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Abstract. Structured random strings (SRSs) and correlated random-
ness are important for many cryptographic protocols. In settings where
interaction is expensive, it is desirable to obtain such randomness in as
few rounds of communication as possible; ideally, simply by exchanging
one reusable round of messages which can be considered public keys.
In this paper, we describe how to generate any SRS or correlated random-
ness in such a single round of communication, using, among other things,
indistinguishability obfuscation. We introduce what we call a distributed
sampler, which enables n parties to sample a single public value (SRS)
from any distribution. We construct a semi-malicious distributed sampler
in the plain model, and use it to build a semi-malicious public-key PCF
(Boyle et al., FOCS 2020) in the plain model. A public-key PCF can be
thought of as a distributed correlation sampler; instead of producing a
public SRS, it gives each party a private random value (where the values
satisfy some correlation).
We introduce a general technique called an anti-rusher which compiles
any one-round protocol with semi-malicious security without inputs to
a similar one-round protocol with active security by making use of a
programmable random oracle. This gets us actively secure distributed
samplers and public-key PCFs in the random oracle model.
Finally, we explore some tradeoffs. Our first PCF construction is limited
to reverse-sampleable correlations (where the random outputs of honest
parties must be simulatable given the random outputs of corrupt parties);
we additionally show a different construction without this limitation, but
which does not allow parties to hold secret parameters of the correlation.
We also describe how to avoid the use of a random oracle at the cost of
relying on sub-exponentially secure indistinguishability obfuscation.

1 Introduction

Randomness is crucial for many cryptographic protocols. Participants can gener-
ate some randomness locally (e.g. by flipping coins), but the generation of other
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forms of randomness is more involved. For instance, a uniform reference string
(URS) must be produced in such a way that a coalition of corrupt protocol par-
ticipants — controlled by the adversary — cannot bias it too much. Even more
complex is the generation of a structured reference string (SRS, such as an RSA
modulus), which can depend on secrets (such as the modulus factorization) that
should not be known to anyone.

In contrast to common reference strings, which are public, some protocols
demand correlated randomness, where each participant holds a secret random
value, but because the values must satisfy some relationship, they cannot be
generated locally by the participants. An example of correlated randomness is
random oblivious transfer, where one participant has a list of random strings, and
another has one of those strings as well as its index in the list. Such correlated
randomness often allows cryptographic protocols to run with a more efficient
online phase.

Typically, in order to set up an SRS or correlated randomness without mak-
ing additional trust assumptions, the parties must run a secure multi-party com-
putation protocol, which takes several rounds of interaction. In this paper, we
explore techniques that let parties sample any common reference string or cor-
relation in just one round of interaction.

1.1 Related Work

There are a number of lines of work that can be used to generate randomness
in different ways.

Universal samplers. A universal sampler [HJK+16] is a kind of SRS which can be
used to obliviously sample from any distribution that has an efficient sampling
algorithm. That is, after a one-time trusted setup to generate the universal sam-
pler, it can be used to generate arbitrary other SRSs. Hofheinz et al. [HJK+16]
show how to build universal samplers from indistinguishability obfuscation and
a random oracle, while allowing an unbounded number of adaptive queries. They
also show how to build weaker forms of universal sampler in the standard model,
from single-key functional encryption [LZ17]. A universal sampler is a very pow-
erful tool, but in many cases impractical, due to the need for a trusted setup.

Non-interactive multiparty computation (NIMPC). Non-interactive multiparty
computation (NIMPC, [BGI+14a]) is a kind of one-round protocol that allows
n parties to compute any function of their secret inputs in just one round
of communication. However, NIMPC requires that the parties know one an-
other’s public keys before that one round, so there is another implicit round
of communication.1 NIMPC for general functions can be constructed based on
subexponentially-secure indistinguishability obfuscation [HIJ+17].

1 This requirement is inherent; otherwise, an adversary would be able to take the
message an honest party sent, and recompute the function with that party’s input
while varying the other inputs. NIMPC does allow similar recomputation attacks,
but only with all honest party inputs fixed, which a PKI can be used to enforce.
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Spooky encryption. Spooky encryption [DHRW16] is a kind of encryption which
enables parties to learn joint functions of ciphertexts encrypted under indepen-
dent public keys (given one of the corresponding secret keys). In order for se-
mantic security to hold, what party i learns using her secret key should reveal
nothing about the value encrypted to party j’s public key; so, spooky encryp-
tion only supports the evaluation of non-signaling functions. An example of a
non-signaling function is any function where the parties’ outputs are an additive
secret sharing. Dodis et al. [DHRW16] show how to build spooky encryption for
any such additive function from the LWE assumption with a URS (this also im-
plies multi-party homomorphic secret sharing for general functions). In the two-
party setting, they also show how to build spooky encryption for a larger class
of non-signaling functions from (among other things) sub-exponentially hard in-
distinguishability obfuscation.

Pseudorandom Correlation Generators and Functions (PCGs and PCFs). Pseu-
dorandom correlation generators [BCG+19a, BCG+19b, BCG+20b] and func-
tions [BCG+20a, OSY21] let parties take a small amount of specially correlated
randomness (called the seed randomness) and expand it non-interactively, ob-
taining a large sample from a target correlation. Pseudorandom correlation gen-
erators (PCGs) support only a fixed, polynomial expansion; pseudorandom cor-
relation functions (PCFs) allow the parties to produce exponentially many in-
stances of the correlation (via evaluation of the function on any of exponentially
many inputs).

PCGs and PCFs can be built for any additively secret shared correlation
(where the parties obtain additive shares of a sample from some distribution) us-
ing LWE-based spooky encryption mentioned above. Similarly, with two parties,
we can build PCGs and PCFs for more general reverse-samplable correlations by
relying on spooky encryption from subexponentially secure iO. PCGs and PCFs
with better concrete efficiency can be obtained under different flavours of the
LPN assumption, for simpler correlations such as vector oblivious linear evalua-
tion [BCGI18], oblivious transfer [BCG+19b] and others [BCG+20b, BCG+20a].

Of course, in order to use PCGs or PCFs, the parties must somehow get
the correlated seed randomness. Public-key PCGs and PCFs allow the par-
ties to instead derive outputs using their independently generated public keys,
which can be published in a single round of communication. The above, spooky
encryption-based PCGs and PCFs are public-key, while the LPN-based ones are
not. Public-key PCFs for OT and vector-OLE were recently built based on DCR
and QR [OSY21]; however, these require a structured reference string consisting
of a public RSA modulus with hidden factorization.

1.2 Our Contributions

In this paper, we leverage indistinguishability obfuscation to build public-key
PCFs for any correlation. On the way to realizing this, we define several other
primitives, described in Fig. 1. One of these primitives is a distributed sampler,

3



which is a weaker form of public-key PCF which only allows the sampling of pub-
lic randomness. (A public-key PCF can be thought of as a distributed correlation
sampler.) Our constructions, and the assumptions they use, are mapped out in
Fig. 2. We pay particular attention to avoiding the use of sub-exponentially se-
cure primitives where possible (which rules out strong tools such as probabilis-
tic iO [CLTV15]).

Primitive Distribution Output

Distributed Sampler (DS, Def. 3.1) fixed public
Reusable Distributed Universal Sampler ([ASY22]) any public
Public-key PCF (pk-PCF, [OSY21]) fixed, reverse-samplable private
Ideal pk-PCF ([ASY22]) any private

Fig. 1. In this table we describe one-round n-party primitives that can be used for
sampling randomness. They differ in terms of whether a given execution enables sam-
pling from any distribution (or just a fixed one), and in terms of whether they only
output public randomness (in the form of a URS or SRS) or also return private corre-
lated randomness to the parties.

We begin by exploring constructions secure against semi-malicious adver-
saries, where corrupt parties are assumed to follow the protocol other than in
their choice of random coins. We build a semi-malicious distributed sampler, and
use it to build a semi-malicious public-key PCF. We then compile those proto-
cols to be secure against active adversaries. This leads to a public-key PCF that
requires a random oracle, and supports the broad class of reverse-sampleable
correlations (where, given only corrupt parties’ values in a given sample, honest
parties’ values can be simulated in such a way that they are indistinguishable
from the ones in the original sample).

We also show two other routes to public-key PCFs with active security. One
of these avoids the use of a random oracle, but requires sub-exponentially secure
building blocks. The other requires a random oracle, but can support general
correlations, not just reverse-sampleable ones. (The downside is that it does not
support correlations with master secrets, which allow parties to have secret input
parameters to the correlation.) We defer the discussion of this last construction
to the full version of this paper [ASY22, Section 7] due to space constraints.

