x0039

GS−−→ 0x0088 2−6

D08 0x0850
gO−→ 0x10c0

GS−−→ 0x8080 2−6 D21 0x9c00
gO−→ 0x009c

GS−−→ 0x0088 2−6

D09 0x09c0
gO−→ 0x09c0

GS−−→ 0x0880 2−6 D22 0xa0a0
gO−→ 0x0a0a

GS−−→ 0x0101 2−4

D10 0x0a0a
gO−→ 0xa0a0

GS−−→ 0x1010 2−4 D23 0xa500
gO−→ 0x030c

GS−−→ 0x0808 2−6

D11 0x0a50
gO−→ 0x30c0

GS−−→ 0x8080 2−6 D24 0xc009
gO−→ 0xc009

GS−−→ 0x8008 2−6

D12 0x0c60
gO−→ 0x00c6

GS−−→ 0x0022 2−4 D25 0xc600
gO−→ 0x600c

GS−−→ 0x2002 2−4
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D00

D01

D02

D03

D04
D05D06

D07

D08

D09

D10

D11

D12

D13

D14

D15

D16

D17
D18 D19

D20

D21

D22

D23

D24

D25

(a) Graph for all 26 propagations. (b) Six propagations participating in cycles.

D06: 0x0505
gO−→ 0x0505

GS−−→ 0x0202

D07: 0x0505
gO−→ 0x0505

GS−−→ 0x0808

D10: 0x0a0a
gO−→ 0xa0a0

GS−−→ 0x1010

D16: 0x5050
gO−→ 0x5050

GS−−→ 0x2020

D17: 0x5050
gO−→ 0x5050

GS−−→ 0x8080

D22: 0xa0a0
gO−→ 0x0a0a

GS−−→ 0x0101

D∗∗ Propagations cannot be connected with other propagations
D∗∗ Propagations with probability 2−4

D∗∗ Propagations with probability 2−6

Two propagations can be connected with probability 2−4

Two propagations can be connected with probability 2−5

Two propagations can be connected with probability 2−6

Fig. 5. Compatibilities among 26 candidate differential propagations.

3.6 Enumerating All Optimal Differential Characteristics

This section reveals that all optimal r-round differential characteristics (r > 8)
with the maximum probabilities can be created with the two cycles ‘D06 → D06

→ D06’ and ‘D16 → D16 → D16’ in Fig. 5(b).
In Fig. 1, we note that the probability of r-round optimal differential char-

acteristics with r > 8 satisfies the following equation

− log2

(
Pr(r)

)
=

{
[(r − 3)/2] · 10 + 12 if rmod 2 ≡ 1,

[(r − 2)/2] · 10 + 8 otherwise.

which is a linear function when the independent variable r is restricted to even
or odd numbers. The two restrictions of the function have a slope of 5 (= 10/2).
Meanwhile, for all 4-round iterative differential characteristics in Fig. 6, the prob-
abilities of any two consecutive rounds of characteristics are 2−10. Prompted by
these two observations, we attempt to construct optimal differential character-
istics with cycles of propagations in Fig. 5.

If we only apply the six differential propagations in Fig. 5(b) to compose
characteristics, the maximum probability Pr(r) obtained in this case can be
calculated via the following formula

− log2

(
Pr(r)

)
=

{
[(r − 1)/2] · 10 + 4 if rmod 2 ≡ 1,

(r/2) · 10 otherwise.

It can be verified that Pr(r) = Pr(r) · 2−2 for all r > 8. To rectify this gap,
we fine-tune the head and(or) the tail of the characteristics generated with the
cycles and devise numerous characteristics achieving the optimal probability.
The adjustment differs depending on the number r of rounds.
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(a) Instance for characteristics exploiting the cycle ‘D06→D06→D06’. (b) Instance for characteristics exploiting the cycle ‘D16→D16→D16’.

