
Fast Software-Based Atta
ks on Se
urIDS
ott Contini1 and Yiqun Lisa Yin21 Ma
quarie University, Computing Department, NSW 2109 Australia,s
ontini�
omp.mq.edu.au,2 Prin
eton University, EE Department, Prin
eton, NJ 08540, USA,yyin�prin
eton.eduAbstra
t. Se
urID is a widely used hardware token for strengtheningauthenti
ation in a 
orporate environment. Re
ently, Biryukov, Lano,and Preneel presented an atta
k on the alleged Se
urID hash fun
tion [1℄.They showed that vanishing di�erentials { 
ollisions of the hash fun
tion{ o

ur quite frequently, and that su
h di�erentials allow an atta
ker tore
over the se
ret key in the token mu
h faster than exhaustive sear
h.Based on simulation results, they estimated that the running time oftheir atta
k would be about 248 full hash operations when using only asingle 2-bit vanishing di�erential.In this paper, we present te
hniques to improve the [1℄ atta
k. Our theo-reti
al analysis and implementation experiments show that the runningtime of our improved atta
k is about 245 hash operations. We then inves-tigate into the use of extra information that an atta
ker would typi
allyhave: multiple vanishing di�erentials or knowledge that other vanishingdi�erentials do not o

ur in a nearby time period. When using the extrainformation, we believe that key re
overy 
an always be a

omplishedwithin about 240 hash operations.1 Introdu
tionThe Se
urID, developed by RSA Se
urity, is a hardware token used for strength-ening authenti
ation when logging in to remote systems, sin
e passwords bythemselves tend to be easily guessable and subje
t to di
tionary atta
ks. TheSe
urID adds an \extra fa
tor" of authenti
ation: one must not only prove them-selves by getting their password 
orre
t, but also by demonstrating that theyhave the Se
urID token assigned to them. The latter is done by entering the 6-or 8-digit 
ode that is being displayed on the token at the time of login.Ea
h token has within it a 64-bit se
ret key and an internal 
lo
k. Everyminute, or every half-minute in some tokens, the se
ret key and the 
urrent timeare sent through a 
ryptographi
 hash fun
tion. The output of the hash fun
tiondetermines the next two authenti
ator 
odes, whi
h are displayed on the LCDs
reen. The se
ret key is also known to the \ACE/server", so that the sameauthenti
ator 
an independently be 
omputed and veri�ed at the remote end.If ever a user loses their token, they must report it so that the 
urrent token
an be dea
tivated and repla
ed with a new one. Thus, the user bears someresponsibility in maintaining the se
urity of the system. On the other hand, if



the user were to temporarily leave his token in a pla
e where it 
ould be observedby others and then later re
over it, then it should not be the 
ase that the se
urityof the devi
e 
ould be entirely brea
hed, assuming the devi
e is well-designed.The s
enario just des
ribed was 
onsidered in a re
ent publi
ation by Biryukov,Lano, and Preneel [1℄, where they showed that the hash fun
tion that is allegedto be used by Se
urID [4℄ (ASHF) has weak properties that 
ould allow oneto �nd the key mu
h faster than exhaustive sear
h. The atta
k they des
riberequires re
ording all outputs of the Se
urID using a PC 
amera with OCRsoftware, and then later sear
hing the outputs for indi
ation of a vanishing dif-ferential { two 
losely related input times that result in the same output hash.If one is dis
overed, the atta
ker then has a good 
han
e of �nding the internalse
ret key using a sear
h algorithm that they estimated to be equivalent to 248hash fun
tion operations. On a 2.4 GHz PC, 248 hash operations take about 111years3. It would require over 1300 of these PC's to �nd the key in a month.In this paper, we present three te
hniques to signi�
antly speed up the �lter-ing, whi
h is the bottlene
k of their atta
k. Our theoreti
al analysis and imple-mentation experiments show that the time 
omplexity 
an be redu
ed to about245 hash operations when using only a single vanishing di�erential.We then investigate into the use of extra information that an atta
ker wouldordinarily have, in order to speed up the atta
k further. This information 
onsistsof either multiple vanishing di�erentials, or knowledge that no other vanishingdi�erentials o

ur in a nearby time period of the observed one. In either 
ase,the running time 
an be redu
ed signi�
antly. Our preliminary analysis suggeststhat after a vanishing di�erential is observed, the atta
ker would nearly alwaysbe able to perform the key sear
h algorithm in 240 hash operations or less. Ona typi
al PC, this 
an be done in about 5 months, making the 
omputing powerrequirements for the sear
h attainable by almost any individual.The su

ess probability of all atta
ks (in
luding [1℄) depend upon how longthe atta
ker must wait for a vanishing di�erential to o

ur. Simulations haveshown that in any one-week period, 1% of the Se
urID 
ards will have a vanishingdi�erential; in any one-year period, 35% of the tokens will have a vanishingdi�erential. A

ording to these statisti
s, we mention two realisti
 s
enarios inwhi
h the token 
ould be 
ompromised. In the �rst s
enario, a user may be onva
ation for one week and left his token behind in a pla
e where others 
ouldobserve it, in whi
h 
ase there is a small but de�nitely non-negligible 
han
e thata 
ollision would happen. In the se
ond s
enario, the su

ess is mu
h more likely.Sin
e the 
ost of Se
urID tokens is very expensive, tokens are often reassignedto new users when a previous owner leaves a 
ompany [5℄. This is a bad idea,sin
e the original user would have a high 
han
e of being able to �nd the internalkey, assuming he re
orded many of the outputs while it was in his possession. Inlight of our new results, token reassignment be
omes a very serious risk.3 Requires some optimisations to Wiener's 
ode, su
h as re-ordering bytes to eliminatebswaps.



