Improved Cryptanalysis of MISTY1

Ulrich Kihn

Dresdner Bank AG
IS-STA Software Technology and Architecture
Research & Innovations
Jiirgen-Ponto-Platz 1
D-60301 Frankfurt, Germany
Ulrich.Kuehn@dresdner-bank.com
ukuehn@acm.org

Abstract. The block cipher MISTY1 [9] proposed for the NESSIE pro-
ject [11] is a Feistel network augmented with key-dependent linear FL
functions. The proposal allows a variable number of rounds provided that
it is a multiple of four.

Here we present a new attack — the Slicing Attack — on the 4-round
version, which makes use of the special structure and position of these
key-dependent linear FL functions. While the FL functions were intro-
duced to make attacks harder, they also present a subtle weakness in the
4-round version of the cipher.

Keywords: Block cipher, Cryptanalysis, Impossible Differential, Slicing
Attack.

1 Introduction

The MISTY1 block cipher [9] is a proposal for the NESSIE project [11] in the
class Normal-Legacy with a block size of 64 bits and a key length of 128 bits.
It is designed to be resistant against differential [2] and linear [8] cryptanalysis.
Another feature of the design is the use of key-dependent linear functions FL to
avoid possible attacks other than differential and linear cryptanalysis.

The best previous attacks on versions of MISTY 1 without the linear functions
attack were on 5 rounds by higher-order differentials [12] and 6 rounds with
impossible differentials [7]. Additionally, the 4-round version including most of
the linear functions, leaving out the layer of final applications of the FL functions,
has been attacked by impossible differentials as well as collision searching [7].
Very recent results [6] using integral cryptanalysis yield attacks on 5 rounds of
MISTY1 without the final FL layer as well as on 4 rounds, also without the final
FL layer, having a very low data complexity.

In this paper we present attacks on the 4-round version of MISTY1 with all
FL functions by impossible differentials and by a new method called the Slic-
ing Attack. The slicing attack makes use of the position and the structure of
the key-dependent linear functions to derive knowledge about the key; further

63

key bits can then be found with impossible differentials, or, in the chosen plain-
text/ciphertext model, by the meet-in-the-middle technique. Table 1 shows a
summary of the attacks.

While the computational effort for the attack using only impossible differen-
tials is very high, the slicing attack is surprisingly efficient; the existence of this
attack shows that augmenting the Feistel network with the linear FL functions,
which makes some attacks much harder, also introduces a new line of attack
that has to be considered a subtle weakness not being present in the underlying
Feistel network.

Rounds FL Complexity Comments
Time Data Memory

none 27 11 x 27

12]

all 2816 9272 2312 Slicing 4 impossible diff. (this paper)
all 218 92325 233 Slicing Attack in chosen plaintext /
ciphertext model (this paper)

5 [
6 none 25! 254 [7], Section 4.1

4 most 2°94 223 [7], Section 4.2

4 most 2%2 238 [7], Section 4.2

4 most 259 220 [7], Section 4.2

4 most 276 228 [7], Section 4.2

4 most 2% 25 6]

5 most 248 234 [6]

4 all 2116 9275 2295 Tmpossible diff. (this paper)

4 all 215 92225 2312 Qlicing Attack, preprocessing (this paper)
4

4

Table 1. Summary of the new and the best previously known attacks on MISTY1. A
memory unit is one block of 64 bits. Versions of MISTY1 with “most” FL functions do
not have the final FL layer.

This paper is outlined as follows. In Section 2 the MISTY1 design is described,
Section 3 presents the attack on 4-round MISTY1 using impossible differentials
alone, Section 4 introduces the Slicing Attack, and finally Section 5 draws some
conclusions.

2 The Structure of MISTY1

The MISTY1 [9] proposal for the NESSIE project [11] is a block cipher with
a 64-bit block and a 128-bit key. It consists of a Feistel network augmented by
applying key-dependent linear functions FL to the left resp. right half of the
data in every second round, starting with the first, and additionally after all the
rounds (see left half of Figure 1). While the cipher is proposed with 8 rounds,

64

the proposal allows a variable number of rounds provided that it is a multiple
of four. In this paper we will only consider the 4-round version.

