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Abstract. Existing symmetric encryption algorithms target messages
consisting of elementary binary blocks of at least 64 bits. Some applica-
tions need a block cipher which operates over smaller and possibly non-
binary blocks, which can be viewed as a pseudo-random permutation of
n elements. We present an algorithm for selecting such a random permu-
tation of n elements and evaluating efficiently the permutation and its
inverse over arbitrary inputs. We use an underlying deterministic RNG
(random number generator). Each evaluation of the permutation uses
O(log n) space and O((log n)3) RNG invocations. The selection process
is “perfect”: the permutation is uniformly selected among the n! possi-
bilities.

1 Introduction

Block ciphers such as AES[1] or DES[2] typically operate on large input data
blocks, each consisting of 64 or more bits (128 or 256 bits are now preferred).
Using smaller blocks leads to important security issues when encrypting large
messages or using the block cipher for a MAC over such a large message. How-
ever, some applications need smaller blocks, and possibly non-binary blocks (i.e.,
a block space size which is not a power of two).

An example of such an application is the generation of unique unpredictable
decimal numbers, destined to be typed in by users. Such numbers must be short;
this precludes the use of a simple PRNG, which would imply collisions with a
non-negligeable probability. A solution is to use a block cipher operating over the
set of decimal numbers of the required length: simply encrypt successive values
of a counter.

Building a secure block cipher is known to be a tricky task. Small blocks and
non-binary alphabets are even more challenging in several ways:

– There are theoretical results on the construction of secure block ciphers, e.g.
[3]; more recent examples include [4] and [5]. These constructions implicitely
rely on huge block sizes to hide some biases which our security model (which
we detail in section 5) cannot tolerate.

0 This work has been supported in part by the French government through X-Crypt,
in part by the European Commission through ECRYPT.



– Usual security analysis techniques try to model the attacker as having access
to an encryption or decryption oracle, with some limitations on the number
of queries. With a small block size, the complete code book is too small for
this model to be adequate.

– Some classes of attacks (differential and linear cryptanalysis) are much more
difficult to express on non-binary alphabets. For instance, several distinct
ring structures can be applied on the set of decimal digits. Moreover, there
is no field of size 10, only rings with some non-invertible elements, which
makes things even more complex[6].

For these reasons, there have been only few attempts at designing such block
ciphers, e.g. [7] which proposes to build ciphers of arbitrary domains by iterating
a larger block cipher or by Feistel-like structures.

In this paper, we investigate another entirely different way of generating
permutations, based of the following Shuffle algorithm. Let’s consider a very
small space of input data, for instance the two-digit decimal numbers. The input
space has size 100, and there are 100! possible permutations. Each of them
may be represented as an array of 100 numbers from 0 to 99, with no two
array elements being equal: if the array element of index x contains y, then the
permutation maps x to y (we number array elements from 0). If an appropriate
source of randomness is available, then the following algorithm uniformly selects
a random permutation of 100 elements:

Shuffle:

1. fill the array with element w containing the number w
2. i← 0
3. select a random number j between i and 99 (inclusive)
4. if i 6= j, swap array elements of index i and j
5. increment i
6. if i < 99, return to step 3
7. the array contents represent the permutation

This algorithm was first published by Fisher and Yates[8], then published
again by Durstenfeld[9], and popularized by Knuth[10], to the point that this
algorithm is usually known as the “Knuth shuffle”. If the random number selec-
tion at step 3 is uniform, then it can be shown that all possible permutations
have an equal probability of being generated. Thus, for very small blocks, we
have a practical candidate for a block cipher: use the key in a cryptographically
secure seeded PRNG, then generate the complete permutation using the Knuth
shuffle, and apply it. A simple linear pass can be used to compute the inverse
permutation, which is used for decryption. The uniform selection of the random
number at step 3 is a bit tricky if the PRNG outputs bits. Here is an algorithm
which outputs uniformly random numbers between 0 and d − 1 using a PRNG
which outputs bits:



RandomNumber:

1. chose an integer r such that 2r ≥ d
2. obtain r random bits and interpret them as a number x such that

0 ≤ x < 2r

3. compute t = bx
d c

4. if d + td > 2r, return to step 2
5. output x− td

Depending on r, the probability that the loop occurs can be made arbitrarily
low, to the point of being impossible to achieve in practice. A practical imple-
mentation may decide to use r = 256 and ignore the possibility that the test in
step 4 is verified. Ultimately, this would imply a slight selection bias which is
sufficiently small to be neglected.

