
Resynchronization Attacks on WG and LEX ?

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. WG and LEX are two stream ciphers submitted to eStream –
the ECRYPT stream cipher project. In this paper, we point out security
flaws in the resynchronization of these two ciphers. The resynchroniza-
tion of WG is vulnerable to a differential attack. For WG with 80-bit
key and 80-bit IV, 48 bits of the secret key can be recovered with about
231.3 chosen IVs . For each chosen IV, only the first four keystream bits
are needed in the attack. The resynchronization of LEX is vulnerable to
a slide attack. If a key is used with about 260.8 random IVs, and 20,000
keystream bytes are generated from each IV, then the key of the strong
version of LEX could be recovered easily with a slide attack. The re-
synchronization attack on WG and LEX shows that block cipher related
attacks are powerful in analyzing non-linear resynchronization mecha-
nisms.

Keywords: cryptanalysis, stream cipher, resynchronization attack, dif-
ferential attack, slide attack, WG, LEX

1 Introduction

For the research on stream ciphers, resynchronization atacks have not been
studied as thoroughly as the keystream generation algorithm itself. Ten years
ago, Daemen, Govaerts and Vandewalle analyzed the weakness of linear resyn-
chronization mechanism with known output Boolean function [5]. Later Golić
and Morgari studied linear resynchronization mechanisms with unknown out-
put function [7]. However almost all the stream ciphers proposed recently use
non-linear resynchronization mechanisms, so the previous attacks on linear re-
synchronization mechanisms could no longer be applied. Recently Armknecht,
Lano and Preneel applied algebraic attacks and linear cryptanalysis to the resyn-
chronization mechanism and obtained lower bounds for the nonlinearity required
from a secure resynchronization mechanism [1]. In this paper, we apply the dif-
ferential attack and slide attack to stream ciphers with non-linear resynchroniza-
tion. We show that the cryptanalysis techniques used to attack block ciphers are
also useful in the analysis of non-linear resynchronization mechanisms.
? This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.



WG [11] and LEX [4] are two stream ciphers submitted to eStream, the
ECRYPT stream cipher project [6]. The keystream generation algorithms of
WG and LEX are quite strong. The keystream generation of WG is based on
the WG transformation which has excellent cryptographic properties [8]. The
keystream generation of LEX is based on the Advanced Encryption Standard
[10]. However, the resynchronization mechanism of WG and LEX are insecure.
The resynchronization mechanism of WG is vulnerable to the differential attack
[2] and that of LEX is vulnerable to a slide attack [3]. Breaking WG requires
231.3 chosen IVs, and breaking the strong version of LEX requires about 260.8

random IVs.
This paper is organized as follows. WG and LEX are introduced in Sect. 2.

The differential attack on WG is presented in Sect. 3, and the slide attack on
LEX is described in Sect. 4. Section 5 concludes this paper.

2 Description of WG and LEX

WG and LEX are described in Sec. 2.1 and 2.2, respectively.

2.1 The stream cipher WG

WG is a hardware oriented stream cipher with key length up to 128 bits; it
supports IV sizes from 32 bits to 128 bits. The main feature of the WG stream
cipher is the use of the WG transformation to generate keystream from an LFSR.

Keystream Generation

Fig. 1. Keystream generation diagram of WG [11]



The keystream generation diagram of WG is given in Fig. 1. WG has a regularly
clocked LFSR which is defined by the feedback polynomial

p(x) = x11 + x10 + x9 + x6 + x3 + x + γ (1)

over GF (229), where γ = β464730077 and β is the primitive root of g(x)

g(x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17 +
x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1 . (2)

Then the non-linear WG transformation, GF (229) → GF (2), is applied to gen-
erate the keystream from the LFSR.

Resynchronization (Key/IV setup)

The key/IV setup of WG is given in Fig. 2. After the key and IV have been
loaded into the LFSR, it is clocked 22 steps. During each of these 22 steps, 29
bits from the middle of the WG transformation are XORed to the feedback of
LFSR, as shown in Fig. 2.