It may seem strange to want to avoid sub-exponentially secure primitives,2

when many candidates for indistinguishability obfuscation itself are based on
subexponential assumptions [JLS21]. However, despite informal arguments [LZ17],
this is not known to be inherent: earlier iO candidates are based on polynomial
hardness [GGH+13] (albeit for an exponential family of assumptions), and in fu-
ture we may obtain iO from a single, polynomial hardness assumption. In gen-
eral, it is always preferable to require a weaker form of security from a primitive,
and this also leads to better parameters in practice. The problem of removing

2 By sub-exponential security, we mean that no PPT adversary cannot break the
security of that primitive with probability better than 2−λ

c

for a constant c.
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Fig. 2. In this table we describe the constructions in this paper. In pink are assump-

tions: they include somewhere statistically binding hash functions (SSB), multiparty
homomorphic encryption with private evaluation (pMHE [AJJM20], a weaker form
of multi-key FHE), indistinguishability obfuscation (iO), non-interactive zero knowl-

edge proofs (NIZK), and universal samplers (US). In blue are constructions of dis-
tributed samplers (DS, Def. 3.1), reusable distributed universal samplers (reusable
DUS, [ASY22, Def. 7.6]) and public-key pseudorandom correlation functions (pk-PCFs,
[OSY21]). Constructions with bold outlines are secure against active adversaries; the
rest are secure against semi-malicious adversaries. In magenta are necessary setup as-
sumptions. (Note that the availability of a random oracle (RO) immediately implies
the additional availability of a URS.) Dashed lines denote the use of sub-exponentially
secure tools.

sub-exponential assumptions from iO, or applications of iO, has been studied
previously in various settings [GPSZ17, LZ17].

1.3 Technical Overview

Distributed Samplers We start by introducing a new tool called a distributed
sampler (DS, Section 3). A distributed sampler allows n parties to sample a
single, public output from an efficiently sampleable distribution D with just one
round of communication (which is modelled by the exchange of public keys).

Semi-malicious distributed samplers. We use multiparty homomorphic encryp-
tion with private evaluation (pMHE [AJJM20], a weaker, setup-free version of
multi-key FHE) and indistinguishability obfuscation to build semi-malicious dis-
tributed samplers in the plain model (Section 4). In our distributed sampler con-
struction, all parties can compute an encryption of the sample from everyones’
public keys (using, among other things, the homomorphic properties of the en-
cryption scheme), and then use an obfuscated program in party i’s public key to
get party i’s partial decryption of the sample. The partial decryptions can then
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be combined to recover the sample itself. The tricky thing is that, in the proof,
we must ensure that we can replace the real sample with an ideal sample. To do
this, we must remove all information about the real sample from the public keys.
However, pMHE secret keys are not puncturable; that is, there is no way to en-
sure that they do not reveal any information about the contents of one cipher-
text, while correctly decrypting all others. We could, in different hybrids, hard-
code the correct partial decryption for each of the exponentially many possible
ciphertexts, but this would blow up the size of the obfuscated program. There-
fore, instead of directly including a pMHE ciphertext in each party’s DS public
key, we have each party obfuscate an additional program which produces a new
pMHE ciphertext each time it is used. This way, when we need to remove all in-
formation about a given sample, we can remove the entire corresponding secret
key (via the appropriate use of puncturable PRFs and hardcoded values). This
technique may be useful for other primitives, such as NIMPC [BGI+14a] and
probabilistic iO [CLTV15], to avoid the use of an exponential number of hybrids.

Achieving active security with a random oracle. Upgrading to active security is
challenging because we need to protect against two types of attacks: malformed
messages, and rushing adversaries, who wait for honest parties’ messages be-
fore sending their own. We protect against the former using non-interactive zero
knowledge proofs. (This requires a URS which, though it is a form of setup, is
much weaker than an SRS.) We protect against the latter via a generic trans-
formation that we call an anti-rusher (Section 5.1). To use our anti-rusher, each
party includes in her public key an obfuscated program which takes as input a
hash (i.e. a random oracle output) of all parties’ public keys. It then samples
new (DS) public keys, using this hash as a PRF nonce. This ensures that even
an adversary who selects her public keys after seeing the honest party public
keys cannot influence the selected sample other than by re-sampling polynomi-
ally many times.

Public-key PCFs We start by building a public-key PCF that requires an
SRS (Section 6.3). The SRS consists of an obfuscated program that, given a
nonce and n parties’ public encryption keys, uses a PRF to generate correlated
randomness, and encrypts each party’s random output to its public key. We can
then eliminate the need for a pre-distributed SRS by instead using a distributed
sampler to sample it (Section 6.4).

Public-key PCFs without random oracles. The proofs of security for the construc-
tions sketched above only require polynomially many hybrids, roughly speaking
because the random oracle allows the simulator to predict and control the in-
puts to the obfuscated programs. We can avoid the use of the random oracle, at
the cost of going through exponentially many hybrids in the proof of security,
and thus requiring sub-exponentially secure primitives.

Public-key PCFs for any correlation with a random oracle. Boyle et al. [BCG+19b]
prove that a public-key PCF in the plain model that can handle any correlation
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(not just reverse-sampleable ones) must have keys at least as large as all the
correlated randomness it yields. We observe that we can use a random oracle to
sidestep this lower bound by deriving additional randomness from the oracle.

As a stepping stone, we introduce a different flavour of the distributed sam-
pler, which we call the reusable distributed universal sampler (reusable DUS).
It is reusable because it can be queried multiple times (without the need for
additional communication), and it is universal because each query can produce
a sample from a different distribution (specified by the querier). We build a
reusable distributed universal sampler from a universal sampler, a random ora-
cle and a distributed sampler (by using the distributed sampler to produce the
universal sampler). Our last public-key PCF ([ASY22, Section 7]) then uses the
reusable distributed universal sampler to sample from a distribution that first
picks the correlated randomness and then encrypts each party’s share under her
public key.

2 Preliminaries

Notation. We denote the security parameter by λ and the set {1, 2, . . . ,m} by
[m]. Our constructions are designed for an ordered group of n parties P1, P2, . . . , Pn.
We will denote the set of (indexes of) corrupted parties by C, whereas its com-
plementary, the set of honest players, is H.

We indicate the probability of an event E by P[E]. We use the term noticeable
to refer to a non-negligible quantity. A probability p is instead overwhelming if
1 − p is negligible. We say that a cryptographic primitive is sub-exponentially
secure, if the advantage of the adversary is bounded by 2−λ

c

for some constant
c > 0. When the advantage is negligible, we say that it is polynomially secure.

We use the simple arrow← to assign the output of a deterministic algorithm
Alg(x) or a specific value a to a variable y, i.e. y ← Alg(x) or y ← a. If Alg is

instead probabilistic, we write y
$← Alg(x) and we assume that the random tape

is sampled uniformly. If the latter is set to a particular value r, we write however

y ← Alg(x; r). We use
$← also if we sample the value of y uniformly over a set

X, i.e. y
$← X. Finally, we refer to algorithms having no input as distributions.

The latter are in most cases parametrised by λ. The terms circuit and program
are used interchangeably.

Used Primitives. Our work relies on the following primitives.

– Indistinguishability Obfuscation (iO). [BGI+01] An obfuscator is an algo-
rithm that rearranges a circuit Cr into another program Cr′ with the same
input-output behaviour, but being so different that it is impossible to tell
what operations Cr initially performed. Specifically, security states that it is
impossible to distinguish between the obfuscation of equivalent circuits. The
first indistinguishability obfuscator was designed by Garg et al. in [GGH+13].
Formal definitions of iO are given in [ASY22, Section 2.1].
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– Puncturable PRFs.[KPTZ13, BW13, BGI14b] A puncturable PRF is a PRF
F in which it is possible to puncture the keys in any position x. In other
words, it means that from a key K, it is possible to derive another key
K̂ containing no information about FK(x) but still permitting to compute
FK(y) for every y 6= x. It is easy to build puncturable PRF from the GGM
construction [GGM86]. Formal definitions are given in [ASY22, Section 2.2].

– Simulation-Extractable NIZKs. [GO07] A NIZK for an NP relation R is a
construction that allows proving the knowledge of a witness w for a state-
ment x with only one round of interaction and without revealing any ad-
ditional information about w. The zero-knowledge property is formalised
by the existence of PPT simulators generating proofs without needing wit-
nesses. The operation is performed exploiting a trapdoored CRS.
We say that the NIZK is simulation-extractable if there exists an efficient
algorithm that, in conjunction with the simulators, permits to extract the
witness from any valid proof generated by the adversary.
When the CRS is a random string of bits, we talk about NIZKs with URS.
Formal definitions are given in [ASY22, Section 2.3].

