Fast Software-Based Attacks on SecurlID

Scott Contini' and Yiqun Lisa Yin?

! Macquarie University, Computing Department, NSW 2109 Australia,
scontini@comp.mq.edu.au,
% Princeton University, EE Department, Princeton, NJ 08540, USA,
yyin@princeton.edu

Abstract. SecurID is a widely used hardware token for strengthening
authentication in a corporate environment. Recently, Biryukov, Lano,
and Preneel presented an attack on the alleged SecurID hash function [1].
They showed that vanishing differentials — collisions of the hash function
— occur quite frequently, and that such differentials allow an attacker to
recover the secret key in the token much faster than exhaustive search.
Based on simulation results, they estimated that the running time of
their attack would be about 2*® full hash operations when using only a
single 2-bit vanishing differential.

In this paper, we present techniques to improve the [1] attack. Our theo-
retical analysis and implementation experiments show that the running
time of our improved attack is about 2*° hash operations. We then inves-
tigate into the use of extra information that an attacker would typically
have: multiple vanishing differentials or knowledge that other vanishing
differentials do not occur in a nearby time period. When using the extra
information, we believe that key recovery can always be accomplished
within about 2%° hash operations.

1 Introduction

The SecurlID, developed by RSA Security, is a hardware token used for strength-
ening authentication when logging in to remote systems, since passwords by
themselves tend to be easily guessable and subject to dictionary attacks. The
SecurID adds an “extra factor” of authentication: one must not only prove them-
selves by getting their password correct, but also by demonstrating that they
have the SecurID token assigned to them. The latter is done by entering the 6-
or 8-digit code that is being displayed on the token at the time of login.

Each token has within it a 64-bit secret key and an internal clock. Every
minute, or every half-minute in some tokens, the secret key and the current time
are sent through a cryptographic hash function. The output of the hash function
determines the next two authenticator codes, which are displayed on the LCD
screen. The secret key is also known to the “ACE/server”, so that the same
authenticator can independently be computed and verified at the remote end.

If ever a user loses their token, they must report it so that the current token
can be deactivated and replaced with a new one. Thus, the user bears some
responsibility in maintaining the security of the system. On the other hand, if

the user were to temporarily leave his token in a place where it could be observed
by others and then later recover it, then it should not be the case that the security
of the device could be entirely breached, assuming the device is well-designed.

The scenario just described was considered in a recent publication by Biryukov,
Lano, and Preneel [1], where they showed that the hash function that is alleged
to be used by SecurID [4] (ASHF) has weak properties that could allow one
to find the key much faster than exhaustive search. The attack they describe
requires recording all outputs of the SecurID using a PC camera with OCR
software, and then later searching the outputs for indication of a vanishing dif-
ferential — two closely related input times that result in the same output hash.
If one is discovered, the attacker then has a good chance of finding the internal
secret key using a search algorithm that they estimated to be equivalent to 248
hash function operations. On a 2.4 GHz PC, 2*® hash operations take about 111
years®. It would require over 1300 of these PC’s to find the key in a month.

In this paper, we present three techniques to significantly speed up the filter-
ing, which is the bottleneck of their attack. Our theoretical analysis and imple-
mentation experiments show that the time complexity can be reduced to about
245 hash operations when using only a single vanishing differential.

We then investigate into the use of extra information that an attacker would
ordinarily have, in order to speed up the attack further. This information consists
of either multiple vanishing differentials, or knowledge that no other vanishing
differentials occur in a nearby time period of the observed one. In either case,
the running time can be reduced significantly. Our preliminary analysis suggests
that after a vanishing differential is observed, the attacker would nearly always
be able to perform the key search algorithm in 2%° hash operations or less. On
a typical PC, this can be done in about 5 months, making the computing power
requirements for the search attainable by almost any individual.

The success probability of all attacks (including [1]) depend upon how long
the attacker must wait for a vanishing differential to occur. Simulations have
shown that in any one-week period, 1% of the SecurID cards will have a vanishing
differential; in any one-year period, 35% of the tokens will have a vanishing
differential. According to these statistics, we mention two realistic scenarios in
which the token could be compromised. In the first scenario, a user may be on
vacation for one week and left his token behind in a place where others could
observe it, in which case there is a small but definitely non-negligible chance that
a collision would happen. In the second scenario, the success is much more likely.
Since the cost of SecurID tokens is very expensive, tokens are often reassigned
to new users when a previous owner leaves a company [5]. This is a bad idea,
since the original user would have a high chance of being able to find the internal
key, assuming he recorded many of the outputs while it was in his possession. In
light of our new results, token reassignment becomes a very serious risk.

% Requires some optimisations to Wiener’s code, such as re-ordering bytes to eliminate
bswaps.

2 The SecurID Hash Function

We provide a high level description of the alleged SecurID hash function, follow-
ing the same notation as in [1] wherever possible. More detailed descriptions can
be found in [1,4].

