
Differential-Linear Attacks
against the Stream Cipher Phelix?

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. The previous key recovery attacks against Helix obtain the
key with about 288 operations using chosen nonces (reusing nonce) and
about 1000 adaptively chosen plaintext words (or 235.6 chosen plaintext
words). The stream cipher Phelix is the strengthened version of Helix.
In this paper we apply the differential-linear cryptanalysis to recover the
key of Phelix. With 234 chosen nonces and 237 chosen plaintext words,
the key of Phelix can be recovered with about 241.5 operations.

1 Introduction

Phelix [5] is a fast stream cipher with an embedded authentication mechanism.
It is one of the focus ciphers (both software and hardware) of the ECRYPT eS-
TREAM project. Phelix is a strengthened version of the stream cipher Helix [1].

Muller has applied differential attack to Helix [2]. He showed that the key of
Helix can be recovered faster than by brute force if the attacker can force the
initialization vectors to be used more than once. The attack requires about 212

adaptively chosen plaintext words and 288 operations. Paul and Preneel reduced
the number of adaptively chosen plaintext words by a factor of at least 3 [4].
Later Paul and Preneel showed that 235.6 chosen plaintext words can be used
instead of adaptively chosen plaintexts [3]. All these key recovery attacks against
Helix require about 288 operations.

Phelix was designed and submitted to the ECRYPT eSTREAM project in
2005. The output function of Helix has been changed so that a larger plaintext
diffusion can be achieved in Phelix. The Phelix designers claimed that Phelix is
able to resist a differential key recovery attack even if the nonce is reused: “We
claim, however, that even in such a case (referring to nonce reuse) it remains
infeasible to recover the key” [5].

In this paper, we apply differential-linear cryptanalysis to Phelix assuming
nonce reuse (this corresponds to a chosen nonce attack). We show that the key of
Phelix can be recovered with a low complexity: 237 chosen plaintext words and
241.5 operations. Although the Phelix designers did expect that Phelix would
? This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

loose most of its security properties when the nonce is reused, this paper shows
that Phelix is completely insecure in such a setting.

This paper is organized as follows. In Sect. 2, we illustrate the operations
of Phelix. Section 3 analyzes how the addend bits affect the differential distri-
bution. Section 4 describes a basic differential key recovery attack on Phelix.
The improved attack is given in Sect. 5. We discuss how to strengthen Phelix in
Sect. 6. Section 7 concludes this paper.

2 The Stream Cipher Phelix

In this section, we only consider the encryption algorithm of Phelix. The full
description of Phelix is given in [5]. The key size and nonce size of Phelix are
256 bits and 128 bits, respectively. The designers claim that there is no attack
against Phelix with less than 2128 operations.

Phelix updates fives 32-bit words: Z0, Z1, Z2, Z3 and Z4. At the ith step,
two secret 32-bit words Xi,0, Xi,1 and one 32-bit plaintext word Pi are applied
to update the internal states. One 32-bit keystream word Si is generated and
is used to encrypt the plaintext Pi. Note that the plaintext is used to update
the internal state so that the authentication can be performed. The word Xi,0

is related to the key, and the word Xi,1 is related to the key and nonce in a very
simple way. Recovering any Xi,0 and Xi,1 implies recovering part of the key. One
step of Phelix is given in Fig. 1.

3 The Differential Propagation of Addition

In this section, we study how the addend bits affect the differential propagation.
The importance of this study is that it shows that the values of the addend bits
can be determined by observing the differential distribution of the sum.

Theorem 1. Denote φi as the ith least significant bit of φ. Suppose two posi-
tive m-bit integers φ and φ′ differ only at the nth least significant bit position
(φ⊕φ′ = 2n). Let β be an m-bit random integer (m is much larger than n). Let
ψ = φ+β and ψ′ = φ′+β. For βn = 0, denote the probability that ψn+i = ψ′n+i

as pn+i,0. For βn = 1, denote the probability that ψn+i = ψ′n+i as pn+i,1. Then
the difference ∆pn+i = pn+i,0 − pn+i,1 = 2−n−i+1 (i > 0).

Theorem 1 can be proved easily if we consider the bias in the carry bits. We omit
the proof here. In Theorem 1, the bias of the differential distribution decreases
quickly as the value of n increases. We need another differential property that
produces difference with a large bias even for large n. Before introducing that
property, we give the following lemma from [6].

Lemma 1. Denote u and v as two random and independent n-bit integers. Let
cn = (u + v) >> n, where cn denotes the carry bit at the nth least significant

Fig. 1. One block of Phelix [5]

bit position. Denote the most significant bit of u as un−1. Then Pr(cn⊕ un−1 =
0) = 3

4 .

The large bias of the differential distribution for large n is given below.

Theorem 2. Denote φi as the ith least significant bit of φ. Suppose two posi-
tive m-bit integers φ and φ′ differ only at the nth least significant bit position
(φ ⊕ φ′ = 2n). Let β be an m-bit random integer (m is much larger than n).
Let ψ = φ + β and ψ′ = φ′ + β. For βn ⊕ βn−1 = 0, denote the probability
that ψn+i = ψ′n+i as p̄n+i,0. For βn ⊕ βn−1 = 1, denote the probability that
ψn+i = ψ′n+i as p̄n+i,1. Then the difference ∆p̄n+i = p̄n+i,0 − p̄n+i,1 = 2−i

(i > 0).

