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Abstract. IDEA is a 64-bit block cipher with 128-bit keys introduced
by Lai and Massey in 1991. IDEA is one of the most widely used block
ciphers, due to its inclusion in several cryptographic packages, such as
PGP. Since its introduction in 1991, IDEA has withstood extensive crypt-
analytic effort, but no attack was found on the full (8.5-round) variant
of the cipher.
In this paper we present the first known attack on 6-round IDEA faster
than exhaustive key search. The attack exploits the weak key-schedule al-
gorithm of IDEA, and combines Square-like techniques with linear crypt-
analysis to increase the number of rounds that can be attacked. The
attack is the best known attack on IDEA. We also improve previous at-
tacks on 5-round IDEA and introduce a 5-round attack which uses only
16 known plaintexts.

1 Introduction

The International Data Encryption Algorithm (IDEA) is a 64-bit, 8.5-round
block cipher with 128-bit keys proposed by Lai and Massey in 1991 [19]. Due
to its inclusion in several cryptographic packages, such as PGP , IDEA is one
of the most widely used block ciphers. Since its introduction, IDEA resisted
intensive cryptanalytic efforts [1–3, 5, 6, 9–11, 13–17, 21–23]. The best published
chosen-plaintext attack on IDEA is an attack on 5-round IDEA that requires
219 chosen plaintexts, and has time complexity of 2103 encryptions [3]. The best
published related-key attack is an attack on 7.5-round IDEA that requires 243.5

known plaintexts and has a time complexity of 2115.1 encryptions [3]. Along with
the attacks on reduced-round variants, several weak-key classes for the entire
IDEA were found. The largest weak key class (identified by a boomerang tech-
nique) contains 264 keys, and the membership test requires 216 adaptive chosen
plaintexts and ciphertexts and has a time complexity of 216 encryptions [6].
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In this paper we present the first known attacks against 5.5-round and 6-
round IDEA. These higher-order differential-linear [4] attacks consist of three
components:

1. Constructing linear equations involving the least significant bits of the inter-
mediate values of the cipher. We note that this idea was proposed and used
in [3, 17, 23].

2. Using a higher-order differential (or a Square property) to simplify the linear
equations. We note that this modification was proposed in [17]. However, as
we show later, the Square distinguisher used in [17] is incorrect, and hence,
we replace it by another distinguisher.

3. Taking advantage of the weak key schedule of IDEA — we observe that in
some cases, guessing only 103 of the 128 key bits of IDEA is sufficient for
encrypting two full rounds of the cipher, and even more than that.

The 5.5-round attack requires 232 chosen plaintexts and has a time complex-
ity of about 2127 encryptions, about twice faster than exhaustive key search. The
6-round attack requires almost the entire code book and has a time complexity
similar to that of the 5.5-round attack. We note that the time complexity of
the attacks could be improved significantly if the Square distinguisher could be
replaced by a better one, like the one presented in [17]. However, we were not
able to find such a distinguisher at this stage.

We then show two improvements to the 5-round attack presented in [3]. The
first improvement reduces the data complexity of the attack by a factor of

√
2

to 218.5 known plaintexts, without affecting the time complexity of the attack
of 2103 encryptions. The second improvement reduces the data complexity to 16
known plaintexts, while raising the data complexity to 2114 encryptions.

The complexities of the new attacks, along with selected previously known
attacks, are summarized in Table 1.

The paper is organized as follows: In Section 2 we briefly describe the struc-
ture of IDEA. In Section 3 we present the new attack on 5.5-round IDEA. In
Section 4 we extend the 5.5-round attack to an attack on 6-round IDEA. We
present improved attacks on 5-round IDEA in Section 5. Finally, Section 6 sum-
marizes the paper.

2 Description of IDEA and the Notations Used in the
Paper

IDEA [19] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a com-
position of XOR operations, additions modulo 216, and multiplications over
GF (216 + 1).