The function can be modeled as a keyed hash function y = H (k,t), where k
is a 64-bit secret key stored on the SecurID token, ¢ is a 24-bit time obtained
from the clock every 30 or 60 seconds, and y is two 6- or 8-digit codes. The
function consists of the following steps:

— an expansion function that expands t into a 64-bit “plaintext”,

— an initial key-dependent permutation,

— four key-dependent rounds, each of which has 64 subrounds,

— an exclusive-or of the output of each round onto the key,

— a final key-dependent permutation (same algorithm as the initial one), and
— a key-dependent conversion from hexadecimal to decimal.

Throughout the paper, we use the following notation to represent bits, nib-
bles, and bytes in a word: a 64-bit word b, consisting of bytes By, ..., Br, nibbles
By, ..., B15, and bits bgb;...bgs. The nibble By corresponds to the most significant
nibble of byte 0 and the bit by corresponds to the most significant bit. The other
values are as one would expect.

For our analysis, only the time expansion, key-dependent permutation, and
the key-dependent rounds are of interest. In the next three sections, we will
describe them in more detail.

2.1 Time Expansion

The time ¢ is a 24-bit number representing twice the number of minutes since
January 1, 1986 GMT. So the least significant bit is always 0, and if the token
outputs codes every minute, then the expansion function will clear the 2nd least
significant bit as well. Let the result be represented by the bytes Tp717> where
Tp is the most significant. The expansion is of the form ToT1T2T>TyT1T>T>. Note
that the least significant byte is replicated 4 times, and the other two bytes are
replicated 2 times each.

2.2 Key-Dependent Permutation

We give a more insightful description of how the ASHF key-dependent permu-
tation really works. The original code, obtained by Wiener [4] (apparently by
reverse engineering the ACE/server code), is quite cryptic. Our description is
different, but produces an equivalent output to his code.

The key-dependent permutation uses the key nibbles Ky ...K;5 in order to
select bits of the data for output into a permuted_data array. The data bits will
be taken 4 at a time, copied to the permuted_data array from right to left (i.e.
higher indexes are filled in first), and then removed from the original data array.

Every time 4 bits are removed from the original data array, the size shrinks by
4. Indexes within that array are always modulo the number of bits remaining.

A pointer m is first initialised to the index Kq. The first 4 bits that are taken
are those right before the index of m. For example, if Ky is 0x2, then bits 62,
63, 0, and 1 are taken. As these bits are removed from the array, the index m
is adjusted accordingly so that it continues to point at the same bit it pointed
to before the 4 bits were removed. The pointer m is then increased by a value
of Ky, and the 4 bits prior to this are taken, as before. The process is repeated
until all bits have been taken.

Note that once the algorithm gets down to the final 3 or less key and data nib-
bles, the number of data bits remaining is at most 12 yet the number of choices
for each key nibble is 16. Hence, multiple keys will result in the same permuta-
tion, which we call “redundancy of the key with respect to the permutation.”
This was used in the attack [2], and to a lesser extent in [1].

2.3 Key-Dependent Rounds

Each of the four key-dependent rounds takes as inputs a 64-bit key k£ and a
64-bit value b, and outputs a 64-bit value b%%. The key k is then exclusive-ored
with the output b%* to produce the new key to be used in the next round.

One round consists of 64 subrounds. For i = 1,...,64, subround ¢ transforms
bi~! into b’ using a single key bit k;_;. Depending on whether the key k;_; is
equal to bf)_l, the value b*~! is transformed according to two different functions,
denoted by R and S. The details of R and S are not so important for our
research, with the exception of two properties:

1. Both the R and the S functions are byte-oriented, that is, they update each
of the eight bytes in b’ separately. After the update, only bytes By and By
are modified, and the other six bytes remain the same.

2. The way R and S are used causes the hash function to have easy-to-find
collisions after a small number of subrounds within the first round.

At the end of each subround, all the bits are rotated one bit position to the left.
So, up to subround N < 25 of the first round, only 2N + 14 data bits have been
involved in the computation. This property is used in the Biryukov, Lano, and
Preneel attack.

3 The Attack of Biryukov, Lano, and Preneel

The attack of Biryukov, Lano, and Preneel [1] can determine the full 64-bit
secret key when given a single collision of the hash function. Suppose that two
input times ¢ and ¢’ get expanded and permuted to become 64-bit words b and
b', and the two words collide in subround NN of the first round. The collision from
the pair (¢,t') is called a vanishing differential. In their key recovery attack, the
attacker first guesses the subround N, and then uses a filtering algorithm for each
N to search the set of candidate keys that make such a vanishing differential

possible. According to their simulations, one only needs to do up to N = 12 to
have a 50% chance of finding the key.* A summary of their description for N = 1
is given below. For simplicity, assume that a 2-bit vanishing differential is used,
though this need not be the case.

A one-time cost precomputation table is needed before the filtering starts.
The table contains entries the form

(k();BO;B47B67-Ble)'

where ko represents a key bit, (Bg, Bs) represent data bytes of b after the initial
keyed permutation, and (B, B}) represent data bytes of b’ after the permuta-
tion. The exact entries in the table are those where (By, By) differs from (B, B})
in exactly 2-bits known as the “difference bits,” and for which a vanishing dif-
ferential occurs during the first subround. Since none of the other key bits or
data bytes are involved in the first subround, whether a vanishing differential
can happen or not for NV =1 is completely characterised by this table.