2 The Se
urID Hash Fun
tionWe provide a high level des
ription of the alleged Se
urID hash fun
tion, follow-ing the same notation as in [1℄ wherever possible. More detailed des
riptions 
anbe found in [1, 4℄.The fun
tion 
an be modeled as a keyed hash fun
tion y = H(k; t), where kis a 64-bit se
ret key stored on the Se
urID token, t is a 24-bit time obtainedfrom the 
lo
k every 30 or 60 se
onds, and y is two 6- or 8-digit 
odes. Thefun
tion 
onsists of the following steps:{ an expansion fun
tion that expands t into a 64-bit \plaintext",{ an initial key-dependent permutation,{ four key-dependent rounds, ea
h of whi
h has 64 subrounds,{ an ex
lusive-or of the output of ea
h round onto the key,{ a �nal key-dependent permutation (same algorithm as the initial one), and{ a key-dependent 
onversion from hexade
imal to de
imal.Throughout the paper, we use the following notation to represent bits, nib-bles, and bytes in a word: a 64-bit word b, 
onsisting of bytes B0; :::; B7, nibblesB0; :::; B15, and bits b0b1:::b63. The nibble B0 
orresponds to the most signi�
antnibble of byte 0 and the bit b0 
orresponds to the most signi�
ant bit. The othervalues are as one would expe
t.For our analysis, only the time expansion, key-dependent permutation, andthe key-dependent rounds are of interest. In the next three se
tions, we willdes
ribe them in more detail.2.1 Time ExpansionThe time t is a 24-bit number representing twi
e the number of minutes sin
eJanuary 1, 1986 GMT. So the least signi�
ant bit is always 0, and if the tokenoutputs 
odes every minute, then the expansion fun
tion will 
lear the 2nd leastsigni�
ant bit as well. Let the result be represented by the bytes T0T1T2 whereT0 is the most signi�
ant. The expansion is of the form T0T1T2T2T0T1T2T2. Notethat the least signi�
ant byte is repli
ated 4 times, and the other two bytes arerepli
ated 2 times ea
h.2.2 Key-Dependent PermutationWe give a more insightful des
ription of how the ASHF key-dependent permu-tation really works. The original 
ode, obtained by Wiener [4℄ (apparently byreverse engineering the ACE/server 
ode), is quite 
rypti
. Our des
ription isdi�erent, but produ
es an equivalent output to his 
ode.The key-dependent permutation uses the key nibbles K0 : : : K15 in order tosele
t bits of the data for output into a permuted data array. The data bits willbe taken 4 at a time, 
opied to the permuted data array from right to left (i.e.higher indexes are �lled in �rst), and then removed from the original data array.



Every time 4 bits are removed from the original data array, the size shrinks by4. Indexes within that array are always modulo the number of bits remaining.A pointer m is �rst initialised to the index K0. The �rst 4 bits that are takenare those right before the index of m. For example, if K0 is 0x2, then bits 62,63, 0, and 1 are taken. As these bits are removed from the array, the index mis adjusted a

ordingly so that it 
ontinues to point at the same bit it pointedto before the 4 bits were removed. The pointer m is then in
reased by a valueof K1, and the 4 bits prior to this are taken, as before. The pro
ess is repeateduntil all bits have been taken.Note that on
e the algorithm gets down to the �nal 3 or less key and data nib-bles, the number of data bits remaining is at most 12 yet the number of 
hoi
esfor ea
h key nibble is 16. Hen
e, multiple keys will result in the same permuta-tion, whi
h we 
all \redundan
y of the key with respe
t to the permutation."This was used in the atta
k [2℄, and to a lesser extent in [1℄.2.3 Key-Dependent RoundsEa
h of the four key-dependent rounds takes as inputs a 64-bit key k and a64-bit value b0, and outputs a 64-bit value b64. The key k is then ex
lusive-oredwith the output b64 to produ
e the new key to be used in the next round.One round 
onsists of 64 subrounds. For i = 1; :::; 64, subround i transformsbi�1 into bi using a single key bit ki�1. Depending on whether the key ki�1 isequal to bi�10 , the value bi�1 is transformed a

ording to two di�erent fun
tions,denoted by R and S. The details of R and S are not so important for ourresear
h, with the ex
eption of two properties:1. Both the R and the S fun
tions are byte-oriented, that is, they update ea
hof the eight bytes in bi separately. After the update, only bytes B0 and B4are modi�ed, and the other six bytes remain the same.2. The way R and S are used 
auses the hash fun
tion to have easy-to-�nd
ollisions after a small number of subrounds within the �rst round.At the end of ea
h subround, all the bits are rotated one bit position to the left.So, up to subround N � 25 of the �rst round, only 2N +14 data bits have beeninvolved in the 
omputation. This property is used in the Biryukov, Lano, andPreneel atta
k.3 The Atta
k of Biryukov, Lano, and PreneelThe atta
k of Biryukov, Lano, and Preneel [1℄ 
an determine the full 64-bitse
ret key when given a single 
ollision of the hash fun
tion. Suppose that twoinput times t and t0 get expanded and permuted to be
ome 64-bit words b andb0, and the two words 
ollide in subround N of the �rst round. The 
ollision fromthe pair (t; t0) is 
alled a vanishing di�erential. In their key re
overy atta
k, theatta
ker �rst guesses the subroundN , and then uses a �ltering algorithm for ea
hN to sear
h the set of 
andidate keys that make su
h a vanishing di�erential



possible. A

ording to their simulations, one only needs to do up to N = 12 tohave a 50% 
han
e of �nding the key.4 A summary of their des
ription for N = 1is given below. For simpli
ity, assume that a 2-bit vanishing di�erential is used,though this need not be the 
ase.A one-time 
ost pre
omputation table is needed before the �ltering starts.The table 
ontains entries the form(k0; B0; B4; B00; B04):where k0 represents a key bit, (B0; B4) represent data bytes of b after the initialkeyed permutation, and (B00; B04) represent data bytes of b0 after the permuta-tion. The exa
t entries in the table are those where (B0; B4) di�ers from (B00; B04)in exa
tly 2-bits known as the \di�eren
e bits," and for whi
h a vanishing dif-ferential o