Every round of IDEA is composed of two layers. The round input of round i
is composed of four 16-bit words denoted by (Xi

1, X
i
2, X

i
3, X

i
4). In the first layer,

denoted by KA, the first and the fourth words are multiplied by subkey words
(mod 216 + 1) where 0 is replaced by 216, and the second and the third words
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Rounds Attack Type Complexity Source
Data Time

4 Impossible Differential 237 CP 270 [2]
4 Linear 114 KP 2114 [23]
4 Square 232 CP 2114 [13]

4 Square 223 CP 298 [17]†

4.5 Impossible Differential 264 CP 2112 [2]
4.5 Linear 16 CP 2103 [3]
5 Meet-in-the-Middle Attack 224 CP 2126 [14]
5 Meet-in-the-Middle Attack 224.6 CP 2124 [1]
5 Linear 219 KP 2103 [3]

5 Linear 218.5 KP 2103 Section 5
5 Linear 16 KP 2114 Section 5

5.5 Higher-Order Differential-Linear 232 CP 2126.85 Section 3
6 Higher-Order Differential-Linear 264 − 252 KP 2126.8 Section 4

KP – Known plaintexts, CP – Chosen plaintexts
Time complexity is measured in encryption units
† – As we show in Section 3.2, this attack does not work

Table 1. Selected Known Attacks on IDEA and Our New Results

are added to subkey words in (mod 216). The intermediate values after this half-
round are denoted by (Y i

1 , Y i
2 , Y i

3 , Y i
4 ). Formally, let Zi

1, Z
i
2, Z

i
3, and Zi

4 be the
four subkey words, then

Y i
1 = Zi

1 ¯Xi
1; Y i

2 = Zi
2 ¢ Xi

2; Y i
3 = Zi

3 ¢ Xi
3; Y i

4 = Zi
4 ¯Xi

4

Then, (pi, qi) = (Y i
1 ⊕ Y i

3 , Y i
2 ⊕ Y i

4 ) enters to the second layer, a structure com-
posed of multiplications and additions denoted by MA. We denote the two out-
put words of the MA transformation by (ui, ti). Denoting the subkey words that
enter the MA function by Zi

5 and Zi
6,

ui = (pi ¯ Zi
5) ¢ ti; ti = (qi ¢ (pi ¯ Zi

5))¯ Zi
6

Another notation we use in the attack refers to the intermediate value in the
MA layer: we denote the value pi ¯ Zi

5 by si.
The output of the i-th round is (Y i

1 ⊕ ti, Y i
3 ⊕ ti, Y i

2 ⊕ui, Y i
4 ⊕ui). In the last

round (round 9) the MA layer is omitted. Thus, the ciphertext is (Y 9
1 ||Y 9

2 ||Y 9
3 ||Y 9

4 ).
The structure of a single round of IDEA is shown in Figure 1.

IDEA’s key schedule is linear. Each subkey is composed of bits selected from
the key. However, the exact structure of the key schedule is crucial for our attacks
and hence the entire key schedule is described in Table 2.

3 A New Attack on 5.5-Round IDEA

In this section we present the new attack on 5.5-round IDEA. First we present
the three components of the attack.

3



Z
i

4

Y
i

4

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

MA

X X X

i
Z

1

i
X 2

i
X 3

i

4

i

X X

i+1 i+1 i+1 i+1

4321

Z Z
i

Z
i i

321

Z 6

i

5

Y
i

3Y
i

1

Y
i

2

X

pi qi

tiui

si

Fig. 1. One Round of IDEA

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

Table 2. The Key Schedule Algorithm of IDEA

3.1 The First Component — A Linear Equation Involving the LSBs
of the Intermediate Encryption Values

We start with an observation due to Biryukov (according to [23]) and Demirci [14].
Let us examine the second and the third words in all the intermediate stages of
the encryption. There is a relation between the values of these words and the
outputs of the MA layer in the intermediate rounds that uses only XOR and
modular addition, but not multiplication. Let P = (P1, P2, P3, P4) be a plaintext
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and let C = (C1, C2, C3, C4) be its corresponding ciphertext, then

(((((((((((((((((P2 ¢ Z1
2 )⊕ u1) ¢ Z2

3 )⊕ t2) ¢ Z3
2 )⊕ u3) ¢ Z4

3 )⊕ t4) ¢ Z5
2 )⊕ u5)