For each entry in the table, the filtering proceeds in two phases, each of which
contains two steps.

— First Phase. (process the first half of the key bits)

e Step One. Guess key bits ki, ..., ko7. Together with ko, 28 key bits are
set, which determines 28 bits of b and b’ after the initial key-dependent
permutation. Since these bits overlap with the entries in the table in
nibbles By and B, a key value that does not produce the correct nibbles
for both b and b’ is filtered out.

e Second Step. Continue to guess key bits kg, ..., k31. Filtering is done
using overlaps in nibbles Bg and Bj.

— Second Phase. (process the second half of the key bits)

e First Step. Continue to guess key bits k3o, ..., ks9. Filtering is done using
overlaps in nibbles By and Bf.

e Second Step. Continue to guess key bits kgo, ---, kg3- Filtering is done
using overlaps in nibbles By and By,.

Finally, each candidate key that passes the filtering is tested by performing a
full hash function to see if it is the correct key. For general N, the two phases of
filtering each involve [ZXX] data nibbles, so the phases each have [ZEX] steps.

4 Analysis of the Biryukov, Lano, and Preneel Attack

Biryukov, Lano, and Preneel estimated the time complexity of their attack
through simulation. They provided results for N = 1: step 1 of phase 1 re-
duced the number of possibilities to 227, step 2 of phase 1 further reduced the
count to to 22°, step 1 of phase 2 increased the count to 2%°, and step 2 of phase

* Our own simulations suggest that one needs to search up to N = 16. The discrepancy
is due to differences in the way the attack is viewed, which we elaborate on in Section
7.1. For larger values of IV, the cost of the precomputation stage becomes prohibitive.

2 resulted in 2*! true candidates. For larger values of N, they expect that the
complexity of the attack would be lower due to stronger filtering.

Here we analyse their algorithm, giving some mathematical justification for
the simulation results they observed and also showing that their conjecture of
the filtering improving for larger N appears to be correct. In our analysis, we
sometimes treat probabilities as if they are independent, which is not always
true, but it is assumed that it provides a reasonable approximation.

Some properties of the precomputed tables are used in the analysis. For a
given value of N, the table entries are of the following form:

— legal values for the key bits in indices 0,..., N — 1,

— legal values for the plaintext pairs after the initial permutation in bit indices
32,33,...,384+ N which we label as (Wy, W) (we use the subscript 4 because
the words begins at byte By), and

— legal values for the plaintext pairs after the initial permutation in bit indices
0,1,...,6 + N which we label as (Wy, W} (the word begins at byte Byp).

The words Wy, W§, Wy, W, each consist of 7+ N bits and the number of key
bits is IV. By “legal values” we mean that the combination of plaintext bits after
the initial permutation and key bits will cause the difference to vanish in sub-
round V. We also have one other requirement, which was previously overlooked
(including in an earlier version of this research): the values of the two bits in
b (or b') where the differences are located must be the same, due to the way
the time expansion works. This reduces the number of table entries and results
in a speedup to the filtering. Although this is one of our three main filtering
speedups, we apply it to the analysis of the original [1] algorithm in order to
keep things as clean as possible.

Analysis of final number of candidates: Analysing the final step is equiva-
lent to determining the true number of candidates that need to be tested with
the full SecurID hash function. The expected number of true candidates can
easily be determined since anything that matches an entry in the precomputed
table will result in a vanishing differential. In other words, the entries in the
table are not only a necessary set of cases for a vanishing differential to occur,
but also sufficient.
For each entry in the precomputed table, we have:

— Only a portion of about 1/(5) of the 2 keys will permute the 2 difference
bits into the locations corresponding to what is in that table entry.

— With probability %, the value of the two difference bits will match those in
the table (recall, the 2 bits in b must be the same, and the corresponding
bits in b’ are the complement).

— With probability 221\,%, the remaining permuted data bits will match the
table entry.

— With probability 2%\, the guessed key bits will match the entry of the table.

Hence, the expected number of final candidates is:

1 1

1
tableSiZeX264X—X§XmX2—N. (]_)

1
(%)

Run time analysis of phase 2, step 1: Phase 2, step 1 of the Biryukov, Lano,
and Preneel attack is typically the dominant cost. To analyse it, we must first
determine the number of candidates passing phase 1.

Define Cy to be the number of unique table entries of the form (ko, . .., kn—1, Wy, Wy)
where W, = W, C; similarly except Wy @ W, having hamming weight 1, and
C> similarly except Wy & W, having hamming weight 2.

Among the of 252 key bits considered in phase 1, a fraction of (°",;") /(%)
will put no difference in the tuple (W4, Wy). Of those, only a fraction of 27C+°N
will match one of the Cp unique entries in the table for W, (which is the same
as W{). With probability sk, the guessed key bits will match those in the table
as well. Thus, the expected number of 32-bit keys resulting in no difference in
(W4, W) that pass phase 1 is:

CoN) ¢ L _ i on 3192 13N + N2

(65 C 2N CoN 63

Co .