The bijective round function FO is a 3-round network with a structure shown
in the right half of Figure 1. This network uses a bijective inner round function
FI, which itself is a 3-round network with the same structure, employing two
bijective S-boxes S9 and S7, which are 9 bits resp. 7 bits wide; the key to FI
is 16 bits wide. The details of the internal structure of FI will be of no further
concern in this paper.

The FL function is a linear or affine function for any fixed key; its internal
structure is a 2-round Feistel network (see Figure 2) with the round functions
being bitwise boolean AND resp. bitwise OR with key material.

The key scheduling takes a 128-bit key consisting of 16-bit values Ky, ..., Kg
and, as a first step, computes additional 16-bit values K| = Flg, , (K;), 1 <t <
8, Ko := K. It produces three streams of sub-keys KO; = (KOj1,...,KO;4),
KIZ = (KIil, N 7KI¢3), and KLZ = (KLihKLig) as follows (Z is identified with
i— 8 for i > 8):

KO;1 |[KO;2|KO;3|KO;4 | Kl | Kl | Klig KLj KLjo
Ki |Kip2|Kit7|Kipa|Ki 5| Kiy |Kiyg) K (odd i) Kﬁ%% (odd)
K'%-Jr2 (even i) K 4 (even i)

3 Differential Attack on 4-Round MISTY1

The attack given in this section works against the 4-round version of MISTY1
with all FL functions, improving the result of [7] as there the final applications of
the FL functions were left out. The attack applies impossible differentials [1, 5]
and uses particular properties of the key scheduling, i.e. the fact that the keys
for the final FL functions and the fourth round have some key bits in common.

To be concrete, these sub-keys are KOy = (K4, Kg, K3, Kg) and Kl =
(K1, KL, KL) for the fourth round’s FO resp. KLs = (K3,K7) and KLg =
(KL, Kr) for the final FLs. The values K1, Kf, and K3 are used twice.

For the attack we use Property 1 of FO from [7]:
Property 1. If the output difference of FO in round i is of the form (8, 3)
with nonzero § from input with difference (o, o), then the input and output
differences of FI in the third round are zero; thus the sub-keys KO;3, KO;4, and
KI;3 cannot influence the output difference and are consequently of no concern.
The inputs to the first FI with difference «; yield an output difference a,. under
the keys KO;; and KI;;, while the second FI yields output difference § from the
inputs with difference «, under the keys KO;2 and Kl;s.

The attack makes use of the 3-round impossible differential (0, &) ?7)5» (0,0)
with nonzero «, 3; this impossible differential works for any Feistel network with
bijective round functions, even when FL functions are used [7, Section 4.2]. The
attack proceeds as follows.

65

MISTY1
32 164 32
KLl*[FL §KI1. KO1| FL }* KL
| oy &
Ml

KL;

KOiq4

Fig. 1. Global structure of MISTY1 with four rounds (left) and structure of outer
round functions FO (right).

1. Data Collection. Build a structure of 227-5 chosen plaintexts P; = (x,y, a;, b;)

where all the (a;,b;) are different and obtain the corresponding ciphertexts
C; = (¢i,d;, e, fi) by encryption under the unknown key.

2. Processing. After guessing KLg = (Kj, K7) and KLs = (K3, K7) obtain
éi = (Ei,di;éiafi) by (Ei,di) = FL}_(IlJG(Ciadi)a (éz,fl) = FLI_(is(ei7fi)7 and
compute w; = & @ fi. Every matching pair (i,7) with w; = w; results in a
difference C; @ C'j = (o, ar, 6,0). For each such matching pair (4,) do the
following steps.

— (Round 1 of FO) Guess the value of Ky = KOy (Kj = Kl is already
known) and check if

Fly, (& ® K1) @ Fl; (¢6; & Ky) = d; @ dj, (1)

where K7 is known from the guess of KLs5. Expect a single guess for Ky
to fulfill this condition.
— (Round 2 of FO) Independently, guess the value of Kg = KOy (K! =

Kl is already known) and check the condition

Fl, (d; ® Ko) ® Flg, (d; © Ko) = & @& = f; ® f, (2)

66

where K| is known from the guess of KLg. Again, expect a single guess
for Ky fulfilling this condition.
Any values of K, and Ky that satisfy (1) and (2) must be wrong as they
would cause the impossible differential to hold. Use a map of 232 bits — which
can be reused for each guess of KL5, KLg — to mark these wrong guesses of
(K4, Kg).