¢Z6
3 )⊕ t6) ¢ Z7

2 )⊕ u7) ¢ Z8
3 )⊕ t8) ¢ Z9

2 ) = C2.
(1)

Similarly,

(((((((((((((((((P3 ¢ Z1
3 )⊕ t1) ¢ Z2

2 )⊕ u2) ¢ Z3
3 )⊕ t3) ¢ Z4

2 )⊕ u4) ¢ Z5
3 )⊕ t5)

¢Z6
2 )⊕ u6) ¢ Z7

3 )⊕ t7) ¢ Z8
2 )⊕ u8) ¢ Z9

3 ) = C3.
(2)

When we consider the value of the least significant bit (LSB) of the words,
modular addition is equivalent to XOR and we can simplify the above equations
into:

LSB(P2 ⊕ Z1
2 ⊕ u1 ⊕ Z2

3 ⊕ t2 ⊕ Z3
2 ⊕ u3 ⊕ Z4

3 ⊕ t4 ⊕ Z5
2 ⊕ u5 ⊕ Z6

3 ⊕ t6 ⊕ Z7
2

⊕u7 ⊕ Z8
3 ⊕ t8 ⊕ Z9

2 ) = LSB(C2),
(3)

and

LSB(P3 ⊕ Z1
3 ⊕ t1 ⊕ Z2

2 ⊕ u2 ⊕ Z3
3 ⊕ t3 ⊕ Z4

2 ⊕ u4 ⊕ Z5
3 ⊕ t5 ⊕ Z6

2 ⊕ u6 ⊕ Z7
3

⊕t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3 ) = LSB(C3).
(4)

Since ui = ti ¢ si then LSB(ui) = LSB(ti ¢ si), thus, LSB(ui ⊕ ti) =
LSB(si). Taking this into consideration and XORing the above two equations
we obtain

LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2 ⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4

⊕Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3 )
= LSB(C2 ⊕ C3).

(5)
This equation is called in [17] “the Biryukov-Demirci relation”.

In order to simplify this equation, we consider the XOR of the intermediate
values of several encrypted plaintexts. In [3] the XOR difference between two
plaintexts is used; in our attack we use the XOR value of larger sets of plaintexts.

Consider a structure of plaintexts P 1, . . . , Pm, where m is an even integer.
Then the XOR of the equations of the form (5) given by P 1, . . . , Pm gives

LSB




m⊕

j=1

(P j
2 ⊕ P j

3 )⊕
8⊕

i=1

Si


 = LSB




m⊕

j=1

(Cj
2 ⊕ Cj

3)


 , (6)

where Si = ⊕m
j=1s

i(P j).
Equation (6) is the basic equation used in our attack, where m and the exact

structure of plaintexts are specified later.

3.2 The Second Component — A Square-Like Structure

In order to further simplify Equation (6) we want to use special structures of
plaintexts, for which we will get S1 = S2 = 0, independently of the key. Our
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structures are higher-order differentials, a special case of Square-like structures
that were used in [7, 12, 18, 20]. The structures we use and their properties are
described in the following proposition.

Proposition 1. Let T be a structure of m = 216 plaintexts, such that the in-
termediate values after the first KA layer, denoted by Y 1,j, where 1 ≤ j ≤ m,
satisfy the following requirements:

1. Y 1,j
2 and Y 1,j

4 are fixed for all j.
2. The 216 values Y 1,j

1 (for 1 ≤ j ≤ 216) are different.
3. Y 1,j

3 = Y 1,j
1 ⊕ C for some fixed C.

Then for T = {P 1, . . . , Pm} the relation S1 = S2 = 0 holds, independently
of the key.

Proof. First, note that by the assumption, (p1, q1) is fixed for all the 216 elements
of the structure. Hence, s1 is fixed as well, leading to S1 =

⊕216

j=1 s1(P j) = 0.
The output values of the MA structure, (u1, t1), are also fixed. Thus, the values
X2

3 are constant for all the elements of the structure, as well as the values X2
4 .

In addition, all the values X2
1 are different, as well as the values X2

2 . As a result,
all the values Y 2

1 are different and all the values Y 2
3 are constant. Hence, all the

values p2 = Y 2
1 ⊕Y 2

3 are different. Thus, all the values s2 = Z2
5 ¯p2 are different.