(57IN) 1 Ci 1 — 220—2N x 57— N

(6 "2 7 26N XN 63

XCl.

For 2-bit differences, the equation is
o 1
64
(%)
1

The 3 in this last equation accounts for whether the two difference bits in the

first plaintext match the table entry (the bits must be the same). Thus, the
expected number of candidates to pass the phase 1 is

Cy 1 — 921-2N o 9

32
2 2+N < oN 63

1
X = X
2

219—2N

T=
63

x [(3192 — 113N + N?)Cp + (114 — 2N)C; +4Cs] . (2)

The first step in phase 2 involves guessing enough key bits so that the re-

sulting permuted data array just begins to overlap with Wy and W{. The exact
number of key bits guessed in this step is 4 x L#J. Under the assumption

that the permutation is 5% of the time required to do the full SecurID hash, the

running time is equivalent to

294—NJ y 4 x LZQZNJ
64

T x 241 x 2% 0.05 % s (3)

full hash operations, where s is the speedup factor that can be obtained by taking
advantage of the redundancy in the key with respect to the permutation. The

value of s is % for N =1, % for N =2..5, and 1 for all other values.

We remark that in some cases, there is a chance that the second step of
phase 2 may be a bit more time consuming than the first. A sufficient but not
necessary condition for step 1 to be the most time consuming is if the fraction of

29—-N
values that remain is less than % of the values considered. This is usually
the case. We shall ignore the exceptional cases for now, but will deal with them
when we present our filtering speedups.

Combined analysis: The running time of algorithm [1] for a particular value
of N is expected to be the approximately the sum of equations 3 and 1. For
N = 1..6, these running times are given in Table 1. Again, we reiterate that
the table sizes are different from [1] because of an extra condition due to the
time expansion, which also gives a small improvement in the running time. The
analysis for N =1 closely matches the simulated results from [1]°.

Table 1. Computing the running time estimates of algorithm [1] for N = 1..6.

N| Table Co C1 Co| T Time for Time for testing|Total

size phase 2, step 1|final candidates | time
1 12 5 2 0 225.0 247.0 240.6 247.0
2 152 11 64 44 224.3 243.2 241.3 243.5
3| 1130] 64| 362| 1282248 2143.6 2412 21439
4| 7292 453| 1750 712|2%5-° Q143 210-9 gt4-4
5 | 48212 2775[10614| 3864|226-° o449 140-6 o449
6 |276788|15076|52716/19520(226-4 o414 1401 2419

Even though the number of candidates 7" after the first phase are approxi-
mately the same as IV goes from 1 to 2 and also from 5 to 6, the running times of
the phase 2, step 1 drop significantly. This is because one less nibble of the key is
being guessed, and an extra filtering step is being added. In general, we see the
pattern that larger values of IV are contributing less and less to the sum of the
running times, which agrees with the conjecture from [1]. The total running time
for N =1 to 6 is 277 and larger values of N would appear to add minimally to
this total. For vanishing differentials that involve > 4-bits, which happens about
one third of the time, preliminary analysis suggests that the run time is better.

% A small discrepancy for T exists due to the fact that their simulations involved a
precomputed table about twice as big ours.

5 Faster Filtering

Table 1 illustrates that the trick to speeding up the key recovery attack in [1] is
faster filtering. We have found three ways in which their third filtering can be
sped up:

1. Only include entries in the precomputed table that actually can be derived
from the time expansion. In particular, the values of the two bits in b (or b')
where the differences are located must be the same.

2. In the original filter, a separate permutation is computed for each trial key.
This is inefficient, since most of the permuted bits from one particular per-
mutation will overlap with those from many other permutations. Thus, we
can amortise the cost of the permutation computations.

3. We can detect ahead of time when a large portion of keys will result in “bad”
permutations in steps 1 of both phase 1 and phase 2, and the filtering process
can skip past chunks of these bad permutations.

The first technique was already applied to the analyses in the previous sec-
tion. Without this improvement, the running time would have been about 50%
worse.

The second technique is aimed at reducing the numerator of the factor
4XLZTNJ = B in equation 3. To do this, we view the key as a 64-bit
counter, where ko is the most significant bit and kg3 is the least. In phase 2,
step 1 of the filter, the bits kg,..., ks are fixed and so are some of the least
significant bits (the exact number depends upon N), so we can exclude these for
now. The keys are tried in order via a recursive procedure that handles one key
nibble at a time. At the jth recursive branch, each of the possibilities for nibble
K74; are tried. The part of the permutation for that nibble is computed, and

then the j + 15 recursive branch is taken. The level of recursion stops when key

nibble Ky y|20-n is reached. Thus, the L29ZNJ from equation 3 gets replaced

29— N

with the average cost per permutation trial, which is Z}ZOTJ_l 274 ~ 1.07.
Observe that when N = 1, this results in a factor of TB7 ~ 6.5 speedup. This
trick alone knocks more than 2 bits off the running time.

