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Abstract. A common technique for enhancing the efficiency of secure
multiparty computation (MPC) with dishonest majority is via prepro-
cessing: In an offline phase, parties engage in an input-independent proto-
col to securely generate correlated randomness. Once inputs are known,
the correlated randomness is consumed by a “non-cryptographic” and
highly efficient online protocol.
The correlated randomness in such protocols traditionally comes in two
flavors: multiplication triples (Beaver, Crypto ’91), which suffice for secu-
rity against semi-honest parties, and authenticated multiplication triples
(Bendlin et al., Eurocrypt ’11, Damg̊ard et al., Crypto ’12) that yield
efficient protocols against malicious parties.
Recent constructions of pseudorandom correlation generators (Boyle et
al., Crypto ’19, ’20) enable concretely efficient secure generation of mul-
tiplication triples with sublinear communication complexity. However,
these techniques do not efficiently apply to authenticated triples, except
in the case of secure two-party computation of arithmetic circuits over
large fields.
In this work, we propose the first concretely efficient approach for (ma-
licious) MPC with preprocessing in which the offline communication is
sublinear in the circuit size. More specifically, the offline communication
scales with the square root of the circuit size.
From a feasibility point of view, our protocols can make use of any secure
protocol for generating (unauthenticated) multiplication triples together
with any additive homomorphic encryption. We propose concretely ef-
ficient instantiations (based on strong but plausible “linear-only” as-
sumptions) from existing homomorphic encryption schemes and pseudo-
random correlation generators.
Our technique is based on a variant of a recent protocol of Boyle et
al. (Crypto ’21) for MPC with preprocessing. As a result, our protocols
inherit the succinct correlated randomness feature of the latter protocol.

1 Introduction

Protocols for secure multiparty computation (MPC) [44, 28, 2, 18] enable a set
of parties with private inputs to compute a joint function of their inputs while
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revealing nothing but the output. Optimizing the asymptotic and concrete ef-
ficiency of MPC protocols has been the topic of a large body of work. The
question is particularly challenging when considering security against malicious
adversaries, who can actively corrupt parties.

A successful approach for the design of such protocols is to employ preprocess-
ing. Before the inputs are known, the parties run an offline protocol to generate
correlated secret randomness, which is consumed by a lightweight and typically
“non-cryptographic” (or “information-theoretic”) online protocol.4 This model,
known also as the offline/online model, is in particular appealing when no honest
majority can be guaranteed, since it allows to push the heavy “cryptographic”
part of the protocol to the offline phase, minimizing the cost of the online proto-
col. Originating from the work of Beaver [1], who showed how to use “multipli-
cation triples” for secure arithmetic computation with dishonest majority, many
protocols for secure computation make extensive use of correlated randomness [3,
23, 31, 39, 21, 24, 22, 20, 11].

Most of the above works design protocols in the preprocessing model with
security against malicious adversaries. A powerful recurring technique uses ho-
momorphic MACs to authenticate the values produced by the online protocol [3,
23]; the resulting correlation is a form of “authenticated” multiplication triples.
Indeed, the so-called “SPDZ” line of work serves as a leading approach in this
area, spawning a range of optimizations, implementations, and improvements,
e.g. [35, 36, 20, 5, 17]. Another recent approach includes compilers based on sub-
linear distributed zero-knowledge [6, 14]. As per design, in all these protocols
the bulk of the work lies in the preprocessing phase. In particular, the typical
communication complexity of this phase in existing protocols is by orders of
magnitude higher than the size of the circuit being evaluated.

Recent constructions of pseudorandom correlation generators (PCGs) [9, 8,
10] demonstrate promising potential for improving the communication demands
of certain preprocessing procedures. PCGs provide a means for parties to lo-
cally expand short correlated seeds into long pseudorandom instances of certain
correlations, without communication. Indeed, recent PCG constructions based
on Learning Parity with Noise (LPN) or its Ring-LPN variant enable concretely
efficient secure generation of many multiplication triples, with sublinear com-
munication and good concrete efficiency, including the secure generation of the
seeds [9, 10]. This directly yields a practical, sublinear-communication prepro-
cessing for MPC with semi-honest security.

However, these techniques do not generally apply to the more complex cor-
relation of authenticated multiplication triples, necessary for extending this ap-
proach to protocols with malicious security. Concretely efficient PCGs for au-
thenticated triples exist only in the limited setting of 2-party correlations over

4 This can be formalized by requiring the existence of alternative correlated random-
ness, which is computationally indistinguishable from the one generated by the offline
protocol, and given which the entire protocol is information-theoretically secure.
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large fields [10].5 Using PCG-generated pairwise authenticated triples in the
style of “BDOZ” [3] may be feasible for arithmetic circuits and a small number
of parties, but result in online communication that scales quadratically in the
number of parties. In the case of 2-party evaluation of Boolean circuits, PCGs for
OT can be used to generate multiplication triples over F2, enabling semi-honest
online protocols with 2 bits per party per gate, whereas for malicious security
one needs to communicate 2 elements of a big finite field per gate.

To conclude, current PCG machinery cannot be efficiently used to generate
authenticated triples that support an online protocol that scales linearly with the
number of parties, or alternatively even 2-party protocols for Boolean circuits.
Consequently, all practical protocols for MPC with preprocessing in these set-
tings require the communication complexity of preprocessing to be much bigger
than the circuit size.

1.1 Our Results

We provide new feasibility and concrete efficiency results for secure multiparty
computation (MPC) in the dishonest majority setting. Our general approach
can be instantiated to give the first practical sublinear-communication methods
for generating “SPDZ-style” correlations, in the sense of achieving malicious
security with an online phase that is both non-cryptographic and has linear
communication in both the circuit size and the number of parties.

Our approach does not require authenticated multiplication triples as in
SPDZ [23], but rather makes use of only semi-honest (non-authenticated) triples
together with additional preprocessing material that builds on a variant of a
recent protocol of Boyle et al. [14]. As a consequence, our protocols inherit the
succinct correlated randomness feature of the latter protocol—that is, the ad-
ditional preprocessing material (beyond multiplication triples) is only sublinear
in the circuit size. From a concrete efficiency point of view, our approach is also
attractive for Boolean circuits in the 2-party case, as there are no concretely
efficient PCG for generating binary authenticated triples, whereas PCG for OT
can generate binary non-authenticated triples.

More concretely, our protocols support secure computation in the prepro-
cessing model of arithmetic circuits over any finite field or ring Z2k . We say that
the online phase is “information theoretic” (or “non-cryptographic”) in the sense
that the correlated randomness distribution D is computationally indistinguish-
able from some distribution D′ for which executing the online phase with D′

induces true information theoretic security. The offline preprocessing phase has
communication that scales with the square root of the circuit size. Our protocol
can make use of any secure protocol for generating (unauthenticated) multipli-
cation triples, together with any additively homomorphic encryption.6

This constitutes a new feasibility result.

5 While these limitations can in some cases be circumvented [9, 40, 25], this comes at
a big additional cost.

6 Implied, e.g., by any of the Quadratic Residuosity, Learning with Errors, or Deci-
sional Composite Residuosity assumptions.
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Theorem 1 (Sublinear-setup MPC with preprocessing, informal). Let
C be an arithmetic circuit of size |C| (counting multiplication gates, inputs and
outputs) over a ring R, where R is either a finite field F or the ring Z2k . Then,
there exists a secure n-party MPC protocol in the preprocessing model that com-
putes C with security against up to n − 1 malicious parties and the following
features:

– Sublinear offline communication, consisting of a number of R-elements
that scales as O(

√
|C|).

– Information-theoretic online phase
– Per-party online communication that does not grow with n: namely,
O(|C|) R-elements.

Security is based on the assumptions underlying two cryptographic building blocks:

– additively homomorphic encryption;
– sublinear-communication protocol for semi-honest generation of pseudoran-

dom (un-authenticated) multiplication triples over R: e.g., implied by LPN.

Note that the information-theoretic nature of the online phase makes the
task of achieving sublinear offline communication highly nontrivial, as opposed
to trivial solution approaches which simply ignore the offline phase (zero offline
communication) and perform a complete secure computation in the online phase.

We additionally propose concretely efficient instantiations of our main the-
orem (based on strong but plausible “linear-only” assumptions) from existing
homomorphic encryption schemes and existing pseudorandom correlation gen-
erators.

The overhead of our online phase is quite modest and in many settings is
dominated by the communication of the semi-honest baseline protocol, even
over a fast 1 Gbps network, e.g. for an arithmetic circuit of 220 gates over a
prime field of 60 bits (and soundness error 2−50).

1.2 Technical Overview

Starting point: Distributed zero knowledge and BGIN’21. We follow in line with
a collection of recent prior works using sublinear distributed zero knowledge
machinery toward low-communication solutions for compiling semi-honest to
malicious security [6, 12–14].