– Multiparty Homomorphic Encryption with Private Evaluation (pMHE). MHE
with private evaluation [AJJM20] is a construction that permits to evalu-
ate circuits over encrypted values. It is possible to obtain partial decryp-
tions with no interactions. Retrieving the actual plaintext requires however
an additional round of communication as we need to pool the partial decryp-
tions. MHE with private evaluation is a weaker version of multi-key FHE.
The main differences is that there is actually no public key but only a pri-
vate one that changes for every ciphertext. Furthermore, the encryption al-
gorithm needs to know the parameters (input size, output size and depth)
of the circuits we are going to evaluate. We can build pMHE from LWE
[AJJM20]. Formal definitions are given in [ASY22, Section 2.4].

– Somewhere Statistically Binding (SSB) Hashing. [HW15] An SSB hash func-
tion is a keyed hash function with particular properties: every key hk hides an
index i that specifies in which block the hash is statistically binding. Specifi-
cally, every pair of messages having the same digest under hk must coincide at
the i-th block. It is possible to build SSB hash functions from fully homomor-
phic encryption [HW15]. Formal definitions are given in [ASY22, Section 2.5].

3 Defining Distributed Samplers

Informally speaking, a distributed sampler (DS) for the distribution D is a con-
struction that allows n parties to obtain a random sample R from D with just
one round of communication and without revealing any additional information
about the randomness used for the generation of R. The output of the procedure
can be derived given only the public transcript, so we do not aim to protect the
privacy of the result against passive adversaries eavesdropping the communica-
tions between the parties.

If we assume an arbitrary trusted setup, building a DS becomes straightfor-
ward; we can consider the trivial setup that directly provides the parties with a
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random sample from D. Obtaining solutions with a weaker (or no) trusted setup
is much more challenging.

The structure and syntax of distributed samplers is formalised as follows. We
then analyse different flavours of security definitions.

Definition 3.1 (n-party Distributed Sampler for the Distribution D).
An n-party distributed sampler for the distribution D is a pair of PPT algorithms
(Gen,Sample) with the following syntax:

1. Gen is a probabilistic algorithm taking as input the security parameter 1lλ

and a party index i ∈ [n] and outputting a sampler share Ui for party i.
Let {0, 1}L(λ) be the space from which the randomness of the algorithm is
sampled.

2. Sample is a deterministic algorithm taking as input n shares of the sampler
U1, U2, . . . , Un and outputting a sample R.

In some of our security definitions, we will refer to the one-round protocol
ΠDS that is induced by the distributed sampler DS = (Gen,Sample). This is the
natural protocol obtained from DS, where each party first broadcasts a message
output by Gen, and then runs Sample on input all the parties’ messages.

3.1 Security

In this section we formalise the definition of distributed samplers with relation to
different security flavours, namely, semi-malicious and active. We always assume
that we deal with a static adversary who can corrupt up to n − 1 out of the n
parties. We recall that a protocol has semi-malicious security if it remains secure
even if the corrupt parties behave semi-honestly, but the adversary can select
their random tapes.

Definition 3.2 (Distributed Sampler with Semi-Malicious Security). A
distributed sampler (Gen,Sample) has semi-malicious security if there exists a
PPT simulator Sim such that, for every set of corrupt parties C ( [n] and corre-
sponding randomness (ρi)i∈C , the following two distributions are computation-
ally indistinguishable:

 (Ui)i∈[n]

(ρi)i∈C , R

∣∣∣∣∣∣∣
ρi

$← {0, 1}L(λ) ∀i ∈ H
Ui ← Gen(1lλ, i; ρi) ∀i ∈ [n]

R← Sample(U1, U2, . . . , Un)

 and

{
(Ui)i∈[n]

(ρi)i∈C , R

∣∣∣∣∣ R
$← D(1lλ)

(Ui)i∈H
$← Sim

(
1lλ, C,R, (ρi)i∈C

)
}

Observe that this definition implies that, even in the simulation, the relation

R = Sample(U1, U2, . . . , Un)
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holds with overwhelming probability. In other words, security requires that
(Gen,Sample) securely implements the functionality that samples from D and
outputs the result to all of the parties.

Observe that the previous definition can be adapted to passive security by
simply sampling the randomness of the corrupted parties inside the game in the
real world and generating it using the simulator in the ideal world.

We now define actively secure distributed samplers. Here, to handle the chal-
lenges introduced by a rushing adversary, we model security by defining an ideal
functionality in the universal composability (UC) framework [Can01], and re-
quire that the protocol ΠDS securely implements this functionality.

Definition 3.3 (Distributed Sampler with Active Security). Let DS =
(Gen,Sample) be a distributed sampler for the distribution D. We say that DS
has active security if the one-round protocol ΠDS securely implements the func-
tionality FD (see Fig. 3) against a static and active adversary corrupting up to
n− 1 parties.

FD
Initialisation. On input Init from every honest party and the adversary, the
functionality activates and sets Q := ∅. (Q will be used to keep track of queries.)

If all the parties are honest, the functionality outputs R
$← D(1lλ) to every honest

party and sends R to the adversary, then it halts.

Query. On input Query from the adversary, the functionality samples R
$← D(1lλ)

and creates a fresh label id. It sends (id, R) to the adversary and adds the pair toQ.

Output. On input (Output, îd) from the adversary, the functionality retrieves the

only pair (id, R) ∈ Q with id = îd. If such pair does not exist, the functionality
does nothing. Otherwise, it outputs R to every honest party and terminates.
Abort. On input Abort from the adversary, the functionality outputs ⊥ to every
honest party and terminates.

Fig. 3. Distributed Sampler Functionality

Remark 3.4 (Distributed Samplers with a CRS or Random Oracle). Our con-
structions with active security rely on a setup assumption in the form of a com-
mon reference string (CRS) and random oracle. For a CRS, we assume the al-
gorithms Gen,Sample are implicitly given the CRS as input, which is modelled
as being sampled by an ideal setup functionality. As usual, the random oracle is
modelled as an external oracle that may be queried by any algorithm or party,
and programmed by the simulator in the security proof.

Observe that this definition allows the adversary to request several samples
R from the functionality, and then select the one it likes the most. Our definition
must allow this in order to deal with a rushing adversary who might wait for the
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messages (Ui)i∈H of all the honest parties and then locally re-generate the cor-
rupt parties’ messages (Ui)i∈C , obtaining a wide range of possible outputs. Fi-
nally, it can broadcast the corrupt parties’ messages that lead to the output it
likes the most. This makes distributed samplers with active security rather use-
less when the distribution D has low entropy, i.e. when there exists a polynomial-
size set S such that D(1lλ) ∈ S with overwhelming probability. Indeed, in such
cases, the adversary is able to select its favourite element in the image of D.

On the usefulness of distributed samplers with a CRS. Our distributed samplers
with active security require a CRS for NIZK proofs. Since one of the main goals
of the construction is avoid trusted setup in multiparty protocols, assuming the
existence of a CRS, which itself is some form of setup, may seem wrong.

We highlight, however, that some types of CRS are much easier to generate
than others. A CRS that depends on values which must remain secret (e.g. an
RSA modulus with unknown factorization, or an obfuscated program which con-
tains a secret key) is difficult to generate. However, assuming the security of trap-
door permutations [FLS90], bilinear maps [GOS06], learning with errors [PS19]
or indistinguishability obfuscation [BP15], we can construct NIZK proofs where
the CRS is just a random string of bits, i.e. a URS. In the random oracle model,
such a CRS can even be generated without any interaction. So, the CRS re-
quired by our constructions is the simplest, weakest kind of CRS setup.

4 A Construction with Semi-Malicious Security

We now present the main construction of this paper: a distributed sampler with
semi-malicious security based on polynomially secure MHE with private evalu-
ation and indistinguishability obfuscation. In Section 5, we explain how to up-
grade this construction to achieve active security.

The basic idea. Our goal is to generate a random sample R from the distribution
D. The natural way to do it is to produce a random bit string s and feed it into
D. We want to perform the operation in an encrypted way as we need to preserve
the privacy of s. A DS implements the functionality that provides samples from
the underlying distribution, but not the randomness used to obtain them, so no
information about s can be leaked.