The permutation generated by Shuffle can be viewed as a block cipher,
where the key is the PRNG output (or, equivalently, the seed used in the PRNG).
Since a truly random generator implies a truly random permutation, any suc-
cessful attack on that selection system would be a successful distinguisher on
the PRNG. Cryptographically speaking, the “block” cipher thus obtained is as
perfect as the PRNG used. Unfortunately, this procedure has a cost O(n) (for
a permutation over a set of size n), both in CPU and in space, which makes it
impractical for values of n beyond, for instance, 104. Generating a full permu-
tation means computing each of the n output values; but we do not need the
full permutation. Our goal is to evaluate the block cipher (i.e. the permutation)
over one given input block. Hence, what we need here is a deterministic proce-
dure which, from the output of a PRNG, may generate a permutation φ over n
elements such that:

– assuming a perfect random source instead of the PRNG, all possible permu-
tations of n elements have an equal chance of being selected for φ;

– for any given x, φ(x) can be computed with an average computational cost
much lower than O(n).

The purpose of this article is to describe such a procedure. It computes φ(x)
for any x in the input data set in time O((log n)3), and may also compute
φ−1(y) for any y in the output data set in time O((log n)3). The notion of time
we use here is the number of requests to the PRNG; we assume a seekable PRNG
output3. Our algorithms are described as recursive for simplicity, but they may
easily be transformed into tail recursions; the real space requirements are for
a fixed number of integer values lower than n, hence implying a O(log n) space
complexity. We describe our notations more formally in the next section; then we
proceed with the algorithm description. Finally, we specify our security model.

3 Note that the overall number of requests to the PRNG that are needed to define the
whole permutation is O(n(log n)3) which is bigger than log(n!).



2 Notations

We consider the problem of selecting a random permutation φ which operates
over a set of n elements. n is an integer greater than 1; the targeted values of n
are between 103 and 1020, although our construction may be used with smaller
and greater blocks as well.

We need a deterministic PRNG, which constitutes the key for our cipher. We
model the PRNG as a function:

R : Nr −→ {0, 1}
(n1, n2, . . . nr) 7−→ R(n1, n2, . . . nr)

The PRNG is assumed to be an unbiased random oracle, in that the output
for a given set of input integers cannot be computationally predicted from the
knowledge of the output of R for all other input value sets. From such a PRNG
R with r input parameters, one can easily build a PRNG R′ with r + 1 input
parameters, by definining:
R′(n1, . . . nr, nr+1) = R(n1, . . . nr−1, (nr + nr+1 + 1)(nr + nr+1 + 2)/2− nr − 1)

In practice, we will need a keyed PRNG with three input parameters, for
which we will provide workable bounds.

Our PRNG must be seekable, which means that computing the output of
R for some given input parameters must be efficient, regardless of which other
parameter values were previously input intoR. Unfortunately, this characteristic
precludes the use of some of the “provably secure” PRNG such as BBS[11] or
QUAD[12]: these PRNG output bits sequentially, and are not seekable.

We will use “log” for the base-2 logarithm, such that log 2x = x for all x.
The algorithm description uses binomial terms; in order to simplify the equa-

tions, we use extended binomial coefficients, which are defined thus:(
n

p

)
=

n!
p!(n− p)!

if 0 ≤ p ≤ n, and 0 otherwise.

3 Random Permutation Selection

In this section, we describe our algorithm for computing φ(x) on input x, as well
as the inverse algorithm which computes φ−1(y) from y. The first algorithm is
an extension of a random permutation selection algorithm described in [13] in
the context of a massively parallel architecture; we add the ability to compute
only φ(x) and not the whole description of φ, as well as an algorithm for φ−1.