(c) Instance for characteristics exploiting the cycle ‘D10→D22→D10’.
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Fig. 6. Three categories of 4-round iterative differential characteristics with probability
2−20. In each category, more characteristics can be created by cyclically shifting the
columns/rows of the differences for the internal states.

288 optimal characteristics with an odd number of rounds. If rmod 2 ≡ 1, we
can formulate two categories of optimal differential characteristics with the prob-
ability being 2−{[(r−3)/2]·10+12}. As in Fig. 7, the first category is based on the
cycle ‘D06→ D06→ D06’, while the second category iteratively utilises the cycle
‘D16 → D16 → D16’. In both categories, to lift the differential probability in the
last round, the differential propagations of the two active S-boxes are replaced

from 0x5
GS−−→ 0x2 to 0x5

GS−−→ 0xf. Also, at the head of the characteristic,
we devise two kinds of extensions and ensure that the probabilities of the four
active S-boxes in the first two rounds are all equal to 2−2. Each category is com-
posed of 144 characteristics. Thus, in total, we manually identify 288 optimal
characteristics.

10400 optimal characteristics with an even number of rounds. If rmod 2 ≡ 0, we
construct four categories of optimal differential characteristics with probability
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2−{[(r−2)/2]·10+8}. The number of characteristics is 10400. For more details, see
Supplementary Material B.4 of the long version.

(a) Instance for characteristics in the first category. (b) Instance for characteristics in the second category.
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Fig. 7. 288 optimal characteristics with an odd number of rounds. In each category,
more characteristics can be created by cyclically shifting the columns/rows of the dif-
ferences for the internal states.

We utilise the automatic searching method to find all optimal characteristics
with the maximum probability. The experimental results reflect that the manu-
ally created characteristics constitute all the optimal characteristics for GIFT-64.
That is, we know the looks of all optimal differential characteristics for GIFT-64.

Last but not least, the cycle ‘D10→ D22→ D10’ cannot be used to construct
optimal characteristics, although it can be employed to create 4-round iterative
characteristics. We explain this with the case illustrated in Fig. 7(a). Note that
the extension at the head of the characteristic should ensure that the four active
S-boxes in the first two rounds have a differential probability being equal to 2−2.
On the other side, the two nonzero nibbles in the input difference of D10 are
equal to 0xa. It can be observed from the DDT of GS that the probabilities of
all possible transitions with 0xa as the output difference are equal to 2−3, which
explains why we cannot create optimal characteristics with this cycle.

4 Linear Property of GIFT-64

In parallel to the case of differential setting investigated in Section 3, we derive
some in-depth analytic results in the linear setting.

4.1 Fluctuant Bounds in Linear Cryptanalysis Setting

Since we wonder about the performances of linear characteristics with a sin-
gle active S-box in some rounds, we apply the same method in Section 3.2 to
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determine the lower bound on the number of linear active S-boxes of these char-
acteristics. Denote #SLi(r) the minimum number of active S-boxes for r-round
linear characteristics with at least one round activating a single S-box with the
input mask i, where i ∈ F4

2 \ {0x0}. The corresponding test results are given in
Supplementary Material C.1 of the long version. It can be noticed that for all
i ∈ F4

2 \ {0x0}, #SLi(r) diverges from the initial bound #SL(r) from the tenth
round. So, we introduce the following proposition.

Proposition 4. If r > 10, then the optimal r-round linear characteristic of
GIFT-64 with the minimum number of active S-boxes must activate two S-boxes
per round.

Next, the linear correlation bound is studied. Denote Cori(r) the maximum
linear correlation for r-round characteristics with at least one round activating
a single S-box with the input mask i, where i ∈ F4

2 \ {0x0}. The test result
about Cori(r) can be found in Supplementary Material C.2 of the long version.
It can be noticed that some points of curves for Cor0x1(r), Cor0x2(r), Cor0x8(r),
Cor0xa(r), Cor0xc(r) overlap with those of the curve for Cor(r) when r > 10.
Thus, unlike the case in differential setting, the optimal linear characteristic
with the maximum correlation can contain characteristics with a single active
S-box in some rounds.