The third speedup is dependent upon the second. It will apply in both phases
of the filtering. During the process of trying a permutation, there will be large
chunks of bad trial keys that can be identified immediately and skipped. In
particular, whenever a difference bit is placed outside of words (Wy, Wj) and
(W4, W), the key can be skipped because the difference is not in a legal position.
Moreover, any other key with the same most significant bits (up to the key nibble
that placed the difference bit) will also result in illegal values, implying that the
entire recursive branch can be skipped. Heuristically, one would expect that the
number of keys that get tested for filtering in phase 2, step 1 to be about a
fraction of about (14221\’)/(624) of the number for the attack in [1]. However, this
over simplifies the analysis. A more proper analysis can be done similar to our

analysis in the previous section.

The combined speedups give the run times in Table 2. In all cases, phase
2, step 1 has become faster than the time for testing the final candidates. The
running time for N = 1..6 is 2*3:%, so we conjecture that the run time for N up
to 16 is no more than 16/6 x 2%3-6 ~ 24°. We remark that the run times for the
third speedup ignore the overhead time for rejecting keys in phase 2 where the
difference bit gets put outside of (Wy, W), but such overhead time is expected to
make little difference. We have also ignored the time for other filtering steps of the
algorithm. Of those, only step 2 of phase 2 is expected to have comparable cost
to step 1 of phase 2. In fact, it can be more costly, especially when N = 2 mod 4.
However, there are several possible speedups for this step, particularly when NV is
small (this restriction is for practical reasons) where the run time becomes most
relevant. Such speedups involve using additional preocomputed lookup tables
to determine valid keys from the remaining data bits and testing whether the
hamming weight of the remaining data bits matches that of the precomputed
table entries before blindly trying keys. Therefore, it seems fair to assume that
the testing of final candidates will always be the dominant cost in the modified
algorithm.

Table 2. Running times using our improved filter, for N = 1..6.

N| Time for |Time for testing|Total

phase 2, step 1|final candidates | time
1 9387 9405 9109
9 936.4 941.3 941.3
3 9371 941.2 941.3
4 937.9 940.9 941.1
5 938.6 940.6 940.9
6 935.7 9401 940.2

Although it appears that we cannot do much better using only a single van-
ishing differential, we can improve the situation if we use other information that
an attacker would have. In later sections we will show that we can improve the
time greatly if we take advantage of multiple vanishing differentials, or if we
take advantage of knowledge that no other vanishing differentials occur within
a small time period of the observed one.

6 Software Implementation

The attack of Biryukov, Lano, and Preneel was specially designed to keep RAM
usage low - only one of the precomputed table entries needs to be in program
memory at a time. We tested our ideas only for N = 1 and 2-bit differences,
and since the table size is small, we took the freedom of implementing a slight
variant of their attack which kept the whole precomputed table in memory at
once.

We programmed all filtering steps of both phases and the three main filtering
speedups. In addition, we programmed an extra “table lookup” speedup that
would improve the running time by a factor of 8 for N = 1. The extra speedup
is only applicable for small values of N due to the memory requirements. Thus,
the running time is expected to be 8 times faster than the 2387 listed in Table
2. On our 2.4 GHz PC, this translates to about 8 days of effort.

Our code did the search in numerical order, when the key is viewed as a
counter as described in Section 5. The only thing we did not do was testing
the final candidates using the real function. Instead, we just stopped when we
arrived at the target key. So our implementation was designed to test and time
the filtering only, in order to confirm that filtering is significantly faster than
testing of the final candidates.

At the time of writing, we have not done the full key search yet. However,
we have done a search that starts out knowing the correct first nibble of the key.
The key we were searching for is 356b48b3ae15c271 which yields a vanishing
differential when times Ox1c3ba8 and 0x1c3aa8 are sent in. We were able to
find the key in 13.8 hours. If we assume that the full search will take at most
2% times longer, the full running time would be 9.2 days, which is on target of
expectations.

7 Multiple Vanishing Differentials

There are two scenarios for multiple vanishing differentials: when they have the
same difference and when they have different differences. The former is more
likely to occur, but in either case we can speed up the attack.

7.1 Multiple Vanishing Differentials with the Same Difference

According to computer simulations, about 45% of the keys that had a collision
over a two month period will actually have at least 2 collisions. There is a simple
explanation for this, and a way to use the observation to speed up the key search
even more.

Consider a vanishing differential which comes from times ¢t = ToT1 7> and t' =
TYT|Ty. As we saw earlier, the only bits that determine whether the vanishing
differential will occur at a particular subround are those that get permuted into
words Wo, W, Wy, and W;. Suppose we flip one of the bits in T» and T, (the
same bit in each). This bit will be replicated four times in the time expansion.
If, after the permutation, none of those bits end up in Wy, W, Wy, or Wy, then
we will witness another vanishing differential. The new vanishing differential will
follow the same difference path and disappear in the same subround. Thus, new
information is learned that can be used to speed up the key search, which we
explain below. In the case that another vanishing differential does not occur,
information is also learned which can improve the search, which is detailed in
Section 8.