urs during the �rst subround. Sin
e none of the other key bits ordata bytes are involved in the �rst subround, whether a vanishing di�erential
an happen or not for N = 1 is 
ompletely 
hara
terised by this table.For ea
h entry in the table, the �ltering pro
eeds in two phases, ea
h of whi
h
ontains two steps.{ First Phase. (pro
ess the �rst half of the key bits)� Step One. Guess key bits k1; :::; k27. Together with k0, 28 key bits areset, whi
h determines 28 bits of b and b0 after the initial key-dependentpermutation. Sin
e these bits overlap with the entries in the table innibbles B9 and B09, a key value that does not produ
e the 
orre
t nibblesfor both b and b0 is �ltered out.� Se
ond Step. Continue to guess key bits k28; :::; k31. Filtering is doneusing overlaps in nibbles B8 and B08.{ Se
ond Phase. (pro
ess the se
ond half of the key bits)� First Step. Continue to guess key bits k32; :::; k59. Filtering is done usingoverlaps in nibbles B1 and B01.� Se
ond Step. Continue to guess key bits k60; :::; k63. Filtering is doneusing overlaps in nibbles B0 and B00.Finally, ea
h 
andidate key that passes the �ltering is tested by performing afull hash fun
tion to see if it is the 
orre
t key. For general N , the two phases of�ltering ea
h involve d 7+N4 e data nibbles, so the phases ea
h have d 7+N4 e steps.4 Analysis of the Biryukov, Lano, and Preneel Atta
kBiryukov, Lano, and Preneel estimated the time 
omplexity of their atta
kthrough simulation. They provided results for N = 1: step 1 of phase 1 re-du
ed the number of possibilities to 227, step 2 of phase 1 further redu
ed the
ount to to 225, step 1 of phase 2 in
reased the 
ount to 245, and step 2 of phase4 Our own simulations suggest that one needs to sear
h up to N = 16. The dis
repan
yis due to di�eren
es in the way the atta
k is viewed, whi
h we elaborate on in Se
tion7.1. For larger values of N , the 
ost of the pre
omputation stage be
omes prohibitive.



2 resulted in 241 true 
andidates. For larger values of N , they expe
t that the
omplexity of the atta
k would be lower due to stronger �ltering.Here we analyse their algorithm, giving some mathemati
al justi�
ation forthe simulation results they observed and also showing that their 
onje
ture ofthe �ltering improving for larger N appears to be 
orre
t. In our analysis, wesometimes treat probabilities as if they are independent, whi
h is not alwaystrue, but it is assumed that it provides a reasonable approximation.Some properties of the pre
omputed tables are used in the analysis. For agiven value of N , the table entries are of the following form:{ legal values for the key bits in indi
es 0; : : : ; N � 1,{ legal values for the plaintext pairs after the initial permutation in bit indi
es32; 33; : : : ; 38+N whi
h we label as (W4;W 04) (we use the subs
ript 4 be
ausethe words begins at byte B4), and{ legal values for the plaintext pairs after the initial permutation in bit indi
es0; 1; : : : ; 6 +N whi
h we label as (W0;W 00) (the word begins at byte B0).The words W0;W 00;W4;W 04 ea
h 
onsist of 7 + N bits and the number of keybits is N . By \legal values" we mean that the 
ombination of plaintext bits afterthe initial permutation and key bits will 
ause the di�eren
e to vanish in sub-round N . We also have one other requirement, whi
h was previously overlooked(in
luding in an earlier version of this resear
h): the values of the two bits inb (or b0) where the di�eren
es are lo
ated must be the same, due to the waythe time expansion works. This redu
es the number of table entries and resultsin a speedup to the �ltering. Although this is one of our three main �lteringspeedups, we apply it to the analysis of the original [1℄ algorithm in order tokeep things as 
lean as possible.Analysis of �nal number of 
andidates: Analysing the �nal step is equiva-lent to determining the true number of 
andidates that need to be tested withthe full Se
urID hash fun
tion. The expe
ted number of true 
andidates 
aneasily be determined sin
e anything that mat
hes an entry in the pre
omputedtable will result in a vanishing di�erential. In other words, the entries in thetable are not only a ne
essary set of 
ases for a vanishing di�erential to o

ur,but also suÆ
ient.For ea
h entry in the pre
omputed table, we have:{ Only a portion of about 1=�642 � of the 264 keys will permute the 2 di�eren
ebits into the lo
ations 
orresponding to what is in that table entry.{ With probability 12 , the value of the two di�eren
e bits will mat
h those inthe table (re
all, the 2 bits in b must be the same, and the 
orrespondingbits in b0 are the 
omplement).{ With probability 122N+12 , the remaining permuted data bits will mat
h thetable entry.{ With probability 12N the guessed key bits will mat
h the entry of the table.