We guarantee that any adversary corrupting up to n − 1 parties is not able
to influence the choice of s by XORing n bit strings of the same length, the i-
th one of which is independently sampled by the i-th party Pi. Observe that we
are dealing with a semi-malicious adversary, so we do not need to worry about
corrupted parties adaptively choosing their shares after seeing those of the honest
players.

Preserving the privacy of the random string. To preserve the privacy of s, we
rely on an MHE scheme with private evaluation pMHE = (Enc,PrivEval,FinDec).
Each party Pi encrypts si, publishing the corresponding ciphertext ci and keep-
ing the private key ski secret. As long as the honest players do not reveal their
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partial decryption keys, the privacy of the random string s is preserved. Using
the homomorphic properties of the MHE scheme, the parties are also able to ob-
tain partial plaintexts of R without any interactions. However, we run into an
issue: in order to finalise the decryption, the construction would require an ad-
ditional round of communication where the partial plaintexts are broadcast.

Reverting to a one-round construction. We need to find a way to perform the
final decryption without additional interaction, while at the same time preserving
the privacy of the random string s. That means revealing a very limited amount
of information about the private keys sk1, sk2, . . . , skn, so that it is only possible
to retrieve R, revealing nothing more.

Inspired by [HIJ+17], we build such a precise tool by relying on indistin-
guishability obfuscation: in the only round of interaction, each party Pi addi-
tionally publishes an obfuscated evaluation program EvProgi containing the pri-
vate key ski. When given the ciphertexts of the other parties, EvProgi evaluates
the circuit producing the final result R and outputs the partial decryption with
relation to ski. Using the evaluation programs, the players are thus able to re-
trieve R by feeding the partial plaintexts into pMHE.FinDec.

Dealing with the leakage about the secret keys. At first glance, the solution out-
lined in the previous paragraph seems to be secure. However, there are some
sneaky issues we need to deal with.

In this warm-up construction, we aim to protect the privacy of the random
string s by means of the reusable semi-malicious security of the MHE scheme
with private evaluation. To rely on this assumption, no information on the secret
keys must be leaked. However, this is not the case here, as the private keys are
part of the evaluation programs.

In the security proof, we are therefore forced to proceed in two steps: first,
we must remove the secret keys from the programs using obfuscation, and then
we can apply reusable semi-malicious security. The first task is actually trickier
than it may seem. iO states we cannot distinguish between the obfuscation of two
equivalent programs. Finding a program with the same input-output behaviour
as EvProgi without it containing any information about ski is actually impossible,
as any output of the program depends on the private key. We cannot even hard-
code the partial decryptions under ski for all possible inputs into the obfuscated
program as that would require storing an exponential amount of information,
blowing up the size of EvProgi.

In [HIJ+17], while constructing an NI-MPC protocol based on multi-key FHE
and iO, the authors deal with an analogous issue by progressively changing the
behaviour of the program input by input, first hard-coding the output corre-
sponding to a specific input and then using the simulatability of partial decryp-
tions to remove any dependency on the multi-key FHE secret key. Unfortunately,
in our context, this approach raises additional problems. First of all, in contrast
with some multi-key FHE definitions, MHE does not support simulatability of
partial decryptions. Additionally, since the procedure of [HIJ+17] is applied in-
put by input, the security proof would require exponentially many hybrids. In
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that case, security can be argued only if transitions between subsequent hybrids
cause a subexponentially small increase in the adversary’s advantage. In other
words, we would need to rely on subexponentially secure primitives even if fu-
ture research shows that iO does not. Finally, we would still allow the adversary
to compute several outputs without changing the random strings (sh)h∈H se-
lected by the honest parties. Each of the obtained values leaks some additional
information about the final output of the distributed sampler. In [HIJ+17], this
fact did not constitute an issue as this type of leakage is intrinsically connected
to the notion of NI-MPC.

Bounding the leakage: key generation programs. To avoid the problems described
above, we introduce the idea of key generation programs. Each party Pi pub-
lishes an obfuscated program KGProgi which encrypts a freshly chosen string si,
keeping the corresponding partial decryption key secret.

The randomness used by KGProgi is produced via a puncturable PRF F
taking as a nonce the key generation programs of the other parties. In this way,
any slight change in the programs of the other parties leads to a completely
unrelated string si, ciphertext ci and key ski. It is therefore possible to protect
the privacy of si using a polynomial number of hybrids, as we need only worry
about a single combination of inputs. Specifically, we can remove any information
about ski from EvProgi and hard-code the partial plaintext di corresponding to
(cj)j∈[n]. At that point, we can rely on the reusable semi-malicious security of the
MHE scheme with private evaluation, removing any information about si from
ci and di and programming the final output to be a random sample R from D.

The introduction of the key generation programs requires minimal modifi-
cations to the evaluation programs. In order to retrieve the MHE private key,
EvProgi needs to know the same PRF key Ki used by KGProgi. Moreover, it now
takes as input the key generation programs of the other parties, from which it
will derive the MHE ciphertexts needed for the computation of R. Observe that
EvProgi will also contain KGProgi, which will be fed into the other key genera-
tion programs in a nested execution of obfuscated circuits.

Compressing the inputs. The only problem with the construction above, is that
we now have a circularity issue: we cannot actually feed one key generation
program as input to another key generation program, since the programs are of
the same size. This holds even if we relied on obfuscation for Turing machines,
since to prove security, we would need to puncture the PRF keys in the nonces,
i.e. the key generation programs of the other parties. The point at which the i-
th key is punctured, which is at least as big as the program itself, must be hard-
coded into KGProgi, which is clearly too small.

Instead of feeding entire key generation programs into KGProgi, we can input
their hash, which is much smaller. This of course means that there now exist
different combinations of key generation programs leading to the same MHE
ciphertext-key pair (ci, ski), and the adversary could try to extract information
about ski by looking for collisions. The security of the hash function should,
however, prevent this attack. The only issue is that iO does not really get along
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with this kind of argument based on collision-resistant hashing. We instead rely
on the more iO-friendly notion of a somewhere statistically binding hash function
SSB = (Gen,Hash) [HW15].

Final construction. We now present the formal description of our semi-maliciously
secure DS. The algorithms Gen and Sample, as well as the unobfuscated key
generation program PKG and evaluation program PEval, can be found in Fig. 4.
In the description, we assume that the puncturable PRF F outputs pseudoran-
dom strings (r1, r2, r3) where each of r1, r2 and r3 is as long as the randomness
needed by D, pMHE.Enc, and HE.PrivEval respectively. Moreover, we denote by
B the maximum number of blocks in the messages fed into SSB.Hash.

Theorem 4.1. If SSB = (Gen,Hash) is a somewhere statistically binding hash
function, pMHE = (Enc,PrivEval,FinDec) is a MHE scheme with private eval-
uation, iO is an indistinguishability obfuscator and (F,Punct) is a puncturable
PRF, the construction in Fig. 4 is an n-party distributed sampler with semi-
malicious security for the distribution D.

We prove Theorem 4.1 in [ASY22, Appendix A]. Observe that a distributed
sampler with semi-malicious security also has passive security.

5 Upgrading to Active Security

When moving from semi-malicious to active security, there are two main issues
we need to tackle: corrupt parties publishing malformed shares of the sampler,
and rushing adversaries. The former can be easily dealt with by adding NIZK
proofs of well-formedness to the sampler shares (for this reason, our solution
relies on a URS). Rushing adversaries are a more challenging problem, and to
deal with this, we rely on a random oracle.

The problem of rushing. In the semi-maliciously secure construction described
in Section 4, the randomness used to generate an honest party’s MHE cipher-
texts and private keys is output by a PRF, which takes as input a nonce that de-
pends on the key generation programs of all parties (including the corrupt ones).
To prove security, we need to puncture the PRF key at that nonce, erasing any
correlation between the MHE ciphertext and the PRF key. This can be done in
the semi-malicious case, as the simulator knows the programs of the corrupted
parties before it must produce those of the honest parties. In the actively secure
case, we run into an issue. The adversary is able to adaptively choose the pro-
grams of the corrupted parties after seeing those of the other players, in what is
called rushing behaviour. In the security proof, we would therefore need to punc-
ture a PRF key without knowing the actual position where puncturing is needed.

Although the issue we described above is very specific, dealing with rushing
behaviour is a general problem. In a secure distributed sampler, we can program
the shares of the honest parties to output an ideal sample when used in con-
junction with the shares of the corrupted players. Since the latter are unknown
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Distributed Sampler with Semi-Malicious Security

Gen(1lλ, i) :

1. K
$← {0, 1}λ

2. hk
$← SSB.Gen(1lλ, B, 0)

3. KGProg
$← iO

(
1lλ,PKG[K, i]

)
4. EvProg

$← iO
(
1lλ,PEval[K, i, hk,KGProg]

)
5. Output U := (hk,KGProg,EvProg).