However, since there are only 216 possible values of s2, it means that s2 assumes
each possible value once and only once. Hence, S2 = ⊕216

j=1s
2(P j) = 0, and this

completes the proof.

In the sequel of the paper we call structures which satisfy the above condi-
tions, “right structures”.

It follows from the proposition that if we take a right structure as {P 1, . . . , Pm},
Equation (6) is simplified to

LSB




m⊕

j=1

(P j
2 ⊕ P j

3 )⊕
8⊕

i=3

Si


 = LSB




m⊕

j=1

(Cj
2 ⊕ Cj

3)


 . (7)

We note that [17] makes use of a seemingly better Square-like structure that
is described in the following statement [17, Section 3.7, Lemma 2]:

Statement 1 Let L be a structure of m = 216 plaintexts, denoted by P 1, . . . , Pm,
having the following properties:

1. P j
1 , P j

2 , P j
3 are fixed for all j.

2. The 216 values P j
4 (for 1 ≤ j ≤ 216) are different.

Then for T = {P 1, . . . , Pm} we have S1 = S2 = 0, independently of the key.

6



If this statement was correct, it could be used to improve significantly the
time complexity of our attack. However, it appears that the statement is incor-
rect. For the structure described in the statement we indeed have S1 = 0, but
we do not have S2 = 0, since nothing can be said about the values s2(P j). The
following set of constants is a counterexample for Statement 1:

P j
1 = F78bx; P j

2 = 245x; P j
3 = ABCDx;

Z1
1 = 8x; Z1

2 = 567Ax; Z1
3 = 2C68x; Z1

4 = 4x;
Z1

5 = 5x; Z1
6 = 6x; Z2

1 = 1238x; Z2
2 = 999x;

We note that Z2
2 is not relevant to the approximation, but it is required for

defining the key for which the above statement fails. Using the key schedule, we
derive the following subkeys as well: Z2

3 = F458x, Z2
4 = D000x, Z2

5 = 800x, and
Z2

6 = A00x.

3.3 The Third Component — Exploiting The Weak Key Schedule

The fact that the key schedule of IDEA is relatively weak has been known for a
long time, and was already used to devise related-key attacks on reduced-round
IDEA (e.g.,[5]) and to find large weak key classes for the entire cipher (e.g.,[6]).
However, other key recovery attacks (e.g.,[2]) usually exploited other properties
of IDEA and took only a small advantage of the key schedule.

In our attack, we use the weakness of the key schedule in order to calculate
all the remaining Si values, while guessing a relatively small number of key bits.

Consider a 5.5-round variant of IDEA starting with the third round. We ob-
serve that in order to compute the values S5, S6, S7 from the ciphertexts, it is suf-
ficient to know only 103 key bits. The values S5, S6, S7 are determined by the val-
ues of the ciphertext and of the subkeys Z8

4 , Z8
3 , Z8

2 , Z8
1 , Z7

6 , Z7
5 , Z7

4 , Z7
3 , Z7

2 , Z7
1 , Z6

6 ,
Z6

5 , Z6
1 , Z6

2 , Z5
5 . These subkeys are sufficient in order to partially decrypt the ci-

phertexts through the last two rounds and to find the value of S5. Note that
S5 is independent of the values of Z6

3 and Z6
4 . All the required 15 subkeys use

only 103 bits of the master key, whereas bits 100–124 of the master key remain
unused.

Since in our case (for 5.5 rounds), Equation (7) is reduced to

LSB




m⊕

j=1

(P j
2 ⊕ P j

3 )⊕
7⊕

i=5

Si


 = LSB




m⊕

j=1

(Cj
2 ⊕ Cj

3)


 , (8)

we can guess 103 key bits and check whether the equation holds.

3.4 The Basic 5.5-Round Attack

In this subsection we combine the components presented in the previous sub-
sections to devise an attack on 5.5-round IDEA. As was shown in Section 3.3,
once we have a right structure, it is possible to check the guess of 103 key bits.
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This is done by partially decrypting the entire set under the subkey guess, and
checking whether Equation (8) holds.