Proof. Denote the carry bit at the ith least significant bit position in ψ = φ+β
as ci, and that in ψ′ = φ′ + β as c′i. Note that c′n = cn, thus c′n ⊕ βn = cn ⊕ βn.
When c′n⊕ βn = cn⊕ βn = 0, we know that ψ⊕ψ′ = 2n with probability 1, i.e.,
ψn+i = ψ′n+i with probability 1 for i > 0. When c′n⊕βn = cn⊕βn = 1, by induc-
tion we obtain that ψn+i = ψ′n+i with probability 1−2−i+1 for i > 0. According
to Lemma 1, we know that cn ⊕ βn−1 = 0 with probability 3

4 . If βn ⊕ βn−1 = 0,
then cn ⊕ βn = 0 with probability 3

4 , thus p̄n+i,0 = 3
4 × 1 + 1

4 × (1 − 2−i+1) =
1 − 1

4 × 2−i+1 . If βn ⊕ βn−1 = 1, then cn ⊕ βn = 0 with probability 1
4 ,

thus p̄n+i,1 = 1
4 × 1 + 3

4 × (1 − 2−i+1) = 1 − 3
4 × 2−i+1. Then the difference

∆p̄n+i = p̄n+i,0 − p̄n+i,1 = 2−i for i > 0.

The above two theorems provide the guidelines to recover the key of Phelix.
However, these two theorems deal with the ideal cases in which there is only one
bit difference between φ and φ′, and β is assumed to be random. In the attacks,
we deal with the complicated situation where each bit of φ ⊕ φ′ is biased, and
β is a fixed integer. The value of each bit of β will affect the distribution of the
higher order bits of (φ + β)⊕ (φ′+ β) in a complicated way. In order to simplify
the analysis, we will use simulations to obtain these relations in the attacks.

4 A Basic Key Recovery Attack on Phelix

We will first investigate the differential propagation in Phelix. Then we show
how to recover the key of Phelix by observing the differential distribution of the
keystream.

4.1 The bias in the differential distribution of the keystream

Assume an attacker can choose an arbitrary value for the nonce, then a nonce
can be used more than once. We introduce one-bit difference into the plaintext
at the ith step, i.e., Pi 6= P ′i , and Pi⊕P ′i = 2n (0 ≤ n ≤ 31). Then we analyze the
difference between B

(i+1)
3 and B

′(i+1)
3 (as indicated in Fig. 1). If all the carry bits

are 0 (replacing all the additions with XORs), then the differences only appear
at the 9th, 11th, 13th, 15th and 17th least significant bits between B

(i+1)
3 and

B
′(i+1)
3 . Because of the carry bits, the differential distribution becomes compli-

cated. We run the simulation and use the randomly generated Y
(i)
k (4 ≥ k ≥ 0),

Pi, Xi,1 in the simulation. With 230 plaintext pairs, we obtain the distribution
of B

(i+1)
3 ⊕B

′(i+1)
3 in Table 1.

Table 1. The probability that B
(i+1),j
3 ⊕B

′(i+1),j
3 = 0 for Pi ⊕ P ′i = 1

j p j p j p j p

0 0.9997 8 1.0000 16 0.5001 24 0.9161
1 0.9998 9 0.0000 17 0.4348 25 0.9470
2 0.9999 10 0.5000 18 0.5000 26 0.9673
3 0.9999 11 0.4375 19 0.5486 27 0.9803
4 1.0000 12 0.5000 20 0.6366 28 0.9883
5 1.0000 13 0.4492 21 0.7283 29 0.9931
6 1.0000 14 0.5000 22 0.8083 30 0.9960
7 1.0000 15 0.4273 23 0.8708 31 0.9977

From Table 1, we see that the distribution of B
(i+1)
3 ⊕B

′(i+1)
3 is heavily biased.

For example, B
(i+1),8
3 = B

′(i+1),8
3 with probability close to 1, while B

(i+1),9
3 =

B
′(i+1),9
3 with probability close to 0. Note that T

(i+1)
0 = A

(i+1)
0 ⊕ (B(i+1)

3 +
Xi+1,0), according to Theorem 2, the distribution of T

(i+1)
0 ⊕ T

′(i+1)
0 will be

affected by the value of X8
i+1,0 ⊕ X9

i+1,0, thus the distribution of Bi+1 ⊕ B′
i+1

will be affected by the value of X8
i,0 ⊕ X9

i,0. By observing the distribution of
Si+1 ⊕ S′i+1, it may be possible to determine the value of X8

i,0 ⊕X9
i,0. Shifting

the one-bit difference between Pi and P ′i , we may determine other values of
Xj+1

i,0 ⊕Xj
i,0 for 0 ≤ j ≤ 30, and recover in this way the key Xi,0. After recovering

eight consecutive Xi,0 values, the 256-bit key can be found immediately.
The above analysis gives a brief idea of the attack. However, the actual

attacks are quite complicated due to the interference of many differences. It is
very tedious to derive exactly how the distribution of Si+1 ⊕ S′i+1 is affected
by the value of Xj+1

i+1,0 ⊕ Xj
i+1,0. On the other hand, it is easy to search for

the relation with simulations. In the following, we carried out a simulation to
find the relation between the value of Xj+1

i+1,0 ⊕ Xj
i+1,0 and the distribution of

Si+1 ⊕ S′i+1.
Let two plaintexts differ only in the ith word, and Pi ⊕ P ′i = 1. We use the

randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

Denote with pn
j,0 the probability that Sn

i+1 ⊕ S′ni+1 = 0 when Xj+1
i,0 ⊕ Xj

i,0 = 0.
And denote pn

j,1 as the probability that Sn
i+1 ⊕ S′ni+1 = 0 when Xj+1

i,0 ⊕Xj
i,0 = 1.