Our two main algorithms are called Permutator and InvPermutator;
they compute, respectively, φ and φ−1 on a given input. Permutator imple-
ments φ by using a binary tree of “splits”, where each split segregates the inputs
into two groups. The Splitter algorithm implements the split; it itself uses
a binary tree of repartitions that Repartitor computes. Repartitor is the
algorithm which uses the PRNG output. InvPermutator uses InvSplitter,
which itself relies on Repartitor. We describe all those algorithms in the fol-
lowing sections.



3.1 Repartitor

The Repartitor has the following inputs:

– integers n and p such that 0 ≤ p ≤ n and n 6= 0;
– a PRNG index i.

We define a = bn/2c.
Using only O(log n) PRNG requests R(i, . . .), all with the value i as first

index, Repartitor outputs an integer value u following this distribution:

P (u = k) =

(
a
k

)(
n−a
p−k

)(
n
p

)
This distribution is known as the hypergeometric distribution. It can easily be
shown that values u which have a non-zero probability of being returned must
be such that:

0 ≤ u ≤ a
(a + p)− n ≤ u ≤ p

Note that in the degenerate cases where p = 0 or p = n, then only one return
value is possible (u = 0 or u = a, respectively), allowing for a fast return.

When p > a, one may implement Repartitor by using:

Repartitor(n, p, i) = a−Repartitor(n, n− p, i)

which means that one may always assume that p ≤ a when implementing Repar-
titor.

Repartitor models the following experiment: from a set of n elements, split
into two subsets of size a and n− a, p distinct elements are randomly selected.
Repartitor computes and returns how many of those p elements come from the
first subset (of size a). Implementing Repartitor efficiently, with a sufficiently
unbiased output is tricky; we give a slow but precise algorithm in section 4.

3.2 Splitter

The Splitter algorithm has the following inputs:

– integers n and p such that 0 ≤ p ≤ n and n 6= 0;
– an input index x (0 ≤ x < n);
– a PRNG index i.

Using only requests to Repartitor(∗, ∗, j) for indexes j such that i ≤ j <
i + n− 1, Splitter returns an integer y = Splitter(n, p, x) such that:

0 ≤ Splitter(n, p, x) < n
x1 6= x2 ⇒ Splitter(n, p, x1) 6= Splitter(n, p, x2)

#{x|Splitter(n, p, x) < p} = p
Splitter(n, p, x1) < Splitter(n, p, x2) ≤ p⇒ x1 < x2

p ≤ Splitter(n, p, x1) < Splitter(n, p, x2)⇒ x1 < x2



These equations mean that Splitter extracts p elements from the set of
integer values from 0 to n−1; these p elements are given the output indexes 0 to
p− 1, but their order is preserved. The n− p unextracted elements are given the
indexes p to n− 1, and their order is also preserved. There are

(
n
p

)
such “splits”

and we require that Splitter selects one of those with uniform probability.
Splitter is implemented with a “distribution tree”. This is a binary tree

whose leaves are the n elements; each leaf is thus “extracted” (part of the p
elements) or “not extracted” (part of the n − p other elements). Each node in
the tree records how many elements among those descending from this node are
“extracted”. Hence, the root is the ancestor for all n elements, and records the
value p. The tree is built from the root: each node manages k elements, and
gets f “extractions” to distribute evenly among those k elements; it breaks the
k elements into two halves and distributes the f extractions between the two
halves (using Repartitor to follow the right probability distribution); the same
process is invoked recursively on both halves. Computing the whole tree costs
O(n) calls to Repartitor, but knowing the status (extracted or not) of a given
input element x, and computing its final index, can be done by exploring only
the tree path from the root to the leaf corresponding to x. If the tree is balanced
this costs O(log n) calls to Repartitor, hence O((log n)2) PRNG invocations.

