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Abstract. We present a new way to construct a MAC function based
on a block cipher. We apply this construction to AES resulting in a MAC
function that is a factor 2.5 more efficient than CBC-MAC with AES,
while providing a comparable claimed security level.

1 Introduction

Message Authentication Codes (MAC functions) are symmetric primitives, used
to ensure authenticity of messages. They take as input a secret key and the
message, and produce as output a short tag.

Basically, there are three approaches for designing MACs. The first approach
is to design a new primitive from scratch, as for instance MAA [15] and, more
recently, UMAC [8]. This approach allows to optimize the security-performance
trade-off. The second approach is to define a new mode of operation for existing
primitives. In this category, we firstly have numerous variants based on the CBC
encryption mode for block ciphers, e.g. CBC-MAC [5], OMAC [16], TMAC [22],
XCBC [9], and RMAC [17]. Secondly, there are the designs based on an unkeyed
hash function: NMAC, HMAC [7, 4]. Finally, one can design new MACs using
components from existing primitives, e.g. MDx-MAC [24] and Two-Track MAC
[10].

In this paper, we propose a new MAC design method which belongs in the
third category, cf. Section 3. We also present a concrete construction in Section 5.
Before going there, we start with a discussion of security requirements for MACs
and we present a new proposal for MAC security claims in Section 2. We discuss
internal collisions for the new model in Section 4, and for the concrete construc-
tion in Section 6. Section 7 contains more details on extinguishing differentials,
a special case of internal collisions. We briefly discuss performance in Section 8
and conclude in Section 9.
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2 Iterative MAC functions and security claims

A MAC function maps a key-message pair to a tag. The basic property of a MAC
function is that it provides an unpredictable mapping between messages and the
tag for someone who does not know, or only partially knows the key. Usually,
one defines a number of design objectives that a cryptographic primitive of a
given type must satisfy in order to be considered as secure. For MAC functions,
we find the following design objectives in [23, Table 9.2]:

– Key non-recovery: the expected complexity of any key recovery attack is of
the order of 2`k MAC function executions.

– Computation resistance: there is no forgery attack with probability of success
above max(2−`k , 2−`m).

Here `k is the key length and `m the tag length. By forgery one means the
generation of a message-tag pair (m, t) using only information on pairs (mi, ti)
with m 6= mi for all i.

2.1 Iterative MAC functions

Most practical MAC functions are iterative. An iterative MAC function operates
on a working variable, called the state. The message is split up in a sequence of
message blocks and after a (possibly keyed) initialization the message blocks are
sequentially injected into the state by a (possibly keyed) iteration function. Then
a (possibly keyed) final transformation may be applied to the state resulting in
the tag.

Iterative MAC functions can be implemented in hardware or software with
limited amount of working memory, irrespective of the length of the input mes-
sages. They have the disadvantage that different messages may be found that
lead to the same value of the state before the final transformation. This is called
an internal collision [26].

2.2 Internal collisions

Internal collisions can be used to perform forgery. Assume we have two messages
m1 and m2 that result in an internal collision. Then for any string m3 the two
messages m1‖m3 and m2‖m3 have the same tag value. So given the tag of any
message m1‖m3, one can forge the tag of the message m2‖m3. Internal collisions
can often be used to speed up key recovery as well [25]. If the number of bits
in the state is n, finding an internal collision takes at most 2n + 1 known pairs.
If the state transformation can be modeled by a random transformation, one
can expect to find a collision with about 2n/2 known pairs due to the birthday
paradox. One may consider to have a final transformation that is not reversible
to make the detection of internal collisions infeasible. However, as described in
Appendix A, this is impossible.

The presence of internal collisions makes that even the best iterative MAC
function cannot fulfill the design objectives given above: if the key is used to



generate tags over a very large number of messages, an internal collision is likely
to occur and forgery is easy.

For many MAC schemes based on CBC-MAC with the DES as underlying
block cipher, internal collisions can be used to retrieve the key: the ISO 9797 [5]
schemes are broken in [11, 18]. More sophisticated variants like Retail MAC [1]
and MacDES [19] are broken in [25], respectively [12, 13].