4.2 Linear Characteristics with Two Active S-boxes Per Round

It can be observed from Fig. 1 that the minimum number of linear active S-
boxes #SL(r) is also linearly dependent on r for all r > 9. Hence, we adjust the
approach in Section 3.5 to the linear setting and look into properties of linear
characteristics with two active S-boxes in each round. The ideas to prove lemmas
and conditions in this section are similar to those in Section 3.5, and we omit
proofs.

Lemma 2. For GIFT-64, if a linear characteristic has two active S-boxes per
round, then the two active S-boxes in one of the first two rounds must be located
in the same column of the matrix state.

Given a linear characteristic activating two S-boxes per round, suppose that
the two active S-boxes in the r-th round are located in the same column. Also,

without loss of generality, the column is fixed as the first one. Let ζ0‖ζ1‖ζ2‖ζ3
gO−→

η0‖η1‖η2‖η3 be the linear propagation of the group mapping gO in the r-th round
operating on the first column. Two nibbles in the vector ζ0‖ζ1‖ζ2‖ζ3 are nonzero.
Then, the propagation should satisfy the following conditions so that the linear
characteristic exploiting it keeps two active S-boxes in rounds (r−1) and (r+1).

Condition 5 The output mask η0‖η1‖η2‖η3 of gO has two nonzero nibbles.

Condition 6 Two nonzero nibbles in η0‖η1‖η2‖η3 cannot take values from the
set {0x4, 0x8}.
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Condition 7 Two nonzero nibbles in ζ0‖ζ1‖ζ2‖ζ3 cannot take values from the
set {0x1, 0x2}.

Condition 8 Let ηi and ηj be the two nonzero nibbles in η0‖η1‖η2‖η3, where
i, j ∈ {0, 1, 2, 3} and i 6= j. Define two sets SLi and SLj as

SLi = {λi | ηi GS−−→ λi is a possible propagation , and λi is a unit vector} ,
SLj = {λj | ηj GS−−→ λj is a possible propagation , and λj is a unit vector} .

Then, SLi ∩ SLj 6= ∅ must hold.

A dual proposition of Proposition 3 can now be formulated.

Proposition 5. For an R-round linear characteristic with two active S-boxes
per round, if the two active S-boxes in the r-th round are located in the same
column, the two active S-boxes in the (r+ 2 · i)-th round are also located in the
same column for all i with 0 6 r + 2 · i < R.

We find that 46 propagations of the form ζ0‖ζ1‖ζ2‖ζ3
gO−→ η0‖η1‖η2‖η3 GS−−→

λ0‖λ1‖λ2‖λ3 satisfy Condition 5 – 8, which are listed in Table 6 of Supple-
mentary Material C.3 of the long version. The compatibilities among the 46
candidates are demonstrated in Fig. 17 of Supplementary Material C.4 of the
long version. Based on the cycle in the graph, we also theoretically explain the
existence of long linear characteristics with two active S-boxes per round.

5 Can We Improve GIFT-64?

The results in Fig. 1 reflect that the differential and linear properties of GIFT-64
are comparable if we only consider the number of differential and linear active
S-boxes. However, when it comes to the differential probability and the linear
correlation, the resistance of the cipher regarding these two cryptanalytic meth-
ods is inconsistent. In particular, the longest effective differential characteristics
with probability greater than 2−64 covers 13 rounds, while the longest effective
linear characteristics covers 12 rounds. We also notice that besides the group
mapping gO applied in GIFT-64, numerous candidates validate BOGI require-
ment and the four rules in Section 2.2. So, we wonder whether we can find a
variant of GIFT-64 constructed with a new group mapping that possesses com-
parable upper bounds on the differential probability and the linear correlation.
The content in this section constitutes our answer to this question.