Fig. 2. Key/IV setup of WG [11]

One step of the key/IV setup can be expressed as follows:



T = S(1)⊕S(2)⊕S(5)⊕S(8)⊕S(10)⊕(γ×S(11))⊕WG′(S(11)) ,

S(i) = S(i− 1) for i = 11 · · · 2; S(1) = T ,

where WG′(S(11)) denotes the 29 bits extracted from the WG transformation,
as shown in Fig. 2.

The WG cipher supports several key and IV sizes: the key size can be 80 bits,
96 bits, 112 bits and 128 bits and the IV sizes can be 32 bits, 64 bits, 80 bits,
96 bits, 112 bits, and 128 bits. Slightly different resynchronization mechanisms
are used for the different IV sizes. The details are given in Sect. 3.

2.2 The stream cipher LEX

LEX is based on the block cipher AES. The keystream bits are generated by
extracting 32 bits from each round of AES in the 128-bit Output Feedback
(OFB) mode [9]. LEX is about 2.5 times faster than AES. Fig. 3 shows how the
AES is initialized and chained. First a standard AES key-schedule for a secret
128-bit key K is performed. Then a given 128-bit IV is encrypted by a single
AES invocation: S = AESK(IV ). The S and the subkeys are the output of the
initialization process.

S is encrypted by K in the 128-bit OFB mode (for the more secure variant,
K is changed every 500 AES encryptions). At each round, 32 bits of the middle
value of AES are extracted to form the keystream. The bytes b0,0, b0,2, b2,0, b2,2

at every odd round and the bytes b0,1, b0,3, b2,1, b2,3 at every even round are
selected, as shown in Fig. 4.

Fig. 3. Initialization and stream generation [4]



Fig. 4. The positions of the output extracted in the even and odd rounds [4]

3 The Differential Attacks on the Resynchronization of
WG

The resynchronization of WG can be broken with a chosen IV attack based
on differential cryptanalysis. (We remind the readers that the details of the
differential attack given in this paper are slightly different from the standard
differential attack on a block cipher, such as the generation of the differential
pairs and the filtering of the wrong pairs.) WG with a 32-bit IV size is not
vulnerable to the attack given in this section (since no special differential can be
introduced into this short IV). In Sec. 3.1 the attack is applied to break an WG
with an 80-bit key and an 80-bit IV. The attacks on WG with IV sizes larger
than 80 bits are given in Sect. 3.2. The attack on a WG with a 64-bit IV size is
given in Sec. 3.3.

3.1 An attack on WG with an 80-bit key and an 80-bit IV

We investigate the security of the key/IV setup of WG with an 80-bit key and
an 80-bit IV. For this version of WG, denote the key as K = k1, k2, k3, · · · , k80

and the IV as IV = IV1, IV2, IV3, · · · , IV80. They are loaded into the LFSR as
follows:

S1,...,16(1) = k1,...,16 S17,...,24(1) = IV1,...,8

S1,...,8(2) = k17,...,24 S9,...,24(2) = IV9,...,24

S1,...,16(3) = k25,...,40 S17,...,24(3) = IV25,...,32

S1,...,8(4) = k41,...,48 S9,...,24(4) = IV33,...,48

S1,...,16(5) = k49,...,64 S17,...,24(5) = IV49,...,56

S1,...,8(6) = k65,...,72 S9,...,24(6) = IV57,...,72

S1,...,8(7) = k73,...,80 S17,...,24(7) = IV73,...,80

All the remaining bits of the LFSR are set to zero. Then the LFSR is clocked
22 steps with the middle value from the WG transformation being used in the
feedback.

The chosen IV attack on WG goes as follows. For each secret key K, we
choose two IVs, IV ′ and IV ′′, so that IV ′ and IV ′′ are identical in 8 bytes,



but differ in two bytes: IV ′
17,...,24 6= IV ′′

17,...,24 and IV ′
49,...,56 6= IV ′′

49,...,56. The
differences satisfy IV ′

17,...,24 ⊕ IV ′′
17,...,24 = IV ′

49,...,56 ⊕ IV ′′
49,...,56.

Denote the value of S(i) (1 ≤ i ≤ 11) at the end of the j-th step by Sj(i),
and denote loading the key/IV as the 0th step. After loading the key and the
chosen IV into LFSR, we know that the differences in S(2) and S(5) are the
same, i.e., S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5). We denote this difference as 41,
i.e., 41 = S′0(2)⊕ S′′0(2) = S′0(5)⊕ S′′0(5).