One approach to avoid the upper limit due to the birthday paradox in itera-
tive MAC functions is diversification. The MAC function has next to the message
and the key a third input parameter that serves to diversify the MAC compu-
tation to make the detection of internal collisions impossible. For the proofs of
security that accompany these schemes, the implementation of a tag generating
device must impose that its value is non-repeating or random. This method has
several important drawbacks. First of all, not only the tag must be sent along
with the message, but also this third parameter, typically doubling the over-
head. In case of a random value, this puts the burden on the developer of the
tag generating device to implement a cryptographic random generator, which is
a non-trivial task. Moreover the workload of generating the random value should
be taken into account in the performance evaluation of the primitive. In case of a
non-repeating value the MAC function becomes stateful, i.e., the tag generation
device must keep track of a counter or multiple counters and guarantee that
these counters cannot be reset. But in some cases even the randomization mech-
anism itself introduces subtle flaws. The best known example of a randomized
MAC is RMAC [17] cryptanalyzed in [21].

Another way to avoid internal collisions is to impose an upper bound on the
number of tags that may be generated with a given key. If this upper bound is
large enough it does not impose restrictions in actual applications. This is the
approach we have adopted in this paper.

2.3 A proposal for new security claims

We formulate a set of three orthogonal security claims that an iterative MAC
function should satisfy to be called secure.

Claim 1 The probability of success of any forgery attack not involving key re-
covery or internal collisions is 2−`m .

Claim 2 There are no key recovery attacks faster than exhaustive key search,
i.e. with an expected complexity less than 2`k−1 MAC function executions.

We model the effect of internal collisions by a third dimension parameter, the
capacity `c. The capacity is the size of the internal memory of a random map
with the same probability for internal collisions as the MAC function.

Claim 3 The probability that an internal collision occurs in a set of A ((adap-
tively) chosen message, tag) pairs, with A < 2`c/2, is not above 1−exp(−A2/2`c+1).

Note that for A < 1/4 × 2`c/2 we have 1 − exp(−A2/2`c+1) ≈ A2/2`c+1. In the
best case the capacity `c is equal to the number of bits of the state. It is up to
the designer to fix the value of the capacity `c used in the security claim.



3 The Alred construction

We describe here a way to construct a MAC function based on an iterated block
cipher. The key length of the resulting MAC function is equal to that of the
underlying block cipher, the length of the message must be a multiple of `w

bits, where `w is a characteristic of a component in the MAC function. In our
presentation, we use the term message word to indicate `w-bit message blocks
and call `w the word length.

3.1 Definition

The Alred construction consists of a number of steps:

1. Initialization:
(a) Initialize the state with the all-zero block.
(b) Apply the block cipher to the state.

2. Chaining: for each message word perform an iteration:
(a) Map the bits of the message word to an injection input that has the same

dimensions as a sequence of r round keys of the block cipher. We call
this mapping the injection layout.

(b) Apply a sequence of r block cipher round functions to the state, with the
injection input taking the place of the round keys.

3. Final transformation:
(a) Apply the block cipher to the state.
(b) Truncation: the tag is the first `m bits of the state.

Let the message words be denoted by xi, the state after iteration i by yi, the
key by k and the tag by z. Let f denote the iteration function, which consists of
the combination of the injection layout and the sequence of r block cipher round
functions. Then we can write:

y0 = Enck(0) (1)
yi = f(yi−1, xi), i = 1, 2, . . . , q (2)
z = Trunc(Enck(yq)) (3)

The construction is illustrated in Figure 1 for the case r = 1. With this approach,
the design of the MAC function is limited to the choice of the block cipher, the
number of rounds per iteration r, the injection layout and `m. The goal is to
choose these such that the resulting MAC function fulfills the security claims for
iterated MAC functions for some value of `m and `c near the block length.

3.2 Motivation

Prior to the chaining phase, the state is initialized to zero and it is transformed
by applying the block cipher, resulting in a state value unknown to the attacker.
In the chaining phase every iteration injects `w message bits into the state with
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Fig. 1. Scheme of the Alred construction with r = 1.

an unkeyed iteration function. Without the block cipher application in the ini-
tialization, generating an internal collision would be similar to finding a collision
in an unkeyed hash function which can be conducted without known message
tag pairs. The initial block cipher application makes the difference propagation
through the chaining phase, with its nonlinear iteration function, depend on the
key.