The high-level structure of these protocols is as follows. Within the protocol,
the parties begin by running the underlying semi-honest secure protocol aside
from the final step. Then, before exchanging the final messages and revealing
outputs, the parties first jointly execute a verification phase in which correctness
of the first phase is asserted. This is done by generating and verifying zero
knowledge proofs on distributed data (hereafter “Distributed zero knowledge”),
which can be done with sublinear proof size for simple languages [6]. Distributed
zero knowledge (DZK) proofs consider a setting with a single prover and multiple
verifiers, who each hold pieces of the statement; the prover sends a share of the
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proof to each verifier, and the verifiers interact amongst themselves in order to
verify the proof.

The specific structure and use of the DZK proof system within the MPC
protocol application varies across works: either each party acts separately as
prover to assert his own proper behavior [6, 12, 14], or the parties jointly emulate
the prover on the collective set of generated values, which no single party knows
in full [6, 14].

A complication arises in any multi-party setting with more than a single
corrupted party, as collusion may take place between a proving and a verify-
ing entity. In order to provide soundness, the statement being proved must be
somehow robustly held across parties, such that a corrupt verifier cannot modify
his piece of the statement to enable the proof to improperly be accepted. Such
robustness is natural in the case of MPC with an honest majority, where the
honest parties themselves holds sufficient information to determine the (secret)
statement. For the case of dishonest majority, ensuring robustness is less clear.
A main idea of [14] (hereafter referred to as “BGIN’21”) is that correlated ran-
domness generated during preprocessing can be designed so as to function as an
additional “dealer” party whose actions must be determined independent of the
inputs, but whose behavior is guaranteed to be honest.

Of course, for this approach to work, it is crucial that the correlated ran-
domness is indeed generated honestly. In the idealized preprocessing model, as
considered in [14], this comes for free: the parties are assumed to be given hon-
estly generated samples from the correlated randomness from an ideal honest
dealer. Our challenge is to remove this assumption, and to generate these val-
ues as part of the protocol in a manner that still suffices for overall security, in
sublinear communication. Moreover, we would like to do so without resorting to
expensive general-purpose tools such as fully homomorphic encryption. Instead,
we will rely on any additively homomorphic encryption. Doing so will require us
to modify the BGIN’21 correlation and protocol in the process.

The BGIN’21 dealer (slightly modified). Consider the DZK joint prover emula-
tion approach. After the semi-honest execution, the parties wish to jointly prove
that for every multiplication gate, the shares they hold of the output wire cor-
respond correctly to the shares they hold of the two input wires. To compress
this into a single verification instead of |C|, the parties sample random coef-
ficients αg for each multiplication gate g, and instead verify that this random
linear combination of all gate-checks indeed verifies. This reduces the challenge
to proving that single degree-2 multivariate polynomial evaluates to 0 on O(|C|)
secret-shared inputs.

To achieve this, each party takes part in 3 phases: (1) “Joint-Prover,” com-
puting its contribution of the jointly generated proof of correctness, (2) “Verifier
query,” jointly generating a verifier query challenge (a form of coin toss protocol),
and (3) “Verifier answer,” performing its role as one of the multiple verifiers.

The dealer (in addition to generating the semi-honest correlation material)
must effectively perform each of these actions acting as an additional honest
party, and commit to its answers to be revealed in the online phase. Concretely,
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for arithmetic circuit C over ring R, the dealer must perform the following
generation tasks:

1. Semi-honest multiplication triples (for semi-honest computation):
For each gate g, additive shares of random rg1 , r

g
2 ∈ R and rg1 · r

g
2 ∈ R.

2. Random compressing coefficients: Selecting random (or sufficiently high-
entropy) linear coefficients αg for each gate g, so that correctness of all mul-
tiplication gates can be checked in a compressed manner via a random linear
αg-combination of the individual verification polynomials. A concise descrip-
tion of all αg is shared across the parties to be revealed and reconstructed in
the online phase during verification. In [14], each αg is taken to be the gth
power of single random value α← R.

3. Prover contribution: The “dealer party’s share” of the jointly computed
DZK proof. This consists of simply proof-size many random share values
si ∈ R, secret shared to the parties in such a way that the value of each si
cannot be changed by malicious parties in the online phase.

4. Verifier query generation: Random polynomial evaluation point τ ∈ R.
5. Verifier answer contribution Computation of verifier query answer as a

function of the dealer’s share of the statement (a function of items 1 and 2),
its shares of the proof (item 3), and the verifier query (item 4).

When using a D-ZK proof with multiple rounds of interaction (as in BGIN’21),
Step 3 above is replaced by a sequence of: (a) generating random Verifier chal-
lenges, and (b) computing the Prover contribution to this round of interaction.

Some parts of items 1-5 above are not a problem toward our goal. As dis-
cussed, recent constructions of PCGs enable concretely efficient secure generation
of many semi-honest multiplication triples with sublinear communication [9, 10],
taking care of item 1. In addition, we can easily support sampling and commit-
ting to random shares and of a random point as in items 3 & 4.

The problems are items 2 and 5. In the current state as in BGIN’21, the com-
putation of item 5 requires performing a secure computation that is both linear
in the circuit size, and high degree. The degree comes from multiple places: from
the high powers of αg, from the recursive DZK proof structure (typically exe-
cuted interactively), and the DZK verifier answer procedure which is computed
as a function on top of these (already high-degree) expressions.

Expressing dealer with bilinear structure. We thus devise a new approach. Our
idea is to modify the BGIN’21 protocol, so as to make the corresponding items
2-5 of dealer computation expressible as a single bilinear pairing computation
between two types of values: (1) ones that are (already) held additively secret
shared across the parties, e.g. from the semi-honest multiplication triples, and
(2) a small, sublinear-size set of other secret values.

Given this structure, we can securely emulate the dealer with low communica-
tion using additively homomorphic encryption. Namely, the parties will generate
encryptions of the small set of secret values (requiring sublinear communication,
comparable to the small number of values). Then they homomorphically com-
pute encrypted shares of the desired paired output using the public ciphertexts
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and their additive shares, without communication. Since the size of the dealer’s
output is short—equivalently, the bilinear maps are highly compressing—the
parties can then execute a standard protocol for jointly decrypting the resulting
ciphertexts, again with sublinear communication.

In turn, it hence remains to achieve the above structural goal for the dealer’s
computation.

First, we observe that replacing the recursive multi-round DZK with a sim-
pler non-recursive DZK construction of [6] (albeit with

√
|C| instead of log |C|

communication cost) immediately alleviates one source of cost. The new prover
and verifier procedures become simply degree 2. In particular, in this construc-
tion, the computation of a verifier’s answer corresponds to interpreting

√
|C|-size

collections of symbols from the proof and statement as coefficients of a polyno-
mial, and evaluating each at the point τ chosen as the verifier query (in dealer
Step 4). Said in different words, each polynomial evaluation is an inner product
between the corresponding

√
|C|-length coefficient vector with the vector formed

by the corresponding
√
|C| powers τ0, τ1, . . . , τ

√
|C| of τ . Note that while there

are several different blocks of symbols, they are each inner-producted with the
same powers-of-τ vector.

If we could reach a state where the symbols of the proof and statement
were held as additive secret shares, then we would in fact have reached our
goal, where the powers-of-τ form the sublinear-size set of other values (to be
encrypted). However, this is not yet the case. This is because the “statement”
that must be proved is formed by the αg-linear-compressed combination of the
multiplication triple values, as opposed to the values themselves.

It is worth emphasizing an important difference between our setting and typ-
ical usage of the αg-linear-compression technique, which is employed broadly in
protocol design. Typically, coefficients αg are chosen after the parties are already
committed to their the semi-honest protocol execution, in which case there is no
need for secrecy, and they are simply public values. In contrast, in this setting (as
in BGIN’21), for the dealer to function as an honest party, the selection of these
coefficients must be made already in the preprocessing phase, but kept secret
through the semi-honest protocol execution. In turn, the traditionally simple
linear compression here constitutes a nontrivial secure computation.

In fact, because of this, there is a problem even if the parties already somehow
held secret shares of random values αg. This is because multiplication by a
coefficient αg still amounts to an additional degree of secure multiplication. Since
computation of the dealer’s contribution to the verification polynomial already
requires degree 2 terms, this additional multiplication pushes out of hope for
turning the computation into a bilinear operation.

Instead, we identify a new method for computing the same overall verification
polynomial evaluation expression between the “dealer” party and online parties,
which enables pushing more work to the online parties, but which means that
the linear combination coefficients do not need to be used by the dealer at all
in his calculations. (In some sense, this comes from an alternative perspective
and goal than from BGIN’21, which focused primarily on optimizing the online
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portion of the protocol while assuming an honest dealer.) This step uses the fact
that the online parties hold secret shares not only of the masks r1, r2 of the input
wires of any multiplication gate, but also shares of their product, r1r2, leveraging
the specific structure of semi-honest multiplication triples. In particular, terms
in the verification polynomial of the form αgr1r2, which were computed by the
dealer in BGIN’21, can be jointly computed by the online parties if the αg is
made public, using the (r1r2) additive shares.

In doing so, we not only remove the extra secure multiplication of scaling by
the αg, but also the remaining question of how these coefficients αg should be
generated. What results is a successful expression of the dealer in the desired
bilinear form, between additively secret shared values and powers of τ , which we
will denote by πBL.