Analysis. First, we determine the work needed for a structure of size 2™ with m
to be determined later; note that m is necessarily bounded by m < 32 due to the
block-size of 64 bits. For each C; and all guesses of KL5 and KLg the decryption
through FL™" takes 232(1+2%2) ~ 264 computations of FL ™! so for the structure
about 264t computations of FL ™" are needed. Checking the conditions on K4
and Ky for each matching pair needs work of 2 - 2 - 216 computations of FI.

For the structure we expect about (2;)/2'6 ~ 22m=17 matching pairs for
each guess of the 32 bits in KL5. Each matching pair is expected to discard a
single wrong guess of 32 bits (K4, Kg) for each guess of the 32 bits of KLg.

Thus, for the whole structure we expect in total about 22m—17.232.232 —
22m+47 wrong keys of 96 bit to be discarded. Assuming that the wrong keys
appear at random with equal probability, finding all wrong keys is the coupon
collector’s problem [3, 10]. Therefore, with about 2%¢1n(2%%) ~ 67 - 29¢ keys of
96 bits being discarded we expect only the right key to remain. Thus, m = 27.5
yielding a structure of size 227-° is sufficient. As only the right key is expected
to remain, the bitmap — which is reused for each guess of KLs and KLg — is
expected to contain only a single unmarked position for the correct guess of KLj
and KL6

The attack needs a single structure of 227> chosen plaintexts, 264+27-5
computations of FL™!, and 232 . 232 . 218 . 92:27.5-17 _ 9120 ¢qmpytations of FI,
roughly equivalent to 2''¢ encryptions.

As we need to store only the ciphertexts C; for the structure, a working copy
of all C;, and the w;, the memory consumption can be bounded by 2285 blocks
of 64 bits each. In the processing step the map of 232 bits to mark wrong guesses
of (K4, Kg) needs much less memory than the working copy of the ciphertexts.

— 291.5

Remark 1. The reduced number of chosen plaintexts required for this attack in
comparison to the attack given in [7, Section 4.2] (which did not include the final
FL functions) is due to the fact that here the use of one single structure allows
to make efficient use of the plaintexts; this technique can also be applied to [7,
Section 4.2] with a significant reduction in the plaintext requirements.

Remark 2. While the chosen plaintext requirements as well as the memory con-
sumption are well in reach of today’s attackers, the work factor makes the attack
only an academic possibility. But nevertheless, it is much faster than guessing
the 128-bit key by brute force.

Experimental results. This attack has been in part verified experimentally.
All key words except Kg (used as KOy42) and K7 (second half of KLg) were
assumed to be known, thus reducing the work factor involved and also reducing

67

FL DFL
16 32 16 16 i32 16
KLi 4—— KL T 1
' - N T C
KL;o — KLi2 _—+
D S § =

-
-~

Fig. 2. Structure of FL (left), N denotes the bitwise AND operation, U the bitwise OR
operation. When looking only at differential behavior, the structure on the right results
(note the changed operation in the second round).

the map to 2'6 bits. Due to memory constraints only N = 5-223 chosen plaintexts
were used; due to time constraints only 511 passes with wrong values of K7 in
addition to the correct value of K7 have been tested.

Assume now a pass with a fixed guess for K7. As K, is known and thus fixed,
we expect only a fraction of 2716 of the pairs to fulfill (1), thus we expect about
M = W -2716.2716 — 204800 pairs to have output XOR (3, 3) and to fulfill
(1); each of these pairs is expected to remove one guess of Kg from the map.
With r = M /216 we expect 216 exp(—r) ~ 2880 candidates for Kg to remain
unmarked in the map (see [10, Theorem 4.18] for this instance of the occupancy
problem).

The observed mean of removed guesses for K (including collisions) in the
experiments was 204759, the mean of remaining candidates for Kg was 2883,
thus matching the theory very accurately. The correct K¢ was still in the map
when using the correct value of K7. For each guess of K7 about 80 minutes of
CPU-time were needed on a PC with Pentium IIT (800MHz), 256 MBytes of
RAM plus 512 MBytes of swap space; about 640 MBytes of memory were used.

4 The Slicing Attack on 4-Round MISTY1

In this section a new kind of attack is presented that makes essential use of
presence, position and structure of the key-dependent FL functions. This attack
bypasses the components of the cipher that provide the provable security against
differential and linear cryptanalysis.