Sample
((
Ui = (hki,KGProgi,EvProgi)

)
i∈[n]

)
:

1. ∀i ∈ [n] : di ← EvProgi
(
(hkj ,KGProgj)j 6=i

)
2. Output R← pMHE.FinDec

(
D̃, (di)i∈[n]

)
The algorithm D̃.
Given a set of n random strings s1, s2, . . . , sn, perform the following operations.

1. s← s1 ⊕ s2 ⊕ · · · ⊕ sn
2. Output R← D(1lλ; s)

PKG[K, i]: the key generation program

Hard-coded. The private key K and the index i of the party.
Input. A hash y.

1. (r1, r2, r3)← FK(y)
2. s← r1
3. (c, sk)← pMHE.Enc(1lλ, D̃.params, i, s; r2)
4. Output c.

PEval[K, i, hki,KGProgi]: the evaluation program

Hard-coded. The private key K, the index i of the party, the hash key hki,
and the obfuscated key generation program KGProgi.
Input. A set of n− 1 pairs (hkj ,KGProgj)j 6=i where the first element is a hash
key and the second is an obfuscated key generation program.

1. ∀j ∈ [n] : yj ← SSB.Hash
(
hkj , (hkl,KGProgl)l6=j

)
2. ∀j 6= i : cj ← KGProgj(yj)
3. (r1, r2, r3)← FK(yi)
4. si ← r1
5. (ci, ski)← pMHE.Enc(1lλ, D̃.params, i, si; r2)
6. di ← pMHE.PrivEval(ski, D̃, c1, c2, . . . , cn; r3)
7. Output di.

Fig. 4. A Distributed Sampler with Semi-Malicious Security
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upon generation of the honest players’ shares, the immediate approach would be
to program the outputs for every possible choice of the adversary. We run how-
ever into an incompressibility problem as we would need to store exponentially
many ideal outputs in the polynomial-sized sampler shares.

5.1 Defeating Rushing

In this section, we present a compiler that allows us to deal with rushing be-
haviour without adding any additional rounds of interaction. This tool handles
rushing behaviour not only for distributed samplers, but for a wide range of ap-
plications (including our public-key PCF in Section 6). Consider any single-round
protocol with no private inputs, where SendMsg is the algorithm which party i
runs to choose a message to send, and Output is an algorithm that determines
each party’s output (from party i’s state and all the messages sent). More con-
cretely, we can describe any such one-round protocol using the following syntax:

SendMsg(1lλ, i; ri)→ gi generates party i’s message gi, and
Output(i, ri, (gj)j∈[n])→ resi produces party i’s output resi.

(In the case of distributed samplers, SendMsg corresponds to Gen, and Output
corresponds to Sample.)

We define modified algorithms (ARMsg,AROutput) such that the associated
one-round protocol realizes an ideal functionality that first waits for the cor-
rupted parties’ randomness, and then generates the randomness and messages
of the honest parties.

This functionality clearly denies the adversary the full power of rushing: the
ability to choose corrupt parties’ messages based on honest parties’ messages. For
this reason, we call it the no-rush functionality FNoRush. However, we do allow
the adversary a weaker form of rushing behaviour: selective sampling. The func-
tionality allows the adversary to re-submit corrupt parties’ messages as many
times as it wants, and gives the adversary the honest parties’ messages in re-
sponse (while hiding the honest parties’ randomness). At the end, the adversary
can select which execution she likes the most.

Definition 5.1 (Anti-Rusher). Let (SendMsg,Output) be a one-round n-party
protocol where SendMsg needs L(λ) bits of randomness to generate a message.
An anti-rusher for SendMsg is a one-round protocol (ARMsg,AROutput) imple-
menting the functionality FNoRush (see Fig. 5) for SendMsg against an active ad-
versary.

If (SendMsg,Output) = (Gen,Sample) is a distributed sampler with semi-
malicious security, applying this transformation gives a distributed sampler with
active security.

Intuition Behind our Anti-Rushing Compiler. We define (ARMsg,AROut-
put) as follows. When called by party i, ARMsg outputs an obfuscated program
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FNoRush

Initialisation. Upon receiving Init from every party and the adversary, the func-
tionality activates and enters the querying phase.
Querying phase. Upon receiving the id-th Query from the adversary, the func-
tionality waits for ri from every corrupted party Pi. Then, for every h ∈ H, it

samples rh
$← {0, 1}L(λ) and computes gh ← SendMsg(1lλ, h; rh). Finally, it stores

(ri)i∈[n] as the id-th set of randomness and sends (gh)h∈H back to the adversary.
Output. Upon receiving Output from the adversary, the functionality waits for
a value îd from the adversary, and retrieves the corresponding tuple (ri)i∈[n] (or
outputs ⊥ if there is no such tuple). It then outputs rh to Ph for every h ∈ H.

Fig. 5. The Anti-Rushing Functionality FNoRush

Si; this program takes as input a response of the random oracle, and uses it
as a nonce for a PRF FKi

. The program then feeds the resulting pseudoran-
dom string r into SendMsg, and outputs whatever message SendMsg generates.
Our techniques are inspired by the delayed backdoor programming technique of
Hofheinz et al. [HJK+16], used for adaptively secure universal samplers.

The trapdoor. In order to prove that our compiler realizes FNoRush for SendMsg,
a simulator must be able to force the compiled protocol to return given outputs
of SendMsg, even after sending messages (outputs of ARMsg) on behalf of the
honest parties.

Behind its usual innocent behaviour, the program Si hides a trapdoor that
allows it to secretly communicate with the random oracle. Si owns a key ki for a
special authenticated encryption scheme based on puncturable PRFs. Every time
it receives a random oracle response as input, Si parses it as a ciphertext-nonce
pair and tries to decrypt it. If decryption succeeds, Si outputs the corresponding
plaintext; otherwise, it resumes the usual innocent behaviour, and runs SendMsg.
(The encryption scheme guarantees that the decryption of random strings fails
with overwhelming probability; this trapdoor is never used accidentally, but it
will play a crucial role in the proof.) Obfuscation conceals how the result has
been computed as long as it is indistinguishable from a random SendMsg output.

The inputs fed into (Si)i∈[n] are generated by querying the random oracle
with the programs themselves and NIZKs proving their well-formedness. The
random oracle response consists of a random nonce v and additional n blocks
(ui)i∈[n], the i-th one of which is addressed to Si. The input to Si will be the
pair (ui, v). When the oracle tries to secretly communicate a message to Si, ui
will be a ciphertext, whereas v will be the corresponding nonce.

Given a random oracle query, using the simulation-extractability of the NIZKs,
the simulator can retrieve the secrets (in particular, the PRF keys) of the cor-
rupted parties. It can then use this information to learn the randomness used
to generate the corrupted parties’ messages (i.e. their outputs of SendMsg). The
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simulator then needs only to encrypt these messages received from FNoRush us-
ing (ki)i∈H , and include these ciphertexts in the oracle response.

Formal Description of our Anti-Rushing Compiler. We now formalise
the ideas we presented in the previous paragraphs. Our anti-rushing compiler is
described in Fig. 7. The unobfuscated program PAR is available in Fig. 6. We
assume that its obfuscation needs M(λ) bits of randomness. Observe that PAR

is based on two puncturable PRFs F and F ′, the first one of which is used to
generate the randomness fed into SendMsg.

The second puncturable PRF is part of the authenticated encryption scheme
used in the trapdoor. We assume that its outputs are naturally split into 2m λ-
bit blocks, where m(λ) is the size of an output of SendMsg (after padding). To
encrypt a plaintext (x1, . . . , xm) ∈ {0, 1}m using the key k and nonce v ∈ {0, 1}λ,
we first expand v using F ′k. The ciphertext consists of m λ-bit blocks, the j-th
one of which coincides with the (2j + xj)-th block output by F ′. Decryption is
done by reversing these operations. For this reason, we assume that the values
(ui)i∈[n] in the oracle responses are naturally split into m λ-bit chunks. Observe
that if the j-th block of the ciphertext is different from both the 2j-th and the
(2j + 1)-th block output by the PRF, decryption fails.