Let ∆p̃n
j = (pn

j,0−pn
j,1)× N

σ , where N denotes the number of plaintext pairs, and

σ =
√

N
2 . Assume that the values of pn

j,0 and pn
j,1 are close to 1

2 . If ∆p̃n
j > 4, the

difference between pn
j,0 and pn

j,1 is larger than 4σ, hence the value of Xj+1
i,0 ⊕Xj

i,0

can be determined correctly with high probability. For every value of the two
bits Xj+1

i,0 and Xj
i,0, we use 228 pairs to generate Si+1⊕S′i+1, then compute pn

j,0

and pn
j,1. Thus N = 229, and σ = 213.5. We list the large values of ∆p̃n

j below:

For j = 9, ∆p̃13
9 = 55.7 .

For j = 10, ∆p̃13
10 = 133.9 .

For j = 14, ∆p̃17
14 = 51.5 .

For j = 15, ∆p̃19
15 = −9.1, ∆p̃22

15 = 14.9, ∆p̃23
15 = −15.7 .

For j = 16, ∆p̃19
16 = −50.8, ∆p̃21

16 = 62.0, ∆p̃22
16 = 97.7, ∆p̃23

16 = −106.6,
∆p̃25

16 = 11.8, ∆p̃26
16 = 16.0, ∆p̃27

16 = −17.4 .
For j = 17, ∆p̃21

17 = 77.4, ∆p̃22
17 = 145.3, ∆p̃23

17 = −171.6, ∆p̃25
17 = 12.3,

∆p̃26
17 = 28.5, ∆p̃27

17 = −30.4 .
For j = 18, ∆p̃21

18 = 80.2, ∆p̃22
18 = 179.7, ∆p̃23

18 = −241.7, ∆p̃26
18 = 32.8,

∆p̃27
18 = −43.7 .

For j = 19, ∆p̃22
19 = 139.6, ∆p̃23

19 = −220.6, ∆p̃26
19 = 19.0, ∆p̃27

19 = −46.5 .
For j = 20, ∆p̃23

20 = −156.7, ∆p̃25
20 = −5.7, ∆p̃26

20 = 18.3, ∆p̃27
20 = −30.6 .

For j = 21, ∆p̃25
21 = −6.8, ∆p̃26

21 = 9.5, ∆p̃27
20 = −28.5 .

The data given above show that the distribution of Si+1 ⊕ S′i+1 is strongly
affected by the value of Xj+1

i+1,0 ⊕Xj
i+1,0.

4.2 Recovering the key

Note that in the above analysis, when we deal with a particular Xj+1
i+1,0⊕Xj

i+1,0,
the other bits of Xi+1,0 are random. In the key recovery attack, the value of
Xi+1,0 is fixed, so we need to consider the interference between the bits Xj+1

i+1,0⊕
Xj

i+1,0.
We notice that there are many large biases related to S23

i+1 ⊕ S′23i+1. However,
the values of Xj+1

i+1,0 ⊕Xj
i+1,0 (15 ≤ j ≤ 20) all have a significant effect on the

distribution of S23
i+1 ⊕ S′23i+1. It is thus a bit complicated to determine the values

of Xj+1
i+1,0 ⊕Xj

i+1,0 (15 ≤ j ≤ 20).
In the following, we consider the bit S17

i+1⊕S′17i+1. Its distribution is dominated
by the value of X15

i+1,0⊕X14
i+1,0. For every value of the two bits X15

i+1,0 and X14
i+1,0,

we use 230 pairs to generate Si+1 ⊕ S′i+1, then compute p17
14,0 and p17

14,1. From
the simulation, we found that p17

14,0 = 0.50227 and p17
14,1 = 0.50117. We denote

the average of p17
14,0 and p17

14,1 as p̄17
14, i.e., p̄17

14 = p17
14,0+p17

14,1
2 = 0.50172. Running

a similar simulation, we found that p17
13,0 = 0.50175 and p17

13,1 = 0.50169. For
all the j 6= 13, j 6= 14, we found that p17

j,0 ≈ p̄17
14 and p17

j,1 ≈ p̄17
14. The value of

X15
i+1,0 ⊕ X14

i+1,0 is recovered as follows: from the keystreams, we compute the
fraction for which S17

i+1 ⊕ S′17i+1 = 0. If it is larger than p̄17
14, then the value of

X15
i+1,0 ⊕X14

i+1,0 is considered to be 0; otherwise the value of X15
i+1,0 ⊕X14

i+1,0 is
considered to be 1.