4.1 Differential Properties of the FL Function

The FL function is a linear (or affine) function for any fixed key. It consists of a
2-round Feistel network with the round function being a bitwise AND resp. OR
operation with the key bits (see Figure 2).

68

Notation. Denote bit i of a value a by a[i] counting the bits from LSB to MSB
starting with 0.

As only bitwise operations without any shifts or other means of diffusion are
involved, FL basically consists of 16 parallel versions of a cipher with a 2-bit
block. Let (a,b) be the input and (¢, d) be the output of FL with 16-bit values
a, b, c,d. Then block 4 consists of the bits (a[i], b[]) and (c[i], d[4]).

In the following the round functions are analysed algebraically in order to
obtain a closed description for the differential behavior of FL. Let k& denote a
key bit and x an input. Then the round functions are as follows:

zNk:=zxk
cUk:=2® kD xk.

Now let z* denote a second input and let 2’ = z & z*; then the differential
behavior of these operations is as follows:

(xnNk)® (" Nk)=xk®z"k =2k
(zUk)® (2" Uk)=(z® kD zk)® (z* D k® k) =2 &'k,

Therefore, for differences the FL function has the effective description given on
the right hand side of Figure 2. Call this function DFL.

4.2 Slicing 4-Round MISTY1

The attack in the previous section employed the 3-round impossible differential
(0,) 4 (0, 8). Any sub-key for the last round (including the FL functions that
follow) that yields the output difference of the impossible differential must be
wrong. This is used to discard all the wrong keys.

Another view on this situation is as follows. It focuses on the changes to the
nonzero difference in the half of the data that is the right half of the input. This
is shown in Figure 3. The input difference in the right half is o £ 0, causing an
nonzero output difference o of the FL function in round 1. The first round’s FO
has a zero output difference, so no further change occurs here. The difference is
modified again in round 3 by an FL function (o # 0) and by XOR with the
output difference v of FO, yielding 4’. Finally, it is modified through the output
transformation by FL yielding a difference § in the left half of the ciphertext.
This is shown in the right part of Figure 3.

The output difference v of FO in round 3 must be nonzero, as can be seen
as follows. The input difference of the FO in round 2 is o’ # 0, so 5’ # 0, as FO
is bijective. Therefore, in round 3, the input to FO is also nonzero, thus causing
v # 0.

It should be noted that the difference of concern here — right half of plaintext
difference, left half of ciphertext difference — is changed only by the keys to FL
with the single exception of the XOR with the difference 7 in round 3.

Therefore, any set of keys (KLg, KLy, KLg) to a stack of three instances of
DFL that yields § from « implies that v = 0, thus it must be wrong. The

69

N
><M i
!/

o
o e} (L
0] [rr s,
a//
FL , FL Y —d
ﬁ//‘ [FO | N Y
FL +KLg
5 — 4
FO '

Fig. 3. Slicing MISTY1. The differential path of the data from the right half of the
input to the left half of the output is shown on the right side. The difference ~ is known
to be nonzero.

result is that we are dealing only with a slice of 4-round MISTY1. Note that
this property does not hold for the underlying Feistel network without the key-
dependent linear functions and that an extension to more rounds seems not to
work.

Definition 1. The slice of three instances of DFL consists of 16 parallel in-
stances of the same key-dependent function. Denote it by F', indexed by the 6-bit
key k, i.e. Fy, : {0,1}2 — {0,1}2. The blocks are located in the same places as
for FL.

In the following some properties of F' are shown that will subsequently be
used for the attack.

Lemma 1. Depending on the key, F' realises one of siz different bijective func-
tions. Thus F has siz classes of equivalent keys. There are four classes with 11
keys and two with 10 keys.

70

Proof. From the structure of F' it is clear that F is a bijective function, therefore
Fy.(a) # 0 for nonzero a. As the input and output of F' are differences, it follows
that F(0) = 0 for any k. On the remaining three inputs F realises a permutation,
of which there are 3! = 6 different. Checking all 64 possible keys gives the number
of keys per class showing that all of these functions are indeed realised. O

Notation. Let Kq,..., g denote the six classes of equivalent keys for F' and
F: denote the function realised by any of the keys in IC; for < € {1,...,6}.

Proposition 1. For any nonzero a,b there are exactly two i € {1,...,6} such
that F;(a) = b holds.