Putting the pieces together. Obtaining the feasibility result follows in a few steps.
We prove that the above-described modifications to the dealer’s ideal func-

tionality still suffice, with corresponding adjustments in the online portion, to
yield security in the overall protocol.

Combining the above ideas, we then obtain a semi-honest secure protocol that
securely evaluates the (new) dealer functionality with sublinear communication.
Namely, the parties: (1) run the sublinear-communication protocol for semi-
honest generation of pseudorandom (un-authenticated) multiplication triples;
(2) run a secure protocol for randomly sampling τ (as dictated by the [6] DZK;
either from the ring R, or an extension ring if R is small) and generating AHE en-

cryptions ci of the powers τ0, τ1, . . . , τ
√
|C|, (3) locally evaluate encrypted shares

of the bilinear form πBL by computing the compressing linear combination of the
AHE ciphertexts ci with the corresponding secret shares of the relevant values;
(4) exchanging the resulting output-share ciphertexts and additively combining
across parties, resulting in encryptions of the outputs of πBL; and (5) executing
a secure protocol for jointly decrypting the resulting ciphertexts.

In order to achieve the same dealer emulation with malicious security, we
leverage a generic communication-preserving compiler of Naor and Nissim [38]
(building on [28, 37]). Using this compiler a semi-honest secure protocol can
be compiled into a maliciously secured protocol for the same functionality with
sublinear additive communication cost. Since the compiler only requires collision-
resistant hash functions, which are implied by additively homomorphic encryp-
tion [32], this does not require introducing new assumptions. This implies the
final result. In the full version of the paper, we propose a maliciously secure pro-
tocol with concrete efficiency that is based on making two stronger, but quite
plausible, assumptions on the AHE: being “linear-only” and having a threshold
encryption variant. See discussion at the end of Section 6.

2 Preliminaries

Notation. Let P1, . . . , Pn be the parties participating in the protocol. We use
[n] to denote the set {1, . . . , n}. Let R be a ring which is either a finite field F
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or the ring Z2k and let |R| be its size. Finally, let κ be the security parameter.
We use bold letters to represent vectors and v[j] to denote the jth entry of the
vector v. When we write u · v we refer to the inner product between the two
vectors. We use JxK to denote an additive sharing of x. When we write JxK, we
mean that each entry in x is additively shared across the parties.

2.1 Security Definitions

In our setting, there is a set of n parties who wish to jointly run some com-
putation. We assume that all parties are connected via point-to-point secure
channels, which enable them to send messages to each other. In this work, we
will typically consider secure computation of arithmetic circuits (with addition
and multiplication gates) over a finite ring R, where R can either be fixed or be
given as part of the circuit description. In particular, the case of Boolean cir-
cuits is captured by R = F2. For security, we use the standard ideal/real world
definition from [27, 16].

MPC with Preprocessing Our main result refers to an MPC protocol that
employs a “cryptographic” input-independent offline protocol, followed by a
“non-cryptographic” input-dependent online protocol. As a building block, we
will rely on MPC protocols in a hybrid model in which the offline protocol is
replaced by an ideal source of correlated randomness D that is generated by a
trusted dealer.

In this correlated randomness model, we consider protocols for arithmetic
circuits that offer security up to an “additive” attack on intermediate wires in
the circuits. Most information-theoretic protocols that offer the weaker form of
semi-honest security also satisfy this notion of security with additive attacks.

We formalize the notion of “security-up-to-additive-attacks” [26], in the set-
ting of MPC with dishonest majority in the correlated randomness model. This
security model applies to the class F of arithmetic circuits over a ring R, and
allows the ideal-world adversary S to (blindly) pick a tampering function that
adds a chosen value from R for each wire of the circuit. Concretely, we allow
additive attacks on input wires to multiplication gates and on the circuit’s output
wires. The trusted party in the ideal world then determines the output of the
honest parties by computing the circuit over the parties’ inputs, applying the
chosen additive error to each wire.

MPC with non-cryptographic online phase. An MPC protocol in the
preprocessing model is similar to the above model of MPC with correlated ran-
domness, except that the correlated randomness D is securely generated by an
offline protocol, instead of being distributed by a trusted dealer. As before, the
correlated randomness D can then be consumed by an online protocol. The main
advantage of this offline-online paradigm is that it allows the online protocol to
be “non-cryptographic” (or information-theoretic), which typically translates to
good concrete efficiency. We formalize this notion by requiring that the corre-
lated randomness produced by an honest execution of the offline protocol can be
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replaced by a computationally indistinguishable distribution D, such that given
D, the online protocol is information-theoretically secure.

Definition 1 (PMPC with non-cryptographic online phase). Let F be
the class of n-party functionalities represented by arithmetic circuits C. An MPC
protocol for F with preprocessing and non-cryptographic online phase (or PMPC
protocol for short) is defined by a pair of protocols Π = (Πoffline, Πonline) such that:

– Πoffline is invoked with public inputs (1κ, 1n, 1|C|, R), where |C| is the size of an
arithmetic circuit C ∈ F over R. It terminates with each party Pi outputting
a local random output Zi.

– Πonline is invoked on public inputs (1κ, 1n, C) and local inputs (Zi, xi) held
by each Pi and ends with Pi outputting yi.

We make the following security requirements:

– The protocol obtained by first running Πoffline and then Πonline securely real-
izes F .

– There exists an ideal correlation generator D(1κ, 1n, 1|C|,R), outputting (Z ′1, ...,
Z ′n), such that:

1. The output of D is computationally indistinguishable from the output of an
honest execution of Πoffline.

2. If we feed Πonline with the output of D, the resulting protocol realizes F with
statistical (information-theoretic) security.

In fact, to capture a minimal notion of MPC with non-cryptographic on-
line phase, it suffices to relax the latter requirement (on Πonline with D) to
information-theoretic semi-honest security. However, the protocols we consider
here satisfy the stronger property.

2.2 Fully Linear Proof Systems

A main technical building block in [14] is a fully linear proof system [6], enabling
information-theoretic sublinear-communication zero-knowledge proofs on secret-
shared or distributed input statements. In a nutshell, zero-knowledge fully linear
interactive oracle proof (zk-FLIOP) is an information-theoretic proof system in
which a prover P wishes to prove that some statement about an input x to a
verifier V . In each round of the protocol, P produces a proof which, together
with x, can be queried by V using linear queries only. Then, a public random
challenge is generated and the parties proceed to the next round. At the end,
the verifier V accepts or rejects based on the answers it received to its queries.

Definition 2 (Public-coin zk-FLIOP [6]). A public-coin fully linear interac-
tive proof system over R with ρ-round and `-query and message length (u1, . . . , uρ) ∈
Nt, consists of a randomized prover algorithm P and a deterministic verifier al-
gorithm V . Let the input to P be x ∈ Rm and let r0 = ⊥. In each round i ∈ [ρ]:
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1. P outputs a proof πi ∈ Ru1 , computed as a function of x, r1, . . . , ri−1 and
π1, . . . , πi−1.

2. A random public challenge ri is chosen uniformly from a finite set Si.

3. ` linear oracle queries qi1, . . . , q
i
` ∈ Rm+ui are determined based on r1, . . . , ri.

Then, V receives ` answers (〈qi1, x||πi〉, . . . , 〈qi`, x||πi〉).

At the end of round ρ, V outputs accept or reject based on the random challenges
and all the answers to the queries.

Let L ⊆ Rm be an efficiently recognizable language. We say that ρ-round `-
query interactive fully linear protocol (PFLIOP,VFLIOP) over R is zero-knowledge
fully linear interactive oracle proof system for L with soundness error ε if it
satisfies the following properties:

– Completeness: If x ∈ L, then VFLIOP always outputs accept.

– Soundness: If x /∈ L , then for all P∗, the probability that VFLIOP outputs
accept is at most 2−ε.

– Zero knowledge: There exists a simulator SFLIOP such that for all x ∈ L
it holds that SFLIOP ≡ view[PFLIOP(x),VFLIOP](VFLIOP) (where the verifier’s view
view[PFLIOP(x),VFLIOP](VFLIOP) consists of {ri}i∈[ρ], {(qi1, . . . , qi`)}i∈[ρ] and(
〈qi1, x||πi〉, . . . , 〈qi`, x||πi〉

)
i∈[ρ].

In this paper, we will use this tool for degree-d languages. That is, languages
for which membership can be checked using a degree-d polynomial. The following
theorem, which will be used by us, states that for degree-d languages, there are
zk-FLIOP protocols with sublinear communication and rounds in the size of the
input and number of monomials.

Theorem 2 ([6]). Let q : Rm → R be a polynomial of degree-d with M mono-
mials, and let Lq = {x ∈ Rm | q(x) = 0}. Let ε be the required soudness error.
Then, there is a zk-FLIOP for Lq with the following properties:

– Constant rounds, d = 2: It has 1 round, proof length O(η
√
m), challenge

length O(η) and the number of queries is O(
√
m), where η = log|R|

(√
m
ε

)
when R is a finite field, and η = log2

(√
m
ε

)
when R = Z2k . The computational

complexity is Õ(M) and the proof generation is a degree-2 function of the
input x and the prover’s secret randomness, determined by the circuit C and
the public randomness.