Table 1. The differential propagation in the key/IV setup of WG

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) S(11)
step 0 0 41 0 0 41 0 0 0 0 0 0
step 1 0 0 41 0 0 41 0 0 0 0 0
step 2 0 0 0 41 0 0 41 0 0 0 0
step 3 0 0 0 0 41 0 0 41 0 0 0
step 4 0 0 0 0 0 41 0 0 41 0 0
step 5 0 0 0 0 0 0 41 0 0 41 0
step 6 41 0 0 0 0 0 0 41 0 0 41

step 7 42 41 0 0 0 0 0 0 41 0 0
step 8 41⊕42 42 41 0 0 0 0 0 0 41 0
step 9 0 41⊕42 42 41 0 0 0 0 0 0 41

step 10 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0 0 0

step 11 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0 0

step 12 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0

step 13 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0

step 14 43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0

step 15 41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0

step 16 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41

step 17 41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42

step 18 43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42

step 19 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0

step 20 44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

step 21 44⊕45
⊕47

44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43

step 22 42⊕43
⊕44⊕
45⊕46
⊕47
⊕48

44⊕45
⊕47

44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42

We now examine the differential propagation during the 22 steps in the
key/IV setup. The complete differential propagation is shown in Table 1, where



the differences at the i-th step indicate the differences at the end of the i-th step.
The difference42 = (γ×S′6(11)⊕WG′(S′6(11))⊕(γ×S′′6(11)⊕WG′(S′′6(11)) =
(γ × S′0(5) ⊕ WG′(S′0(5)) ⊕ (γ × S′′0(5) ⊕ WG′(S′′0(5)). Similarly, we obtain
that 43 = (γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2)).

From Table 1, we notice that at the end of the 22th step, the difference at
S22(10) is 42 ⊕43. From the above description of 42 and 43, we know that

42 ⊕43 = ((γ × S′0(5)⊕WG′(S′0(5))⊕ (γ × S′′0(5)⊕WG′(S′′0(5)))⊕
((γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2))) . (3)

This shows that the value of42⊕43 is determined by k17,...,24, k49,...,64, IV ′
9,...,24,

IV ′
49,...,56, IV ′′

9,...,24, IV ′′
49,...,56.

From the keystream generation of WG, we know that the first keystream
bit is generated from S22(10) (after the key/IV setup, the LFSR is clocked, and
S23(11) is used to generate the first keystream bit). If 42⊕43 = 0, then the first
keystream bits for IV ′ and IV ′′ should be the same. This property is applied in
the attack to determine whether the value of 42 ⊕43 is 0.

Assume that the value of 42⊕43 is randomly distributed, then 42⊕43 = 0
with probability 2−29. We thus need to generate about 229 pairs (42,43) in order
to obtain a pair satisfying 42 ⊕ 43 = 0. Note that the key is fixed and that
S′0(2)⊕S′′0(2) = S′0(5)⊕S′′0(5) must be satisfied. Three bytes of IV (IV ′

9,...,24,
IV ′

49,...,56) and one-byte difference (41) can be freely chosen to generate different
(42,43), so there are about 224×255/2 ≈ 231 available pairs of (42,43). Hence
there is no problem to generate 229 pairs of (42,43).

Then we proceed to determine which pair (42,43) satisfies42⊕43 = 0. For
each pair (42,43), we modify the values of IV ′

1,...,8 and IV ′′
1,...,8, but we ensure

that IV ′
1,...,8 = IV ′′

1,...,8. This modification does not affect the value of 42 ⊕43,
but it affects the value of S22(10). We generate keystream and examine the first
keystream bits. If the values of the first keystream bits are the same, then the
chance that 42 ⊕ 43 = 0 is improved. In that case, we modify IV ′

1,...,8 and
IV ′′

1,...,8 again and observe the first keystream bits. This process ends when the
first keystream bits are not the same or this process is repeated for 40 times.
If one (42,43) passes the test for 40 times, then we know that 42 ⊕ 43 = 0
with probability extremely close to 1. (Each wrong pair could pass this filtering
process with probability 2−40. One pair of 229 wrong pairs could pass this process
with probability 2−11.) Thus with about 2 × 229 × ∑40

i=1
i
2i = 231 chosen IVs,

we can find a pair (42,43) satisfying 42 ⊕43 = 0. Subsequently according to
Eqn. (3) and 42 ⊕ 43 = 0, we recover 24 bits of the secret key, k17,...,24 and
k49,...,64.