The iteration function consists of r block cipher rounds where message word
bits are mapped onto the round key inputs. The computational efficiency of
Alred depends on the word length. Where in CBC based constructions for long
messages there is one block cipher execution per block, Alred takes merely r
rounds per word. Clearly, the performance of Alred becomes interesting if the
word length divided by r is larger than the block length divided by the number
of rounds of the block cipher.

Decreasing the message word length with respect to the round key length
makes the MAC function less efficient, but also reduces the degrees of freedom
available to an attacker to generate internal collisions (see Section 6.1 for an
example). Another way to reduce these degrees of freedom is to have the message
words first undergo a message schedule, and apply the result as round keys.
This is similar to the key schedule in a block cipher, the permutation of message



words between the rounds in MD4 [27] or the message expansion in SHA-1 [2].
However, such a message schedule also introduces need for additional memory
and additional workload per iteration. Therefore, and for reasons of simplicity,
we decided to limit the message injection to a simple layout. Limiting the word
length and carefully choosing the injection layout allows to demonstrate powerful
upper bounds on the probability of sets of known or chosen messages with any
chosen difference leading to an internal collision.

3.3 Provability

Alred has some similarity to constructions based on block ciphers in CBC
mode. The modes typically come with security proofs that make abstraction of
the internal structure of the used cryptographic primitive. In this section we
prove that an Alred MAC function is as strong as the underlying block cipher
with respect to key recovery and, in the absence of internal collisions, is resistant
against forgery if the block cipher is resistant against ciphertext guessing.
Observation: The proofs we give are valid for any chaining phase that trans-
forms y0 into yfinal parameterized by a message. In the proofs we denote this by
yfinal = Fcf(y0,m).

Theorem 1. Every key recovery attack on Alred, requiring t (adaptively) cho-
sen messages, can be converted to a key recovery attack on the underlying block
cipher, requiring t + 1 adaptively chosen plaintexts.

Proof: Let A be an attack requiring the t tag values corresponding to the
t (adaptively) chosen messages mj , yielding the key. Then, the attack on the
underlying block cipher works as follows.

1. Request c0 = Enc(k, 0), where ‘0’ denotes the all-zero plaintext block.
2. For j = 1 to t, compute pj = Fcf(c0,mj).
3. For j = 1 to t, request cj = Enc(k, pj).
4. Input the tag values Trunc(cj) to A and obtain the key.

ut
Theorem 2. Every forgery attack on Alred not involving internal collisions,
requiring t (adaptively) chosen messages, can be converted to a ciphertext guess-
ing attack on the underlying block cipher, requiring t+1 adaptively chosen plain-
texts.

Proof: Let B be an attack, not involving internal collisions, requiring the t tag
values corresponding to the t (adaptively) chosen messages mj yielding a forged
tag for the message m. Then, the ciphertext guessing attack on the underlying
block cipher works as follows.

1. Request c0 = Enc(k, 0), where ‘0’ denotes the all-zero plaintext block.
2. For j = 1 to t, compute pj = Fcf(c0,mj).
3. For j = 1 to t, request cj = Enc(k, pj).
4. Input the tag values Trunc(cj) to B and obtain the tag for the message m.



5. Compute p = Fcf(c0,m).
6. If there is a j for which p = pj , then B has generated an internal collision,

which conflicts with the requirement on B. Otherwise, input the tag values
Trunc(cj) to B and obtain the tag, yielding the truncated ciphertext of p.

ut

3.4 On the choice of the cipher

One may use any block cipher in the Alred construction. The block length
imposes an upper limit to the capacity `c relevant in the number of tags that
may be generated with the same key before an internal collision occurs. When
using ciphers with a block length of 64 bits as (Triple) DES and IDEA, the
number of tags generated with the same keys should be well below 232.