– Logarithmic rounds, d ≥ 2: It has O(logM) rounds, proof length O(dη logM),
challenge length O(η logM)and the number of queries is O(d+ logM), where

η = log|R|

(
d logm
ε

)
when R is a finite field, and η = log2

(
d logm
ε

)
when

R = Z2k . The computational complexity is O(dM).
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2.3 Additively-Homomorphic Encryption (AHE)

Our main protocol can be based on any additively homomorphic encryption
(AHE) scheme. An AHE scheme consists of algorithms (Gen,Enc,Dec,Add) such
that (Gen,Enc,Dec) satisfy the usual correctness and semantic security require-
ments of a public-key encryption scheme, and Add enables to add (more generally,
linearly combine) a vector of encrypted messages.

More concretely, Gen is a key-generation algorithm which takes as input the
security parameter 1κ and outputs a pair of secret and public keys (sk, pk),
where pk includes a description of a finite plaintext ring R, Enc is an encryp-
tion algorithm which takes the public key pk and a message m ∈ R as inputs
and outputs a ciphertext c, Dec is a deterministic decryption algorithm which
takes the secret key sk and ciphertext c as inputs and outputs a message m
(or a symbol ⊥ in case of failure), and the randomized algorithm Add takes as
input ciphertexts {cj ∈ Encpk(mj)}j∈[M ] and ring elements a0, . . . , aM ∈ R and

outputs a fresh ciphertext c ∈R Encpk(a0 +
∑M
j=1 aj ·mj). We use the notation

Add
(
(ak)Mk=0, (ck)Mk=1

)
for this operation. When we simply want to addM cipher-

texts (i.e., a0 = 0 and ak = 1 for each k ≥ 1), we simply write Add(c1, . . . , cM ).
The above definition captures a simple version of AHE in which one can com-

bine an unbounded number of encrypted messages and the resulting ciphertext
is distributed identically to a fresh encryption of the correct value. This notion
can be satisfied by standard number-theoretic encryption schemes such as the
Goldwasser-Micali scheme [29] or its generalized version due to Benaloh [19]. To
accommodate other instantiations, such lattice-based schemes [42, 33], or using
Pailler’s encryption scheme [41] over a chosen plaintext modulus, one needs to
slightly relax the definition to allow a statistical error in the output of Add that
depends on the number of ciphertexts that are combined. While we chose the
strict definition for simplicity, our results can be extended to use the relaxed
variants of AHE that support such alternative instantiations.

2.4 Ideal Functionalities and Basic Building Blocks

Fcoin - coin tossing. This ideal functionality who gives the parties fresh random
coins. It can be implemented using any secure coin tossing protocol. In the
context of our protocol, we can minimize the number of calls to Fcoin by having
the parties call Fcoin once to obtain a seed from which they can locally derive a
long vector of ring elements.

Fbc - Broadcast with selective abort. This ideal functionality allows the parties
to deliver a message msg to all the other parties, while giving the adversary the
ability to cause any party to abort. Therefore, whenever we say throughout the
paper that Pi broadcasts a message, we mean that it sends a message to all
parties via Fbc. This functionality can be easily implemented by having Pi sends
its message to all the parties, and then running an additional round where all
parties compare the message they received. To amortize away the second-round
comparison, a standard optimization technique is to batch the check for many
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messages by taking a random linear combination of all these message before the
end of the protocol.

Authenticated secret sharing 〈·〉. In some cases, we will need the parties to hold
a secret sharing of x in an authenticated way, i.e., that allows the parties to
securely reveal (with abort) the secret. We denote by 〈x〉 such a secret sharing
and denote by open the opening procedure which receives 〈x〉 and guarantee
that at the end either the parties will obtain x or abort the protocol (up to
a negligible failure probability). To implement this over a field, one can use
SPDZ-style information-theoretic MACs [3, 23]. We stress that this tool is used
a sublinear number of times in our protocol, and so its cost is amortized away.

3 The BGIN Compiler [14]

In this section, we review the verification procedure of Boyle et al.(BGIN) [14],
that enables compiling a semi-honest protocol in the pre-processing model into a
maliciously secured protocol, with sublinear additional amount of correlated ran-
domness. There are two conditions that the semi-honest protocol should satisfy
for the compiler to work:

1. Additive security: The adversary is restricted to only adding errors to a
set of wires W in the circuit (see Definition ??).

2. “Star-sharing” Compliance: For each circuit’s wire w ∈ W , the parties
hold a masked value x̂w = xw − rw and additive shares of the mask rw. The
dealer knows rw and its shares.

For formal definition, we refer the reader to [14]. The above requirements are
satisfied by the semi-honest protocol based on Beaver triples [1]. Here the set W
consists of all input wires for multiplication gates and output wires of the circuit.
To maintain the star-sharing invariant in the circuit-independent version of the
protocol, the parties first locally convert their star shares on each input wire to a
multiplication gate, into additive shares of the output. Then, they can carry-out
linear operations over the additive shares. When they arrive to the next input
wire to a multiplication gate, they interact to reveal the masked input and so on.

To achieve malicious security, SPDZ-style [23] protocols use authenticated
Beaver triples. This means that for each multiplication gate g, the parties receive
from the dealer shares of (r1, r2, r1 · r2) and (r1 · θ, r2 · θ, r1 · r2 · θ), where θ is
a global secret key. To achieve statistical security of κ bits, the MACed triple
should be generated over a large ring (e.g., if the computation is carried-out
over F2, then the MACed triple should be over F2κ). This implies a correlated
randomness overhead of O(|C| · κ) ring elements for small fields.

The novel verification protocol of BGIN [14] avoids this and requires the
dealer to provide only sublinear amount of correlated randomness beyond the
semi-honest protocol. The idea works as follows. For each wire w ∈ W , the
parties need to verify the consistency of the values shared on this wire, with the
values shared on the wires that precede it. In other words, the parties verify that
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they hold a sharing of the correct value on w, given the sharings they hold on
wires that feed w. Specifically, let Gw be the set of multiplication gates that feed
w (i.e., that between their output wire and w there are no other multiplication
gates). For each g ∈ Gw, let xg1, x

g
2 be the two input wires to g. The parties wish

to verify that xw−
∑
g∈Gw x

g
1 ·x

g
2 = 0. Instead, it suffices for the parties to verify

that

p =
∑
w∈W

αw · (xw −
∑
g∈Gw

xg1 · x
g
2)

=
∑
w∈W

αw ·

x̂w + rw −
∑
g∈Gw

(x̂g1 + rg1) · (x̂g2 + rg2)

 = 0 (1)

where the αws are random elements given to the parties by the dealer (it suffices
for the dealer to give a seed α from which all randomness is derived).

Next, note that each gate g` can feed several wires. For each multiplication
gate g`, let W g` be the set of wires w for which g` ∈ Gw (i.e., that g`’s output

feed these wires). Then, let γ` =
∑

w∈W g`

αw. Thus, Eq. (1) can be written as

p =
∑
w∈W

αw · (x̂w + rw)−
∑

g`∈mult

γ` · ((x̂g`1 + rg`1 ) · (x̂g`2 + rg`2 ))

=
∑
w∈W

αw · x̂w −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 ) +

∑
w∈W

αw · rw

−
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2 + x̂g`2 · r

g`
1 ) +

∑
g`∈mult

γ` · (rg`1 · r
g`
2 )

Now, setting

Λ =
∑
w∈W

αw · x̂w −
∑

g`∈mult

γ` · (x̂g`1 · x̂
g`
2 ) (2)

Γi =
∑
w∈W

αw · rw,i −
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2,i + x̂g`2 · r

g`
1,i) (3)

and Ω =
∑

g`∈mult

γ` · (rg`1 · r
g`
2 ), it follows that checking that p = 0 is equivalent to

checking that Λ+
∑n
i=1 Γi +Ω = 0.

Observe that the parties can locally compute Λ, each party Pi can locally
compute Γi and the dealer can locally compute Ω. Leveraging this, the verifica-
tion protocol in [14] works thus as follows:

1. Each party Pi computes Λ and Γi, while the dealer computes Ω.
2. The dealer star shares Ω to the parties by sending Ω̂ = Ω−ω and also hands

a mask si to each party Pi.
3. Each party Pi star shares Γi to the parties by broadcasting Γ̂i = Γi − si.
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4. Each party Pi proves that it shared the correct Γi using a zk-FLIOP proof
system (see explanation below).

5. If all proofs terminated successfully, then the dealer sends
∑n
i=1 si + ω to all

parties.
6. The parties locally compute p and check equality to 0. If it holds, the parties

output accept. Otherwise, they output reject.