Here is an implementation of Splitter:

Splitter:
input: n, p, x and i
output: y

1. if n = 1, then return x
2. compute a← bn/2c
3. compute u← Repartitor(n, p, i)
4. if x ≥ a, go to step 7
5. compute t← Splitter(a, u, x, i + 1)
6. if t < u, return t, else return p + (t− u)
7. compute t← Splitter(n− a, p− u, x− a, i + a)
8. if t < p− u, return t + u, else return a + t

Since a is computed such that the tree is well balanced, then the maximum
recursion depth is dlog ne. It is easily shown that Splitter uses the PRNG only
for indexes j such that i ≤ j ≤ i + n − 2: this is true for n = 1 (no PRNG
invocation at all), and is extended by recursion (the first recursive Splitter
invocation may use only indexes from i+1 to i+a−1, and the second invocation
may use only indexes from i + a to i + n− 2). Moreover, for a given x value, the
same PRNG index is never used twice.

The hypergeometric distribution implemented by Repartitor ensures that
Splitter selects uniformly the split among the possible splits of n elements into
sets of length p and n− p.



3.3 InvSplitter

The InvSplitter implements a reversal of Splitter: InvSplitter(n, p, y, i)
computes x such that Splitter(n, p, x, i) = y. Since Splitter implements a
permutation of n elements, a unique solution always exists for all y from 0 to
n− 1.

InvSplitter first checks whether the targeted y is part of the p extracted
elements, or not. Then it invokes Repartitor to know how the elements, at that
tree level, are split between the left and right parts, and it follows the correct
node, depending on whether y was extracted, and at which rank. When the leaf
x is reached, then x is the value looked for. Here is the InvSplitter algorithm:

InvSplitter:
input: n, p, y and i
output: x

1. if n = 1, then return y
2. compute a← bn/2c
3. if y ≥ p, then go to step 5
4. if y < u, return InvSplitter(a, u, y, i + 1);

otherwise, return a + InvSplitter(n− a, p− u, y − u, i + a)
5. if y < a + p− u, return InvSplitter(a, u, y − (p− u), i + 1);

otherwise, return a + InvSplitter(n− a, p− u, y − a, i + a)

Note that if y < p (respectively y ≥ p) then all nested invocations of InvS-
plitter will also have y < p (respectively y ≥ p): this is because “y < p” is
equivalent to “y is from the set of p extracted elements”. InvSplitter has cost
O((log n)2) (dlog ne calls to Repartitor).

3.4 Permutator

The Permutator algorithm selects φ and computes φ(x). φ is defined as a
binary tree of splits, as defined by Splitter: each tree node splits its input into
two halves, and uses Splitter to decide in which half each input element goes.
It then invokes itself recursively on the half where the actual input x has gone.

The inputs are n (the input space size), x (the actual input element, between 0
and n−1) and i (the base index for PRNG access). For the complete permutation,
these parameters are, respectively, n (the total input space size), x and 0.

Permutator:
input: n, x and i
output: φ(x)
1. if n = 1, then return x
2. compute a← bn/2c
3. compute t← Splitter(n, a, x, i)
4. if t < a, return Permutator(a, t, i + n− 1)
5. otherwise, return a + Permutator(n− a, t− a, i + n− 1 + γ(a))



In this description, γ is a function which computes how many PRNG input
indexes are used by Permutator: Permutator may use indexes from i to
i + γ(n)− 1 (inclusive). γ must be such that:

γ(1) ≥ 0
γ(n) ≥ n− 1 + γ(a) + γ(n− a) for n > 1 and a = bn/2c

The “optimal” γ (where these inequalities are equalities) is achieved with the
following formula for n > 1:

γ(n) = nf(n)− 2f(n) + 1

where:

f(n) = 1 + blog(n− 1)c

(f(n) is the bit length of the binary representation of n− 1.)
The depth of the binary tree of splits that Permutator implements is

dlog ne, because a is computed to be as close as possible to n/2. The num-
ber of invocations of Repartitor is O((log n)2), hence the cost of O((log n)3)
PRNG invocations.

3.5 InvPermutator

The InvPermutator algorithm must select the same φ than Permutator
with the same PRNG, and then compute φ−1(y) for a given value y. InvPermu-
tator explores the same binary tree of splits than Permutator, but upwards,
from the leaves to the root, instead of downwards. At each level, Permutator
uses Splitter to know where its current input value goes. For InvPermuta-
tor, we want to know from where a given output comes; we thus use InvSplit-
ter.