The use of the round function for building the iteration function restricts
the Alred construction somewhat. Ciphers that are well suited in this respect
are (Triple) DES, IDEA, Blowfish, Square, RC6, Twofish and AES. An Alred
construction based on Serpent, with its eight different rounds, would typically
have r = 8, with the iteration function consisting of the eight Serpent rounds.
MARS with its non-uniform round structure is less suited for Alred. The choice
of the injection layout is a design exercise specific for the round function of
the chosen cipher. Note that whatever the choice of the underlying cipher, the
strength of the Alred construction with respect to key search is that of the
underlying cipher.

4 On internal collisions in Alred

In general, any pair of message sequences, possibly of different length, that leads
to the same value of the internal state is an internal collision. We see two ap-
proaches to exploit knowledge of the iteration function to generate internal col-
lisions. The first is to generate pairs of messages of equal length that have a
difference (with respect to some group operation at the choice of the attacker)
that may result in a zero difference in the state after the difference has been
injected. We call this extinguishing differentials. The second is to insert in a
message a sequence of words that do not impact the state. We call this fixed
points.

4.1 Extinguishing differentials

Finding high-probability extinguishing differentials is similar to differential crypt-
analysis of block ciphers. In differential cryptanalysis the trick is to find an input
difference that leads to an output difference with high probability. For an iter-
ative MAC function, the trick is to find an extinguishing differential with high
probability. Resistance against differential cryptanalysis is often cited as one of
the main criteria for the design of the round function of block ciphers. Typi-
cally the round function is designed in such a way that upper bounds can be



demonstrated on the probability of differentials over a given number of rounds.
One may design MAC functions in a similar way: design the iteration function
such that upper bounds can be demonstrated on the probability of extinguishing
differentials. In Alred the only part of the iteration function to be designed is
the injection layout. So the criterion for the choice of the injection layout is the
upper bound on the probability of extinguishing differentials.

4.2 Fixed points

Given a message word value xi, one may compute the number of state values that
are invariant under the iteration function yi = f(yi−1, xi), called fixed points. If
the number of fixed points is w, the probability that inserting the message word
xi in a message will not impact its tag is w × 2−n with n the block length.

We can try to find the message word value xmax with the highest number of
fixed points. If this maximum is wmax, inserting xmax in a message and assuming
that the resulting message has the same tag, is a forgery attack with success
probability wmax × 2−n. Since Claim 3 requires that this probability be smaller
than 1 − exp(−22/2`c+1) = 1 − exp(−(21−`c)) ≈ 21−`c , this imposes a limit to
the capacity: `c < n + 1− log2 wmax.

If the iteration function can be modeled as a random permutation, the num-
ber of fixed points has a Poisson distribution with λ = 1. The expected value
of wmax depends on the number of different iteration functions with a given
message word, i.e. the word length `w. For example, the expected wmax values
for 16, 32, 64 and 128 bits are 8, 12, 20 and 33 respectively. However, if r = 1,
the iteration function is just a round function of a block cipher and it may not
behave as a random function in this respect. If the round function allows it, one
may determine the number of fixed points for a number of message word values
to determine whether the Poisson distribution applies.

One may consider the number of fixed points under a sequence of g rounds.
In the random model, the expected value of wmax over all possible sequences of g
message words now is determined by the total number of messagebits injected in
the g rounds. For most round functions determining the number of fixed points
given the message word values is hard even for g = 2. However, for multiple
iterations it is very likely that the random model will hold. The value of wmax

grows with g but actually finding message word sequences with a number of fixed
points of the order wmax becomes quickly infeasible as g grows. If we consider a
sequence of iterations taking 500 message bits (for example 10 iterations taking
each 50 message bits), the expected value of wmax is 128. In conclusion, if analysis
of the iteration function confirms that the number of fixed points has a Poisson
distribution, taking `c ≤ n− 8 provides a sufficient security margin with respect
to forging using fixed points.