5.1 Candidate Variants

Among the 24 permutations over the set {0, 1, 2, 3}, four permutations are BOGI
permutations. After taking the four rules in Section 2.2 into consideration, we
can generate 2304 group mappings (including gO in GIFT-64) meeting all re-
quirements for the one in GIFT-64. We call the corresponding 2303 candidate
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variants, constructed with the 2303 group mappings, GIFT-64-like ciphers. In
theory, we should evaluate the differential and linear properties of 2303 variants.

Note that the nibble-oriented description in Section 3.4 for GIFT-64 can be
used to represent GIFT-64-like ciphers, and the unique modification lies in the
group mapping exploited in GroupMaps operation. The GroupMaps operation
based on the group mapping g is denoted as GMg, and we use GM to stand for
the set of 2304 GroupMaps operations in GIFT-64-like ciphers.

5.2 Classifying the Variants of GIFT-64

With the alternative description in Section 3.4, we are able to create a sufficient
condition for two GIFT-64-like ciphers to be equivalent to each other. We start
by introducing two special categories of linear transformations over the 4 × 4
matrix of nibbles, which will be utilised to derive the sufficient condition.

Definition 1 (Row Transformation). Let P be the set of all permutations
over the set {0, 1, 2, 3}. Given % in P, the row transformation generated with %,
denoted by RT%, is a permutation over the 4 × 4 matrix that transfers the i-th
row of the input to the %(i)-th row for all 0 6 i 6 3.

Definition 2 (Column Transformation). Given % in P, the column transfor-
mation generated with %, denoted by CT%, is a permutation over the 4×4 matrix
that shifts the i-th column of the input to the %(i)-th column for all 0 6 i 6 3.

With the simple definitions of the two kinds of transformations, we can
quickly write their inverse operations.

Lemma 3. If % ∈ P and %−1 is the inverse permutation of %, then the inverse
operation of RT% is RT%−1 . In symbols, (RT%)

−1
= RT%−1 . Likewise, CT% and CT%−1

are inverse of each other.

Because the row and column transformations only involve permutations over
rows and columns of the input matrix, the composition of these two categories
of transformations is commutative.

Lemma 4. If %1 and %2 ∈ P, then RT%1
◦ CT%2

= CT%2
◦ RT%1

.

To establish the equivalence among GIFT-64-like ciphers, we also investigate
the commutativity of the composition between these artificial transformations
and the operations in the round function of the GIFT-64-like cipher.

As RT% and CT% do not change the values of the entries in the input matrix,
the composition between RT%/CT% and SubCells operation is commutative.

Lemma 5. If % ∈ P, then RT% ◦ SC = SC ◦ RT% and CT% ◦ SC = SC ◦ CT%.

Since the column transformation CT% only alter the positions of the columns
and do not touch on any permutations within columns, the composition between
CT% and GroupMaps operation is commutative.
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Lemma 6. If % ∈ P and GMg ∈ GM, then CT% ◦ GMg = GMg ◦ CT%.

Note that RT% and CT% apply the same permutation % to realise the diffusion
of the input matrix in the vertical and horizontal directions, respectively. Recall
that TransNibbles operation over the input matrix works like a transposition.
Taken together, we obtain the following lemma.

Lemma 7. If % ∈ P, then RT% ◦ TN = TN ◦ CT% and CT% ◦ TN = TN ◦ RT%.

Under a permutation of the round keys, the commutativity of the composition
between RT%/CT% and AddRoundKey operation can be constructed.

Lemma 8. If % ∈ P and k ∈
(
F4
2

)4×4
, then RT% ◦ ARKk = ARKRT%(k) ◦ RT% and

CT% ◦ ARKk = ARKCT%(k) ◦ CT%.

For simplicity, denote the r-th round function of a GIFT-64-like cipher with
the group mapping g as F(g, kr), i.e., F(g, kr) = ARKkr ◦ TN ◦ GMg ◦ SC. Note that
the following result is an easy consequence by combining all properties of row
and column transformations in Lemma 4 – 8.