InvPermutator:
input: n, y and i
output: φ−1(y)
1. if n = 1, then return y
2. compute a← bn/2c
3. if y < a, compute t ← InvPermutator(a, y, i + n − 1); otherwise,

compute t← a + InvPermutator(n− a, y − a, i + n− 1 + γ(a))
4. return InvSplitter(n, a, t, i)

InvPermutator first goes recursively to the relevant leaf, and then works
upwards, back to the root, where φ−1(y) will be known.



4 Sampling following the Hypergeometric Distribution

The hypergeometric distribution models the selection of p distinct elements
among n, and returns how many of these p elements are taken from the first
a = bn/2c elements. For small values of p, this exact procedure can be simu-
lated. When p increases, this becomes impractical, and we need a more efficient
sampling method. As outlined in section 3.1, we may assume that p ≤ a.

4.1 Acceptance-rejection method aka. rejection sampling

This classical method, due to von Neumann, generates sampling values from
an arbitrary probability distribution function f(k) by using an instrumental
distribution g(k), under the only restriction that f(k) < Mg(k) where M > 1 is
an appropriate bound on f(k)/g(k).

The algorithm runs as follows: k is sampled following the distribution g. Then
f(k) is computed and a random integer y ∈ [0, 1] is generated. If y ≤ f(k)

Mg(k) ,
then k is output, else nothing is output and a new k must be sampled.

If g can be perfectly sampled, and if f(k)
Mg(k) and y can be computed with

arbitrary precision, the output of the algorithm follows exactly the distribution
f . In practice, since one only needs to decide whether y ≤ f(k)

Mg(k) or not, the
average precision needed is only a few bits.

We want to select according to the hypergeometric distribution HGn,α,p

where α = bn/2c/n, which we bound with the binomial distribution Bα,p, itself
being bounded by the Cauchy-Lorentz distribution CLµ,ν where µ = αp and
ν = 2α(1− α)p:

HGn,α,p(k) =

(
αn
k

)(
(1−α)n

p−k

)(
n
p

)
Bα,p(k) =

(
p

k

)
αk(1− α)p− k

CLµ,ν(x) =
1
π

( √
ν

(x− µ)2 + ν

)
HG and B are discrete, whereas CL is continuous.

4.2 Upper-bounding distributions

Theorem 1. If α ≤ 1/2, then:

HGn,α,p(k)
Bα,p(k)

<
2(1−2α)n

(2α)p

√
1 +

p

n− p
.

Theorem 2. If k ∈ N and α = 1/2, then:

Bα,p(k)
CLαp,2α(1−α)p(k)

≤
√

π.



Proofs for these theorems are provided in appendix A and B, respectively.
The values of interest to us are α = bn/2c/n for large n and sufficiently large

p. For these values, and for any x, there exists a constant c such that:

Bα,p(bx + 1/2c)
CLαp,2α(1−α)p(x)

≤ c
√

π.

We decide that if p ≤ 10 or n ≤ 10, then we will use another method for
Repartitor, namely performing p random selections. Under those conditions,
c = 1.2 is an appropriate constant.

4.3 Cauchy-Lorentz distribution by inverse method

If u ∈ [0, 1[ is selected uniformly (and u 6= 1/2), then the value µ +
√

ν tan(πu)
follows the CLµ,ν distribution. If x =

√
ν tan(πu) then we need, for Reparti-

tor, the integer closest to x + µ, and we have CLµ,ν =
√

ν
π(x2+ν) .

4.4 Description of Repartitor

The full Repartitor handles the situation where p > a, and where p ≤ 10 (if
n ≤ 10 then p ≤ 10):

Repartitor:
input: n, p and i
output: k

1. a← bn/2c
2. if p > a then return a−Repartitor(n, n− p, i)
3. if p > 10 then return RepartitorReject(n, p, i)
4. n1 ← a, n2 ← n− a
5. if p = 0, then return a− n1

6. select randomly r between 0 and n1 + n2 − 1 (inclusive)
7. if r < n1, then n1 ← n1 − 1, else n2 ← n2 − 1
8. p← p− 1
9. go to step 5

The random selection of r is done using an algorithm similar to Random-
Number, working with the stream of random bits output by R(i, j, 0) for values
of j beginning with 0. The average number of invocations of R for this process
will be less than p log n; it is extremely improbable that more than 10 times this
value is actually needed.