5 Alpha-MAC

Alpha-MAC is an Alred construction with AES [3] as underlying block cipher.
As AES, Alpha-MAC supports keys of 16, 24 and 32 bytes. Its iteration function



consists of a single round, its word length is 4 bytes and the injection layout
places these bytes in 4 byte positions of the AES state. We have chosen AES
mainly because we expect AES to be widely available thanks to its status as
a standard. Additionally, AES is efficient in hardware and software and it has
withstood intense public scrutiny very well since its publication as Rijndael [14].

5.1 Specification

The number of rounds per iteration r is 1 and the word length `w is equal
to 32 bits. The AES round function takes as argument a 16-byte round key,
represented in a 4 × 4 array. The injection layout positions the 4 bytes of the
message word [q1, q2, q3, q4] in 4 positions of this array, resulting in the following
injection input: 



q1 0 q2 0
0 0 0 0
q3 0 q4 0
0 0 0 0


 (4)

The length of the tag `m may have any value below or equal to 128. Alpha-MAC
should satisfy the security claims for iterative MAC functions for the three key
lengths of AES with `m ≤ 128 and `c = 120. Appendix B gives and equivalent
description of Alpha-MAC.

5.2 Message padding

Alpha-MAC is only defined for messages with a length that is a multiple of 32
bits. One may extend Alpha-MAC to message of any length by preprocessing
the message with a reversible padding scheme. We propose to use the following
padding scheme: append a single 1 followed by the minimum number of 0 bits
such that the length of the result is a multiple of 32. This corresponds to padding
method 2 in [5].

6 Internal collisions and injection layout of Alpha-MAC

With respect to fixed points, we implemented a program that determines the
number of fixed points for the Alpha-MAC iteration function. It turns out
that the number of fixed points behaves as a Poisson distribution with λ = 1.
The choice of the Alpha-MAC injection was however mainly guided by the
analysis of extinguishing differentials, as we explain in the following subsections.

6.1 A simple attack on a variant of Alpha-MAC

Let us consider a simple extinguishing differential for a variant of Alpha-MAC
with an injection layout mapping a 16 byte message block to a 16-byte round
key. Assume the difference in the first message word has a single active byte with
value a in position i, j (row i, column j).



– AddRoundKey (AK) injects the difference in the state giving a single active
byte with value a in the state in position i, j.

– SubBytes (SB) converts this to a single active byte in position i, j with value
b. Given a, b has 127 possible values. 126 of these values have probability
2−7 and one has probability 2−6.

– ShiftRows (SR) moves the active byte with value b to position i, ` with
` = j − i mod 4.

– MixColumns (MC) converts the single active byte to an active column, col-
umn `. The value of the single active byte completely determines the values
of bytes of the active column.

Hence a message difference with a single active byte may lead to 127 state
differences before the injection of the second message word. Of these, one has
probability 2−6 and 126 have probability 2−7. Assume now that the second
message word has a difference given by the active column that has probability
2−6. Clearly, the probability of the resulting extinguishing differential is 2−6 and
the expected number of message pairs that must be queried to obtain an internal
collision using it is 26.

We can reduce the number of required messages to query by applying a set
of n messages that have pairwise differences of the type described above. About
half of the n(n−1)/2 differences are extinguishing differentials with a probability
of 2−7 and due to the birthday paradox a set of only 20 messages are likely to
generate an internal collision.

When achieving an internal collision, the fact that the active S-box converts
difference a to b gives 6 or 7 bits of information on the absolute value of the
state. Applying this attack for all byte positions allows the reconstruction of
the state at the beginning of the iteration phase for the given key. When this is
known, generating internal collisions is easy.

In the described internal collision attack, the attacker is not hampered by the
injection layout. He has full liberty in positioning the differences in the injection
inputs. We see that the described difference leads to an internal collision if there
is a match in a single S-box: the S-box must map the difference a to difference
b. This is an extinguishing characteristic with one active S-box.

For the injection layout of Alpha-MAC this attack is not possible as it re-
quires in the second injection input a difference pattern with four active bytes
in the same column. However, attacks can be mounted with other message dif-
ference patterns. The goal of the injection layout is exactly to impose that there
are no extinguishing differentials with high probability and hence that there are
no extinguishing characteristics with a small number of active S-boxes. Together
with the implementation complexity, this has been the main criterion for the
selection of the injection layout. We will treat this in the following sections.