The two main observations here are: (i) Γi is computed via a 2-degree poly-
nomial. Thus, by Theorem 2, there exists a zk-FLIOP to prove that Eq. (3)
holds. (ii) All inputs to the zk-FLIOP are either known to all parties or known
to the dealer. Thus, we can run the zk-FLIOP by letting Pi emulate the prover’s
role, and letting all the other parties together with the dealer emulate the ver-
ifier’s role. Specifically, the prover star-shares the proof across the parties and
the dealer, and then each verifier makes the linear queries over its shares of the
proof and the inputs. The fact that each piece of information is known to an
honest participant (i.e., an honest party or the dealer) is what guarantee sound-
ness. Leveraging the fact that from Theorem 2 the amount of communication in
the proof can be made sublinear, we have that the amount of data sent by the
verifying dealer is also sublinear in the size of the statement which, in our case,
is similar to the size of the computed circuit. Finally, since all the computations
made by the dealer in this protocol are over random data, it follows that the
dealer can preprocess its messages and secret share it to the parties in an au-
thenticated way, before the online computation begins. Overall, the amount of
correlated randomness given to the parties for this protocol is sublinear.

Distributing the dealer. The authors in [14] did not provide a distributed protocol
to compute the dealer. Instead, they viewed the dealer’s role as a circuit to be
computed, and proposed to compute it using any general-purposed MPC. Then,
they showed that the number of multiplication gates in the dealer’s circuit is
approximately 4|C| + n · 2|C| for n parties. That is, the size of the dealer’s
circuit grows linearly with circuit C and the number of parties n.

4 A New Simplified Verification Protocol

In this section, we present a modified verification protocol that will allow us
eventually to distribute the dealer with sublinear communication. Our primary
aim is to make the computation performed by the dealer be low depth (i.e., it is
possible to represent the dealer using a low-depth circuit). A secondary goal is
to make the size of the dealer’s circuit be independent of the number of parties.

To this end, we first observe that the parties can locally compute an additive
sharing of Ω as well. This holds since γ` is public and they hold shares of rg`1 ·r

g`
2

(these are part of the semi-honest correlated randomness). It follows that now

Γi =
∑
w∈W

αw · rw,i −
∑

g`∈mult

γ` ·
(
x̂g`1 · r

g`
2,i + x̂g`2 · r

g`
1,i + (r1 · r2)g`i

)
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Next, instead of letting each party prove that it star-shared the correct Γi,
we will run a single proof where the parties emulate together the role of the
zk-FLIOP prover. The dealer, however, still serves as a verifier, but now only
once instead of n times. The goal now will be to prove that Γ =

∑n
i=1 Γi is

correct. That is, that

Γ =
∑
w∈W

αw · rw −
∑

g`∈mult

γ` · (x̂g`1 · r
g`
2 + x̂g`2 · r

g`
1 + (r1 · r2)g`) (4)

is correct given the star shares of Γ and the inputs. Our protocol to prove this is
based on the constant round zk-FLIOP construction from [6] (the first item in
Theorem 2) and requires O(

√
|C|) communication (and so O(

√
|C|) correlated

randomness from the dealer). The idea is as follows. First, observe that letting

a = ((αw)w∈W , (−γ` · x̂g`1 ,−γ` · x̂
g`
2 ,−γ`)g`∈mult) (5)

and

b = ((rw)w∈W , (r
g`
2 , r

g`
1 , (r1 · r2)g`)g`∈mult) (6)

we have that Γ = a · b where a is known to the parties and b is known to the
dealer. Note that both vectors are of size |W |+ 3|mult| = 5|mult| = 5|C|. In our
verification protocol, each party Pi first computes Γi and then star-shares it to
the other parties, by broadcasting Γ̂i = Γi − ti to the other parties. Then, the
parties locally compute Γ̂ =

∑n
i=1 Γ̂i. The parties then wish to verify that

Γ̂ + t− a · b = 0 (7)

where t =
∑n
i=1 ti. The main observation here is that Eq. (7) represents a 2-

degree polynomial over the inputs a, b, Γ̂ , s. Thus, by Theorem 2, there exists
a zk-FLIOP to prove that Eq. (7) holds, where the proof’s size is sublinear
in the size of the input. However, unlike the BGIN compiler [14], here there
does not exist a single prover who knows the entire input. We thus need to let
the parties emulate jointly the role of the prover. In particular, the parties can
locally compute additive shares of the proof and then star-share them to the
other parties (exactly as with Γi). To enable this, we use the constant round zk-
FLIOP from Theorem 2, where the proof generation itself is a degree-2 function
of the input and prover’s randomness. Since in Eq. (7) each input is either known
to all parties, or, known to the dealer and additivley shared across the parties,
it follows that each party can locally compute an additive share of the proof. As
for the verifiers, the zk-FLIOP queries can be made over their shares, since the
queries are linear. As in the BGIN compiler, we crucially rely on the fact that in
our protocol, each piece of information (i.e., the inputs and the proof) is known
either by each party or by the dealer, and so we can use the dealer as a verifier as
well. By the linearity of the queries, it thus follow that the queries’ answers can
be reconstructed by each party and the dealer alone, thereby guaranteeing that
an honest party will receive the correct answers. This means that if cheating
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took place and the statement is incorrect, then by the soundness property of
the zk-FLIOP, it will be detected by any honest verifier (except for a small
probability). As for privacy, the zero-knowledge property together with the fact
that each party sees only masked values, guarantee that no private information
is leaked during the execution.

Πvrfy: Let (PFLIOP, VFLIOP) be a zk-FLIOP protocol with 1 round, ` queries, and

message length u ∈ N for the polynomial in Eq. (7).

1. The trusted dealer D:
(a) Chooses a random mask ti ∈ F for each i ∈ [n] and hands it to Pi
(b) Chooses a random mask si ∈ Fu for each i ∈ [n] and hands it to Pi.

2. The parties call Fcoin to receive αw for each w ∈ W (recall that W is the
set of the circuit’s output wire and multiplication gates’ output wires). Al-
ternatively, the parties call Fcoin to receive α and expand it to αw by setting
αw = αw or via a PRG.

3. The parties locally compute Λ (see Eq.(2)).
4. Each party Pi computes Γi and star-shares it to the parties by broadcasting
Γ̂i = Γi − ti.

5. The parties locally compute Γ̂ =
∑n
i=1 Γ̂i (note that Γ̂ = Γ − t where t =∑n

i=1 ti).
6. The parties jointly prove that Γ is correct:

Let I = (Γ̂ , t,a, b) be the vector of inputs to the zk-FLIOP protocol. Let
IP = (Γ̂ , 0,a, 0) (i.e., a vector obtained by replacing all inputs not known
to all parties in I with 0) and ID = (0, t, 0, b) (i.e., a vector obtained by
replacing all inputs not known to the dealer in I with 0).
Observe that: I = IP + ID.
(a) Let π = PFLIOP(I) be the proof generated by the prover in the zk-FLIOP

protocol. Then, each party Pi locally computes its share of the proof πi

and broadcasts π̂i = πi − si to all the other parties.
(b) The dealer D choose a random challenge τ and hands to the parties.
(c) Let π̂ =

∑n
i=1 π̂

i and s =
∑n
i=1 si. Let q1, . . . , q` be the query vector

determined by VFLIOP based on τ . Then, the parties locally compute

â1, . . . , â` ← 〈q1, IP ||π̂〉, . . . , 〈q`, IP ||π̂〉

whereas the dealer computes

ã1, . . . , ã` ← 〈q1, ID||s〉, . . . , 〈q`, ID||s〉.

(d) The dealer D hands ã1, . . . , ã` to the parties, who locally compute

a1 = â1 + ã1, . . . , a` = â` + ã`

(e) The parties run the decision predicate of VFLIOP on a1, . . . , a`. If any party
received reject, then it output reject. Otherwise, the parties proceed to
the next step.
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7. The parties locally compute p̂ = Λ+ Γ̂ .
8. The dealer hands the parties t.
9. The parties locally compute that p = p̂ + t. If p = 0, they output accept.

Otherwise, they output abort.

We begin by proving correctness, soundness and privacy for Πvrfy, when Πvrfy

is ran over a finite field F. The proof appears in the full version.

Proposition 1. Assume that Πvrfy is executed over a finite field F, let W be the
set of all output wires and input wires to multiplication gates and let ∆w be the
additive error on wire w ∈W . Then, Πvrfy satisfies the following properties:

1. Correctness: If ∀w ∈ W : ∆w = 0 and all parties follow the protocol’s
instructions, then the honest parties always output accept.

2. Soundness: If ∃w ∈W : ∆w 6= 0, then the honest parties output accept with

probability at most |W ||F| + ε, where ε is the soundness error of the zk-FLIOP

protocol.
3. Privacy: For any adversary A controlling a subset of parties T of size≤

n − 1, there exists a simulator S who receives (x̂w, ∆w, rw,i)w∈W and {(r1 ·
r2)g`i }g`∈mult for all i ∈ T as input, and outputs a transcript viewS such that

viewS ≡ view
Πvrfy

A .

Working over small fields or the ring Z2k . The soundness error of our
protocol depends on the size of the field F. When we compute the circuit over
small fields, it is possible to run Πvrfy over an extension field to reduce the error.
This is carried-out by lifting each input to the verification protocol into the
extension field. Suppose that we want the error to be 2−σ. Then, one can choose

an extension field F̃ such that |W ||F̃| + ε ≤ 2−σ.