The above attack can be improved if we consider the differences at S22(7) and
S22(8). The differences there are both41⊕42⊕43. If the value of41⊕42⊕43

is 0, then the third and fourth bits of the two keystreams would be the same. If
we only observe the third and fourth keystream bits, then k17,...,24 and k49,...,64

can be recovered with 2× 229 ×∑20
i=1(

1
2i−1 − 1

2i )× i = 230.4 chosen IVs.



In the attack, we observe the first, third and fourth keystream bits, then
recovering k17,...,24 and k49,...,64 requires about 2×228×21.13 = 230.1 chosen IVs
(the value 21.13 is obtained through numerical computation).

By setting the difference at S0(3) and S0(6) and observing the second and
third bits of the keystream, we can recover another 24 bits of the secret key,
k25,...,40 and k65,...,72. We need 230.4 chosen IVs.

So with about 230.1 + 230.4 = 231.3 chosen IVs, we can recover 48 bits of the
80-bit secret key. It shows that the key/IV setup of the WG stream cipher is
insecure.

3.2 The attacks on WG with key and IV sizes larger than 80 bits

The WG ciphers with the key and IV sizes larger than 80 bits are all vulnerable
to the chosen IV attacks. The attacks are very similar to the above attack. We
omit the details of the attacks here. The results are given below:

1. For WG with 96-bit key and 96-bit IV, 48 bits of the key can be recovered
with complexity about the same as the above attack.

2. For WG with IV sizes larger than 96 bits, 72 bits of the key can be recovered
with complexity about 1.5 times that of the above attack.

3.3 The attacks on WG with 64-bit IV size

We use WG with an 80-bit key and a 64-bit IV as an example to illustrate the
attack. For WG cipher with an 80-bit key and a 64-bit IV, the key and IV are
loaded into the LFSR as follows:

S1,...,16(1) = k1,...,16 S1,...,16(2) = k17,...,32

S1,...,16(3) = k33,...,48 S1,...,16(4) = k49,...,64

S1,...,16(5) = k65,...,80 S1,...,16(9) = k1,...,16

S1,...,16(10) = k17,...,32 ⊕ 1 S1,...,16(11) = k33,...,48

S17,...,24(1) = IV1,...,8 S17,...,24(2) = IV9,...,16

S17,...,24(3) = IV17,...,24 S17,...,24(4) = IV25,...,32

S17,...,24(5) = IV33,...,40 S17,...,24(6) = IV41,...,48

S17,...,24(7) = IV49,...,56 S17,...,24(8) = IV57,...,64

In the attack, we introduce differences at S(2) and S(5), but we can only generate
about 223 pairs of (42,43) since we can only modify IV9,...,16 and IV33,...,40.
Thus we can obtain a pair (42,43) satisfying 42⊕43 = 0 or 41⊕42⊕43 = 0
with probability 2−5. Once we know 42⊕43 = 0 or 41⊕42⊕43 = 0, we can
recover 29 bits of information on k17,...,32 and k65,...,80. It shows that 29 bits of
information of the secret key can be recovered with probability 2−5. This attack
requires about 225.1 chosen IVs.

The attack on WG with 96-bit key and 64-bit IV is similar to the above
attack. We introduce differences at S(2) and S(5) or at S(3) and S(6). In the
attack 29 bits of information on k17,...,32 and k65,...,80 can be recovered with



probability 2−5, and another 29 bits of information on k33,...,48 and k81,...,96 can
be recovered with probability 2−5.

The attack on WG with 112-bit key and 64-bit IV is also similar. The result
is that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with
probability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recovered
with probability 2−5, and 29 bits of information on k49,...,64 and k97,...,112 can
be recovered with probability 2−5.