We now compute the number of plaintext pairs required to determine the
value of X15

i+1,0 ⊕ X14
i+1,0. Suppose that N pairs of plaintexts are used. The

standard deviation is σ =
√

N × p̄17
14 × (1− p̄17

14). To determine the value of
X15

i+1,0 ⊕ X14
i+1,0 with success rate 0.99, we require that N × ((p17

14,0 − p17
14,1) −

(p17
13,0 − p17

13,1)) > 4.66 × σ (The cumulative distribution function of the normal
distribution gives value 0.99 at the point 2.33σ). Thus we require that N > 222.27.

We used the Phelix C source code submitted to eSTREAM in the experi-
ments. 1

Experiment 1. The goal of this experiment is to recover the value of X15
1,0⊕X14

1,0.
Each plaintext has two words P0 and P1. For each plaintext pair, the two words
differ only in the least significant bit of P0. N plaintext pairs are used for each
key to determine the value of X15

1,0 ⊕X14
1,0 as follows: if the fraction of cases for

which S17
1 ⊕ S′171 = 0 is larger than p̄17

14 = 0.50172, then the value of X15
1,0 ⊕X14

1,0

is considered to be 0; otherwise the value of X15
1,0 ⊕X14

1,0 is considered to be 1.
A random nonce was used for each plaintext pair. We tested 200 keys in the
experiment. For N = 222.3, the values of X15

1,0⊕X14
1,0 of 183 keys are determined

correctly. For N = 225, the values of X15
1,0 ⊕ X14

1,0 of 192 keys are determined
correctly.

Experiment 1 shows that the value of X15
1,0 ⊕ X14

1,0 can be determined suc-
cessfully by introducing a difference in the least significant bit of P0, but with a
higher error rate. The reason is that other bits of X1,0 affects the determination
of X15

1,0 ⊕X14
1,0 in a subtle way.

We now proceed to recover the other bits of X1,0. By rotating the one-
bit difference between P0 and P ′0, and using the same threshold value, we can
determine the value of Xj+1

1,0 ⊕Xj
1,0 for 2 ≤ j ≤ 3, 5 ≤ j ≤ 10 and 14 ≤ j ≤ 28.

Thus we are able to recover 23 bits of information on each Xi,0. Note that
the 256-bit key is recovered from eight consecutive Xi,0. Thus we are able to
recover 23 × 8 = 184 bits of the key with success rate about 192

200 = 0.96 . The
number of plaintext pairs required in the attack is about 225 × 32× 8 = 233.

We need to improve the above attack in two approaches: recovering more
key bits and improving the success rate. The direct approach is to adjust the
threshold value for each key bit position. In the following, we illustrate a more
advanced approach which recovers the values of Z

(i)
4 before recovering the key.

5 Improving the Attack on Phelix

In the above attack, we use a random nonce for each plaintext pair, i.e., every
nonce is used twice with the same key. When the nonce is used many times with
the same key, we can introduce the difference at Pi and recover the value of Zi−3

4

by observing the distribution of Si+1⊕S′i+1. Then we proceed to recover Xi+1,0.

5.1 Recovering Z
(i)
4

We introduce the difference to the least significant bit of Pi (Pi ⊕ P ′i = 1). A
simulation is carried out to determine the distribution of Y

(i+1)
4 ⊕ Y

′(i+1)
4 . We

use the randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0 in the simulation.

1 Note that we have found and corrected a small bug in this source code. The output
should be computed as Si = Y

(i)
4 + Z

(i−4)
4 in stead of Si = Y

(i)
4 + Z

(i−3)
4 .

Denote ṗn as the probability that Y
(i+1),n
4 ⊕ Y

′(i+1),n
4 = 0. With 230 pairs, we

obtain the values of ṗn in Table 2.

Table 2. The probability that Y
(i+1),j
4 ⊕ Y

′(i+1),j
4 = 0 for Pi ⊕ P ′i = 1

j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5

0 0.03326 8 0.00003 16 −0.00003 24 0.00046
1 0.12983 9 0.03517 17 0.00268 25 0.05926
2 0.20291 10 0.00002 18 −0.00001 26 0.15064
3 −0.27754 11 0.00001 19 −0.00266 27 −0.24028
4 −0.00005 12 0.00000 20 −0.00004 28 0.00001
5 0.05663 13 0.02293 21 0.02276 29 0.05770
6 −0.15327 14 −0.00001 22 0.07434 30 0.15508
7 −0.00001 15 −0.00001 23 −0.14414 31 −0.24907

From Table 2, we notice that Y
(i+1)
4 ⊕Y

′(i+1)
4 is heavily biased. For example,

Y
(i+1),2
4 = Y

′(i+1),2
4 with probability about 0.70291, while Y

(i+1),3
4 = Y

′(i+1),3
4

with probability about 0.22246. Note that Si+1 = Y
(i+1)
4 ⊕ Z

(i−3)
4 , according to

Theorem 2, the distribution of Si+1 ⊕ S′i+1 is affected by the value of Z
(i−3),3
4 ⊕

Z
(i−3),2
4 . Next we carry out simulations to characterize this relation.