Similarly, when the circuit is computed over the ring Z2k , we will run Πvrfy

over the extension ring Z2k [x]/f(x), i.e., the ring of polynomials with coeffi-
cients from Z2k modulo a polynomial f(x) which is of the right degree and is
irreducible over Z2. As shown in [6, 12], taking f of degree d, the number of
roots of a polynomial of degree δ over Z2k [x]/f(x) is at most 2(k−1)dδ+ 1. Thus,

the probability that p = 0 is at most 2(k−1)d·(|W |)
2kd

≈ |W |
2d

. Hence, by choosing d
appropriately, we can achieve a desired soundness error.

From an online to an offline dealer. In Πvrfy the dealer only sends messages
that depend on random data. Therefore, it can preprocess all its messages and
secret share it to the parties in an authenticated way. This includes the masks
ti, the masks si and its share of the queries’ answers.

Complexity. The amount of correlated randomness that we obtain depends
on the size of the proof u and the size of the queries’ answers ` in the zk-
FLIOP emulation. By Theorem 2 both ` and u is square-root of the input’s
size to the relation given in Eq. (7). Thus, the amount of correlated randomness
is O(

√
|W |).



Secure Multiparty Computation with Sublinear Preprocessing 19

The communication cost of the protocol per party includes star sharing Γi,
sending the share of the proof πi and opening the correlated randomness which
is shared in an authenticated way. Thus, it depends on the size of the proof and
size of the correlated randomness. Hence, as the correlated randomness, it is of
size O(

√
|W |).

Finally, the computational work includes computing the random coefficients
αw, computing Λ, and the work in the zk-FLIOP protocol. The number of arith-
metic operations for the first two computations is linear in the size of |W |,
whereas by Theorem 2, the number of operations for the latter is Õ(M), where
M is the number of monomials in Eq. (7). As the number of monomials isO(|W |),
we obtain that the computaional work is Õ(|W |).

Summing the above and using Theorem 2 we obtain:

Proposition 2. Let ε be a statistical error bound. Then, Protocol Πvrfy has com-

munication cost of O(
√
|W | · κ) per party, computational work Õ(|W |) and

the amount of correlated randomness provided by the dealer is O(
√
|W | · κ),

where κ = log|F|

(√
|W |
ε

)
when the input is defined over a finite field F, κ =

log2

(√
|W |
ε

)
when the input is defined over the ring Z2k (where W is the set of

the ciruit’s output wires and input wires to multiplication gates).

4.1 A Concrete Instantiation for the zk-FLIOP Protocol

In this section, we present a concrete instantiation for the constant round zk-
FLIOP protocol used in Πvrfy based on the fully linear PCP construction given
in [6]. Consider a prover P who wants to prove that c−a · b = 0 to a verifier V ,
where a and b are vector of elements of size m.

To prove the correctness of the statement, the vectors a and b are divided
into M vectors, i.e., a = a1|| · · · ||aM and b = b1|| · · · ||bM . This means that the

statement to be proven can be written as c−
∑M
k=1 ak · bk. Denote the number

of elements in each vector by L, and so L ·M = m.
The first step of P is to choose random vectors a0 and b0. The, define L

polynomials of degree-M such that:

∀e ∈ [L] : fe(0) = a0[e], . . . , fe(M) = aM [e].

That is, the evaluation of fe on the point k is the eth entry of the vector ak.
Similarly, define additional L polynomials of degree-M by setting:

∀e ∈ [L] : ge(0) = b0[e], . . . , ge(M) = bM [e].

Next, define an additional polynomial q by letting q(x) =
∑L
e=1 fe(x) · ge(x).

By the way q is defined it follows that:

– For each k ∈ {0, . . . ,M} it holds that q(k) = ak · bk
– The degree of q is 2M .
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To fully define q the prover P thus computes M more additional points on q.
This can be done by first interpolating the fe and ge polynomials to compute
these polynomials on the points M + 1, . . . , 2M and then computing q(x) for
each x ∈ {M + 1, . . . , 2M}.

The protocol then proceeds as follows:

1. Proof : The prover P defines the proof by setting

π =
(
{fe(0)}Le=1, {ge(0)}Le=1, q(0), . . . , q(2M)

)
2. Challenge: A random point τ is chosen (such that τ /∈ {0, . . . ,M}).
3. Query: The linear queries over the proof and inputs are defined such that

the verifier V is given:
– For each e ∈ [L] : fe(τ) and ge(τ).
– q(τ)

– c−
∑M
k=1 q(k)

4. Decision: The verifier V checks that
(a) q(τ) =

∑L
e=1 fe(τ) · ge(τ)

(b) c−
∑M
k=1 q(k) = 0

If both equations hold, then V outputs accept. Otherwise, it outputs reject.

Observe that in check 4a, the verifier ensures that P defined the proof cor-
rectly, i.e., computed the polynomial q honestly. Then, it can verify that the
statement holds via check 4b. Note also that privacy (zero-knowledge) is main-
tained in this protocol by the additional random point defined for each polyno-
mial (i.e., fe(0) and ge(0)). These random points make the evaluation of each
polynomial on the point τ look completely random.

Soundness. A malicious prover can succeed only if check 4a passes although
q(x) is not defined correctly. By the Schwartz-Zippel lemma, this event can
happen when working over a finite field with probability bounded by 2M

|F| .

When the statement is defined over the ring Z2k , then the verification proto-
col itself is executed over the extension ring Z2k [x]/f(x) (see above). In this case,

if f is of degree d, then the cheating probability is bounded by 2(k−1)d·(2M)
2kd

≈ 2M
2d

.

Concrete Costs. Recall that L and M are parameter to choose under the
constraint that m = L ·M . If we set L = M =

√
m, the cost becomes sublinear

in m. Concretely, the size of the proof is 2L+ 2M + 1 = 4
√
m+ 1. In addition,

the size of the answers to the queries is 2L+ 2 = 2
√
m+ 2.

Plugging in the above into our protocol, recall that m = |W | + 3|mult| (see
Eq. (5) and (6)). Now, in the emulation of the zk-FLIOP in Πvrfy, the parties
communicate to star-share their additive shares of the proof πi and communicate
to reconstruct the queries’ answers (here the parties open the shared masks of
the answers which was given to them by the dealer). Overall, the communication
cost is therefore roughly 6

√
|W |+ 3|mult|+2 elements sent by each party to the

other parties.
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The amount of correlated randomness handed by the dealer, however, is
exactly 2

√
|W |+ 3|mult| + 1 elements. This is due to the fact that the dealer

acts only as a verifier and does not hold a share of the proof (more accurately,
the dealer only provides masks for the shares of the proof held by the parties;
however, this is private randomness which is not required to be shared across
the parties).

4.2 The Dealer’s Ideal functionality FDealer

Based on the concrete instantiation described in the previous section, we now
define an ideal functionality for the trusted dealer. Later, when we show how to
distribute the dealer’s work, we will show how to securely compute this func-
tionality.

Recall that the dealer’s work includes the following: (i) choosing random
masks for the circuit’s wires as part of the semi-honest correlated randomness;
(ii) choosing random private masks for the parties to mask Γi and to mask the
additive shares of the proof πi; (iii) choosing a random challenge τ and (iv)
computing the zk-FLIOP queries’ answers based on i,ii and iii.

Observe that (iv) involves computing a random point on many polynomials.
Recall that in the zk-FLIOP protocol, the verifier should receive fe(τ), ge(τ) for
each e ∈ [L] and q(τ). The first 2L polynomials are of degree M , whereas q is
of degree 2M . In our protocol, the f polynomials correspond to the vector a
(see Eq. (5)), which is being determined in the online computation and is known
to all parties. In contrast, the g polynomials correspond to the vector b (see
Eq. (6)) which is known to the dealer. Finally, the polynomial q is star-shared
across the parties, meaning that it is additively shared between each party and
the dealer.

To define the ideal functionality in a simple way, we first define a procedure
πBL that performs the bilinear computation between the coefficients of a set of
polynomials and the powers of a point, which is what required to evaluate these
polynomials on the point.

πBL(G, τ, d):

1. Parse G as vectors G1||G2|| . . . of size d+ 1.
2. For each Ge: Let ge be a degree-d polynomial defined using the points

Ge[0], . . . ,Ge[d]. Then, covert the points into polynomial coefficients βe,0, . . . , βe,d
3. Compute τ, . . . , τd.
4. For each polynomial ge, return ye =

∑d
j=0 βe,j · τ

d

Fig. 1. The procedure πBL

Next, observe that in our protocol, some values are given to the parties at the
beginning of the protocol, whereas some values are revealed during the execution.
In the definition of the functionality, we split the outputs into three types:
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1. Values that are given to the parties in the clear before the beginning of the
protocol.

2. Values that are additively shared across the parties at the beginning of the
protocol. These are marked using our notation J·K.

3. Values that should be revealed during the execution to the parties. To realize
this, the dealer can secret share these values in an authenticated way. These
values are marked using the notation 〈·〉. As explained in Section 2.4, one can
realize it via SPDZ-style information-theoretic MACs [3, 23].

The dealer’s ideal functionality to produce correlated randomness for both
the semi-honest computation and the verification protocol is formally defined in
Functionality 3.