Finally, let NIZK = (Gen,Prove,Verify,Sim1,Sim2,Extract) be a simulation-
extractable NIZK for the relation R describing the well-formedness of the ob-
fuscated programs (Si)i∈[n]. Formally, a statement consists of the pair (Si, i),
whereas the corresponding witness is the triple containing the PRF keys ki and
Ki hard-coded in Si and the randomness used for the obfuscation of the latter.

PAR[SendMsg, k,K, i]

Hard-coded. The algorithm SendMsg, PRF keys k and K and the index i of
the party.
Input. Oracle responses (u, v) ∈ {0, 1}λ·m(λ) × {0, 1}λ.

1. (y01 , y
1
1 , y

0
2 , y

1
2 , . . . , y

0
m, y

1
m)← F ′k(v)

2. For every j ∈ [m] set

xj ←


0 if y0j = uj ,

1 if y1j = uj ,

⊥ otherwise.

3. If xj 6= ⊥ for every j ∈ [m], output (x1, x2, . . . , xm).
4. Set r ← FK(u, v).
5. Output gi ← SendMsg(1lλ, i; r).

Fig. 6. The Anti-Rushing Program
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Anti-Rushing Compiler ΠNoRush

URS. The protocol needs a URS urs
$← NIZK.Gen(1lλ) for the NIZK proofs.

ARMsg(1lλ, i, urs):

1. ki
$← {0, 1}λ

2. Ki
$← {0, 1}λ

3. wi
$← {0, 1}M(λ)

4. Si ← iO
(
1lλ,PAR[SendMsg, ki,Ki, i];wi

)
(see Fig. 6)

5. πi
$← Prove

(
1lλ, urs, (Si, i), (ki,Ki, wi)

)
6. Output armsgi := (Si, πi).

AROutput
((
armsgj = (Sj , πj)

)
j∈[n], urs

)
:

1. If there exists j ∈ [n] such that Verify
(
urs, πj , (Sj , j)

)
= 0, output ⊥.

2. Query (Sj , πj)j∈[n] to the random oracle H to get
(
v, (ui)i∈[n]

)
.

3. ∀i ∈ [n] : gi ← Si(ui, v).
4. Output (gj)j∈[n].

Fig. 7. Anti-Rushing Compiler

Theorem 5.2. If (SendMsg,Output) is a one-round n-party protocol, NIZK =
(Gen,Prove,Verify,Sim1,Sim2,Extract) is a simulation-extractable NIZK with URS
for the relation R, iO is an indistinguishability obfuscator and (F,Punct) and
(F ′,Punct′) are two puncturable PRFs satisfying the properties described above,
the protocol ΠNoRush = (ARMsg,AROutput) described in Fig. 7 realizes FNoRush

for SendMsg in the random oracle model with a URS.

We prove Theorem 5.2 in [ASY22, Appendix B].

Theorem 5.3. Suppose that DS = (Gen,Sample) is a semi-maliciously secure
distributed sampler for the distribution D. Assume that there exists an anti-
rusher for DS.Gen. Then, there exists an actively secure distributed sampler for
D.

On the novelty of this compiler. Observe that the idea of a compiler converting
passive protocols into actively secure ones is not new. The most famous example
is GMW [GMW87], which achieves this by adding ZK proofs proving the well-
formedness of all the messages in the protocol. The novelty of our construction
consists of doing this without increasing the number of rounds. GMW deals with
rushing by requiring all the parties to commit to their randomness at the begin-
ning of the protocol and then prove that all the messages in the interaction are
consistent with the initial commitments. A passively secure one-round protocol
would therefore be compiled, in the best case, into a 2-round one.
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Although the techniques were inspired by [HJK+16], this work employs the
ideas in a new context, generalising them to multiple players and applying them
in multiparty protocols. Observe indeed that [HJK+16] devised the techniques
to construct adaptively secure universal samplers. To some extent, we still use
them to prevent the adversary from making adaptive choices.

6 Public-Key PCFs for Reverse-Samplable Correlations

We now consider the concept of a distributed correlation sampler, where the
distribution D produces private, correlated outputs R1, R2, . . . , Rn, where Ri is
given only to the i-th party. This can also model the case where the distribution
D has only one output R = R1 = · · · = Rn, which must be accessible only to
the parties that took part in the computation (but not to outsiders; unlike with
a distributed sampler).

PCGs and PCFs. The concept of distributed correlation samplers has been
previously studied in the form of pseudorandom correlation generators (PCGs)
[BCGI18, BCG+19a, BCG+19b, BCG+20b] and pseudorandom correlation func-
tions (PCFs)[BCG+20a, OSY21]. These are tailored to distributions with n
outputs, each one addressed to a different player. Specifically, they consist of
two algorithms (Gen,Eval): Gen is used to generate n short correlated seeds or
keys, one for each party. Eval is then used to locally expand the keys and non-
interactively produce a large amount of correlated randomness, analogously to
the non-correlated setting of a PRG (for PCG) or PRF (for PCF).

Both PCGs and PCFs implicitly rely on a trusted dealer for the generation
and distribution of the output of Gen, which in practice can be realized using
a secure multiparty protocol. The communication overhead of this computation
should be small, compared with the amount of correlated randomness obtained
from Eval.

If we consider a one-round protocol to distribute the output of Gen, the
message of the i-th party and the corresponding randomness ri act now as a kind
of public/private key pair (ri is necessary to retrieve the i-th output.) Such a
primitive is called a public-key PCF [OSY21]. Orlandi et al. [OSY21] built public-
key PCFs for the random OT and vector-OLE correlations based on Paillier
encryption with a common reference string (a trusted RSA modulus). In this
section, we will build public-key PCFs for general correlations, while avoiding
trusted setups.

6.1 Correlation Functions and their Properties

Instead of considering singe-output distributions D, we now consider n-output
correlations C. We also allow different samples from C to themselves be correlated
by some secret parameters, which allows handling correlations such as vector-
OLE and authenticated multiplication triples (where each sample depends on
some fixed MAC keys). This is modelled by allowing each party i to input a
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master secret mki into C. These additional inputs are independently sampled by
each party using an algorithm Secret.

Some example correlations. Previous works have focussed on a simple class
of additive correlations, where the outputs R1, . . . , Rn form an additive secret
sharing of values sampled from a distribution. This captures, for instance, obliv-
ious transfer, (vector) oblivious linear evaluation and (authenticated) multipli-
cation triples, which are all useful correlations for secure computation tasks.
Vector OLE and authenticated triples are also examples requiring a master se-
cret, which is used to fix a secret scalar or secret MAC keys used to produce
samples. Assuming LWE, we can construct public-key PCFs for any additive
correlation [BCG+20a], using homomorphic secret-sharing based on multi-key
FHE [DHRW16]. However, we do not know how to build PCFs for broader classes
of correlations, except for in the two-party setting and relying on subexponen-
tially secure iO [DHRW16].

As motivation, consider the following important types of non-additive corre-
lations:

– Pseudorandom secret sharing. This can be seen as a correlation that sam-
ples sharings of uniformly random values under some linear secret sharing
scheme. Even for simple t-out-of-n threshold schemes such as Shamir, the
best previous construction requires

(
n
t

)
complexity [CDI05].

– Garbled circuits. In the two-party setting, one can consider a natural garbled
circuit correlation, which for some circuit C, gives a garbling of C to one
party, and all pairs of input wire labels to the other party. Having such a
correlation allows preprocessing for secure 2-PC, where in the online phase,
the parties just use oblivious transfer to transmit the appropriate input wire
labels.3 Similarly, this can be extended to the multi-party setting, by for
instance, giving n parties the garbled circuit together with a secret-sharing
of the input wire labels.

For garbled circuits, it may also be useful to consider a variant that uses a
master secret, if e.g. we want each garbled circuit to be sampled with a fixed
offset used in the free-XOR technique [KS08].

Reverse-Samplable Correlations. The natural way to define a public-key
PCF would be a one-round protocol implementing the functionality that samples
from the correlation function C and distributes the outputs. However, Boyle et
al. [BCG+19b] prove that for PCGs, any construction satisfying this definition
in the plain model would require that the messages be at least as long as the
randomness generated, which negates one of the main advantages of using a
PCF. Following the approach of Boyle et al., in this section we adopt a weaker
definition. We require that no adversary can distinguish the real samples of

3 Note that formally, in the presence of malicious adversaries, preprocessing garbled
circuits in this way requires the garbling scheme to be adaptively secure [BHR12].

21



the honest parties from simulated ones which are reverse sampled based on
the outputs of the corrupted players. This choice restricts the set of correlation
functions to those whose outputs are efficiently reverse-samplable4. We formalise
this property below.