RepartitorReject implements the general selection with the rejection
method. We have shown that, for the parameters used with Repartitor:

HGn,α,p(bx + 1/2c)
CLαp,2α(1−α)p(x)

< 1.2
√

π
2(1−2α)n

(2α)p

√
1 +

p

n− p



For positive integers i and j, we define the value ui,j : ui,j =
∑

k≥0R(i, j, k)2−k−1

(the conceptually infinite stream R(i, j, ∗) defines the binary digits of ui,j).

RepartitorReject:
input: n, p and i
output: k

1. define a = bn/2c, µ = ap/n and ν = 2(a/n)(1− a/n)p
2. define M = 1.2

√
ν
π

2(1−2α)n

(2α)p

√
1 + p

n−p

3. l← 0
4. l← l + 1
5. x←

√
ν tan(πui,2l−1)

6. k ← bx + µ + 1/2c
7. if k < 0 or k > p, then go to step 4
8. H ←

(
a
k

)(
n−a
p−k

)
/
(
n
p

)
9. if ui,2l ≤ (x2 + ν)H/M , then return k

10. go to step 4

The value of k needs to be determined exactly, which means that x will have
to be computed with enough precision. Required precision increases linearly
with the derivative of tan over the range of accepted values. Here, the maximum
tangent value is on the order of

√
µ, with a derivative of µ, whose size is that of

n. Therefore, we need about 2 log n random bits (from ui,2l−1) to compute k.
The other computations need be precise enough only for the final test against

ui,2l to be meaningful; precision must be raised only if the test is not clear cut,
which happens with a probability on the order of 2−r if r bits of precision are
used. On the average, only O(1) random bits are used for ui,2l.

5 Security Model

We use the following security model: the attacker is given access to a black box
implementing Permutator for an internal secret key, with a message space of
size n. The attacker may perform up to n−2 encryption or decryption (adaptive)
queries. The attacker must then predict the output of Permutator for the
encryption of an hitherto unseen input. His probability of success is at most 0.5
if the black box implements a truly random permutation.

Using the terminology of [3], our attacker is an (n− 2)-limited adaptive dis-
tinguisher in the model of super-pseudorandomness (the oracle accepts both
encrypt and decrypt queries). However, this terminology is here quite stretched.
As an illustration, the Luby-Rackoff construction offers no security against our
attacker: since a Feistel network can only implement an even permutation, know-
ing the outputs for n− 2 inputs implies only a single possible permutation, and
our attacker has a probability 1 of success.

We consider that we achieve a security level of r bits if the attacker cannot
succeed with probability greater than 0.5 + 2−r, except by demonstrating that



the PRNG output is not truly random. With the Repartitor implementation
described in section 4, we achieve an “infinite” level of security, i.e. Permutator
is as robust as the PRNG used: any successful attack is mechanically a proof
that the PRNG is not a truly random source, i.e. a distinguisher attack on the
PRNG.

However, Permutator may tolerate a slightly biased Repartitor. Per-
mutator is, basically, an acyclic graph of Repartitor invocations, containing
about n log n nodes. For a given permutation φ, there is a single set of output
values for these nodes which yields the φ permutation. Each Repartitor should
follow the hypergeometric distribution Hm,p(u) to ensure uniform permutations
selection (Hm,p(u) is the probability that the unbiased Repartitor outputs u
on inputs m and p). We now consider a biased Repartitor with the distribution
H ′

m,p such that: ∑
H′

m,p(u)=0 Hm,p(u) ≤ ε

H ′
m,p(u) 6= 0⇒

∣∣∣Hm,p(u)
H′

m,p(u) − 1
∣∣∣ ≤ ε

for a value ε� 1/n. Then, for a given permutation φ:

– either one of the H ′
m,p(u) is 0 for φ, which means that φ cannot be selected;

this happens with probability at most εn log n;
– or φ is selected with probability P =

∏
H ′

m,p(u), which is close to the theo-
retical unbiased probability: |P/n!− 1| ≤ εn log n.