6.2 Choosing the injection layout

In order to select the injection layout we have written a program that deter-
mines the minimum number of active S-boxes over all extinguishing truncated



Table 1. Number of injection layout equivalence classes.

Word length (in bytes) 1 2 3 4 5

Total number of layout classes 3 21 77 252 567

with minimum extinguishing cost equal to 16 3 21 68 87 0

characteristics for a given injection layout. Truncated characteristics are clusters
of ordinary characteristics [20]. All characteristics in a cluster have intermediate
state differences with active bytes in the same positions. The probability of a
truncated characteristic is the sum of the probabilities of all its characteristics.
Similar to ordinary characteristics, the probability of a truncated characteristic
can be expressed in terms of active S-boxes, but only a subset of the S-boxes
with non-zero input difference are counted as active.

Our program iteratively builds a tree with the 216 possible state difference
patterns (only distinguishing between ‘zero’ and ‘non-zero’ values) as nodes. The
root is the all-zero pattern and each edge has an S-box cost and message differ-
ence pattern. The program builds the tree such that the minimum extinguishing
cost of a pattern is the sum of the S-box costs of the edges leading to the root.
It also includes the all-zero pattern as a leaf in the tree, and hence the minimum
extinguishing cost is that of this leaf. Note that for any injection layout an upper
bound for the minimum extinguishing cost is 16 as it is always possible to guess
all bits of the state at a given time.

In total there are 216 different injection layouts. With respect to this propa-
gation analysis, they are partitioned in 8548 equivalence classes:

– Thanks to the horizontal symmetry in the AES round function injection
layouts that can be mapped one to the other by means of a horizontal shift
(i, j) 7→ (i, j + a mod 4) are equivalent.

– Injection layouts that can be mapped one to the other by means of a mir-
roring around (0, 0), i.e. (i, j) 7→ (−i mod 4,−j mod 4), are equivalent. This
is thanks to the fact that SB and SR are invariant under this transforma-
tion and the branch number of MC, the only aspect of MC relevant in this
propagation analysis, is not modified.

The results for word lengths 5 and below are summarized in Table 1.
As Alpha-MAC requires one round function computation per message word,

the performance is proportional to message word length. Note that the minimum
extinguishing cost of an injection layout is upper bounded by those of all injection
layouts that can be formed by removing one or more of its bytes. We see that
the maximum word length for which there are injection layouts with a minimum
extinguishing cost of 16, is 4 bytes. In the choice of the injection layout from the
87 candidates we have taken into account the number of operations it takes to
apply the message word to the state. As in 32-bit implementations of AES the
columns of state and round keys are coded as 32-bit words, the number of active
columns in the injection layout is best minimized. Among the 87 layouts, 40 have



four active columns, 42 have three and 5 have two. We chose the Alpha-MAC
injection layout from the latter.

7 On extinguishing differentials in Alpha-MAC

We start with a result on the minimum length of an extinguishing differential.

Theorem 3. An extinguishing differential in Alpha-MAC spans at least 5
message words.

Proof: The proof is divided into 3 steps.
Step 1: It can easily be verified that for the AES round transformation, there are
no two different round keys that result in a common round input being mapped
to a common round output. Hence, extinguishing differentials must span at least
two message words.
Step 2: There are also no extinguishing differentials spanning only 2 message
words. This can be shown as follows.

Let xi be the first message word with non-zero difference. Hence yi−1 has
no differences. The state yi can have non-zero differences in the positions (0, 0),
(0, 2), (2, 0) and (2, 2) and nowhere else. The application of SR and SB doesn’t
change this. Since MC has branch number 5, its application will result in a state
with at least 3 non-zero bytes in the first or the third column, or both. The choice
of the injection layout ensures that these differences can’t be extinguished in the
next AK step.
Step 3: We show that there are no extinguishing differentials that span 3 or 4
message words by means of an ‘impossible differential.’ The impossible differen-
tial is illustrated in Figure 2.

Let again xi be the first message word with non-zero difference. The state
yi+1 has zero differences in the second and the fourth column. At least one
of the remaining columns contains a non-zero difference, because there are no
extinguishing differentials of length 2.