We use the randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4

in the simulation. The one-bit difference is introduced to Pi, i.e., Pi ⊕ P ′i = 2j .
Denote p̈n

j,0 as the probability that Sn
i+1⊕S′ni+1 = 0 when Z

(i−3),j+1
4 ⊕Z

(i−3),j
4 = 0.

And denote p̈n
j,1 as the probability that Sn

i+1 ⊕ S′ni+1 = 0 when Z
(i−3),j+1
4 ⊕

Z
(i−3),j
4 = 1. For each value of Z

(i−3),3
4 and Z

(i−3),2
4 , we use 228 plaintext pairs.

We find that p̈5
2,0 = 0.5461 and p̈5

2,1 = 0.5193. The large difference between

p̈5
2,0 and p̈5

2,1 shows that the value of Z
(i−3),3
4 ⊕Z

(i−3),2
4 can be determined with

success rate 0.999 with about 213.9 plaintext pairs (The cumulative distribution
function of the normal distribution gives value 0.999 at the point 3.1σ).

The above approach is able to recover Z
(0)
4 , but the success rate is not that

high according to our experiment. In the following, we use a new approach
to determine Z

(0)
4 . To reduce the interference between the bits of Z

(i−3)
4 , we

recover the least significant bit of Z
(i−3)
4 first, then proceed to recover the more

significant bits bit-by-bit.
We start with determining the value of Z

(i−3),0
4 . Let Pi ⊕ P ′i = 1. Run-

ning the simulation with228 plaintext pairs, we found that p̈2
−1,0 = 0.70296, and

p̈2
−1,1 = 0.65422 (let Z

(i−3),−1
4 = 0). To determine the value of Z

(i−3),0
4 with

success rate 0.999, we need about 212.0 plaintext pairs.

Experiment 2. The goal of this experiment is to determine the value of Z
(0),0
4 .

Each plaintext has five random words Pi (0 ≤ i ≤ 4). For each plaintext pair,

the difference is only in the least significant bit of P3. N plaintext pairs are used
for each key/nonce pair to determine the value of Z(0),0 as follows: if the rate

that S2
4 ⊕ S′24 = 0 is larger than p̈2

−1,0+p̈2
−1,1

2 = 0.70296+0.65422
2 = 0.6786, then the

value of Z
(0),0
4 is considered to be 0; otherwise the value of Z

(0),0
4 is considered

to be 1. We tested 1000 key/nonce pairs in the experiment. For N = 212, the
values of Z

(0),0
4 of 998 key/nonce pairs are determined correctly. For N = 213,

the values of Z
(0),0
4 of all the key/nonce pairs are determined correctly.

After recovering the value of Z
(i−3),0
4 , we proceed to recover the values of

the other bits of Z
(i−3)
4 . Let Z

(i−3),(n−1···0)
4 denote the n least significant bits of

Z(i−3), i.e., Z
(i−3),(n−1···0)
4 = Z(i−3) mod 2n. Let the difference be introduced to

the kth least significant bit of Pi, i.e., Pi ⊕ P ′i = 2k. Denote p̀k,j,0

Z
(i−3),(n−1···0)
4

as

the probability that the value of the jth bit of (Si+1−Z
(i−3),(n−1···0)
4)⊕ (S′i+1−

Z
(i−3),(n−1···0)
4) is 0 when Z

(i−3),n
4 = 0. Denote p̀k,j,1

Z
(i−3),(n−1···0)
4

as the probability

that the value of the jth bit of (Si+1−Z
(i−3),(n−1···0)
4)⊕(S′i+1−Z

(i−3),(n−1···0)
4) is

0 when Z
(i−3),n
4 = 1. If the value of Z

(i−3),(n−1···0)
4 is determined correctly, then

p̀k,j,0

Z
(i−3),(n−1···0)
4

= p̀k,j,0
0 , and p̀k,j,1

Z
(i−3),(n−1···0)
4

= p̀k,j,1
0 . This property is important

for recovering Z
(i−3)
4 .

Let Pi⊕P ′i = 2. We use 228 plaintext pairs in the simulation. We found that
p̀1,3,0
0 = 0.66469 and p̀1,3,1

0 = 0.60220. It shows that when Z
(i−3),0
4 = 0, if the

rate that S3
i+1⊕S′3i+1 = 0 is larger than 0.66469+0.60220

2 = 0.63345, then the value
of Z

(i−3),1
4 is determined to be 0; otherwise the value of Z

(i−3),1
4 is determined

to be 1. We need about 211.3 plaintext pairs to determine the value of Z
(i−3),1
4

correctly with success rate 0.999. Using the Phelix code in the experiment, we
tested 1000 random key/nonce pairs satisfying Z

(0),0
4 = 0, and 212 plaintext pairs

are used for each key/nonce pair with the difference P3⊕P ′3 = 2. We found that
all the 1000 values of Z

(0),1
4 are determined correctly. If Z

(i−3),0
4 = 1, we observe

the third least significant bit of (Si+1 − 1) ⊕ (S′i+1 − 1), and we can determine
the value of Z

(0),1
4 = 0 with success rate 0.999 with about 211.3 plaintext pairs.