Proposition 6. If % ∈ P, then RT% ◦ F(g, kr) = F
(
g, RT%(kr)

)
◦ CT%.

The following proposition points out a sufficient condition for two GIFT-64-like
ciphers being equivalent to each other.

Proposition 7. Let GIFT-64[g1] and GIFT-64[g2] be two GIFT-64-like ciphers
respectively instantiated with group mappings g1 and g2. If there exists an ele-
ment % ∈ P such that GMg2 = RT%◦GMg1◦RT%−1 , then GIFT-64[g1] and GIFT-64[g2]
differ only by a permutation on the plaintext and ciphertext and a corresponding
permutation of the round keys.

For the proofs of Proposition 6 – 7, see Supplementary Material D of the
long version.

Definition 3 (GM-equivalence). Given two elements GMg1 and GMg2 of the set
GM, GMg1 and GMg2 are called GM-equivalence, if there exists a % ∈ P such that
GMg2 = RT% ◦ GMg1 ◦ RT%−1 . In symbols, GMg1 ∼ GMg2 .

It can be verified that the binary relation ‘∼’ on the set GM is reflexive,
symmetric and transitive. Hence, ‘∼’ is an equivalence relation on GM. Because
of the conclusion in Proposition 7, if GMg1 and GMg2 are GM-equivalent permu-
tations, the two GIFT-64-like ciphers implemented with GMg1 and GMg2 share
the same cryptographic properties. In particular, this fact holds for the case of
differential and linear cryptanalyses.

We classify all permutations in GM up to GM-equivalence and split the set
GM into 168 distinct equivalence classes. Accordingly, the set of 2304 GIFT-64-like
ciphers is partitioned into 168 equivalence classes. Therefore, we only need to
check the property of one representative in each possible equivalence class, and
the number of candidates is reduced from 2303 to 167. Note that we do not count
in the equivalence class containing GIFT-64.
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Fig. 8. Test results for 167 representatives.

5.3 Differential and Linear Properties of GIFT-64-like Ciphers

We apply the accelerated automatic method to search for upper bounds on dif-
ferential probabilities and linear correlations of 167 representative variants. The
test results are illustrated in Fig. 8. As the longest effective differential charac-
teristics of GIFT-64 achieve 13 rounds, we split all the 168 representatives into
two groups, according to whether the length of the optimal effective differential
characteristic is longer than 13 rounds. To make a distinction, in Fig. 8, we use
blue curves to exhibit variants with optimal effective differential characteristics
no more than 13 rounds. For variants with effective differential characteristics
covering more than 13 rounds, the differential probability curves are coloured in
red. Since a cipher with short effective differential characteristics is more likely
to withstand a differential attack, then, we conclude from Fig. 8 that the security
of GIFT-64 against the differential cryptanalysis is moderate among all the 168
representatives.

Similarly, in the linear setting, the 168 representatives are classified according
to whether the optimal effective linear characteristic goes beyond 12 rounds.
In Fig. 8, the purple curves correspond to GIFT-64-like ciphers with optimal
effective linear characteristics no more than 12 rounds, while the variants with
yellow curves have longer effective linear characteristics than that of GIFT-64.
Unlike the case in differential cryptanalysis, the capability of GIFT-64 against
linear cryptanalysis is almost among the best of candidates.

Then, we consider the combination of differential and linear properties. Ac-
cording to the lengths of the optimal effective differential and linear character-
istics, the 168 representatives can be divided into 17 groups, and the results can
be found in Fig. 9. It can be notified that the performance of GIFT-64 resist-
ing differential and linear attacks is good, and 40 representatives achieve similar
security levels to GIFT-64. Moreover, we identify that one representative may
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Fig. 9. Heatmap for the number of representatives with different properties.

possess comparable security levels against differential and linear cryptanalyses,
and its optimal effective differential and linear characteristics achieve 12 rounds.
For simplicity, the equivalence class containing this representative is denoted as
GIFT-64[2021]. Next, we discuss the cryptanalytic properties of GIFT-64-like
ciphers in GIFT-64[2021].