Definition 6.1 (Reverse Samplable Correlation Function with Master
Secrets). An n-party correlation function with master secrets is a pair of PPT
algorithms (Secret, C) with the following syntax:

– Secret takes as input the security parameter 1lλ and the index of a party
i ∈ [n]. It outputs the i-th party’s master correlation secret mki.

– C takes as input the security parameter 1lλ and the master secrets mk1, . . . ,mkn.
It outputs n correlated values R1, R2, . . . , Rn, one for each party.

We say that (Secret, C) is reverse samplable if there exists a PPT algorithm
RSample such that, for every set of corrupted parties C ( [n] and master secrets
(mki)i∈[n] and (mk′h)h∈H in the image of Secret, no PPT adversary is able to

distinguish between C(1lλ,mk1,mk2, . . . ,mkn) and(R1, R2, . . . , Rn)

∣∣∣∣∣∣∣∣∣∣

∀i ∈ C : mk′i ← mki

(R′1, R
′
2, . . . , R

′
n)

$← C(1lλ,mk′1,mk′2, . . . ,mk′n)

∀i ∈ C : Ri ← R′i

(Rh)h∈H
$← RSample

(
1lλ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)


Notice that indistinguishability cannot rely on the secrecy of the master

secrets (mki)i∈[n] and (mk′h)h∈H , since the adversary could know their values.
Furthermore, RSample does not take as input the same master secrets that were
used for the generation of the outputs of the corrupted parties. The fact that
indistinguishability holds in spite of this implies that the elements (Ri)i∈C leak
no information about the master secrets of the honest players.

6.2 Defining Public Key PCFs

We now formalise the definition of public key PCF as it was sketched at the
beginning of the section. We start by specifying the syntax, we will then focus our
attention on security, in particular against semi-malicious and active adversaries.

Definition 6.2 (Public-Key PCF with Master Secrets). A public-key PCF
for the n-party correlation function with master secrets (Secret, C) is a pair of
PPT algorithms (Gen,Eval) with the following syntax:

– Gen takes as input the security parameter 1lλ and the index of a party i ∈ [n],
and outputs the PCF key pair (ski, pki) of the i-th party. Gen needs L(λ) bits
of randomness.

4 In the examples above, reverse-samplability is possible for pseudorandom secret-
sharing, but not for garbled circuits, since we should not be able to find valid input
wire labels when given only a garbled circuit.
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GPCF-Corr(λ)
Initialisation.
1. b

$← {0, 1}
2. ∀i ∈ [n] : (ski, pki)

$← Gen(1lλ, i)

3. ∀i ∈ [n] : mk′i
$← Secret(1lλ, i)

4. Activate the adversary with input (1lλ, (pki)i∈[n]).
Repeated querying. On input (Correlation, x) from the adversary where x ∈
{0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)

2. (R1
i )i∈[n]

$← C(1lλ,mk′1, . . . ,mk′n)
3. Give (Rb1, R

b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Fig. 8. Correctness Game for the Public-Key PCF

– Eval takes as input an index i ∈ [n], n PCF public keys, the i-th PCF private
key ski and a nonce x ∈ {0, 1}l(λ). It outputs a value Ri corresponding to
the i-th output of C.

Every public-key PCF (Gen,Eval) for C induces a one-round protocol ΠC .
This is the natural construction in which every party broadcasts pki output by
Gen, and then runs Eval on all the parties’ messages, its own private key and
various nonces.

Definition 6.3 (Semi-Maliciously Secure Public-Key PCF for Reverse
Samplable Correlation). Let (Secret, C) be an n-party, reverse samplable cor-
relation function with master secrets. A public-key PCF (Gen,Eval) for (Secret, C)
is semi-maliciously secure if the following properties are satisfied.

– Correctness. No PPT adversary can win the game GPCF-Corr(λ) (see Fig. 8)
with noticeable advantage.

– Security. There exists a PPT extractor Extract such that for every set of
corrupted parties C ( [n] and corresponding randomness (ρi)i∈C , no PPT

adversary can win the game GC,(ρi)i∈C

PCF-Sec (λ) (see Fig. 9) with noticeable advan-
tage.

Correctness requires that the samples output by the PCF are indistinguish-
able from those produced by C even if the adversary receives all the public keys.
Security instead states that a semi-malicious adversary learns no information
about the samples and the master secrets of the honest players except what can
be deduced from the outputs of the corrupted parties themselves.

Like for distributed samplers, the above definition can be adapted to passive
security by modifying the security game. Specifically, it would be sufficient to
sample the randomness of the corrupted parties inside the game, perhaps relying
on a simulator when b = 1.
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GC,(ρi)i∈C
PCF-Sec (λ)

Initialisation.
1. b

$← {0, 1}
2. ∀h ∈ H : ρh

$← {0, 1}L(λ)

3. ∀i ∈ [n] : (ski, pki)← Gen(1lλ, i; ρi)
4. (mki)i∈C ← Extract(C, ρ1, ρ2, . . . , ρn).

5. ∀h ∈ H : mk′h
$← Secret(1lλ, h)

6. Activate the adversary with 1lλ and provide it with (pki)i∈[n] and (ρi)i∈C .
Repeated querying. On input (Correlation, x) from the adversary where x ∈
{0, 1}l(λ), compute
1. ∀i ∈ [n] : R0

i ← Eval(i, pk1, . . . , pkn, ski, x)
2. ∀i ∈ C : R1

i ← R0
i

3. (R1
h)h∈H

$← RSample
(
1lλ, C, (R1

i )i∈C , (mki)i∈C , (mk′h)h∈H
)

4. Give (Rb1, R
b
2, . . . , R

b
n) to the adversary.

Output. The adversary wins if its final output is b.

Fig. 9. Security Game for the Public-Key PCF

In our definition, nonces are adaptively chosen by the adversary; however, in
a weak PCF [BCG+20a], the nonces are sampled randomly or selected by the
adversary ahead of time. We can define a weak public-key PCF similarly, and
use the same techniques as Boyle et al. [BCG+20a] to convert a weak public-key
PCF into a public-key PCF by means of a random oracle.

Active security. We define actively secure public-key PCFs using an ideal func-
tionality, similarly to how we defined actively secure distributed samplers.

Definition 6.4 (Actively Secure Public-Key PCF for Reverse Sam-
plable Correlation). Let (Secret, C) be an n-party reverse samplable correla-
tion function with master secrets. A public-key PCF (Gen,Eval) for (Secret, C) is
actively secure if the corresponding one-round protocol ΠC implements the func-
tionality FRSample

C (see Fig. 10) against a static and active adversary corrupting
up to n− 1 parties.

Any protocol that implements FRSample
C will require either a CRS or a ran-

dom oracle; this is inherent for meaningful correlation functions, since the simu-
lator needs to retrieve the values (Ri)i∈C in order to forward them to FRSample

C .
Therefore, some kind of trapdoor is needed.

Notice also that the algorithm RSample takes as input the master secrets of
the corrupted parties. We can therefore assume that whenever the values (Ri)i∈C
chosen by the adversary are inconsistent with (mki)i∈C or with C itself, the
output of the reverse sampler is ⊥. As a consequence, an actively secure public-
key PCF must not allow the corrupted parties to select these irregular outputs;
otherwise distinguishing between real world and ideal world would be trivial.
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FRSample
C

Initialisation. On input Init from every honest party and the adversary, the

functionality samples mkh
$← Secret(1lλ, h) for every h ∈ H and waits for (mki)i∈C

from the adversary.
Correlation. On input a fresh nonce x ∈ {0, 1}l(λ) from a party Pj , the func-
tionality waits for (Ri)i∈C from the adversary. Then, it computes

(Rh)h∈H
$← RSample

(
1lλ, C, (Ri)i∈C , (mki)i∈C , (mkh)h∈H

)
,

sends Rj to Pj and stores
(
x, (Ri)i∈[n]

)
. If x has already been queried, the func-

tionality retrieves the stored tuple
(
x, (Ri)i∈[n]

)
and outputs Rj to Pj .

Fig. 10. The Actively Secure Public-Key PCF Functionality for Reverse Samplable
Correlation

6.3 Public-Key PCF with Trusted Setup

We will build our semi-maliciously secure public-key PCF by first relying on a
trusted setup and then removing it by means of a distributed sampler. A public-
key PCF with trusted setup is defined by Def. 6.2 to include an algorithm Setup
that takes as input the security parameter 1lλ and outputs a CRS. The CRS is
then provided as an additional input to the evaluation algorithm Eval, but not
to the generation algorithm Gen. (If Gen required the CRS, then substituting
Setup with a distributed sampler would give us a two-round protocol, not a one-
round protocol.)