The problem in finding a right structure is the key addition layer, which pre-
vents constructing the right structures immediately. The solution to this problem
is to use more plaintexts, which increases the data complexity, but in exchange,
the set is ensured to contain (several) right structures. We use a set of 232 plain-
texts, such that the second and the fourth words are fixed to some arbitrary
constant, and the first and the third words obtain all possible values. In such a
structure, for any given subkeys, it is possible to find 216 right structures of 216

plaintexts each.
The basic algorithm of the attack is the following:

1. Data collection phase: Ask for the encryption of a structure of cho-
sen plaintexts, of the form (x, B, y, D) for two randomly selected constants
(B, D) and all possible values of x and y.

2. Constructing a right structure: For each possible value of bits 89–104
and 121–8 of the key, perform the following:
(a) Choose an arbitrary 16-bit value F1 (a candidate for p3).
(b) For all 0 ≤ j ≤ 216 − 1, partially decrypt the words j under the guess of

Z3
1 and F1 ⊕ j under the guess of Z3

3 . Denote the list of resulting values
by (Aj

1, C
j
1).

3. Checking the linear equation: Choose all plaintexts of the form (Aj
1, B, Cj

1 , D).
For each possible value of key bits 0–104 and 121–127 (note that from these
bits we already guessed key bits 89–104 and 121–8) partially decrypt the
ciphertexts corresponding to the plaintexts of the right structure to get the
values S5, S6, S7. Check whether Equation (8) holds. If not, discard the par-
tial key guess. If the equation holds, pass the key guess for further analysis.

4. Filtering the remaining key guesses: For the remaining key guesses,
take another right structure of plaintexts, i.e., pick a different value for F ,
and repeat Steps 2–3, with three different selections. If a partial key guess
passed all the four tests, perform exhaustive key search on the remaining
key bits.

3.5 Analysis and Improvement of the Basic Attack

The attack requires one structure of 232 plaintexts, and thus the data complexity
of the attack is 232 chosen plaintexts. The time complexity of Step (1) is 232

encryptions.
The time complexity of Step (2) is 248 partial decryptions. We note that

this step can be performed as a precomputation, but there is no need to do it
since the time complexity of this step is negligible with respect to the total time
complexity of the attack.

The most time consuming part of the attack is Step (3) which is repeated
232 times (for each guess of bits 89–104 and 121–8). In this step, the attacker
guesses 80 key bits and performs a partial decryption of 216 ciphertexts. The
partial decryption includes two full rounds and three out of the eight operations
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of an additional round. Hence, the time complexity of this stage is about 0.43·2128

encryptions in total. About half of the keys are expected to pass to Step (4).
For these keys, the attacker performs three additional filterings in Step (4),
with time complexity of (0.22 + 0.11 + 0.05) · 2128. The 2124 remaining keys are
checked by exhaustive key search. Hence, the total time complexity of the attack
is (0.43 + 0.22 + 0.11 + 0.05 + 0.06) · 2128 = 0.87 · 2128 encryptions, which is only
slightly better than exhaustive key search.

In order to reduce the time complexity of the attack, we introduce a small
change in Step (2). We observe, that there is no need to fix a concrete value of
F such that p3 = F for all the values of the structure; it is sufficient to have for
all the plaintexts in the considered structure a fixed value for p3. We exploit this
observation by eliminating the need to guess bit 121 of the key in Step (2). We
do not guess the value of this bit, but rather assume that its value is zero. As a
result, when we decrypt the values j ⊕ F through the addition with Z3

3 , all the
bits except for the MSB are correct, but the MSB might be wrong. However,
if our assumption was incorrect and the values of the MSBs are wrong, this
happens to all the elements of the structure simultaneously, since

x ¢ (y ¢ 8000x) = (x ¢ y) ¢ 8000x = (x ¢ y)⊕ 8000x. (9)

Hence, if we take the plaintext structure (Aj
1, B, Cj

1 , D) as in the basic attack,
we have two possibilities: If our assumption was correct, we get a right structure
as in the basic attack. If our assumption was incorrect, then for all the elements
of the structure we have p3 = F ⊕ 8000x. However, p3 still assumes the same
value for all the elements of the structure, and hence, the structure is a right
structure.