The attack on WG with 128-bit key and 64-bit IV is also similar. The result
is that 29 bits of information on k17,...,32 and k65,...,80 can be recovered with
probability 2−5, 29 bits of information on k33,...,48 and k81,...,96 can be recov-
ered with probability 2−5, 29 bits of information on k49,...,64 and k97,...,112 can
be recovered with probability 2−5, and 29 bits of information on k64,...,80 and
k113,...,128 can be recovered with probability 2−5.

4 A Slide Attack on the Resynchronization of LEX

The security of LEX depends heavily on the fact that only a small amount of
information is released for each round (including the input and output) of AES.
The slide attack intends to retrieve all the information of one AES round input
(or output) in LEX.

Denote Si = Ei
K(IV ), where Ei(m) means that m is encrypted i times,

S0 = IV ; denote the 320 bits extracted from the i-th encryption with ki for
i ≥ 2. For two IVs, IV ′ and IV ′′, if k′2 = k′′j (j > 2), then we know that
S′1 = S′′j−1. Immediately, we know that S′′j−2 = S′0 = IV ′. Note that k′′j−1 is
extracted from EK(S′′j−2), so k′′j−1 is extracted from EK(IV ′); this means that
we know the input to AES, and we know 32 bits from the output of the first
round. In the following, we show that it is easy to recover the secret key from
this 32 bits of information of the first round output.

Denote the 16-byte output of the r-th round of AES with mr
i,j (0 ≤ i, j ≤ 3),

and denote the 16-byte round key at the end of the r-th round with wr
i,j (0 ≤

i, j ≤ 3). Now if m1
0,0, m1

0,2, m1
2,0, m1

2,2 are known, i.e, four bytes of the first
round output are known, then we obtain the following four equations:

m1
0,0 ⊕ w1

0,0 = MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1)) & 0xFF (4)

m1
2,0 ⊕ w1

2,0 = (MixColumn((m0
0,0 ⊕ w0

0,0) ‖ (m0
1,3 ⊕ w0

1,3)

‖ (m0
2,2 ⊕ w0

2,2) ‖ (m0
3,1 ⊕ w0

3,1)) >> 16)& 0xFF (5)

m1
0,2 ⊕ w1

0,2 = MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3)) & 0xFF (6)

m1
2,2 ⊕ w1

2,2 = (MixColumn((m0
0,2 ⊕ w0

0,2) ‖ (m0
1,1 ⊕ w0

1,1)

‖ (m0
2,0 ⊕ w0

2,0) ‖ (m0
3,3 ⊕ w0

3,3)) >> 16)& 0xFF . (7)

Each equation leaks one byte of information on the secret key. In the above
four equations, 12 bytes of the subkey are involved. To recover all these 12



bytes, we need three inputs to AES and the related 32-bit first round outputs so
that we can obtain 12 equations. These 12 equations can be solved with about
α × 232 operations, where α is a small constant. With 96 bits of the key have
been recovered, the rest of the 32 bits of AES can be recovered by exhaustive
search.

We now compute the number of IVs required to generate three collisions.
Suppose that a secret key is used with about 265.3 random IVs, and each IV i is
used to generate a 640-bit keystream ki

2, k
i
3. Since the block size of AES is 128

bits, we know that with high probability there are three collisions ki
2 = kj

3 for
different i and j since 265.3×(265.3−1)

2 × 2−128 ≈ 3.
The number of IVs could be reduced if more keystream bits are generated

from each IV. In [4], it is suggested to change the key every 500 AES encryptions
for a strong variant of LEX. Suppose that each IV is applied to generate 500
320-bit outputs, then with 260.8 IVs, we could find three collisions ki

2 = kj
x

(2 < x < 500) and recover the key of LEX. For the original version of LEX, the
AES key is not changed during the keystream generation. Suppose that each IV
is used to generate 250 keystream bytes, then the key could be recovered with
about 243 random IVs (here we need to consider that the state update function
of LEX is reversible; otherwise, the amount of IV required in the attack could
be greatly reduced).

For a secure stream cipher with a 128-bit key and a 128-bit IV, each key
would never be recovered faster than exhaustive key search no matter how many
IVs are used together with that key. But for LEX each key could be recovered
faster than exhaustive search if that key is used together with about 261 random
IVs. We thus conclude that LEX is theoretically insecure.