Following the above thought process, it is evident that:

— Flipping time bits in 71, T} or Ty, T{) will only replicate the flipped bit twice
in the expansion. Since there are only two bits that are not allowed to be in
Wo, W{, Wy, and Wy, the collision is more likely to occur. On the other hand,
the time between the collisions is increased, since these are more significant
time bits.

— Multiple vanishing differentials are more likely to occur when the first col-
lision happened in a small number of subrounds. This is because the words
Wo, W{, Wy, and W, are smaller, giving more places where the flipped bits
can land without interfering with the collision.®

— The converse of these observations is that when multiple vanishing differ-
entials occur, it is most often the case that the collisions all happened in
the same subround and followed the same difference path. Moreover, the
collisions usually happen within a few subrounds.

By simply eying the time data that caused the multiple vanishing differen-
tials, one can determine with close to 100% accuracy whether this situation has
happened. The signs of it are: 1) Same input difference for all vanishing differ-
entials, 2) All input times differ in only a few bits, and 3) It is the same bits
that differ in all cases. An example is given in Appendix B.

The attacker learns z > 2 bits which cannot be permuted to words Wy, W{, Wy,
or W,. This new knowledge can be combined with our third filtering speedup
to skip past more bad keys. The expected number of final key candidates to be
tested becomes a fraction of (**-*")/(%") of the values given in Table 2. See
Table 3 for a summary of these figures when z = 2, z = 4, and z = 8. The times
can be further reduced using information about where certain related plaintexts
did not cause a vanishing differential: see Section 8.

Table 3. Number of final candidates assuming the attacker became aware of z-bits
that do not get permuted into words Wo, W{, W4, or Wj.

N|Number of final cands using| Number of final | Number of final | Number of final
only a single collision cands with z = 2|cands with z = 4|cands with z =8
106 398 380 370
1 2 2 2 2
9 9413 940.3 939.3 937.2
3 241.2 240.1 239.0 236.6
4 940.9 939.7 938.4 935.7
5 940.6 939.2 937.8 934.8
6 240.1 238.6 237.0 233.6

6 This is the reason for the apparent discrepancy between our research claiming that
one needs to precompute up to N = 16 in order to have a > 50% of find the key
and [1] claiming 12. In our view, the attacker has a single token and will perform
a key search once a single vanishing differential has occurred. In their view, the
attacker has several tokens for a fixed period of time, and the attacker selects a
vanishing differential randomly among all vanishing differentials that have occurred
[3]. Since their view includes multiple vanishing differentials, the expected number
of subrounds is less.

7.2 Multiple Vanishing Differentials with Different Differences

Given two vanishing differentials with different differences, the number of can-
didate keys can be reduced significantly by constructing more effective filters in
each step. Denote the two pairs of vanishing differentials V; and V5, and their
N values Ni and Ns.

We first make a guess of (N1, N3). The number of guesses will be quadratic
in the number of subrounds tested up to. The following is a simplified sketch for
the new filtering algorithm.

— First Phase. Take V] and guess the first 32 bits of the key. For each 32-bit key
that produces a valid (Wy, Wy), test it against V5 to see if it also produces
a valid (Wy, Wy).

— Second Phase. For 32-bit keys that pass phase 1, do the same thing to guess
the second 32 bits of the key.

The main idea here is to do double filtering within each stage so that the
number of candidate keys is further reduced in comparison to when only a single
vanishing differential is used.

When N; = Ny = 1, the probability that a 32-bit key passes phase 1 (see
Table 1) is 22°-0/232 = 2770 (assuming using the original filter of [1] - it is even
more reduced using our improved filter), and the probability that a 64-bit key
passes both phases is 240-6 /264 = 27234 Tf the two vanishing differentials are
indeed independent, we would expect the number of keys to pass the first phase
to be

932 9=T.0 y 9=T.0 _ 918

and the number of keys to pass both phases to be

264 X 2—23.4 X 2—23.4 — 217.2

Experimental results will reveal whether these figures are attainable in practice,
but even if they are not, a big speed up is still expected. The situation should
be better in the cases where differences with hamming weights > 4 are involved.

We should mention the caveat that the chances of success using the above
technique are lower, since we need both difference pairs to disappear within 16
subrounds. On the other hand, the cost of trying this algorithm for two difference
pairs is expected to be substantially cheaper than trying the previous algorithms
for only one. Therefore, the double filtering should add negligible overhead to
the search in the cases that it fails, and would greatly speedup the search when
it is successful.

8 Using Non-Vanishing Differentials with a Vanishing
Differential

In Section 7.1, we argued that even if only a single vanishing differential occurs
over some time period, the search can still be sped up if one takes advantage of
knowing where related differentials do not vanish. Here, we give the details.