Assume now that yi+3 has zero difference. This is only possible if before the
application of the step AK in iteration i + 3, the second and the fourth column
contain no zeroes. Propagating this condition backwards, we obtain that yi+2

must have zero differences in the positions (0, 1), (0, 3), (1, 0), (1, 2), (2, 1), (2, 3),
(3, 0) and (3, 1).

Since AK doesn’t act on any of these bytes, the same condition must hold
on the state before the application of AK in iteration i + 2. But then the MC
step in iteration i + 2 has an input with at least 2 zeroes in each column, and
an output with at least 2 zeroes in each column, and a least one column with at
least one non-zero byte. This is impossible because the branch number of MC is
5. ut

We have the following corollary.

Corollary 1. Given yt−1, the state value before iteration t, the map

s : (xt, xt+1, xt+2, xt+3) → yt+3
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Fig. 2. The impossible differential used in the proof of Theorem 3.

from the sequence of four message words (xt, xt+1, xt+2, xt+3) to the state value
before iteration t + 4 is a bijection.

Proof: This follows directly from the fact that the number of possible message
word sequences of length four and the number of state values are equal and
that starting from a given state, any pair of such message sequences will lead to
different state values. ut

The Alpha-MAC injection layout is one of the few 4-byte injection layouts
with this property. Note that s−1(yt+3) can easily be computed, for any given
yt−1. It follows that if the value of the state leaks, it becomes trivial to construct
forgeries forgeries based on internal collisions. However, we see no other methods
for obtaining the value of the state than key recovery or the generation of internal
collisions.

In the assumption that our program described in Section 6.2 is correct, its
result is a proof for the fact that the minimum extinguishing cost is 16. An
analytical proof for this minimum cost can be constructed, but is left out here
because of the space restrictions. The minimum extinguishing cost imposes an
upper bound to the probability of a truncated characteristic of (2−6)16 = 2−96.
A closer analysis reveals that in almost all cases an active S-box contributes a
factor 2−8 rather than 2−6. An active S-box contributes a factor 2−6 only if it
was ‘activated’ by the previous application of AK, hence, if it was passive before
AK.

We have written a variant of our program taking these aspects into account,
resulting in an upper bound for the probability of truncated characteristics of



2−126. For a single extinguishing differential there can be multiple truncated
characteristics leading to an extinguishing probability that is the sum of those
of the characteristics. In our security claims we have taken a margin by claiming
`c = 120.

8 Performance

We estimate the relative performance difference between AES and Alpha-MAC.
We compare this estimate with some benchmark performance figures.

8.1 Compared to AES

In this section we express the performance of Alpha-MAC in terms of AES
operations, more particularly, the AES key schedule and the AES encryption
operation. This allows to use AES benchmarks for software implementations on
any platform or even hardware implementations to get a pretty good idea on
the performance of Alpha-MAC. We illustrate the comparison for the case of
a Pentium processor, because it is easy to obtain figures for this platform. We
note however that in most of the security-critical applications the cryptographic
services are delivered by dedicated security modules: smart cards, HSMs, set-
top boxes, . . . These modules typically use 8-bit processors, 486 processors and
the new ones may have AES accelerators. Clearly, in this respect Alpha-MAC
takes advantage from the efficiency of AES on a wide range of platforms.

One iteration of Alpha-MAC corresponds roughly to 1 round of AES, hence
roughly 1/10 of an AES encryption. The differences are due to the following facts.
Firstly, the iteration of Alpha-MAC replaces the addition of a 16-byte round
key by the injection layout and the addition of the 4 bytes. Some implementations
of the AES recompute the round keys for every encryption. This overhead is not
present in Alpha-MAC. Finally, the last round of AES is not equal to the first
9 rounds. Using this rough approximation, we can state that MACing a message
requires:

setup: 1 AES key schedule and 1 AES encryption,
message processing: 0.1 AES encryptions per 4-byte message word,
finalization: 1 AES encryption to compute the tag.