Hen
e, the expe
ted number of �nal 
andidates is:table size� 264 � 1�642 � � 12 � 122N+12 � 12N : (1)Run time analysis of phase 2, step 1: Phase 2, step 1 of the Biryukov, Lano,and Preneel atta
k is typi
ally the dominant 
ost. To analyse it, we must �rstdetermine the number of 
andidates passing phase 1.De�ne C0 to be the number of unique table entries of the form (k0; : : : ; kN�1;W4;W 04)where W4 = W 04, C1 similarly ex
ept W4 �W 04 having hamming weight 1, andC2 similarly ex
ept W4 �W 04 having hamming weight 2.Among the of 232 key bits 
onsidered in phase 1, a fra
tion of �57�N2 �=�642 �will put no di�eren
e in the tuple (W4;W 04). Of those, only a fra
tion of C027+Nwill mat
h one of the C0 unique entries in the table for W4 (whi
h is the sameas W 04). With probability 12N , the guessed key bits will mat
h those in the tableas well. Thus, the expe
ted number of 32-bit keys resulting in no di�eren
e in(W4;W 04) that pass phase 1 is:232 � �57�N2 ��642 � � C027+N � 12N = 219�2N � 3192� 113N +N263 � C0 :For 1-bit di�eren
es, the equation is232 � �57�N1 ��642 � � 12 � C126+N � 12N = 220�2N � 57�N63 � C1 :For 2-bit di�eren
es, the equation is232 � 1�642 � � 12 � C225+N � 12N = 221�2N � C263 :The 12 in this last equation a

ounts for whether the two di�eren
e bits in the�rst plaintext mat
h the table entry (the bits must be the same). Thus, theexpe
ted number of 
andidates to pass the phase 1 isT = 219�2N63 � �(3192� 113N +N2)C0 + (114� 2N)C1 + 4C2� : (2)The �rst step in phase 2 involves guessing enough key bits so that the re-sulting permuted data array just begins to overlap with W0 and W 00. The exa
tnumber of key bits guessed in this step is 4 � b 29�N4 
: Under the assumptionthat the permutation is 5% of the time required to do the full Se
urID hash, therunning time is equivalent toT � 24�b 29�N4 
 � 4� b 29�N4 
64 � 2� 0:05� s (3)



full hash operations, where s is the speedup fa
tor that 
an be obtained by takingadvantage of the redundan
y in the key with respe
t to the permutation. Thevalue of s is 96256 for N = 1, 1216 for N = 2::5, and 1 for all other values.We remark that in some 
ases, there is a 
han
e that the se
ond step ofphase 2 may be a bit more time 
onsuming than the �rst. A suÆ
ient but notne
essary 
ondition for step 1 to be the most time 
onsuming is if the fra
tion ofvalues that remain is less than b 29�N4 
16 of the values 
onsidered. This is usuallythe 
ase. We shall ignore the ex
eptional 
ases for now, but will deal with themwhen we present our �ltering speedups.Combined analysis: The running time of algorithm [1℄ for a parti
ular valueof N is expe
ted to be the approximately the sum of equations 3 and 1. ForN = 1::6, these running times are given in Table 1. Again, we reiterate thatthe table sizes are di�erent from [1℄ be
ause of an extra 
ondition due to thetime expansion, whi
h also gives a small improvement in the running time. Theanalysis for N = 1 
losely mat
hes the simulated results from [1℄5.Table 1. Computing the running time estimates of algorithm [1℄ for N = 1::6.N Table C0 C1 C2 T Time for Time for testing Totalsize phase 2, step 1 �nal 
andidates time1 12 5 2 0 225:0 247:0 240:6 247:02 152 11 64 44 224:3 243:2 241:3 243:53 1130 64 362 128 224:8 243:6 241:2 243:94 7292 453 1750 712 225:5 244:3 240:9 244:45 48212 2775 10614 3864 226:0 244:9 240:6 244:96 276788 15076 52716 19520 226:4 241:4 240:1 241:9Even though the number of 
andidates T after the �rst phase are approxi-mately the same as N goes from 1 to 2 and also from 5 to 6, the running times ofthe phase 2, step 1 drop signi�
antly. This is be
ause one less nibble of the key isbeing guessed, and an extra �ltering step is being added. In general, we see thepattern that larger values of N are 
ontributing less and less to the sum of therunning times, whi
h agrees with the 
onje
ture from [1℄. The total running timefor N = 1 to 6 is 247:7 and larger values of N would appear to add minimally tothis total. For vanishing di�erentials that involve � 4-bits, whi
h happens aboutone third of the time, preliminary analysis suggests that the run time is better.5 A small dis
repan
y for T exists due to the fa
t that their simulations involved apre
omputed table about twi
e as big ours.



5 Faster FilteringTable 1 illustrates that the tri
k to speeding up the key re
overy atta
k in [1℄ isfaster �ltering. We have found three ways in whi
h their third �ltering 
an besped up:1. Only in
lude entries in the pre
omputed table that a
tually 
an be derivedfrom the time expansion. In parti
ular, the values of the two bits in b (or b0)where the di�eren
es are lo
ated must be the same.2. In the original �lter, a separate permutation is 
omputed for ea
h trial key.This is ineÆ
ient, sin
e most of the permuted bits from one parti
ular per-mutation will overlap with those from many other permutations. Thus, we
an amortise the 
ost of the permutation 
omputations.3. We 
an dete
t ahead of time when a large portion of keys will result in \bad"permutations in steps 1 of both phase 1 and phase 2, and the �ltering pro
ess
an skip past 
hunks of these bad permutations.The �rst te
hnique was already applied to the analyses in the previous se
-tion. Without this improvement, the running time would have been about 50%worse.The se
ond te
hnique is aimed at redu
ing the numerator of the fa
tor4�b 29�N4 
64 = b 29�N4 
16 in equation 3. To do this, we view the key as a 64-bit
ounter, where k0 is the most signi�
ant bit and k63 is the least. In phase 2,step 1 of the �lter, the bits k0; : : : ; k31 are �xed and so are some of the leastsigni�
ant bits (the exa
t number depends upon N), so we 
an ex
lude these fornow. The keys are tried in order via a re
ursive pro
edure that handles one keynibble at a time. At the jth re
ursive bran
h, ea
h of the possibilities for nibbleK7+j are tried. The part of the permutation for that nibble is 
omputed, andthen the j+1st re
ursive bran
h is taken. The level of re
ursion stops when keynibble K7+b 29�N4 
 is rea
hed. Thus, the b 29�N4 
 from equation 3 gets repla
edwith the average 
ost per permutation trial, whi
h is Pb 29�N4 
�1i=0 2�4i � 1:07:Observe that when N = 1, this results in a fa
tor of 71:07 � 6:5 speedup. Thistri
k alone kno
ks more than 2 bits o� the running time.The third speedup is dependent upon the se
ond. It will apply in both phasesof the �ltering. During the pro
ess of trying a permutation, there will be large
hunks of bad trial keys that 
an be identi�ed immediately and skipped. Inparti
ular, whenever a di�eren
e bit is pla
ed outside of words (W0;W 00) and(W4;W 04), the key 
an be skipped be
ause the di�eren
e is not in a legal position.Moreover, any other key with the same most signi�
ant bits (up to the key nibblethat pla
ed the di�eren
e bit) will also result in illegal values, implying that theentire re
ursive bran
h 
an be skipped. Heuristi
ally, one would expe
t that thenumber of keys that get tested for �ltering in phase 2, step 1 to be about afra
tion of about �14+2N2 �=�642 � of the number for the atta
k in [1℄. However, thisover simpli�es the analysis. A more proper analysis 
an be done similar to ouranalysis in the previous se
tion.