To achieve a security level of r bits, it is sufficient that these two probabilities
be lower than 2−r, i.e. log ε ≤ −(r + log n + log log n). Practically, for 128 bits
of security and n = 232, ε is 2−165. Any implementation of Repartitor which
achieves that level of unbiasness will fulfill our security requirements.

6 Conclusion

We have presented a new algorithm for constructing a pseudo-random permuta-
tion over a space of size n from a seekable PRNG. The PRNG must take three
numerical indexes as parameters, the first never exceeding γ(n) ≈ n log n, while
the other two parameters remain below 100 log n with an overwhelming probabil-
ity. This is a “perfect” block cipher, up to the computational indistinguishability
of the PRNG.

We implemented Permutator in C, using the MPFR[14] library for ar-
bitrary precision computations. Values of n up to 232 − 1 are supported. The
underlying PRNG uses the AES[1], by encrypting the concatenation of the three
PRNG indexes to produce 128 bits of random. Performance is quite inadequate:
for n = 109, a 2 GHz PC requires about 0.48 seconds to compute the image of a
single value by Permutator. Profiling shows that more than 98% of the time
is spent in the floating-point computations.

We believe that a much simpler implementation of Repartitor can be de-
signed, for much improved performance. As outlined in section 5, a slightly biased
Repartitor can be tolerated, which opens the way to all kinds of approxima-
tions.
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A Proof of theorem 1

We now prove theorem 1. Let’s compute this:

HGn,α,p(k)
Bα,p(k)

=

(
n−p

αn−k

)(
n

αn

) 1
αk(1− α)p−k

.

If α ≤ 1/2, then α ≤ 1−α, therefore 1
αk(1−α)p−k reaches its maximum for k = p.

Hence 1
αk(1−α)p−k ≤ α−p.

Define m = αn and β = n− 2m = (1− 2α)n. We have three possibilities:

– p ≥ β and p− β is even;
– p ≥ β and p− β is odd;
– p < β.



If p = 2q+β, the maximum of
(

n−p
αn−k

)
=
(
2m−2q
m−k

)
is achieved for k = q; hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m−2q
m−q

)(
2m
m

) =
2−2q

αp

F (m− q)
√

m

F (m)
√

m− q
<

2β

(2α)p

√
1 +

p

n− p
.

If p = 2q + β + 1, the maximum of
(

n−p
αn−k

)
=
(
2m−2q−1

m−k

)
is achieved for k = q

or k = q + 1 (same value); hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m−2q−1

m−q

)(
2m
m

) =
2−2q−1

αp

F (m− q)
√

m

F (m)
√

m− q
<

2β

(2α)p

√
1 +

p

n− p
.

If p < β, the maximum of
(

n−p
αn−k

)
=
(
2m+β−p

m−k

)
is achieved for k = 0; hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m+(β−p)

m

)(
2m
m

) = α−p2β−p

β−p∏
i=1

1 + i/(2m)
1 + i/m

<
2β

(2α)p
.

B Proof of theorem 2

We need the following lemma:

Lemma 1. The function F (k) =
(
2k
k

)
2−2k

√
k is strictly increasing, with limit

π−1/2 = 0.56418 . . .

Proof. The limit of F (k) when k →∞ is easily deduced from Stirling’s formula:

F (k) =
(2k)!
(k!)2

2−2k
√

k ≈ (2k)2ke−2k
√

4πk
√

k

k2ke−2k2πk22k
=

1√
π

.

To prove that F is strictly increasing, it suffices to remark that:

F (k + 1)2

F (k)2
= 1 +

1
4k(1 + k)

> 1.

We may now see that:

B1/2,p(k)
CLp/2,p/2(k)

= πF (p/2)

(
p
k

)(
p

p/2

) (( k

p/2
− 1
)2

+ 1

)

which reaches its maximum for k = p/2. This maximum is πF (p/2) <
√

π.