Let Pi⊕P ′i = 22, we are able to determine the value of Z
(i−3),2
4 by observing

the fourth least significant bit of (Si+1−Z
(i−3),(1···0)
4)⊕ (S′i+1−Z

(i−3),(1···0)
4). In

general, let Pi ⊕ P ′i = 2j , then we are able to determine the value of Z
(i−3),j
4 by

observing the (j + 2)th least significant bit of (Si+1 − Z
(i−3),(j−1···0)
4)⊕ (S′i+1 −

Z
(i−3),(j−1···0)
4) with about 212 plaintext pairs. Thus we are able to recover Z

(i−3)
4

(except the values of Z
(i−3),30
4 and Z

(i−3),31
4) with success rate very close to 1.

The number of plaintext pairs required in the above attack is about 212 × 30 ≈
217.

5.2 Recovering Xi+1,0

After recovering Z
(i−3)
4 (except Z

(i−3),31
4 and Z

(i−3),30
4), we know the value

of (Si+1 − Z
(i−3),(29···0)
4) ⊕ (S′i+1 − Z

(i−3),(29···0)
4). Thus we know the value of

Y (i+1),j ⊕ Y ′(i+1),j (0 ≤ j ≤ 30). Then we are able to recover Xi+1,0 more
efficiently.

Let two plaintexts differ only in the ith word. And let Pi⊕P ′i = 1. We use the
randomly generated Y

(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

For every value of the two bits Xj+1
i,0 and Xj

i,0, we use 228 plaintext pairs to gen-

erate Y
(i+1)
4 ⊕ Y

′(i+1)
4 , then compute pn

j,0 and pn
j,1 (suppose that Si+1 = Y

(i+1)
4

since Z
(i−3)
4 is known). Thus N = 229, and σ = 213.5. We list the following two

large biases ∆p̃n
j :

For j = 9, ∆p̃13
9 = 144.1

For j = 10, ∆p̃13
10 = 362.12

We use ∆p̃13
9 and ∆p̃13

10 in the attack. Note that the values of X10
i+1,0 ⊕ X9

i+1,0

and X11
i+1,0 ⊕ X10

i+1,0 both affect the distribution of Y
(i+1),13
4 ⊕ Y

′(i+1),13
4 . We

carried out a simulation with 230 chosen plaintext pairs to determine how the
value of X9

i+1,0 affects the value of Y
(i+1),13
4 . If X9

i+1,0 = 0, and the values
of X11

i+1,0||X0
i+1,0 are 00, 11, 01 and 11 (in binary format), we obtain that

Y
(i+1),13
4 ⊕Y

′(i+1),13
4 = 0 with probability 0.53033, 0.52334, 0.51946 and 0.51864,

respectively; if X9
i+1,0 = 1, we obtain that Y

(i+1),13
4 ⊕ Y

′(i+1),13
4 = 0 with

probability 0.52334, 0.53030, 0.51861 and 0.51948, respectively. We thus let
p13
0,0 = 0.52334, and p13

0,1 = 0.51946+0.51948
2 = 0.51947. About 219.3 plaintext

pairs are required to determine the value of X11
i+1,0 ⊕ X10

i+1,0 with success rate
0.999.

Experiment 3. Suppose that the value of Z
(0)
4 is known. The goal of this exper-

iment is to determine the value of X11
4,0 ⊕X10

4,0. Each plaintext has five random
words Pi (0 ≤ i ≤ 4). For each plaintext pair, those five words differ only in the
least significant bit of P3. N plaintext pairs are used for each key/nonce pair to
determine the value of X11

4,0 ⊕X10
4,0 as follows: if the rate that Y 13

4 ⊕ Y ′13
4 = 0 is

larger than 0.52334+0.51947
2 = 0.52140, then the value of X11

4,0⊕X10
4,0 is considered

to be 0; otherwise the value of X11
4,0⊕X10

4,0 is considered to be 1. We tested 1000
key/nonce pairs in the experiment. For N = 219.3, 948 values of 1000 X11

4,0⊕X10
4,0

are determined correctly. We change the threshold value 0.52140 to 0.52035, then
970 values of 1000 X11

4,0 ⊕X10
4,0 are determined correctly for N = 220, 976 values

are determined correctly for N = 221, 990 values are determined correctly for
N = 222.

Experiment 3 shows that the value of X11
4,0 ⊕ X10

4,0 can be determined suc-
cessfully by introducing a difference in the least significant bit of P3. With 222

chosen pairs, we are able to determine the value of X11
4,0⊕X10

4,0 with success rate
about 0.99.

Then we shift the one-bit difference to recover the values of Xj+1
1,0 ⊕ Xj

1,0

for 2 ≤ j ≤ 28. The threshold value needs to be modified for different values
of j. The results are given in Table 3 in Appendix A. Note that according to
Experiment 3, the threshold values should be slightly adjusted to achieve high
success rate.

The reason that the values of Xj+1
4,0 ⊕ Xj

4,0 cannot be recovered for j ≥ 29
is that the value of Xj+1

1,0 ⊕Xj
1,0 cannot affect the distribution of Sj+3

1 ⊕ S′j+3
1

since S1⊕S′1 is a 32-bit word. The reason that the number of plaintext required
for j = 9 is relatively small is that the difference for j = 13 is introduced to the
most significant bit of the word P3, thus it causes less difference propagation,
and results in a larger bias in the keystream.