The 
ombined speedups give the run times in Table 2. In all 
ases, phase2, step 1 has be
ome faster than the time for testing the �nal 
andidates. Therunning time for N = 1::6 is 243:6, so we 
onje
ture that the run time for N upto 16 is no more than 16=6� 243:6 � 245. We remark that the run times for thethird speedup ignore the overhead time for reje
ting keys in phase 2 where thedi�eren
e bit gets put outside of (W0;W 00), but su
h overhead time is expe
ted tomake little di�eren
e. We have also ignored the time for other �ltering steps of thealgorithm. Of those, only step 2 of phase 2 is expe
ted to have 
omparable 
ostto step 1 of phase 2. In fa
t, it 
an be more 
ostly, espe
ially when N � 2 mod 4.However, there are several possible speedups for this step, parti
ularly when N issmall (this restri
tion is for pra
ti
al reasons) where the run time be
omes mostrelevant. Su
h speedups involve using additional preo
omputed lookup tablesto determine valid keys from the remaining data bits and testing whether thehamming weight of the remaining data bits mat
hes that of the pre
omputedtable entries before blindly trying keys. Therefore, it seems fair to assume thatthe testing of �nal 
andidates will always be the dominant 
ost in the modi�edalgorithm.Table 2. Running times using our improved �lter, for N = 1::6.N Time for Time for testing Totalphase 2, step 1 �nal 
andidates time1 238:7 240:6 240:92 236:4 241:3 241:33 237:1 241:2 241:34 237:9 240:9 241:15 238:6 240:6 240:96 235:7 240:1 240:2Although it appears that we 
annot do mu
h better using only a single van-ishing di�erential, we 
an improve the situation if we use other information thatan atta
ker would have. In later se
tions we will show that we 
an improve thetime greatly if we take advantage of multiple vanishing di�erentials, or if wetake advantage of knowledge that no other vanishing di�erentials o

ur withina small time period of the observed one.6 Software ImplementationThe atta
k of Biryukov, Lano, and Preneel was spe
ially designed to keep RAMusage low - only one of the pre
omputed table entries needs to be in programmemory at a time. We tested our ideas only for N = 1 and 2-bit di�eren
es,and sin
e the table size is small, we took the freedom of implementing a slightvariant of their atta
k whi
h kept the whole pre
omputed table in memory aton
e.



We programmed all �ltering steps of both phases and the three main �lteringspeedups. In addition, we programmed an extra \table lookup" speedup thatwould improve the running time by a fa
tor of 8 for N = 1. The extra speedupis only appli
able for small values of N due to the memory requirements. Thus,the running time is expe
ted to be 8 times faster than the 238:7 listed in Table2. On our 2.4 GHz PC, this translates to about 8 days of e�ort.Our 
ode did the sear
h in numeri
al order, when the key is viewed as a
ounter as des
ribed in Se
tion 5. The only thing we did not do was testingthe �nal 
andidates using the real fun
tion. Instead, we just stopped when wearrived at the target key. So our implementation was designed to test and timethe �ltering only, in order to 
on�rm that �ltering is signi�
antly faster thantesting of the �nal 
andidates.At the time of writing, we have not done the full key sear
h yet. However,we have done a sear
h that starts out knowing the 
orre
t �rst nibble of the key.The key we were sear
hing for is 356b48b3ae15
271 whi
h yields a vanishingdi�erential when times 0x1
3ba8 and 0x1
3aa8 are sent in. We were able to�nd the key in 13:8 hours. If we assume that the full sear
h will take at most24 times longer, the full running time would be 9.2 days, whi
h is on target ofexpe
tations.7 Multiple Vanishing Di�erentialsThere are two s
enarios for multiple vanishing di�erentials: when they have thesame di�eren
e and when they have di�erent di�eren
es. The former is morelikely to o

ur, but in either 
ase we 
an speed up the atta
k.7.1 Multiple Vanishing Di�erentials with the Same Di�eren
eA

ording to 
omputer simulations, about 45% of the keys that had a 
ollisionover a two month period will a
tually have at least 2 
ollisions. There is a simpleexplanation for this, and a way to use the observation to speed up the key sear
heven more.Consider a vanishing di�erential whi
h 
omes from times t = T0T1T2 and t0 =T 00T 01T 02. As we saw earlier, the only bits that determine whether the vanishingdi�erential will o

ur at a parti
ular subround are those that get permuted intowords W0;W 00;W4; and W 04. Suppose we 
ip one of the bits in T2 and T 02 (thesame bit in ea
h). This bit will be repli
ated four times in the time expansion.If, after the permutation, none of those bits end up in W0;W 00;W4; or W 04, thenwe will witness another vanishing di�erential. The new vanishing di�erential willfollow the same di�eren
e path and disappear in the same subround. Thus, newinformation is learned that 
an be used to speed up the key sear
h, whi
h weexplain below. In the 
ase that another vanishing di�erential does not o

ur,information is also learned whi
h 
an improve the sear
h, whi
h is detailed inSe
tion 8.Following the above thought pro
ess, it is evident that:



{ Flipping time bits in T1; T 01 or T0; T 00 will only repli
ate the 
ipped bit twi
ein the expansion. Sin
e there are only two bits that are not allowed to be inW0;W 00;W4; andW 04, the 
ollision is more likely to o

ur. On the other hand,the time between the 
ollisions is in
reased, sin
e these are more signi�
anttime bits.{ Multiple vanishing di�erentials are more likely to o

ur when the �rst 
ol-lision happened in a small number of subrounds. This is be
ause the wordsW0;W 00;W4; and W 04 are smaller, giving more pla
es where the 
ipped bits
an land without interfering with the 
ollision.6{ The 
onverse of these observations is that when multiple vanishing di�er-entials o

ur, it is most often the 
ase that the 
ollisions all happened inthe same subround and followed the same di�eren
e path. Moreover, the
ollisions usually happen within a few subrounds.By simply eying the time data that 
aused the multiple vanishing di�eren-tials, one 
an determine with 
lose to 100% a

ura
y whether this situation hashappened. The signs of it are: 1) Same input di�eren
e for all vanishing di�er-entials, 2) All input times di�er in only a few bits, and 3) It is the same bitsthat di�er in all 
ases. An example is given in Appendix B.The atta
ker learns z � 2 bits whi
h 
annot be permuted to wordsW0;W 00;W4;or W 04. This new knowledge 
an be 
ombined with our third �ltering speedupto skip past more bad keys. The expe
ted number of �nal key 
andidates to betested be
omes a fra
tion of �50�2Nz �=�64z � of the values given in Table 2. SeeTable 3 for a summary of these �gures when z = 2, z = 4, and z = 8. The times
an be further redu
ed using information about where 
ertain related plaintextsdid not 
ause a vanishing di�erential: see Se
tion 8.Table 3. Number of �nal 
andidates assuming the atta
ker be
ame aware of z-bitsthat do not get permuted into words W0;W 00;W4; or W 04.N Number of �nal 
ands using Number of �nal Number of �nal Number of �nalonly a single 
ollision 
ands with z = 2 
ands with z = 4 
ands with z = 81 240:6 239:8 238:9 237:02 241:3 240:3 239:3 237:23 241:2 240:1 239:0 236:64 240:9 239:7 238:4 235:75 240:6 239:2 237:8 234:86 240:1 238:6 237:0 233:66 This is the reason for the apparent dis
repan
y between our resear
h 
laiming thatone needs to pre
ompute up to N = 16 in order to have a � 50% of �nd the keyand [1℄ 
laiming 12. In our view, the atta
ker has a single token and will performa key sear
h on
e a single vanishing di�erential has o

urred. In their view, theatta
ker has several tokens for a �xed period of time, and the atta
ker sele
ts avanishing di�erential randomly among all vanishing di�erentials that have o

urred[3℄. Sin
e their view in
ludes multiple vanishing di�erentials, the expe
ted numberof subrounds is less.



7.2 Multiple Vanishing Di�erentials with Di�erent Di�eren
esGiven two vanishing di�erentials with di�erent di�eren
es, the number of 
an-didate keys 
an be redu
ed signi�
antly by 
onstru
ting more e�e
tive �lters inea
h step. Denote the two pairs of vanishing di�erentials V1 and V2, and theirN values N1 and N2.We �rst make a guess of (N1; N2). The number of guesses will be quadrati
in the number of subrounds tested up to. The following is a simpli�ed sket
h forthe new �ltering algorithm.{ First Phase. Take V1 and guess the �rst 32 bits of the key. For ea
h 32-bit keythat produ
es a valid (W4;W 04), test it against V2 to see if it also produ
esa valid (W4;W 04).{ Se
ond Phase. For 32-bit keys that pass phase 1, do the same thing to guessthe se
ond 32 bits of the key.The main idea here is to do double �ltering within ea
h stage so that thenumber of 
andidate keys is further redu
ed in 
omparison to when only a singlevanishing di�erential is used.When N1 = N2 = 1, the probability that a 32-bit key passes phase 1 (seeTable 1) is 225:0=232 = 2�7:0 (assuming using the original �lter of [1℄ - it is evenmore redu
ed using our improved �lter), and the probability that a 64-bit keypasses both phases is 240:6=264 = 2�23:4. If the two vanishing di�erentials areindeed independent, we would expe
t the number of keys to pass the �rst phaseto be 232 � 2�7:0 � 2�7:0 = 218and the number of keys to pass both phases to be264 � 2�23:4 � 2�23:4 = 217:2:Experimental results will reveal whether these �gures are attainable in pra
ti
e,but even if they are not, a big speed up is still expe
ted. The situation shouldbe better in the 
ases where di�eren
es with hamming weights � 4 are involved.We should mention the 
aveat that the 
han
es of su

ess using the abovete
hnique are lower, sin
e we need both di�eren
e pairs to disappear within 16subrounds. On the other hand, the 
ost of trying this algorithm for two di�eren
epairs is expe
ted to be substantially 
heaper than trying the previous algorithmsfor only one. Therefore, the double �ltering should add negligible overhead tothe sear
h in the 
ases that it fails, and would greatly speedup the sear
h whenit is su

essful.8 Using Non-Vanishing Di�erentials with a VanishingDi�erentialIn Se
tion 7.1, we argued that even if only a single vanishing di�erential o

ursover some time period, the sear
h 
an still be sped up if one takes advantage ofknowing where related di�erentials do not vanish. Here, we give the details.