4.3 Attacking the Slice

As a consequence of these classes of equivalent keys it should be clear that the
best one can hope for is to find a vector of 16 functions that never implies
the output difference of the third round’s FO being zero. Further conditions to
distinguish right vs. wrong keys must come from the key scheduling or other
means besides the slicing attack (see Section 4.4).

Definition 2. Let a = (o, «-) be the input to the slice of three DFL functions
and 6 = (01, 9,) its output. As both o and § come from plaintext resp. ciphertext
differences, still call this a pair and denote it as o — §. A vector (fis,..., fo) €
{Fi1,..., F6}'0 is called valid for o — & if for each i € {0,...,15} the 2-bit block
(culi], ar i) s mapped to (8if], 6,11]) by fi-

As one cannot distinguish between functions with a zero input and output,
any pair that causes a zero input / output to any of the 16 parallel instances
of F' cannot be used. Such a pair is called a bad pair whereas a pair with only
nonzero input and output blocks for each of the 16 instances of F' is called a
good pair.

From Proposition 1 it follows that each good pair has 26 valid vectors of
functions while there are 616 ~ 2414 vectors in total. With 241-4/216 = 2254
good pairs there are 244 valid vectors. Assuming that the valid vectors appear
at random with equal probability, this is the coupon collector’s problem [3, 10]
Therefore, with about 2414 In(2414) ~ 246-2 valid vectors from about 232 good
pairs all valid vectors are expected to be found. As it is known that an invalid
vector exists, this one is expected be be singled out.

The chance that a random pair is a good pair is about (9/16)16 ~ 2713:3,
Therefore about 2%3-° pairs are needed which can be gained from about 2222
chosen plaintexts.

Now we are ready to state the actual Slicing Attack:

1. Data Collection. Build a structure of 222-2° plaintexts P; = (r,s,t;,u;) with
constant (r,s) and (t;,u;) being arbitrary but all different; obtain the ci-
phertexts C; = (v;, w;, T, y;) encrypted under the unknown key.

71

2. Filtering. For each pair (4,), i < j, check if o = (ay, o) = (8; S t5, u; B uy),
d = (61,0,) = (v; B vj,w; ®wj) form a good pair, i.e. (y[m],ar[m]) # 0,
(&1[m], 6x[m]) # 0 for all 0 < m < 15. For all good pairs store («,d) in a
table T'.

3. Processing, Outer Loop. For each of the 65 assignments of (fs,..., fo) do
the following. First, select all those good pairs o — § such that (fs,..., fo)
is valid for the corresponding six blocks; store the selected good pairs in a
table T”.

Initialise a bit map B of 6'9 < 226 bits, then execute the inner loop:

— Processing, Inner Loop. For all good pairs in T" set the bits in B that
correspond to the valid vectors (f1s, ..., f) for the rightmost 10 blocks.
Finding these can be done by using a preprocessed table to get the
possibilities for each of the 10 blocks.

After all pairs in T” are processed check which bits in B are still cleared.
These correspond to possibly invalid vectors.

Analysis. The filtering is expected to keep (22225)/213'3 ~ 2392 good pairs,
thus from the discussion above it is clear that the algorithm is expected to single
out one invalid vector (fis,..., fo).

As by Proposition 1 exactly 2 out of 6 functions are valid for each given input
and output of a 2 bit block the chance that a good pair in T is included in T” is
about (%)6 ~ 279 Therefore T" is expected to have a size of 2302 /295 < 221,

The total running time consists of three components: first, the time for fil-
tering, second, the time for constructing table T’ in step 3, and, third, the time
spent in the inner loop.

The filtering takes 2435 checks to find the good pairs. The building of 7" is
done 6° times where each time about 230-? checks have to be done (a check can
be done with look-up tables, taking only constant time). This step thus takes a
total of roughly 246 checks.

Each execution of the inner loop sets about 219 - 221 = 23! bits, so the total
time spent here in all iterations of step 3 is roughly 6° - 23! ~ 247 elementary
operations like computing indices plus setting bits in the bitmap etc.

This sums up to running time roughly equivalent to 24 encryptions. The
memory consumption can be bounded by the size of the plaintexts and cipher-
texts, the tables T and T, and the bitmap in the inner loop, totaling to about
2312 blocks.