We say that a public-key PCF with trusted setup is semi-maliciously se-
cure if it satisfies Def. 6.3, after minor tweaks to the games GPCF-Corr(λ) and

GC,(ρi)i∈C

PCF-Sec (λ) to account for the modified syntax. Notice that in the latter, the
extractor needs to be provided with the CRS but not with the randomness used
to produce it. If that was not the case, we would not be able to use a distributed
sampler to remove the CRS. Formal definitions of public-key PCF with trusted
setup are available in [ASY22, Section 6.3].

Our public-key PCF with trusted setup. Our construction is based once again
on iO. The key of every party i is a simple PKE pair (ski, pki). The generation
of the correlated samples and their distribution is handled by the CRS, which
is an obfuscated program. Specifically, the latter takes as input the public keys
of the parties and a nonce x ∈ {0, 1}l(λ). After generating the master secrets
mk1,mk2, . . . ,mkn using Secret and the correlated samples R1, R2, . . . , Rn using
C, the program protects their privacy by encrypting them under the provided
public keys. Specifically, Ri and mki are encrypted using pki, making the i-th
party the only one able to retrieve the underlying plaintext.

The randomness used for the generation of the samples, the master secrets
and the encryption is produced by means of two puncturable PRF keys k and
K, known to the CRS program. The CRS program is equipped with two keys:
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k and K. The first one is used to generate the master secrets; the input to the
PRF is the sequence of all public keys (pk1, pk2, . . . , pkn)). The master secrets
remain the same if the nonce x varies. The second PRF key is used to generate
the randomness fed into C and the encryption algorithm; here, the PRF input
consists of all the program inputs. As a result, any slight change in the inputs
leads to completely unrelated ciphertexts and samples.

On the size of the nonce space. Unfortunately, in order to obtain semi-maliciously
security, we need to assume that the nonce space is of polynomial size. In the
security proof, we need to change the behaviour of the CRS program for all
nonces. This is due to the fact that we cannot rely on the reverse samplability of
the correlation function as long as the program contains information about the
real samples of the honest players. If the number of nonces is exponential, our
security proof would rely on a non-polynomial number of hybrids and therefore
we would need to assume the existence of sub-exponentially secure primitives.

The formal description of our solution. Our public-key PCF with trusted setup
for (Secret, C) is described in Fig. 11 together with the program PCG used as a
CRS.

Our solution relies on an IND-CPA PKE scheme PKE = (Gen,Enc,Dec) and
two puncturable PRFs F and F ′. We assume that the output of the first one is
naturally split into n+ 1 blocks, the initial one as big as the randomness needed
by C, the remaining ones the same size as the random tape of PKE.Enc. We also
assume that the output of F ′ is split into n blocks as big as the randomness used
by Secret.

Theorem 6.5 (Public Key PCFs with Trusted Setup). Let (Secret, C) be
an n-party, reverse samplable correlation function with master secrets. If PKE =
(Gen,Enc,Dec) is an IND-CPA PKE scheme, iO is an indistinguishability obfus-
cator, (F,Punct) and (F ′,Punct′) are puncturable PRFs with the properties de-
scribed above and l(λ) is polylog(λ), the construction presented in Fig. 11 is a
semi-maliciously secure public-key PCF with trusted setup for (Secret, C).

Furthermore, if PKE, iO, (F,Punct) and (F ′,Punct′) are sub-exponentially
secure, the public-key PCF with trusted setup is semi-maliciously secure even if
l(λ) is poly(λ).

In both cases, the size of the CRS and the PCF keys is poly(l).

We prove Theorem 6.5 in [ASY22, Appendix C].

6.4 Our Public-Key PCFs

As mentioned in the previous section, once we obtain a semi-maliciously secure
public-key PCF with trusted setup, we can easily remove the CRS using a dis-
tributed sampler. We therefore obtain a public-key PCF with security against
semi-malicious adversaries. If the size of the CRS and the keys of the initial con-
struction is logarithmic in the size of the nonce space, the key length after re-
moving the setup is still polynomial in l(λ).
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Public-Key PCF with Trusted Setup

Setup(1lλ)

1. k
$← {0, 1}λ

2. K
$← {0, 1}λ

3. Output CGP
$← iO

(
1lλ,PCG[k,K]

)
Gen(1lλ, i)

1. Output (ski, pki)
$← PKE.Gen(1lλ)

Eval(i,CGP, pk1, . . . , pkn, ski, x)

1. (c1, c2, . . . , cn)← CGP(pk1, . . . , pkn, x)
2. (Ri,mki)← PKE.Dec(ski, ci)
3. Output Ri.

PCG[k,K]

Hard-coded. Two puncturable PRF keys k and K.
Input. n public keys pk1, . . . , pkn and a nonce x ∈ {0, 1}l(λ).

1. (r, r1, r2, . . . , rn)← FK(pk1, . . . , pkn, x).
2. (s1, s2, . . . , sn)← F ′k(pk1, . . . , pkn)
3. ∀i ∈ [n] : mki ← Secret(1lλ, i; si)
4. (R1, R2, . . . , Rn)← C(1lλ,mk1, . . . ,mkn; r)
5. ∀i ∈ [n] : ci ← PKE.Enc

(
pki, (Ri,mki); ri

)
6. Output c1, c2, . . . , cn.

Fig. 11. A Public-Key PCF with Trusted Setup

Theorem 6.6 (Semi-Maliciously Secure Public Key PCFs). Let (Secret, C)
be an n-party, reverse samplable correlation function with master secrets. Sup-
pose that pkPCFS = (Setup,Gen,Eval) is a semi-maliciously secure public-key
PCF with trusted setup for (Secret, C). Moreover, assume that there exists a semi-
maliciously secure n-party distributed sampler for pkPCFS.Setup. Then, public-
key PCFs for (Secret, C) with semi-malicious security exist.

We will not prove Theorem 6.6 formally. Security follows from the fact that
distributed samplers implement the functionality that samples directly from the
underlying distribution. From this point of view, it is fundamental that the
randomness input into Setup is not given as input to the extractor of the public-
key PCF pkPCFS.

Active security in the random oracle model. If we rely on a random oracle,
it is easy to upgrade a semi-maliciously secure public-key PCF to active security.
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We can use an anti-rusher (see Section 5.1) to deal with rushing and malformed
messages. If the key size of the semi-malicious construction is polynomial in l(λ),
after compiling with the anti-rusher, the key length is still poly(l). The technique
described above allows us to deduce the security of our solution from the semi-
malicious security of the initial public-key PCF. The result is formalised by the
following theorem. Again, we will not provide a formal proof.

Theorem 6.7 (Actively Secure Public Key PCFs in the Random Or-
acle Model). Let (Secret, C) be an n-party, reverse samplable correlation func-
tion with master secret. Assume that pkPCF = (Gen,Eval) is a semi-maliciously
secure public-key PCFs for (Secret, C) and suppose there exists an anti-rusher
for the associated protocol. Then, actively secure public-key PCFs for (Secret, C)
exist.

Active security from sub-exponentially secure primitives. So far, all our
constructions rely on polynomially secure primitives. However, we often work in
the random oracle model. We now show that it is possible to build actively secure
public-key PCFs in the URS model assuming the existence of sub-exponentially
secure primitives. Furthermore, these constructions come with no restrictions on
the size of the nonce space.

Our solution is obtained by assembling a sub-exponentially and semimali-
ciously secure public-key PCF with trusted setup with a sub-exponentially and
semi-maliciously secure distributed sampler. We add witness-extractable NIZKs
proving the well-formedness of the messages. Like for our semi-malicious con-
struction, if the size of the CRS and the keys of the public-key PCF with trusted
setup is polynomial in the nonce length l(λ), after composing with the DS, the
key size remains poly(l).

Theorem 6.8 (Actively Secure Public Key PCFs from Subexponen-
tially Secure Primitives). Let (Secret, C) be an n-party, reverse samplable cor-
relation function with master secret. Suppose that pkPCFS = (Setup,Gen,Eval)
is a sub-exponentially and semi-maliciously secure public-key PCF with trusted
setup for (Secret, C). Assume that there exists a sub-exponentially and semi-
maliciously secure n-party distributed sampler for pkPCFS.Setup. If there exist
simulation-extractable NIZKs with URS proving the well-formedness of the sam-
pler shares and the PCF public keys, there exists an actively secure public-key
PCF for (Secret, C) in the URS model.

We prove Theorem 6.8 in [ASY22, Appendix D].
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