Assume a vanishing di�erential o

urred at times t and t0, but no vanishingdi�erential o

urred among the time pairs (t�2i; t0�2i) for i = 2; : : : ; j. We startwith i � 2 be
ause in the most typi
al 
ase, where authenti
ators are displayedevery minute, the least two signi�
ant bits of the time are 0 (see Se
tion 2.1). Forthe values 2 � i � 7, the di�eren
e is repli
ated 4 times in the time expansion,and for i � 8, it is repli
ated twi
e.For ea
h value of i, we learn a set of 2 or 4 bits for whi
h at least one in ea
hset must be permuted into the wordsW0;W 00;W4; or W 04. Let us label these setsas U2; : : : ; Uj . For simpli
ity, we will take j = 13, whi
h 
orresponds to no othervanishing di�erential within a window of 2.8 days before or after the observedone. So, we are interested in the probability of at least one bit in ea
h of thesesets getting permuted into words W0;W 00;W4; or W 04.We say a set Ui is represented with 
i � 1 bits if exa
tly 
i bits from Ui getpermuted into W0;W 00;W4; or W 04. The number of ways 2N + 14 bits 
an besele
ted to end up in W0;W 00;W4; or W 04 is � 642N+14�. The number of ways thatexa
tly 
i bits are represented in the sele
tion for 2 � i � 13 is7Yi=2�4
i�� 13Yi=8�2
i��� 282N + 14�P13i=2 
i�:The �rst produ
t tells the number of ways of sele
ting 
i bits from ea
h set thathas 4 bits, the se
ond produ
t is the same ex
ept for among sets with 2 bits, andthe third produ
t is the number of ways of sele
ting the remaining bits from the28 bits that are not among any of the Ui. Thus, our desired probability is:Xall valid (
2; : : : ; 
13) Q7i=2 � 4
i��Q13i=8 � 2
i�� � 282N+14�P13i=2 
i�� 642N+14� (4)where valid (
2; : : : ; 
13) means that ea
h value is at least 1, but the sum of allvalues is no more than 2N + 14.We have 
omputed these probabilities using the Magma [6℄ 
omputer algebrapa
kage. The probabilities, and 
orresponding running time for the testing of�nal 
andidates are given in Table 4. Monte Carlo experiments have been doneto double-
he
k the a

ura
y of these results. The fa
t that the probabilities areso small for low values of N is 
onsistent with the argument in Se
tion 7.1 thatwhen a 
ollision happens early, other 
ollisions are likely to follow soon after.One should not assume that the times for the testing the �nal 
andidatesgiven in Table 4 are the dominant 
ost in applying this strategy. Unlike the�ltering speedups given in Se
tions 5 and 7.1, the use of non-vanishing di�er-entials seem to require more overhead in 
he
king the 
onditions. So althoughwe do not have an exa
t running time, we 
on�dently surmise that the use ofnon-vanishing di�erentials will redu
e the time down below 240 hash operations.



Table 4. Assuming no more vanishing di�erentials o

ur within 2.8 days before orafter of a given vanishing di�erential, the �nal testing of 
andidates 
an be improvedby the amounts given in this table.N Fra
tion of keys Time for testinghaving property �nal 
andidates1 2�14:3 226:32 2�11:7 229:63 2�9:7 231:54 2�8:1 232:85 2�6:7 233:96 2�5:7 234:49 Con
lusionThe design of the alleged Se
urID hash fun
tion appears to have several prob-lems. The most serious appears to be 
ollisions that happen far too frequentlyand very early within the 
omputation. The involvement of only a small fra
tionof bits in the subrounds exa
erbates the problem. Moreover, the redundan
y ofthe key with respe
t to the initial permutation adds an extra avenue of atta
k.Altogether, ASHF is substantially weaker than one would expe
t from a modernday hash fun
tion.Our resear
h has shown that the key re
overy atta
k in [1℄ 
an be sped upby more than a fa
tor of 8, giving an improved atta
k with time 
omplexityabout 245 hash operations. In pra
ti
e, the atta
ker 
an a
tually obtain moreinformation than just a single 
ollision. We have shown that, with this extrainformation, the time 
omplexity 
an be further redu
ed to about 240 hash op-erations, making the atta
k doable by anyone with a modern PC.a
knowledgements: We are grateful to Joe Lano for his insights and helpful
omments, and for his hospitality while the �rst author of this do
ument visitedBrussels.Referen
es1. A. Biryukov, J. Lano, B. Preneel. Cryptanalysis of the Alleged Se
urID Hash Fun
-tion, In Pro
eedings of SAC 2003, to appear in LNCS. A longer version of this paperis available online from http://eprint.ia
r.org/2003/162.2. S. Contini, The E�e
t of a Single Vanishing Di�erential in ASHF, s
i.
rypt post,6 Sep, 2003.3. J. Lano, private 
ommuni
ation, 28 O
t, 2003.4. I.C. Wiener, Sample Se
urID Token Emulator with Token Se
ret Import, postto BugTraq, http://ar
hives.neohapsis.
om/ar
hives/bugtraq/2000-12/0428.html ,21 De
, 2000.