Remark 3. While the slicing attack does not directly reveal key bits, it gains
knowledge about the class of equivalent keys of the real key (KL, KLy, KLg).
This class contains at most 116 ~ 2554 keys. Comparing this to the initial set
of 296 keys shows a gain in knowledge of about 40 bits.

Remark 4. When also considering the key scheduling, the real key is (K}, K5),
(K}, Ks), (KL, K7) with K = Flg,(K5), so that the real entropy is only 80 bits.
But for the keys in the equivalence class the same 16-bit condition holds, so that
about 2%° keys are expected to remain. This is also a gain in knowledge about
the key of about 40 bits.

72

4.4 Finding the Real Key Bits

When using the knowledge gained in the slicing attack in a subsequent step of
analysis the work factor of the slicing attack is only involved as additive work
to what follows.

A simple way is brute force, namely enumeration of the about 2° keys in the
equivalence class and guessing the remaining 48 key-bits, requiring expected %288
encryptions, about 2 known plaintexts / ciphertexts and de facto no memory.

Better methods are given below. One uses impossible differentials in the usual
chosen plaintext model of attack, the other uses the chosen plaintext/ciphertext
model to efficiently find the complete key.

Improving the impossible differential attack. The differential attack of
Section 3 can be improved significantly by using the information from the slicing
attack; this is faster than the brute force method at the cost of more chosen
plaintexts. It makes use of the fact that only 16 key-bits (K1 in KLs5) have to be
guessed in addition to enumerating the about 24° keys in the equivalence class.

The attack proceeds as follows after having knowledge about the correct
equivalence class, again using Property 1 of FO and the 3-round impossible
differential (0,a) 4 (0,3) (see Section 3).

1. Data Collection. Build a structure of 2™ plaintexts P; = (z,y,a;,b;) with
constant z, y and random but different (a;, b;) and obtain the corresponding
ciphertexts C; = (¢;,d;, e, fi). The number m is determined later in the
analysis to be m = 27.2.

2. Enumerate the Keys. The keys in the equivalence class can be enumerated by
stepping through all 232 assignments of K. and Kg; then set K5 = Fll}i (K%)
and enumerate all possible assignments of K%, K}, and K7 by considering
separately each 2-bit block using a precomputed table. For each assignment
compute Ky = FI! (K}) and K3 = FI! (K3).

For each 16-bit value for Ki set KLs = (K3, K1), KLg = (K}, K7) and do

the following step:

(a) Find wrong keys. For all ciphertexts C; compute (é;, f,) = FL%is(ei, 1),
(&, CL) = FLI_U{6 (¢, d;), and build two lists

ui =& ® fi
w; = (Flg (Ky © &) © CZuFIKg (Ko ® d;) ® &;).

If for any ¢, 7 there is a match u; = u; and w; = w;, go to the next guess of
the keys, otherwise keep the guessed keys. The rest of the key bits, i.e. Ko
and Kjg, can be found by brute force and inverting the key schedule (to find
Ky).

Analysis. The outer loop for the enumeration of the keys in the equivalence
class has 232 iterations with a single application of FI™! taking place. For
each assignment of K. and Kg about 2% values are expected to be found for

73

(K%, K, K7). While for some functions and fixed key-bits no suitable keys ex-
ist, this is not a problem because these events can be found efficiently with the
precomputed table.

The costs here are 232 computations of FI~! and some table operations which
is much less than the enumeration of all about 24° keys. For each of these keys
two FI™! computations take place; in total this is about 232 4 2. 240 ~ 241
computations of FI™!, independent of the size 2™ of the structure.

It is easy to see that a pair (4,) with u; = u; yields a symmetric difference
(8, 8). Each pair (4,7) with u; = u; and additionally w; = wj; fulfills the two
conditions

Flg (Ks ®© &) @ Fly, (K4 © &) = d; ® ch (first round of FO)
Fly, (Ko @ d;) ® Flg, (K¢ ® d;) = é; ®¢€; (second round of FO),

thus fulfilling Property 1 of FO. Therefore this guess of the key must be wrong
and is discarded; a correct key never fulfills these conditions. This ensures the
correctness of the algorithm.

Per guessed key about 2 - 2 applications of FL™! and the same number of
applications of FI are done, for all key guesses (about 24° from the equivalence
class times 2'¢ from K?) in total about 2°7*™ applications of FL ™! and 257+™
applications of FI.