5.4 Properties of Variants in GIFT-64[2021]

The equivalence class GIFT-64[2021] contains 24 elements, and 24 underly-
ing group mappings can be found in Table 7 of Supplementary Material E.1 of
the long version. All variants belonging to GIFT-64[2021] share the same dif-
ferential and linear properties, which are illustrated in Fig. 10. The clustering
effects of differential and linear characteristics are evaluated (cf. Supplementary
Material E.3 – E.4 of the long version). Similarly to the case of GIFT-64, the
differential and linear hull properties of GIFT-64[2021] are not significant.
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Fig. 10. Cryptanalytic properties of GIFT-64[2021]. A detailed comparison between
GIFT-64[2021] and GIFT-64 is given in Supplementary Material E.2 of the long version.

Beyond that, we implement the automatic search of impossible differential
distinguishers [28], zero-correlation linear distinguishers [16,15], and integral dis-
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tinguishers [33] for the variants belonging to GIFT-64[2021]. The experimental
results indicate that the security levels of the variants in GIFT-64[2021] with-
standing impossible differential (ID) attack, zero-correlation linear attack, and
integral attack are similar to those of GIFT-64.

Table 2. Attack results on GIFT-64 and GIFT-64[gc0].

Method
GIFT-64 GIFT-64[gc0]

Round Time Data Memory Ref. Round Time Data Memory

Differential 20 2125.50 262.58 262.58 [31] 18† 2125.16 262.27 262.27

Linear 19 2127.11 262.96 260.00 [31] 18‡ 2126.60 262.96 253.00

Integral 14 297.00 263.00 - [5] 14 297.00 263.00 -

ID> 6 - - - [5] 6 - - -
†: The differential attack is realised with the 12-round differential in Table ??.
‡: The linear attack is realised with the 12-round linear hull in Table ??.
>: The number of rounds is the length of the distinguisher.

In Table 2, we compare the attack results in the single-key attack setting
on GIFT-64 and GIFT-64[gc0], which is the representative of GIFT-64[2021]

instantiated with the group mapping gc0 in Table 7 of the long version. Note that
the best attack on GIFT-64[gc0] achieves 18 rounds, which is two rounds less than
the length of the best attack on GIFT-64. Furthermore, in the design document,
the designer of GIFT-64 expected that the differential probability of 14-round
differential would be lower than 2−63. For this reason, they believed 28-round
GIFT-64 is enough to resist differential cryptanalysis. Taken these observations
together, we claim that for the variant GIFT-64[gc0], if the security in the related-
key attack setting is not required, 26 rounds could be used rather than 28 rounds.

As mentioned by the designers, for the simple and clean design strategy, GIFT
offers extremely good performances and even surpasses both SKINNY [7] and
SIMON [6] for round-based implementations. On this basis, 26-round GIFT-64[gc0]
may become one of the most energy-efficient ciphers as of today and is probably
more suitable for the low-energy consumption use cases than GIFT-64. In Ta-
ble 3, we compare the hardware performance of 26-round GIFT-64[gc0] with other
lightweight ciphers. The new variant achieves higher throughput and requires a
lower energy consumption than GIFT-64.

Although GIFT designer did not claim any related-key security, the security
of the cipher in the related-key attack setting was investigated in recent years
[20,18,31]. We also check the security of the 24 variants in GIFT-64[2021] in
the related-key attack setting. The key schedule remains the same as the one in
GIFT-64. We test the lower bound on the number of active S-boxes for up to
18 rounds with the accelerated automatic method. Figure 19 of Supplementary
Material E.5 of the long version contains the experimental results. For all 24
variants, the number of active S-boxes in the related-key differential attack set-
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Table 3. Comparison of performance metrics for round-based implementations syn-
thesised with TSMC 90nm standard cell library.