FUNCTIONALITY 3 (The Ideal Functionality FDealer)
Let mult be the set of multiplication gates. Denote by WI , Wmult and Wo the set
of the circuit’s input wires, the set of input wires to multiplication gates and
the set of the circuit’s output wires, respectively. Let M and L be parameters
given to the functionality. Let A be the ideal-world adversary controlling a set
of parties of size≤ n− 1.
The functionality FDealer works as follows:

– For each wire w ∈WI∪Wmult∪Wo sample a random rw ∈ R.
Sample random masks s0, . . . , s2M ∈ R.
Sample a random b0 ∈ RL
Sample a random point τ ∈ R.

– Let b = ((rw)w∈Wmult∪Wo , (r
g`
2 , r

g`
1 , (r1 · r2)g`)g`∈mult).

Then, split b into M vectors of size L, i.e., b = b1|| · · · ||bM .
– For each e ∈ [L]: let Ge be a vector of size M + 1 defined as Ge =

b0[e]|| · · · ||bM [e].
Set G = G1|| · · · ||GL. Then, compute: y1, . . . , yL ← πBL(G, τ,M) (see
Fig. 1).

– Let S = (s0, . . . , s2M ). Then, compute z ← πBL(S, τ, 2M) (see Fig. 1) and
s =

∑M
k=1 sk.

– Give the parties

({〈rw〉}w∈WI∪W0 , JbK, Jb0K, JSK, 〈y1〉, . . . , 〈yL〉, 〈τ〉, 〈s〉, 〈z〉)

while letting A choose the corrupted parties’ shares.

Comparison with BGIN [14]. A drawback of our verification protocol com-
pared to [14] is that we have O(

√
C ·n) communication per party and they have

O(log(|C|) · n) communication. Nevertheless, in both protocols, communication
is sublinear in the size of the circuit. Our main advantage is in the work of the
dealer. First, the size of the dealer’s circuit (i.e., number of multiplications oper-
ations) does not depend on the number of parties n, which gives rise to efficient
implementation even for large number of parties. Much more important is the
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fact that our dealer is represented by computation of low-depth. We will explore
this property in Section 6 and see how it is crucial for achieving the goal of
distributing the dealer with sublinear communication. We stress that the dealer
in [14] cannot be represented this way. To see this, it suffices to recall that in
their work the dealer needs to compute

∑
g`∈mult γ` · (r

g`
1 · r

g`
2 ). This implies that

it needs to compute the coefficients γ` and so the random coefficient αw for each
wire w. To avoid linear correlated randomness, the authors in [14] suggested to
use a single α from which all αw are derived by computing: αw = αw. This yields
a computation with depth that is linear in the size of the circuit, which makes it
impossible to use the techniques presented in the next sections. In our protocol,
the dealer does not need to compute anything based on the random coefficients
and so this is completely avoided.

5 Online Computation with a Trusted Dealer

We are now ready to present the main protocol to compute any arithmetic
circuits with malicious security in the FDealer-hybrid model (i.e., in the presence
of a trusted dealer that gives the parties the correlated randomness). Informally,
our protocol takes a secure-up-to-additive attack and star-sharing compliant
protocol, and compiles it into malicious security, by adding a verification step,
where the parties run the protocol Πvrfy from Section 4. The formal description
appears in the full version of this paper.

Concrete costs. We estimate the concrete communication and computation
overhead of our verification protocol compared to the base semi-honest proto-
col. The communication overhead is a small additive term that is completely
dominated by the communication complexity of the semi-honest protocol. The
concrete computational overhead of the verification protocol for arithmetic cir-
cuits is often dominated by the communication cost of the semi-honest protocol
even when the traffic is exchanged over a fast 1 Gbps network. To make our fol-
lowing estimates somewhat easier we assume an imbalance between the degree of
each polynomial M , which is set to M =

√
|C|, and the number of polynomials

L = 5
√
|C|.

In the verification protocol, the parties communicate to star-share Γi and
then emulate the zk-FLIOP. When using the instantiation presented in Sec-
tion 4.1, each party sends roughly 4L = 20

√
|C| elements to star-share its

share of the proof. Then, the parties need to open the correlated randomness,
which yields 2M = 2

√
|C| additional elements sent per party (see the end of

Section 4.1). Overall, each party sends approximately 22
√
|C| elements. This

overhead is dominated by the cost of the baseline semi-honest protocol (which
requires interaction for each gate) even for moderately large circuits.

The computational cost of a party is dominated by interpolation to compute
M extra points on each of L polynomials of degree M . Polynomial interpola-
tion can be efficiently performed by the Discrete Fourier Transform (DFT) and
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therefore the total computation is dominated by L DFT operations. To give one
data point, consider an arithmetic circuit of size |C| = 220 over Fp, such that p
is a 60-bit prime and 210 divides p − 1. In this setting, the soundness error is
≈ M
|C| = 2−50. Based on Shoup [43], a single multiplication of polynomials of de-

gree M =
√
|C| = 210 over Fp takes 56 microseconds on a single standard core.

The multiplication requires three DFT operations, one on each input polynomial
and then one inverse DFT (which is also a DFT) to return the output polynomial
to coefficient representation. Extrapolating these numbers to our case of a single
DFT, it is safe to estimate that the interpolation of a single polynomial takes
at most 20 microseconds, and interpolating L = 5 · 210 polynomials requires at
most 100 milliseconds.

The communication cost of the semi-honest protocol is two field elements per
multiplication gate for a total of 120 · 220 bits. Even if the underlying network
has 1 Gbps bandwidth then the total time for communication is roughly 120
milliseconds which exceeds the time for computation.

6 Distributing the Dealer with Sublinear Communication

We are now ready to show how to compute the dealer’s functionality FDealer.
The main observation behind our offline protocol is that, given a circuit C, the
dealer’s computation can be described using the next four steps:

1. Sample a vector b of semi-honest correlated randomness.

2. Sample a vector v of ring elements of size O(
√
|C|) using an arithmetic circuit

of size O(
√
|C|).

3. Compute a bilinear function over b and v which outputs O(
√
|C|) ring ele-

ments. Denote the output vector by y.

4. Give the parties JbK and a subset of entries of v||y. Some of the entries may
be secret shared (and possibly authenticated).

To see this, recall that the dealer needs to evaluate O(
√
|C|) polynomials on

a random point τ . This can be done by computing a vector of the powers of
τ , i.e., (τ, τ2, . . . , τ2M ) and then multiplying the coefficients of each polynomial
with this vector. Note that the task of computing 2M powers of τ is represented
by a circuit of size O(

√
|C|) since M = O(

√
|C|). It should be noted that b

consists of points on these polynomials and not coefficients, and so the dealer is
required to do the conversion first.

We now proceed to describe a protocol which emulates the dealer. The idea
behind the protocol is that we will generate encryptions of the powers of τ via
an additively-homomorphic encryption scheme (AHE). Then, the parties can
compute locally the bilinear operation, obtaining an encrypted version of the
result, which can then be decrypted.

To this end, we define several ideal functionalities that will be used in the
protocol.
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The ideal functionality Ftriples. This ideal functionality will be used to generate
the semi-honest correlated randomness of the protocol, which consists of m mul-
tiplication triples. The Ftriples functionality can be realized with polylogarithmic
communication complexity (in m) and good concrete efficiency via pseudoran-
dom correlation generators (PCGs) based on Ring-LPN [10].

FUNCTIONALITY 4 (The Ideal Functionality Ftriples)
Functionality Ftriples works with parties P1, . . . , Pn and an ideal-world adver-
sary S controlling a strict subset of the parties with indexes I ⊂ [n] as follows:
Upon receiving the command (Init,m) from all parties, it waits to receive
r`1,i, r

`
2,i, r

`
3,i for each i ∈ I and ` ∈ [m] from S. Then, it chooses for each

` ∈ [m] and j ∈ [n] \ I random r`1,j , r
`
2,j , r

`
3,j under the constraint that

n∑
i=1

r`3,i =

n∑
i=1

r`1,i ·
n∑
i=1

r`2,i

Then, it hands (r`1,i, r
`
2,i, r

`
3,i)`∈[m] to party Pi.

The ideal functionality FAHE
EncPowers. The next ideal functionality gives the parties

encryptions of the powers of τ . It also gives an authenticated secret sharing of τ .
In addition, it samples the masks that are used in the online verification protocol
and secret shares the sum of them in an authenticated way. Recall that we can
realize authenticated secret sharing with information-theoretic MACs, and so
generating it can be represented by a small constant-size circuit.

FUNCTIONALITY 5 (The Ideal Functionality FAHE
EncPowers)

Functionality FAHE
EncPowers works with parties P1, . . . , Pn as follows:

– Upon receiving the command Init from all parties, the functionality runs
Gen(1κ) to obtain (sk, pk), Then, it chooses shares ski for each i ∈ [n] such
that sk =

∑n
i=1 ski and sends pk, ski to party Pi.

– Upon receiving the command (compute,M) from all parties the functional-
ity:
1. Chooses a random τ , computes τ2, . . . , τ2M and c1, . . . , c2M =

Encpk(τ), . . . ,Encpk(τ2M ).
2. Chooses random s0, . . . , s2M and computes s =

∑M
k=1 sk.