For each pair (i,j) there is a chance of about 2716 to fulfill u; = u; and a
chance of about 2732 to fulfill w; = w;, thus a chance of 27 to discard a key
of 56 bits. Modeling the keys discarded by each pair as random and assuming
an equal probability, we expect about 2°62748 = 28 keys being discarded by any
pair. The task of discarding all wrong keys is the coupon collector’s problem [3,
10]. Therefore, with about 2°¢ In(25%) ~ 2613 keys discarded by about 2613 /28 =
253-3 pairs only the right key is expected to remain. This implies a choice of
m = 27.2 and a structure of 2272 chosen plaintexts.

The work needed sums up to 24! applications of FI™!, 2. 2832 applications
of FL™1, and 2842 applications of FI. This is roughly equivalent to about 2516
encryptions.

The memory consumption can be bounded by the number of ciphertexts, a
working copy for decryptions by FL™!, and the tables for the u; and w;. This
sums to roughly 2292 blocks which is less than needed for the slicing attack.

Attack in the chosen plaintext / ciphertext model. In this model the
slicing attack can also be used to find an equivalence class for the sub-keys
KL, = (K1, K7}), KL = (K, K}), and KLy = (K3, K1) with chosen ciphertext
queries; call this the backward slice and denote its equivalence class by Kp in
contrast to the forward slice with class K of the chosen plaintext attack.

This preprocessing steps together take 2 - 24° work, 22225 chosen plaintexts
queries, 222-2% chosen ciphertext queries and 23'2 blocks of memory. Note that
adaptiveness of the queries is not necessary here.

Now we use the fact that K3 in KL; can be computed from K}, K}, and
K5 from the forward slice; a similar property holds for K7. This can be used

74

with the meet-in-the-middle technique parametrised by 0 < N < 16 to allow a
time/memory tradeoff:

1. Global Loop. Step through all values for the highest N bits of Kg.

(a) Enumerate forward slice. Step through all values of the lower 16 — N bits
of K¢ and the 16 bits of K[; compute K5 = FII_(i (K!). Enumerate all
values for K%, K}, K7 that are in Ky for the fixed sub-key values using
a precomputed table. Compute K4 = FI;{i (K}), and K5 = FII}};(Ké)
Store the 128 bits K3, K%, K4, K}, K5, KL, K¢, K7 in a hash table T
indexed by (K3, K7) allowing later to retrieve all entries with the same
index.

(b) Enumerate backward slice. For all values of K| and Ky compute K; =
FI]_é (K1) and enumerate the values for K§, K7, and K3 in Ky, again us-
ing a precomputed table. For each of these also compute Kg = FI;& (K}),
Ky = FI.L(K}).

i. Check the keys. Retrieve all entries with the same (K3, K7) from the
hash table T'. Complete the key scheduling and do one or if necessary
two trial encryptions to check whether it is the correct key.

Analysis. First look at the steps (a) and (b) that are executed inside the global
loop. Step (a) is expected to enumerate about 240 /2N = 240N gub-key values
while performing about 2'6-~ . 216 4 9. 240N computations of FI™* (like in
the analysis above there might be values for K such that no valid sub-keys are
found, but the total work to find these is much less than the enumeration of all
the 240~ sub-keys). The expected size of T is 240~ values & 128 bits which is
241=N plocks.

Step (b) is enumerating the about 2%° keys in K, with about 232 + 2. 240
computations of FI™L. In T we expect to find 240.240-N.9-32 — 948—=N matches,
therefore the completion of the key schedule and the trial encryption is expected
to be done about 248~ times.

In total, taking the global loop into account, the time needed is about
QU-NAN 4 od14+N —_ 941 | 941+N computations of FI™! roughly equivalent to
about 239 4+ 239N encryptions. The full cipher is expected to be run about
2N . 248=N — 248 times.

With V = 10 we can efficiently reuse the memory used in the slicing attack,
needing about 1.5-24 work and 23! memory, With N = 8 the time is dominated
by the 2%® trial encryptions with a memory requirement of 233 blocks.