Therefore, we can obtain right structures without guessing the value of bit
121 of the key (by making sure to choose the F values without using two values
which differ only in the MSB). This improvement reduces the time complexity of
all the steps of the attack (except for the final exhaustive key search) by a factor
of two. Hence, the time complexity of the improved attack is (0.22+0.11+0.05+
0.03 + 0.06) · 2128 = 0.45 · 2128 = 2126.85, about twice faster than exhaustive key
search.

It is also possible to use up to 215 right structures from a given plaintext
structure, and use them to filter wrong subkey guesses. When using k right
structures with the improved attack, the data complexity is 232 chosen plaintexts,
and the time complexity is

2111 · 216 · 23
8

51
2

·
(

1 +
1
2

+ · · ·+ 1
2k−1

)
+ 2128−k

encryptions. When using 16 right structures, the time complexity is 2126.8 en-
cryptions. The memory requirements of the attack are mostly for storing the
data, i.e., 232 blocks of 128-bit each (or 236 bytes).
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4 The 6-Round Attack

In this section we extend the 5.5-round attack to an attack on 6-round IDEA.
The variant we attack starts before the MA layer of round 2 and ends before
the MA layer of round 8.

We observe that the key bits used in the MA layer of round 2 (bits 57–88)
are included in the bits that are guessed in the 5.5-round attack. Hence, we can
add this half round in the beginning of the attack without enlarging the time
complexity.

However, in this case it is much harder to construct right structures, and
the data complexity is significantly increased. Our best method is to ask for the
encryption of almost the entire code book, and look for the right structures after
a partial encryption. We note that if a way to construct right structures is found,
then the data complexity of the attack can be reduced. However, we did not find
appropriate structures at this stage.

Assume that we start with 264−a known plaintexts, where a is a constant we
determine later. For a fixed value of the subkeys Z2

5 , Z2
6 , Z3

1 , Z3
3 , we can divide

the plaintexts into 248 classes according to the value of the triplet (X3
2 , X3

4 , p3)
(obtained from the plaintexts using the fixed subkeys). Each class consists of 216

plaintexts, and forms a right structure. Hence, a has to be small enough, such
that for almost every value of the subkeys, there will be at least four “full” classes
in the pool of known plaintexts. In order to estimate the number of full classes,
we look at the plaintexts that are not known to the attacker. Assuming that
these plaintexts are uniformly distributed over the 248 classes, the probability
that none of them falls in some prescribed class is (1− 2−48)a ≈ e−a/248

. Hence,
the expected number of classes that are not ruined by missing plaintexts, i.e.,
the full classes, is 248e−a/248

. If we take a = 253, this expected number is close
to four. However, we want that for most of the possible values of the subkeys
there will be four right structures. Hence, we take a = 252. In this case, the
expected number of right structures is about 225, and for most of the possible
values of the subkeys, there will be enough right structures. If for some subkey
guess, there are not enough right structures, the attacker has to check this guess
separately by exhaustive key search over the remaining key bits.1 We note that
this improvement can also reduce the data complexity of the 5.5-round attack
by about 218 chosen plaintexts.

Therefore, our 6-round attack requires 264 − 252 known plaintexts. The first
stage of the attack is slightly changed to the following:

1. Ask for the encryption of 264 − 252 arbitrary plaintexts.
2. For every possible value of key bits 57—104 and 121—8:

(a) Repeat until a candidate right structure is found in the data set —
Choose (X3

2 , X3
4 , p3) at random. Partially decrypt the set (j,X3

2 , j ⊕
p3, X3

4 ) for j = 0, . . . 216 − 1 under the subkey guess, and check that all

1 The probability that for 264−252 random plaintexts, there exists such a key is about
e−33554367.2.
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the resulting plaintexts are in the data set.2 Stop once at least four such
sets are found.

(b) Apply Steps (2) and (3) of the 5.5-round attack given the four right
structures using the guessed key bits.

This algorithm allows to detect four right structures that are used in the
same way as in the 5.5-round attack. We note that since the expected number
of right structures is about 225, we expect that after about 225 checked triples
(X3

2 , X3
4 , p3), four right structures are found with a high probability. Hence, the

time complexity of this stage is 264 · 225 · 216 = 2105 partial decryptions, which
is negligible compared to Step (3) of the 5.5-round attack.