5. Tips on Reassigning Se
urID Cards and Requesting New Se
urIDCards, AMS Newsletter, Mar
h 2002, Issue No. 117. Available athttp://www.utoronto.
a/ams/news/117/html/117-5.htm .6. The Magma Computer Algebra Pa
kage. Information available athttp://magma.maths.usyd.edu.au/magma/ .A Analysing Pre
omputed TablesUsing 
omputer experiments, we were able to exhaustively sear
h for valid entriesin the pre
omputed table up to N = 6 for 2-bit vanishing di�erentials and up toN = 4 for 4-bit di�erentials at this point. It was predi
ted in [1℄ that the size ofthe table gets larger by a fa
tor of 8 as N grows and it may take up to 244 stepsand 500GB memory to pre
ompute the table for N = 12.Here we make an attempt to derive the entries in the table analyti
ally whenN = 1. If we 
ould extend the method to N > 1, we may be able to enumeratethe entries analyti
ally without expensive pre
omputation and storage.We start with Equation (6) in [1℄. Note that we are trying to �nd 
onstraintsfor the values in the subround i�1. So for simpli
ity, we will omit the supers
ripti� 1 from now on, and Equation (6) be
ames the following.B04 = ((((B0 >>> 1)� 1) >>> 1)� 1)�B4; (5)B00 = 100�B4 :We �rst note that B0 and B00 have to be di�erent in the msb. Therefore,there is at least one bit di�eren
e in (B0; B00). The other bit di�eren
e 
an bepla
ed either in the remaining 7 bits of (B0; B00) or any of the 8 bits in (B4; B04).Rewriting Equation 5, we haveB0 = (((B4 �B04) + 1) <<< 1) + 1) <<< 1:Sin
e there are at most one bit di�eren
e in (B4; B04), it 
an only take on 9possible values: 0 (for no bit di�eren
e) or 2i (for one bit di�eren
e in bit i).Below, for ea
h possible value of (B4; B04), we enumerate the possible values of(B0; B00). During the enumeartion, we also take into 
onsideration the additionalrequirement that the two bits in b where the di�eren
es o

ur must be the same(See Se
tion 4).{ If B4 � B04 = 0, then B0 =0x06. Sin
e there is no bit di�eren
e in (B4; B04),we know that B0 and B00 di�er in two bits { one of them must be the msb,and the other 
an be any of the remaining 7 bits.B4 �B04 B0 B00 k00x00 0x06 0x87, 84, 82, 8e, 96, a6, 
6 0The additional requirement rules out two possible values of B00 (0x84, 0x82),leaving 5 possible 
ombinations.



{ If B4 � B04 = 2i, then there is only one bit di�eren
e in (B0; B00), whi
h isthe msb. In this 
ase, there are only one 
hoi
e for B00 for ea
h B0.B4 �B04 B0 B00 k00x01 0x0a 0x8a 00x02 0x0e 0x8e 00x04 0x16 0x96 00x08 0x26 0xa6 00x10 0x46 0x
6 00x20 0x86 0x06 10x40 0x07 0x87 00x80 0x08 0x88 0The additional requirement rules out every 
ombination above ex
ept the�rst one (B0 =0x0a and B00 =0x8a).Combining the above two 
ases, we have 5 + 1 = 6 pairs of (B0; B00), ea
h ofwhi
h giving a valid tuple (k0; B0; B4; B00; B04), where k0 is the msb of B0.Finally, note that if (k0; a; b; 
; d) is a valid tuple, than (k0; 
; d; a; b) is alsoa valid typle. For example, if (0, 0x06, 0xdd, 0x87, 0xdd) is valid, then (0,0x87, 0xdd, 0x06, 0xdd) is also valid. Therefore, the table 
onsists of a total of2� 6 = 12 entries. These entries mat
h the results from our simulation.B Example of Multiple Vanishing Di�erentialsTable 5 is an example where 16 vanishing di�erentials happened within 1.3 days.All had the same di�eren
e path, whi
h 
ollided at N = 2. One 
an see thatonly the 4 least signi�
ant bits of time byte T1 di�er. Sin
e ea
h of these bits aredupli
ated twi
e, the expe
ted running time of the last steps is given by z = 8in Table 3. Taking into 
onsideration N = 2, the total time is expe
ted to be onthe order of 238 operations.



Table 5. Example of 16 vanishing di�erentials that happened within 1.3 days, usingkey b5 a9 f4 8
 16 23 a6 1a.First plaintext Se
ond plaintext1e 80 8
 8
 1e 80 8
 8
 1e 90 8
 8
 1e 90 8
 8
1e 81 8
 8
 1e 81 8
 8
 1e 91 8
 8
 1e 91 8
 8
1e 82 8
 8
 1e 82 8
 8
 1e 92 8
 8
 1e 92 8
 8
1e 83 8
 8
 1e 83 8
 8
 1e 93 8
 8
 1e 93 8
 8
1e 84 8
 8
 1e 84 8
 8
 1e 94 8
 8
 1e 94 8
 8
1e 85 8
 8
 1e 85 8
 8
 1e 95 8
 8
 1e 95 8
 8
1e 86 8
 8
 1e 86 8
 8
 1e 96 8
 8
 1e 96 8
 8
1e 87 8
 8
 1e 87 8
 8
 1e 97 8
 8
 1e 97 8
 8
1e 88 8
 8
 1e 88 8
 8
 1e 98 8
 8
 1e 98 8
 8
1e 89 8
 8
 1e 89 8
 8
 1e 99 8
 8
 1e 99 8
 8
1e 8a 8
 8
 1e 8a 8
 8
 1e 9a 8
 8
 1e 9a 8
 8
1e 8b 8
 8
 1e 8b 8
 8
 1e 9b 8
 8
 1e 9b 8
 8
1e 8
 8
 8
 1e 8
 8
 8
 1e 9
 8
 8
 1e 9
 8
 8
1e 8d 8
 8
 1e 8d 8
 8
 1e 9d 8
 8
 1e 9d 8
 8
1e 8e 8
 8
 1e 8e 8
 8
 1e 9e 8
 8
 1e 9e 8
 8
1e 8f 8
 8
 1e 8f 8
 8
 1e 9f 8
 8
 1e 9f 8
 8