4.5 MISTY variants and the Slicing Attack

As the slicing attack allows to attack the 4-round version of MISTY1 very effi-
ciently, one might ask whether this attack applies also to the MISTY1 variant
KASUMI [4] which is used in 3rd generation cellular phones. In comparison to
MISTY1 the FO and FT functions are modified and, more important here, the
FL functions — with bit-rotations added in the round function — are moved to
be part of KASUMI’s round function. As KASUMI is a plain 8-round Feistel

75

network with no key-dependent operations being performed outside the round
function, the slicing attack does not apply.

In MISTY1 the slicing attack is possible because of the position of the FL
functions; avoiding this requires to move the FL functions. The attack is also
efficient because it is easy to determine all keys resp. vectors of parallel functions
in the slice that map an input XOR to an output XOR. To prevent the slicing
attack it would thus be necessary to add a new design criterion besides those
given in [9]. A possible fix might be adding bit-rotations to FL’s round functions
(like in KASUMT’s FL) to avoid the parallelism, but whether this prevents the
attack is left to future research. On the other hand the slicing attack seems to
work only for the 4-round version of MISTY1, thus using more than 4 rounds
should prevent this attack.

5 Conclusion

While for the impossible differential attack on the 4-round version of MISTY1
presented in this paper the chosen plaintext requirements and the memory con-
sumption are certainly in range of today’s attackers, the high work factor in-
volved does not threaten the cipher.

On the other hand the slicing attack is made possible by the position and
structure of the FL functions. It shows that augmenting the Feistel network with
key-dependent functions can introduce subtle weaknesses that are not present
in the Feistel network itself; one special feature is that the slicing attack com-
pletely bypasses the components that provide the provable security of the cipher.
Furthermore, this is surprisingly efficient, it is clearly in range of today’s possi-
bilities.

While the MISTY1 proposal allows any multiple of four as the number of
rounds, the results in this paper show that the 4-round version should be avoided,
thus leaving the recommended number of 8 rounds as a minimum.

The author would like to thank David Wagner for helpful discussions and
for suggesting the use of the chosen plaintext / ciphertext model. Thanks are
also due to the anonymous referees of the 2nd NESSIE workshop and FSE 2002
whose comments helped to improve the paper.

References

[1] E. Biham, A. Biryukov, and A. Shamir. Miss in the middle attacks on IDEA
and Khufu. In L. Knudsen, editor, Fast Software Encryption, 6th international
Workshop, volume 1636 of Lecture Notes in Computer Science, pages 124-138,
Rome, Italy, 1999. Springer-Verlag.

[2] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer Verlag, Berlin, 1993.

[3] K. L. Chung. Elementary Probability Theory with Stochastic Processes. Springer
Verlag, 1979.

76

[4]

[5]
(6]

[7]

[10]
[11]

[12]

ETSI/SAGE. Specification of the 3GPP Confidentiality and Integrity Algorithms
— Document 2: KASUMI Specification, Version 1.0. 3G TS 35.202, December 23,
1999. http://www.etsi.org/dvbandca/3GPP/3GPPconditions.html.

L. R. Knudsen. DEAL — A 128-bit block cipher. Technical Report 151, Depart-
ment of Informatics, University of Bergen, Bergen, Norway, Feb. 1998.

L. R. Knudsen and D. Wagner. Integral cryptanalysis. These Proceedings, pages
114-129.

U. Kiihn. Cryptanalysis of Reduced-Round MISTY. In B. Pfitzmann, editor,
Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 325-339. Springer Verlag, 2001.

M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, ed-
itor, Advances in Cryptology - EUROCRYPT 93, pages 386397, Berlin, 1993.
Springer-Verlag. Lecture Notes in Computer Science Volume 765.

M. Matsui. New block encryption algorithm MISTY. In E. Biham, editor, Fast
Software Encryption: 4th International Workshop, volume 1267 of Lecture Notes
in Computer Science, pages 54—68, Haifa, Israel, 20-22 Jan. 1997. Springer-Verlag.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

NESSIE. New European Schemes for Signature, Integrity, and Encryption.
http://www.cryptonessie.org.

H. Tanaka, K. Hisamatsu, and T. Kaneko. Strength of MISTY1 without FL
function for higher order differential attack. In M. Fossorier, H. Imai, S. Lin, and
A. Poli, editors, Proc. Applied algebra, algebraic algorithms, and error-correcting
codes: 13th international symposium, AAECC-13, volume 1719 of Lecture Notes
in Computer Science, pages 221-230, Hawaii, USA, 1999. Springer Verlag.