Area (GE) Delay (ns) Cycle
TPMAX Power Energy

(MBit/s) (µW) (pJ)

GIFT-64[gc0] 1769 0.55 26 4475.5 36.7 95.4

GIFT-64 1770 0.56 28 4081.6 36.7 102.7

SKINNY-64-128 1804 0.86 36 2067.2 36.8 132.5

SIMON-64-128 1829 0.81 44 1795.7 36.5 160.5

ting is always lower than that of GIFT-64. Thus, we believe GIFT-64 maintains
a relatively good performance against the related-key differential attack, even
though the designers do not claim its security in the related-key attack setting.

To sum up, we find a greater GIFT-64, which strengthens GIFT-64 against
statistical cryptanalysis. In this sense, a variant GIFT-64[gc0] with 26 rounds
is created and achieves better performance than GIFT-64. Likewise, we do not
claim any related-key security for the new variant since most applications do
not need related-key security. For the few applications where this security is
required, the key schedule of the variant could be redesigned.

A probable explanation for the improved resistance against the differential
cryptanalysis of GIFT-64[gc0] is provided in Supplementary Material E.6 of the
long version. As we prepare the paper, we notice that Baek et al. [2] also created
a variant for GIFT-64. The distinction between [2] and this paper is explained
in Supplementary Material E.7 of the long version.

6 Conclusion and Future Work

6.1 Conclusion

This paper targets the cryptanalysis of GIFT-64 and combines automatic and
manual methods to evaluate its security. In the differential setting, we theoreti-
cally explain the existence of differential characteristics with two active S-boxes
per round and derive some properties of these characteristics, apart from the
quantitative information about active S-boxes. Furthermore, all optimal differ-
ential characteristics covering more than seven rounds are identified. Parallel
work is conducted in the linear setting. Considering the gap between the up-
per bounds on the differential probability and the linear correlation, we study a
variant of GIFT-64 with comparable security levels in the differential and linear
settings. With the support of automatic searching methods, we identify 24 vari-
ants achieving better resistance against differential cryptanalysis than GIFT-64

while maintaining a similar security level against linear cryptanalysis. As the
new variants strengthen GIFT-64 against statistical cryptanalysis, we claim that
for the variant GIFT-64[gc0], if the security in the related-key attack setting is
not required, 26 rounds could be used rather than 28 rounds. This observation
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results in a cipher more suitable for the low-energy consumption use cases than
GIFT-64. The performance of the 24 variants in the related-key differential at-
tack setting is inferior to that of GIFT-64. However, most applications do not
need related-key security.

6.2 Future Work

If one is concerned with related-key attacks, we conjecture that the resistance
of variants in GIFT-64[2021] regarding related-key differential attack can be
lifted by carefully crafting the key schedule. However, many parameters should
be fine-tuned. Thus, we left it as future work.

Secondly, in the construction of GIFT-64-like cipher, we apply the same 16-
bit group mapping to each column of the state. How to efficiently evaluate the
cases where the group mappings operating on different columns are distinct is
an open problem.

Lastly, for GIFT-128, the security levels regarding differential and linear
cryptanalyses are also not comparable. We attempt to create an equivalence
relation among all variants for GIFT-128. Nevertheless, the number of equiva-
lence classes is 1344. In addition, due to the considerable state size, investigat-
ing the security of the variants for GIFT-128 is much more complicated than
that of GIFT-64. Still, considering the significant status of GIFT-128 among the
lightweight block ciphers and its supporting role in a series of Authenticated
Encryptions with Associated Data (AEADs), especially in one of the finalists
GIFT-COFB[3] of NIST Lightweight Cryptography project8, we believe checking
the existence of a balanced variant for GIFT-128 will be interesting future work.
For more details about the test of GIFT-128, see Supplementary Material F of
the long version.
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