Note that the most significant bit of Y
(i+1)
4 ⊕ Y

′(i+1)
4 is not known since

Zi−1,31
4 and Zi−1,30

4 are not recovered. Thus to determine the value of X29
1,0⊕X28

1,0,

we need to consider the most significant bit of (Si+1 − Z
(i−3),(29···0)
4)⊕ (S′i+1 −

Z
(i−3),(29···0)
4). The threshold value needs to be changed to 0.51128; and the

number of plaintext pairs required is 222.1.
After recovering the values of Xj+1

1,0 ⊕ Xj
1,0 for 2 ≤ j ≤ 28, we proceed to

determine the value of X0
i+1,0, X1

i+1,0 and X2
i+1,0.

We start with recovering X0
i+1,0. Let Pi ⊕ P ′i = 221. Running the simulation

with 228 plaintext pairs, we found that p2
21,0 = 0.51596, p2

21,1 = 0.50355. Thus
215.93 plaintext pairs are needed to determine the value of X0

i+1,0 with success
rate 0.999. Using the Phelix code in the experiment, we introduce the difference
P3 ⊕ P ′3 = 221, and set the threshold value as 0.51596+0.50355

2 = 0.50975. We
tested 1000 key/nonce pairs in the experiment. With 216 plaintext pairs, all the
values of the 1000 X0

4,0 are determined correctly.
After determine the value of X0

i+1,0, we determine the value of X1
i+1,0 as

follows. The simulation shows that the value of X1
i+1,0 can be determined only

when X0
i+1,0 = 0. For X0

i+1,0 = 0, we set the difference as Pi⊕P ′i = 222. With 228

chosen plaintext pairs, we found that if X1
i+1,0 = 0, then Y

(i+1),3
4 = 0 with rate

0.51528; otherwise Y
(i+1),3
4 = 0 with rate 0.50459. With 216.4 plaintext pairs,

the value of X1
i+1,0 can be determined with success rate 0.999. Using the Phelix

code in the experiement, we introduce the difference P3 ⊕ P ′3 = 222, and set the
threshold value as 0.51528+0.50459

2 = 0.50994. We tested 1000 key/nonce pairs
with X0

4,0 = 0 in the experiment. With 216.4 plaintext pairs, all the values of
the 1000 X1

4,0 are determined correctly. It shows that the value of X1
i+1,0 can be

determined successfully if X0
4,0 = 0.

We continue to recover the value of X2
i+1,0. We introduce a difference to

the 15th least significant bit of Pi, and observe the distribution of Y
(i−3),4
4 . We

carry out a simulation with 231 plaintext pairs with P3⊕P ′3 = 215. 231 plaintext
pairs are used for each value of X1

i+1,0X
0
i+1,0. When X0

i+1,0 = 0, if X1
i+1,0 = 0,

the fraction of values for which Y
(i−3),4
4 = 0 if X2

i+1,0 = 0 and X2
i+1,0 = 1 are

0.53106 and 0.52613, respectively; if X1
i+1,0 = 1, the franction of values for which

Y
(i−3),4
4 = 0 if X2

i+1,0 = 0 and X2
i+1,0 = 1 are 0.52318 and 0.52315, respectively.

It shows that the value X2
i+1,0 can only be determined if the values of X1

i+1,0

and X1
i+1,0 are both zero, and 218.6 plaintext pairs are required to achieve the

success rate 0.999.
In the above attacks, we recovered 28.75 bits of Xi+1,0: Xj+1

i+1,0 ⊕Xj
i+1,0 for

2 ≤ j ≤ 28, X0
i+1,0, X1

i+1,0 (only if X0
i+1,0 = 0), and X1

i+1,0 (only if X0
i+1,0 = 0

and X1
i+1,0 = 0). 27 bits of Xj+1

i+1,0 ⊕ Xj
i+1,0 (2 ≤ j ≤ 28) can be determined

according to Table 3. From Experiment 3, we know that if we slightly adjust the
threshold value, and use about 22.7 times the number of plaintext pairs compared
to Table 3, the success rate is about 0.99. The number of plaintext pairs required
to determine these 27 bits is thus about 27 × 222.2 × 22.7 = 229.7. The number
of plaintext pairs to determine X0

i+1,0, X1
i+1,0 and X2

i+1,0 is small compared to
229.7. The attack to recover 28.75 bits of Xi+1,0 requires thus about 232.7 chosen
plaintext pairs.

After recovering eight consecutive Xi+1,0, we recovered 28.75× 8 = 230 key
bits. To recover the 256-bit key, the amount of operations required is about
2256−230+(27×8

0.01×27×8) = 241.5.
The number of chosen plaintext pairs required in the attack is about 229.7 ×

8 = 232.7. The length of each plaintext ranges from 5 to 13 words. Thus the
total amount of chosen plaintext required is about 2× 232.7× 5+13

2 ≈ 237 words.
(The number of plaintext pairs needed to recover 8 consecutive Z

(i)
4 is about

217 × 8 = 225. It is small compared to 232.7).