Assume a vanishing differential occurred at times ¢ and ', but no vanishing
differential occurred among the time pairs (t@2¢, ' ©2%) fori = 2,...,j. We start
with ¢ > 2 because in the most typical case, where authenticators are displayed
every minute, the least two significant bits of the time are 0 (see Section 2.1). For
the values 2 < i < 7, the difference is replicated 4 times in the time expansion,
and for ¢ > 8, it is replicated twice.

For each value of i, we learn a set of 2 or 4 bits for which at least one in each
set must be permuted into the words Wy, W, Wy, or W,. Let us label these sets
as Us, ..., Uj. For simplicity, we will take 5 = 13, which corresponds to no other
vanishing differential within a window of 2.8 days before or after the observed
one. So, we are interested in the probability of at least one bit in each of these
sets getting permuted into words Wy, W, Wy, or Wj.

We say a set U; is represented with ¢; > 1 bits if exactly ¢; bits from U; get
permuted into Wy, W}, Wy, or W,. The number of ways 2N + 14 bits can be
selected to end up in Wy, W, Wy, or Wy is (2]\?114). The number of ways that
exactly ¢; bits are represented in the selection for 2 < i <13 is

7 13
4 2 28
i:l—[2 <Cz> % 11; (Cz> % <2N + 14 — 21122 Ci>'

(2

The first product tells the number of ways of selecting ¢; bits from each set that
has 4 bits, the second product is the same except for among sets with 2 bits, and
the third product is the number of ways of selecting the remaining bits from the
28 bits that are not among any of the U;. Thus, our desired probability is:

T (2) % T (2) % (s 5

(21\?—?-14)

>

all valid (e2, ..., c13)

(4)

where valid (ca, ..., c13) means that each value is at least 1, but the sum of all
values is no more than 2NV + 14.

We have computed these probabilities using the Magma [6] computer algebra
package. The probabilities, and corresponding running time for the testing of
final candidates are given in Table 4. Monte Carlo experiments have been done
to double-check the accuracy of these results. The fact that the probabilities are
so small for low values of N is consistent with the argument in Section 7.1 that
when a collision happens early, other collisions are likely to follow soon after.

One should not assume that the times for the testing the final candidates
given in Table 4 are the dominant cost in applying this strategy. Unlike the
filtering speedups given in Sections 5 and 7.1, the use of non-vanishing differ-
entials seem to require more overhead in checking the conditions. So although
we do not have an exact running time, we confidently surmise that the use of
non-vanishing differentials will reduce the time down below 2%° hash operations.

Table 4. Assuming no more vanishing differentials occur within 2.8 days before or
after of a given vanishing differential, the final testing of candidates can be improved
by the amounts given in this table.

N|Fraction of keys|Time for testing
having property|final candidates
—1.3 753
1 2 2
9 9—11.7 929.6
3 9—9.7 931.5
4 9—8.1 932.8
5 9—6.7 933.9
6 9—5.T 934.4

9 Conclusion

The design of the alleged SecurID hash function appears to have several prob-
lems. The most serious appears to be collisions that happen far too frequently
and very early within the computation. The involvement of only a small fraction
of bits in the subrounds exacerbates the problem. Moreover, the redundancy of
the key with respect to the initial permutation adds an extra avenue of attack.
Altogether, ASHF is substantially weaker than one would expect from a modern
day hash function.

Our research has shown that the key recovery attack in [1] can be sped up
by more than a factor of 8, giving an improved attack with time complexity
about 24> hash operations. In practice, the attacker can actually obtain more
information than just a single collision. We have shown that, with this extra
information, the time complexity can be further reduced to about 2*° hash op-
erations, making the attack doable by anyone with a modern PC.

acknowledgements: We are grateful to Joe Lano for his insights and helpful
comments, and for his hospitality while the first author of this document visited
Brussels.

References

1. A. Biryukov, J. Lano, B. Preneel. Cryptanalysis of the Alleged SecurID Hash Func-
tion, In Proceedings of SAC 2003, to appear in LNCS. A longer version of this paper
is available online from http://eprint.iacr.org/2003/162.

2. S. Contini, The Effect of a Single Vanishing Differential in ASHF, sci.crypt post,
6 Sep, 2003.

3. J. Lano, private communication, 28 Oct, 2003.

4. 1.C. Wiener, Sample SecurID Token Emulator with Token Secret Import, post
to BugTraq, http://archives.neohapsis.com/archives/bugtraq/2000-12/0428 . html ,
21 Dec, 2000.

5. Tips on Reassigning SecurID Cards and Requesting New SecurID
Cards, AMS Newsletter, March 2002, Issue No. 117. Available at
http://www.utoronto.ca/ams/news/117/html/117-5.htm .

6. The Magma Computer Algebra Package. Information available at
http://magma.maths.usyd.edu.au/magma/ .

A Analysing Precomputed Tables

Using computer experiments, we were able to exhaustively search for valid entries
in the precomputed table up to NV = 6 for 2-bit vanishing differentials and up to
N =4 for 4-bit differentials at this point. It was predicted in [1] that the size of
the table gets larger by a factor of 8 as N grows and it may take up to 2%* steps
and 500GB memory to precompute the table for N = 12.