The rest of the attack is the same as in the 5.5-round attack. However, the
time complexity measured in encryption units is reduced, since we still decrypt
only 2.375 rounds, while the total number of rounds is increased to six. Hence,
the time complexity of the attack is (0.2 + 0.1 + 0.05 + 0.02 + 0.06) · 2128 =
0.43 · 2128 = 2126.8 six-round encryptions. Like in the 5.5-round attack, the
memory complexity of the 6-round attack is dominated mostly by the memory
required for the data itself, i.e., 264 − 252 blocks of 128 bits each. We note that
as this value is very close to the entire code book, it can be improved by a factor
of 2, by not storing the plaintexts themselves (and keeping only the ciphertexts).

5 An Improved 5-Round Attack

In [3] a 5-round attack on IDEA with data complexity of 219 known plaintexts
and time complexity of 2103 operations is presented. The attack is based on the
Biryukov-Demirci relation, when two plaintexts (P 1, P 2) are used. The relation
is used for the four and a half rounds from the beginning of round 4 till after
the key addition layer of round 8. For this case the Biryukov-Demirci relation is
reduced to:

LSB(P 1
2 ⊕P 1

3 ⊕P 2
2 ⊕P 2

3 ⊕∆s4⊕∆s5⊕∆s6⊕∆s7) = LSB(C1
2 ⊕C1

3 ⊕C2
2 ⊕C2

3 ),
(10)

where P 1
2 , P 1

3 , P 2
2 , and P 2

3 are taken at the beginning of round 4.
By requiring that ∆(X4

1 , X4
2 , X4

3 , X4
4 ) = (0, β, 0, γ), the attacker ensures

that ∆s4 = 0. Due to the key schedule of IDEA, it is sufficient to guess 103
bits of the key in order to compute ∆s5,∆s6, and ∆s7. The attack is then
quite a straightforward filtering of wrong subkey guesses which suggest that the
Biryukov-Demirci relation does not hold.

In [3], the relation ∆(X4
1 , X4

2 , X4
3 , X4

4 ) = (0, β, 0, γ) is achieved by using 219

known plaintexts, which compose about 237 pairs. On average, about 32 satisfy
the requirement on ∆(X4

1 , X4
2 , X4

3 , X4
4 ).

2 We alert the reader to the abuse we have taken in the notations. While j and j⊕ p3

are given after the KA layer of round 3, X3
2 and X3

4 are given before it. Thus, we
partially decrypt two words through the KA layer of round 3, and then continue to
partially decrypt all four words under the MA layer of round 2.
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Our first improvement reduces the data complexity of the attack. We note
that ∆s4 = 0 is satisfied whenever ∆p4 = 0 holds. In addition, we observe
that the subkey Z4

1 is covered by the 103 key bits guessed during the attack.
We also note that a difference in the MSB is preserved by addition with an
unknown subkey. Using these three observations, we can enlarge the number of
plaintext pairs that can be used in the attack. Instead of using only pairs for
which ∆(X4

1 , X4
3 ) = (0, 0), we can use also pairs for which ∆Y 4

1 = 8000x and
∆X4

3 = 8000x, since for such pairs we also have ∆s4 = 0. As a result, we can
start with 218.5 known plaintexts, and out of the 236 possible pairs we can still
find 32 pairs satisfying ∆s4 = 0. The rest of the attack is similar to the attack
algorithm of [3].

5.1 A 5-Round Attack Using only 16 Known Plaintexts

Our second improvement has much in common with the first improvement. We
note that guessing the subkey Z4

3 adds only eleven bits to the total number of
guessed key bits. On the other hand, after guessing this subkey, we are able to
compute the exact value of p4 for all the plaintexts. Moreover, since the subkey
Z4

5 is also covered by the guessed key bits, we are able also to compute the exact
values of s4 for all the plaintexts, and hence to compute the value of ∆s4 for
any pair of plaintexts. As a result, all the plaintext pairs, and not only a part of
them, can be used to filter subkey candidates. Since each plaintext pair filters
about half of the subkey candidates, 16 pairs are sufficient to reduce the number
of possible keys to 2113, and these candidates can be checked by exhaustive key
search.