6 An Approach to Strengthen Helix and Phelix

In Helix and Phelix, the plaintext is used to affect the internal state of the cipher.
In order to achieve a high encryption speed, each plaintext word affects the
keystream without passing through sufficient confusion and diffusion layers. This
is the intrinsic weakness in the structure of Helix and Phelix. In the following,
we provide a method to reduce the effect of such weakness.

The security of the encryption of Helix and Phelix can be improved signif-
icantly if a secure one-way function is used to generate the initial state of the
cipher from the key and nonce. Then even if the internal state of one particular
nonce is recovered, the impact on the security of the encryption is very limited
since the key of the cipher is not affected. We believe that such an approach can
be applied to improve the security of all the ciphers that use the plaintext to
affect the internal state.

However, we must point out that such an approach does not substantially
improve the security of the MAC in Helix and Phelix. Once an internal state
is recovered, the attacker can forge many messages related to that particular
nonce.

7 Conclusion

Phelix is vulnerable to a key recovery attack when chosen nonces and chosen
plaintexts are used. The computational complexity of the attack is much less
than that of the attack against Helix. Our attack shows that Phelix fails to
strengthen Helix in this respect.

We believe that one necessary requirement for a secure general-purpose stream
cipher is that the key of the cipher should not be recoverable even if the attacker
can control the generation of the nonce. In practice an attacker may gain access
to a Phelix encryption device for a while, reuse a nonce and recover the key. We
thus consider Phelix as insecure. (When the integrity checking mechanism is not
enforced, an attacker can even modify the nonces in ciphertext and obtain re-
peated nonces.) Muller has pointed out the practical impact of the key recovery
attack with reused nonces on the security of Helix in detail [2]. Muller stated
clearly the difference between the nonce reusing attack against Helix and that
against a synchronous stream cipher since the attack against Helix results in key
recovery. The same comments apply to the attacks against Phelix.

Acknowledgements

The authors would like to thank the anonymous reviewers of FSE 2007 for their
helpful comments.

References

1. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. “Helix,
Fast Encryption and Authentication in a Single Cryptographic Primitive.” In Fast
Software Encryption – FSE 2003, LNCS 2887, T. Johansson (Ed.), pp. 330-346.
Springer-Verlag, 2003.

2. F. Muller. “Differential Attacks against the Helix Stream Cipher.” In Fast Software
Encryption – FSE 2004, LNCS 3017, B.K. Roy and W. Meier (Eds.), pp. 94-108,
Springer-Verlag, 2004.

3. S. Paul, and B. Preneel, “Solving Systems of Differential Equations of Addition.”
Australasian Conference on Information Security and Privacy – ACISP 2005,
LNCS 3574, C. Boyd and J. Gonzalez (Eds.), pp. 75-88, Springer-Verlag, 2005.

4. S. Paul, and B. Preneel, “Near Optimal Algorithms for Solving Differential Equa-
tions of Addition with Batch Queries.” In Progress in Cryptology – Indocrypt 2005,
LNCS 3797, S. Maitra, C.E. Venimadhavan, R. Venkatesan (Eds.), pp. 90-103,
Springer-Verlag, 2003.

5. D. Whiting, B. Schneier, S. Lucks, and F. Muller, “Phelix: Fast Encryption and Au-
thentication in a Single Cryptographic Primitive.” eSTREAM, ECRYPT Stream
Cipher Project Report 2005/027.

6. H. Wu, and B. Preneel, “Cryptanalysis of the Stream Cipher ABC v2.” In Selected
Areas in Cryptography – SAC 2006, Lecture Notes in Computer Science, to appear.

A The complexity to recover Xi+1,0 with Z
(i−3)
4 known

The number of plaintext pairs and the threshold value required to recover the
value of each Xj+1

i+1,0 ⊕ Xj
i+1,0 (2 ≤ j ≤ 28) are given in Table 3. Each value n

in the second column indicates that the difference is introduced in the nth least
significant bit of Pi. Each value n in the third column shows that the nth least
significant bit of Y

(i+1)
4 is used in the attack.

Table 3. The number of plaintext pairs for recovering Xj+1
i+1,0 ⊕Xj

i+1,0

j Difference
position
in Pi

Bit
position
in Y

(i+1)
4

Threshold
value

Plaintext
Pairs

2 24 5 0.51101 224.4

3 25 6 0.51110 223.1

4 26 7 0.51120 222.5

5 27 8 0.51125 222.3

6 28 9 0.51091 222.4

7 29 10 0.51116 223.6

8 30 11 0.51562 220.7

9 31 12 0.54353 218.4

10 0 13 0.52141 219.3

11 1 14 0.52099 219.3

12 2 15 0.51850 219.5

13 3 16 0.50998 221.3

14 4 17 0.51107 221.9

15 5 18 0.51128 222.2

16 6 19 0.51129 222.2

17 7 20 0.51131 222.2

18 8 21 0.51128 222.1

19 9 22 0.51117 221.7

20 10 23 0.51149 222.2

21 11 24 0.51172 222.0

22 12 25 0.51187 222.0

23 13 26 0.51191 222.0

24 14 27 0.51185 222.1

25 15 28 0.51129 222.2

26 16 29 0.51129 222.1

27 17 30 0.51131 222.2

28 18 31 0.51130 222.1