For a stream cipher with 128-bit key and 128-bit IV, if the attacker can choose
the IV, then one of 264 keys could be recovered with about 264 pre-computations
(based on the birthday paradox). The complexity of such an attack is close to
our attack on LEX. However, there are two major differences between these
two attacks. One difference is that the attack based on birthday paradox is a
chosen IV attack while our attack is a random IV attack. Another difference is
that the attack based on birthday paradox results in the recovery of one of n
keys, while our attack recovers one particular key. Recovering one of n keys and
recovering one particular key are two different types of attacks being used in
different scenarios, so it is not meaningful to simply compare their complexities.

5 Conclusion

In this paper, we show that the resynchronization mechanisms of WG and LEX
are vulnerable to a differential attack and a slide attack, respectively. It shows
that the block cipher cryptanalysis techniques are powerful in analyzing the
non-linear resynchronization mechanism of a stream cipher.

The designers of WG recommended to use 44 steps in the initialization to
resist a differential attack [12]. It is a small modification to the design to achieve
secure key/IV setup. However, it is inefficient. We recommend to change the



primitive polynomial tap positions so that the tap distances are coprime, and
to generate the first keystream bit from S(1) instead of S(10). Then we expect
that WG with 22-step key/IV setup will be able to resist a differential attack.

Acknowledgements

The authors would like to thank the anonymous reviewers of SASC 2006 and
FSE 2006 for their helpful comments. Special thanks go to Alex Biryukov for
pointing out that the attack on LEX is slide attack and for helpful discussion.

References

1. F. Armknecht, J. Lano, and B. Preneel,“Extending the Resynchronization Attack,”
Selected Areas in Cryptography – SAC 2004, LNCS 3357, H. Handschuh, and A.
Hasan (eds.), Springer-Verlag, pp. 19-38, 2004.

2. E. Biham, A. Shamir, “Differential Cryptanalysis of DES-like Cryptosystems,” in
Advances in Cryptology – Crypto’90, LNCS 537, pp. 2-21, Springer-Verlag, 1991.

3. A. Biryukov, D. Wagner, “Slide Attacks,” Fast Software Encryption – FSE’99,
LNCS 1636, pp. 245-259, Springer-Verlag, 1999.

4. A. Biryukov, “A New 128-bit Key Stream Cipher LEX,” ECRYPT Stream Cipher
Project Report 2005/013. Available at http://www.ecrypt.eu.org/stream/

5. J. Daemen, R. Govaerts, J. Vandewalle, “Resynchronization weakness in synchro-
nous stream ciphers,” Advances in Cryptology - EUROCRYPT’93, Lecture Notes
in Computer Science, vol. 765, pp. 159-167, 1994.

6. ECRYPT Stream Cipher Project, at http://www.ecrypt.eu.org/stream/
7. J. D. Golić, G. Morgari, “On the Resynchronization Attack,” Fast Software En-

cryption – FSE 2003, LNCS 2887, pp. 100-110, Springer-Verlag, 2003.
8. G. Gong, A. Youssef. “Cryptographic Properties of the Welch-Gong Transforma-

tion Sequence Generators,” IEEE Transactions on Information Theory, vol. 48,
No. 11, pp. 2837-2846, Nov. 2002.

9. National Institute of Standards and Technology, “DES Modes of Operation,”
Federal Information Processing Standards Publication (FIPS) 81. Available at
http://csrc.nist.gov/publications/fips/

10. National Institute of Standards and Technology, “Advanced Encryption Standard
(AES),” Federal Information Processing Standards Publication (FIPS) 197. Avail-
able at http://csrc.nist.gov/publications/fips/

11. Y. Nawaz, G. Gong. “The WG Stream Cipher,” ECRYPT Stream Cipher Project
Report 2005/033. Available at http://www.ecrypt.eu.org/stream/

12. Y. Nawaz, G. Gong. “Preventing Chosen IV Attack on WG Cipher by Increasing
the Length of Key/IV Setup,” ECRYPT Stream Cipher Project Report 2005/047.
Available at http://www.ecrypt.eu.org/stream/