We note that the 16 known plaintexts compose 16·15/2 = 120 pairs. However,
only 15 of these pairs can be linearly independent, and hence only 15 pairs can
be used for filtering key candidates. Using a smart ordering of the operations, it
can be shown that the time complexity of this attack is 2114 encryptions.

6 Summary and Conclusions

In this paper we presented the first known attacks on 5.5-round and 6-round
variants of IDEA. Our attack on 6-round IDEA has a time complexity of 2126.8

encryptions and data complexity of 264 − 252 known plaintexts. The attacks
exploit three techniques: Constructing a linear equation involving the LSBs of
several intermediate encryption values, using Square-like structures, and exploit-
ing the weak key schedule. Each of these techniques was already used to attack
reduced variants of IDEA, but the novel combination of the techniques allows
to improve the previously known attacks significantly.

We also showed that it possible to attack 5-round IDEA using only 16 known
plaintexts with time complexity of 2114 encryptions. The 5-round attack exploits
the weakness of the key schedule of IDEA, that allows to recover many subkeys
while guessing only a subset of the key bits.
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on the IDEA Block Cipher, proceedings of Selected Areas in Cryptography 2003,
Lecture Notes in Computer Science 3006, pp. 117–129, Springer-Verlag, 2004.

15. Philip Hawkes, Differential-Linear Weak Keys Classes of IDEA, Advances in Cryp-
tology, proceedings if EUROCRYPT ’98, Lecture Notes in Computer Science 1403,
pp. 112–126, Springer-Verlag, 1998.

16. Philip Hawkes, Luke O’Connor, On Applying Linear Cryptanalysis to IDEA, Ad-
vances in Cryptology - Proceedings of ASIACRYPT’96, Lecture Notes in Computer
Science 1163, pp. 105–115, Springer-Verlag, 1996.

13



17. Pascal Junod, New Attacks Against Reduced-Round Versions of IDEA, proceedings
of Fast Software Encryption 12, Lecture Notes in Computer Science 3557, pp. 384–
397, Springer-Verlag, 2005.

18. Lars R. Knudsen, David Wagner, Integral Cryptanalysis, proceedings of Fast
Software Encryption 9, Lecture Notes in Computer Science 2365, pp. 112–127,
Springer-Verlag, 2002.

19. Xuejia Lai, James L. Massey, Sean Murphy, Markov Ciphers and Differential Crypt-
analysis, Advances in Cryptology - Proceedings of EUROCRYPT’91, Lecture Notes
in Computer Science 547, pp. 17–38, Springer-Verlag, 1992.

20. Stefan Lucks, The Saturation Attack — A Bait for Twofish, proceedings of
Fast Software Encryption 8, Lecture Notes in Computer Science 2355, pp. 1–15,
Springer-Verlag, 2002.

21. Willi Meier, On the Security of the IDEA Block Cipher, Advances in Cryptology,
proceedings of EUROCRYPT ’93, Lecture Notes in Computer Science 765, pp. 371–
385, Springer-Verlag, 1994.

22. Jorge Nakahara Jr., Paulo S.L.M. Barreto, Bart Preneel, Joos Vandewalle, Hae
Y. Kim, SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers,
IACR Cryptology ePrint Archive, Report 2001/068, 2001.

23. Jorge Nakahara Jr., Bart Preneel, Joos Vandewalle, The Biryukov-Demirci Attack
on Reduced-Round Versions of IDEA and MESH Ciphers, proceedings of ACISP
2004, Lecture Notes in Computer Science 3108, pp. 98–109, Springer-Verlag, 2004.

24. NESSIE, Performance of Optimized Implementations of the NESSIE
Primitives, NES/DOC/TEC/WP6/D21/a, available on-line at
http://www.nessie.eu.org/nessie.

25. Havard Raddum, Cryptanalysis of IDEA-X/2, proceedings of Fast Software En-
cryption 10, Lecture Notes in Computer Science 2887, pp. 1–8, Springer-Verlag,
2003.

14