Here we make an attempt to derive the entries in the table analytically when
N = 1. If we could extend the method to N > 1, we may be able to enumerate
the entries analytically without expensive precomputation and storage.

We start with Equation (6) in [1]. Note that we are trying to find constraints
for the values in the subround ¢ —1. So for simplicity, we will omit the superscript
i — 1 from now on, and Equation (6) becames the following.

B, =(((Bo >>>1)—1)>>>1) - 1) ® By, (5)
By =100 - By .

We first note that By and B{ have to be different in the msb. Therefore,
there is at least one bit difference in (By, Bj). The other bit difference can be
placed either in the remaining 7 bits of (By, Bj)) or any of the 8 bits in (By, B}).

Rewriting Equation 5, we have

Bo=(((Bs@Bj)) +1) <<<1)+1) <<< 1.

Since there are at most one bit difference in (By, Bj)), it can only take on 9
possible values: 0 (for no bit difference) or 2¢ (for one bit difference in bit 7).
Below, for each possible value of (By, B}), we enumerate the possible values of
(By, Bf))- During the enumeartion, we also take into consideration the additional
requirement that the two bits in b where the differences occur must be the same
(See Section 4).

— If By @ B =0, then By =0x06. Since there is no bit difference in (By4, B}),
we know that By and By differ in two bits — one of them must be the msb,
and the other can be any of the remaining 7 bits.

Bis® Bil Bo B(’) ko
0x00 |0x06|0x87, 84, 82, 8e, 96, a6, c6| 0

The additional requirement rules out two possible values of B{, (0x84, 0x82),
leaving 5 possible combinations.

— If By ® B = 2%, then there is only one bit difference in (By, Bj)), which is
the msb. In this case, there are only one choice for Bj, for each By.

By ® Bj| By | B
0x01 |0x0a|0x8a
0x02 |0x0e|0x8e
0x04 |0x16|0x96
0x08 |0x26|0xa6
0x10 |0x46|0xc6
0x20 |0x86|0x06
0x40 |0x07|0x87
0x80 |0x08|0x88

™
o

[e=) Ren) o) Nen] Jen] Nen) Hen] Hen]

The additional requirement rules out every combination above except the
first one (Bp =0x0a and B =0x8a).

Combining the above two cases, we have 5+ 1 = 6 pairs of (By, B), each of
which giving a valid tuple (ko, Bo, By, By, B}), where kg is the msb of By.

Finally, note that if (ko,a,b,c,d) is a valid tuple, than (ko,c,d,a,b) is also
a valid typle. For example, if (0, 0x06, Oxdd, 0x87, Oxdd) is valid, then (0,
0x87, 0xdd, 0x06, 0xdd) is also valid. Therefore, the table consists of a total of
2 x 6 = 12 entries. These entries match the results from our simulation.

B Example of Multiple Vanishing Differentials

Table 5 is an example where 16 vanishing differentials happened within 1.3 days.
All had the same difference path, which collided at N = 2. One can see that
only the 4 least significant bits of time byte T} differ. Since each of these bits are
duplicated twice, the expected running time of the last steps is given by z = 8
in Table 3. Taking into consideration IV = 2, the total time is expected to be on
the order of 238 operations.

Table 5. Example of 16 vanishing differentials that happened within 1.3 days, using
key b5 a9 f4 8c 16 23 a6 la

First plaintext Second plaintext
le 80 8c 8c 1le 80 8c 8c |le 90 8c 8c 1le 90 8c 8c
le 81 8c 8c le 81 8c 8c |le 91 8c 8c 1le 91 8c 8¢
le 82 8c 8c le 82 8c 8c |le 92 8c 8c le 92 8c 8c
le 83 8c 8c 1le 83 8c 8c |le 93 8c 8c 1le 93 8c 8c
le 84 8c 8c le 84 8c 8c |le 94 8c 8c le 94 8c 8c
le 85 8c 8c le 85 8c 8¢ |le 95 8c 8c le 95 8c 8¢
le 86 8c 8c le 86 8c 8c |le 96 8c 8c le 96 8c 8c
le 87 8c 8c le 87 8c 8c |le 97 8c 8c le 97 8c 8c
le 88 8c 8c le 88 8c 8c |le 98 8c 8c le 98 8c 8c
le 89 8c 8c 1le 89 8c 8c |le 99 8c 8c 1le 99 8c 8c
le 8a 8c 8c le 8a 8c 8c |le 9a 8c 8c le 9a 8c 8c
le 8b 8c 8c le 8b 8c 8c |le 9b 8c 8c le 9b 8c 8¢
le 8c 8c 8c le 8c 8c 8c |le 9c 8c 8c le 9c 8c 8¢
le 8d 8c 8c le 8d 8c 8c |le 9d 8c 8c le 9d 8c 8c
le 8e 8c 8c le 8e 8c 8c |le 9e 8c 8c le 9e 8c 8¢
le 8f 8c 8c le 8f 8c 8c |le 9f 8c 8c le 9f 8c 8¢