Then, it hands {JskK}2Mk=0, c1, . . . , c2M , 〈τ〉, 〈s〉 to the parties.

The parties compute the encryption of powers of τ using a simple, iterative
protocol, beginning with a shared value Encpk(1), which is an encryption of τ0 =
1. Next, each party chooses its random share τi of τ . To compute Encpk(τ j+1)
given Encpk(τ j) and τi, each party homomorphically computes Encpk(τ j · τi)
and sends the result to the other parties. Upon receiving all ciphertexts, each
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party homomorphically evaluates Encpk(τ j ·
∑n
i=1 τi) = Encpk(τ j+1). Overall,

this functionality can be computed with communication of O(M · poly(κ, n)) =
O(
√
|C| · poly(κ, n)) ring elements. To achieve malicious security, we can use

generically communication-preserving compilers; see below.

The ideal functionality FAHE
AuthDec. This functionality receives a ciphertext c from

all parties and the secret-key share ski from each Pi and outputs 〈u〉 where u =
Decsk(c) and sk =

∑n
i=1 ski (i.e., the parties receive authenticated secret sharing

of u). Note that it can be realized by a protocol with cost that is independent of
the size of the computed circuit.

Realizing FDealer with Semi-Honest Security Using the above functionali-
ties it is easy to describe a semi-honest protocol to compute FDealer.

ΠSH
dealer: Upon receiving a description of the circuit C as an input:

1. Sample semi-honest correlated randomness: the parties call Ftriples to receive
(rg`1,i, r

g`
2,i, r

g`
3,i)g`∈mult. For each input and output wire w of the circuit, each

party Pi samples a random rw,i and then the parties generate 〈rw〉 where
rw =

∑n
i=1 rw,i.

2. The parties call FAHE
EncPowers to receive back ski, {JskK}2Mk=0, c1, . . . , c2M , 〈τ〉, 〈s〉.

3. Each party Pi samples b0,i ∈ RL and then uses the shares
b0,i, {rw,i}w∈W , (rg`1,i, r

g`
2,i, r

g`
3,i)g`∈mult to define the M -degree polynomials ge,i

for each e ∈ [L], and the shares {sk,i}2Mk=0 to define the 2M -degree polynomial
q̃i. Then, each party locally converts its shares of the points on these polyno-
mials to shares of the coefficients.
Denote the coefficients of ge (for each e ∈ [L]) by ge,0, . . . , ge,M and of q̃ by
q̃0, . . . , q̃2M .

4. For each e ∈ [L], each party Pi locally computes
Encpk(ge,i(τ))← Add

(
(ge,k,i)k∈{0,...,M}, (ck)k∈[M ]

)
.

Similarly, each Pi computes Encpk(q̃i(τ))← Add
(
(q̃k,i)k∈{0,...,2M}, (ck)k∈[2M ]

)
.

5. Each Pi sends {Encpk(ge,i(τ))}e∈[L],Encpk(q̃i(τ)) to all the other parties.
6. The parties locally compute {Encpk(ge(τ))}e∈[L],Encpk(q̃(τ)) by adding the

received ciphertexts.
7. The parties obtain {〈ge(τ)〉}e∈[L] and 〈q̃(τ)〉 by calling FAHE

AuthDec. Denote 〈y〉 =
(〈g1(τ)〉, . . . , 〈gL(τ)〉) and 〈z〉 = 〈q̃(τ)〉

Output : Each party outputs his share of b,b0 and {sk}2Mk=0, and his authenticated
shares of τ , s, y and z.

Proposition 3. Assuming the AHE scheme is semantically secure, protocol ΠSH
dealer

realizes FDealer with semi-honest security in the (Ftriples,FAHE
EncPowers,FAHE

AuthDec)-hybrid
model.

The proof can be found in the full version. As discussed above, FAHE
EncPowers can be

realized using a protocol with sublinear cost in the size of the computed circuit,
while FAHE

AuthDec can be realized with constant cost. Given FAHE
AuthDec is called to

decrypt sublinear amount of ciphertexts, the total cost of calling Fdec is also
sublinear. Thus, we get the following:
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Corollary 1 (Distributing the dealer with semi-honest security). Given
(1) semi-honest protocol realizing Ftriples to compute m multiplication triples with
communication α(κ, n,m,R), and (2) a semantically-secure AHE scheme, there
exists a protocol that securely realizes FDealer in the semi-honest model with com-
munication per party of O(

√
|C|) · poly(n, κ) ring elements and α(κ, n, |C|, R)

additional bits.

Achieving Malicious Security. In the context of feasibility, one can easily ob-
tain a malicious security variant of Corollary 1 by applying the communication-
efficient GMW-style compiler of Naor and Nissim [38] (building on [28, 37]).
Using this compiler, a semi-honest secure protocol can be compiled into a mali-
ciously secured protocol for the same functionality with sublinear additive com-
munication cost of poly(κ, n, log |C|, log |R|) bits per party. Since the compiler
only requires collision-resistant hash functions, which are implied by additively
homomorphic encryption [32], this does not require introducing new assump-
tions. Note that the compiler also respects an augmented correlated randomness
functionality that allows the adversary to pick its own output shares as we re-
quire in this work. We thus obtain the following:

Theorem 6 (Distributing the dealer with malicious security). Given (1)
semi-honest protocol realizing Ftriples to compute m multiplication triples with
communication α(κ,m,R), and (2) a semantically-secure AHE scheme, there
exists a protocol that securely realizes FDealer in the malicious model with com-
munication per party of O(

√
|C|) ·poly(n, κ) ring elements and α(κ, n, |C|, R) +

poly(κ, n, log |C|, log |R|) additional bits.

Conclusion: MPC with sublinear preprocessing and non-cryptographic
online phase. To obtain our main result, we combine the offline protocol of
Theorem 6 with the online protocol described in Section 5, instantiated with
Beaver’s semi-honest MPC protocol [1] based on multiplication triples. This
yields a protocol which satisfies the notion of Preprocessing MPC from Defini-
tion 1, where the offline communication complexity of Πoffline scales with

√
|C|

and the online communication and correlated randomness are the same as those
of the baseline semi-honest protocol up to a sublinear additive term. The pro-
tocol relies on AHE, together with any low-communication protocol (e.g., one
based on PCG) for generating random (unauthenticated) multiplication triples.

Theorem 7 (Sublinear preprocessing from AHE+triples). Let f be an
n-party functionality represented by an arithmetic circuit C over a ring R. Then,
given (1) semi-honest protocol realizing m unauthenticated multiplication triples
(see Ftriples) with communication α(κ, n,m,R), and (2) an AHE scheme over
R, there exists a PMPC protocol (Πoffline, Πonline) for f with non-cryptographic
online phase (see Definition 1) with the following efficiency measures:

– The communication per party in Πoffline is O(
√
|C|) · poly(n, κ) ring elements

and α(κ, n, |C|, R) + poly(κ, n, log |C|, log |R|) additional bits;
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– The communication per party in Πonline is O(|C|) +O(
√
|C|) · poly(n, κ) ring

elements.

Ingredient (1) in Theorem 7 can be instantiated with a PCG based on
LPN or Ring-LPN [10] for better concrete efficiency, with α(κ, n, |C|, R) =
n2 · poly(κ) · (log |C|+ log |R|) bits of communication. Using this instantiation,
the total communication cost of Πoffline is O(

√
|C|) · poly(n, κ) ring elements.

Improving Concrete Efficiency. The protocol described previously for dis-
tributing the dealer uses generic tools to compile the semi-honest protocol to a
malicious protocol. This approach is sufficient for good asymptotic efficiency, but
not necessarily for good concrete efficiency. In the full version of the paper, we
propose a maliciously secure protocol with improved performance that is based
on making two stronger, but quite plausible, assumptions on the AHE: being
“linear-only” and having a threshold encryption variant.

An AHE is “linear-only”, or more precisely has Linear Targeted Malleability
[4, 7], if linear functions, and only linear functions, can be computed homomor-
phically on the ciphertexts. It is widely assumed that popular AHE schemes such
as Goldwasser-Micali [29], Paillier [41] and even certain parameter ranges for lat-
tice based encryption systems [15] are all “linear-only”. Encryption schemes with
a threshold variant enable parties to share a secret key and distributively decrypt
a ciphertext without interaction. Systems with such a threshold variant include
GM [34], Paillier [30] and lattice based systems via noise flooding.

The proposed protocol to distribute the dealer assuming a circuit over a
field F executes a generically malicious secure protocol for the generation of
powers of τ and then the rest of the previous semi-honest protocol. The parties
proceed by threshold decryption of the ciphertexts. The adversary can add errors
to the decrypted values, which might even depend on the evaluation point τ .
However, due to Linear Targeted Malleability the probability that any attack
on the protocol does not cause an honest party to abort after verification in the

online phase is Θ
(
M
|F|

)
. The complexity of the protocol is dominated by roughly

5|C| homomorphic operations and threshold decryption of 5
√
|C| ciphertexts.
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