Hence, the performance of the Alpha-MAC message processing can be esti-
mated at 0.25 × 0.1−1 = 2.5 times the performance of AES encryption, with a
fixed overhead of 1 encryption for the final tag computation. The setup overhead
can be written off over many tag computations.

8.2 On the Pentium III

A 32-bit optimized implementation of the AES round transformation implements
MC, SR and SB together by means of 16 masking operations, 12 shifts, 12 XOR
operations, and 16 table lookups. The implementation of AK requires 4 XOR



Table 2. Performance on the Pentium III/Linux platform, as defined by NESSIE

Primitive Name message processing setup setup + finalization
(cycles/byte) (cycles) (cycles)

HMAC/MD5 7.3 804 2634
HMAC/SHA-1 15 1346 4697
CBC-MAC/AES 26 616 2056
Umac-32 2.9 54K 55K

Alpha-MAC (estimate) 10.6 1032 1448

operations. The iteration function of Alpha-MAC replaces the 4 XORs by 2
masks, 2 XORs and one shift for the combination of the injection layout and
AK. If we estimate that all operations have the same cost, then the cost of
the iteration function equals 61/60 ≈ 1.02 times the cost of the AES round
transformation.

Table 2 is based on the performance figures given by the NESSIE consortium
[6]. The performance of Alpha-MAC was estimated using the NESSIE figures
for AES. We conclude that the performance of Alpha-MAC is quite good.
It outperforms HMAC/SHA-1 and CBC-MAC/AES for all message lengths.
Alpha-MAC is slower than Umac-32 but its setup time is a factor 50 shorter.

9 Conclusions

We have proposed a set of three security claims for iterated MAC functions, ad-
dressing the issue of internal collisions. We presented a new construction method
for block cipher based MAC functions. We proved that, in the absence of internal
collisions, the security of the construction can be reduced to the security of the
underlying block cipher.

Secondly, we proposed Alpha-MAC, an efficient MAC function constructed
from AES with the method presented in the first part. We explained our de-
sign decisions and provided the results of our preliminary security analysis. The
performance of Alpha-MAC turns out to be quite competitive.
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A Detecting internal collisions

If the final transformation is reversible, any pair of messages with the same tag
form an internal collision. Otherwise, for two messages with the same tag, the
collision could have taken place in the final transformation itself. If the ratio
between the size of the state and the tag length is v, one can query the MAC
function for message tuples {mi‖a1,mi‖a2, . . . , mi‖adve}, with the aj a set of dve
different strings. If we have two messages mi and mj for which all components of
the corresponding tuples have matching tags, mi and mj very probably form an
internal collision. With respect to a tag with the same length as the size of the
state, having a shorter tag only multiplies the required number of MAC function
queries by v.

B Another way to write Alpha-MAC

The standard [3] explains how to construct an equivalent description for the
inverse cipher of AES. We have a similar effect here. Firstly, in the definition
of f , the order of the steps SR and SB plays no role. Therefore a sequence of
applications of f can also be written as follows:

· · ·◦f ◦f ◦· · · = · · ·◦AK[LI(xi+1)]◦MC◦SB◦SR◦AK[LI(xi)]◦MC◦SB◦SR◦· · ·
Secondly, the order of the steps SR and AK can be changed, if the injection
layout is adapted accordingly:

SR ◦AK[LI(xi)] = AK[SR(LI(xi))] ◦ SR = AK[LI ′(xi)] ◦ SR.

We obtain the following:

· · ·◦f ◦f ◦· · · = · · ·◦MC◦SB◦AK[LI ′(xi)]◦SR◦MC◦SB◦AK[LI ′(xi−1)]◦SR◦· · ·



Concluding, when we ignore the boundary effects at the beginning and the end of
the message, Alpha-MAC can also be described using an alternative iteration
function f ′ and an alternative injection layout function LI ′, given by:

f ′(yi−1, xi) = (AK[LI ′(xi)] ◦ SR ◦MC ◦ SB) (yi−1)

LI ′(m) =




q0 0 q1 0
0 0 0 0
q3 0 q2 0
0 0 0 0


 .

The alternative injection layout is equivalent to the original injection layout
applied to message words with the rightmost two bytes swapped.


